WorldWideScience

Sample records for supratentorial glioblastoma multiforme

  1. Phase I/II Trial of Hyperfractionated Concomitant Boost Proton Radiotherapy for Supratentorial Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Mizumoto, Masashi; Tsuboi, Koji; Igaki, Hiroshi; Yamamoto, Tetsuya; Takano, Shingo; Oshiro, Yoshiko; Hayashi, Yasutaka; Hashii, Haruko; Kanemoto, Ayae; Nakayama, Hidetsugu; Sugahara, Shinji; Sakurai, Hideyuki; Matsumura, Akira; Tokuuye, Koichi

    2010-01-01

    Purpose: To evaluate the safety and efficacy of postoperative hyperfractionated concomitant boost proton radiotherapy with nimustine hydrochloride for supratentorial glioblastoma multiforme (GBM). Methods and Materials: Twenty patients with histologically confirmed supratentorial GBM met the following criteria: (1) a Karnofsky performance status of ≥60; (2) the diameter of the enhanced area before radiotherapy was ≤40 cm; and (3) the enhanced area did not extend to the brain stem, hypothalamus, or thalamus. Magnetic resonance imaging (MRI) T 2 -weighted high area (clinical tumor volume 3 [CTV3]) was treated by x-ray radiotherapy in the morning (50.4 Gy in 28 fractions). More than 6 hours later, 250 MeV proton beams were delivered to the enhanced area plus a 10-mm margin (CTV2) in the first half of the protocol (23.1 GyE in 14 fractions) and to the enhanced volume (CTV1) in the latter half (23.1 GyE in 14 fraction). The total dose to the CTV1 was 96.6 GyE. Nimustine hydrochloride (80 mg/m2) was administered during the first and fourth weeks. Results: Acute toxicity was mainly hematologic and was controllable. Late radiation necrosis and leukoencephalopathy were each seen in one patient. The overall survival rates after 1 and 2 years were 71.1% and 45.3%, respectively. The median survival period was 21.6 months. The 1- and 2-year progression-free survival rates were 45.0% and 15.5%, respectively. The median MRI change-free survival was 11.2 months. Conclusions: Hyperfractionated concomitant boost proton radiotherapy (96.6 GyE in 56 fractions) for GBM was tolerable and beneficial if the target size was well considered. Further studies are warranted to pursue the possibility of controlling border region recurrences.

  2. Metástases intrarraquidianas de glioblastoma multiforme supratentorial da infância: relato de caso Spinal cord metastatic glioblastoma multiforme of childhood: case report

    Directory of Open Access Journals (Sweden)

    Patricia Imperatriz Porto Rondinelli

    2002-09-01

    Full Text Available Relatamos o caso de uma menina de onze anos de idade com glioblastoma multiforme na região têmporo-parietal direita, completamente ressecado cirurgicamente, submetida a radioterapia craniana pós-operatória. Houve recaída três meses após, em topografia distante do sítio primário, na porção caudal do canal raquidiano. Após, ocorreu evolução rápida para o óbito. A propósito desse caso, discutimos nossa experiência quanto à conduta nesses tumores e a literatura sobre o assunto.We report the case of an eleven years-old girl with a right temporo-parietal glioblastoma multiforme. The tumor was totally resected on neurossurgery, and cranial radioteraphy was applied at next. The tumor recurred three months later, far from primary site, in the caudal portion of the spinal canal. Death occurred in less than one month later. Taking into account the data of this case, we discuss our experience in the management of such tumors and the literature on the subject.

  3. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  4. Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme - a quantitative radiological analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jens P.; Rubach, Matthias; Schulz, Thomas; Dietrich, Juergen; Zimmer, Claus; Kahn, Thomas [University of Leipzig, Diagnostic Radiology, Leipzig (Germany); Trantakis, Christos; Winkler, Dirk; Renner, Christof [University of Leipzig, Department of Neurosurgery, Leipzig (Germany); Schober, Ralf; Geiger, Kathrin [University of Leipzig, Department of Neuropathology, Leipzig (Germany); Brosteanu, Oana [Coordination Centre for Clinical Trials, Leipzig (Germany)

    2005-07-01

    Patients with supratentorial high-grade glioma underwent surgery within a vertically open 0.5-T magnetic resonance (MR) system to evaluate the efficacy of intraoperative MR guidance in achieving gross-total resection. For 31 patients, preoperative clinical data and MR findings were consistent with the putative diagnosis of a high-grade glioma, in 23 cases in eloquent regions. Tumor resections were carried out within a 0.5-T MR SIGNA SP/i (GE Medical Systems, USA). The resection of the lesion was carried out using fully MR compatible neurosurgical equipment and was stopped at the point when the operation was considered complete by the surgeon viewing the operation field with the microscope. We repeated imaging to determine the residual tumor volume only visible with MRI. Areas of tissue that were abnormal on these images were localized in the bed of resection by using interactive MR guidance. The procedure of resection, imaging control and interactive image guidance was repeated where necessary. Almost all tissue with abnormal characteristics was resected, with the exception of tissue localized in eloquent brain areas. The diagnosis of glioblastoma was confirmed in all 31 cases. When comparing the tumor volume before resection and at the point where the neurosurgeon would otherwise have terminated surgery (''first control''), residual tumor tissue was detectable in 29/31 patients; the mean residual tumor volume was 30.7{+-}24%. After repeated resections under interactive image guidance the mean residual tumor volume was 15.1%. At this step we found tumor remnants only in 20/31 patients. The perioperative morbidity (12.9%) was low. Twenty-seven patients underwent sufficient postoperative radiotherapy. We found a significant difference (log{sub rank}p=0.0037) in the mean survival times of the two groups with complete resection (n=10, median survival time 537 days) and incomplete resection (n=17, median survival time 237 days). The resection of

  5. Outcome in elderly patients undergoing definitive surgery and radiation therapy for supratentorial glioblastoma multiforme at a tertiary care institution

    International Nuclear Information System (INIS)

    Mohan, Dasarahally S.; Suh, John H.; Phan, Jennifer L.; Kupelian, Patrick A.; Cohen, Bruce H.; Barnett, Gene H.

    1998-01-01

    Purpose: To determine the efficacy of definitive surgery and radiation in patients aged 70 years and older with supratentorial glioblastoma multiforme. Methods and Materials: We selected elderly patients (≥ 70 years) who had primary treatment for glioblastoma multiforme at our tertiary care institution from 1977 through 1996. The study group (n = 102) included 58 patients treated with definitive radiation, 19 treated with palliative radiation, and 25 who received no radiation. To compare our results with published findings, we grouped our patients according to the applicable prognostic categories developed by the Radiation Therapy Oncology Group (RTOG): RTOG group IV (n = 6), V (n = 70), and VI (n = 26). Patients were retrospectively assigned to prognostic group IV, V, or VI based on age, performance status, extent of surgery, mental status, neurologic function, and radiation dose. Treatment included surgical resection and radiation (n 49), biopsy alone (n = 25), and biopsy followed by radiation (n = 28). Patients were also stratified according to whether they were optimally treated (gross total or subtotal resection with postoperative definitive radiation) or suboptimally treated (biopsy, biopsy + radiation, surgery alone, or surgery + palliative radiation). Patients were considered to have a favorable prognosis (n = 39) if they were optimally treated and had a Karnofsky Performance Status (KPS) score of at least 70. Results: The median survival for patients according to RTOG groups IV, V, and VI was 9.2, 6.6, and 3.1 months, respectively (log-rank, p < 0.0004). The median overall survival was 5.3 months. The definitive radiation group (n = 58) had a median survival of 7.3 months compared to 4.5 months in the palliative radiation group (n = 19) and 1.2 months in the biopsy-alone group (p < 0.0001). Optimally treated patients had a median survival of 7.4 months compared to 2.4 months in those suboptimally treated (p < 0.0001). The favorable prognosis group had an

  6. Glioblastoma multiforme of the pineal region: case report Glioblastoma multiforme de região pineal: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson Leandro Gasparetto

    2003-06-01

    Full Text Available PURPOSE: pineal region tumors are uncommon, and comprise more frequently three categories: germ cell, parenchymal cell and glial tumors. Most pineal gliomas are low-grade astrocytomas. Glioblastoma multiforme, the most aggressive and common brain tumor, is extremely rare at this location with only few cases reported. CASE DESCRIPTION: a 29-year-old woman with a two month history of headache, nuchal pain, fever, nausea and seizures and physical examination showing nuchal rigidity, generalized hypotony, hypotrophy and hyper-reflexia, Babinski sign and left VI cranial par palsy. CT scan examination revealed a ill-defined hypodense lesion at the pineal region with heterogeneous contrast enhancement. MRI showed a lesion at the pineal region infiltrating the right thalamic region. The patient underwent a right craniotomy with partial resection of the mass. The histological examination of paraffin-embedded material defined the diagnosis of glioblastoma multiforme. Post-operative radiotherapy was indicated but the patient refused the treatment and died two months afterwards. CONCLUSION: in spite of its rarity at this location, glioblastoma multiforme should be considered in the differential diagnosis of aggressive lesions at the pineal region.OBJETIVO: Os tumores da região pineal são incomuns e podem ser divididos em três categorias de acordo com a sua origem: células germinativas, células do parênquima e células gliais. Em sua maioria, os gliomas de pineal são astrocitomas de baixo grau, sendo que o seu correspondente maligno, glioblastoma multiforme, é o mais comum e agressivo tumor encefálico e é extremamente raro nesta localização, com apenas alguns casos relatados na literatura. CASO: Mulher com 29 anos apresentando há 2 meses cefaléia, nucalgia, febre, náuseas e crises convulsivas. O exame físico mostrou rigidez de nuca, hipotonia, hipotrofia e hiperreflexia generalizadas, sinal de Babinski e paralisia do VI nervo craniano. A

  7. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru [Toranomon Hospital, Tokyo (Japan); Hirose, Takanori

    1998-02-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-{beta}. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  8. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    International Nuclear Information System (INIS)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru; Hirose, Takanori.

    1998-01-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-β. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  9. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  10. Micro RNAs as molecular markers of glioblastoma multiform

    Energy Technology Data Exchange (ETDEWEB)

    Farace, M G [Department Experimental Medicine and Biochemical Sciences, University of Tor Vergata, Rome (Italy); Finocchiaro, G [Istituto Neurologico Besta, Milan (Italy); Ricci Vitiani, L [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation.

  11. Micro RNAs as molecular markers of glioblastoma multiform

    International Nuclear Information System (INIS)

    Farace, M.G.; Finocchiaro, G.; Ricci Vitiani, L.

    2009-01-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation

  12. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  13. A study of concurrent radiochemotherapy with paclitaxel in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Julka, P.K.; Awasthy, B.S.; Rath, G.K.; Agarwal, S.; Varna, T.; Mahapatra, A.K.; Singh, R.

    2000-01-01

    Despite advances in neurosurgery and radiotherapy, the prognosis of patients with glioblastoma multiforme remains poor. Reports in the literature about the radiosensitizing properties of paclitaxel stimulated the authors to conduct a study using paclitaxel concurrently with radiation in a group of 18 patients who had residual disease postoperatively. Paclitaxel was delivered weekly as an intravenous infusion in a dose of 60 mg/m 2 along with radiation to the primary lesion. A total of 108 cycles of paclitaxel was given. All the patients tolerated the treatment well. The main side effects were haematological, and neuropathy which was self-limiting. The overall 1-year survival rate was 70%, with 12 patients alive at 13 months. The median survival has not yet been reached although it is more than 13 months. Thus, paclitaxel can be safely delivered concomitantly with radiation in patients with glioblastoma multiforme. Larger, randomized trials are required to establish the comparative efficacy of paclitaxel as a radiosensitizer in glioblastoma multiforme. Copyright (1999) Blackwell Science Pty Ltd

  14. Tonsillary carcinoma after temozolomide treatment for glioblastoma multiforme: treatment-related or dual-pathology?

    Science.gov (United States)

    Binello, E; Germano, I M

    2009-08-01

    Glioblastoma multiforme is a primary malignant brain tumor with a prognosis of typically less than 2 years. Standard treatment paradigms include surgery, radiation therapy and temozolomide. Little data exists for temozolomide recommendations after the first 6 months. We present a case of a patient with glioblastoma multiforme treated with surgery, radiation and chronic temozolomide for 6 years. He continues to survive glioblastoma-recurrence-free, but developed tonsillary carcinoma. This case raises the question of whether this secondary solid-organ malignancy is treatment-related or dual pathology.

  15. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    Directory of Open Access Journals (Sweden)

    Noerholm Mikkel

    2012-01-01

    Full Text Available Abstract Background RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Methods Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9 and normal controls (N = 7 were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups. Results Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size Conclusions Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size

  16. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    International Nuclear Information System (INIS)

    Noerholm, Mikkel; Balaj, Leonora; Limperg, Tobias; Salehi, Afshin; Zhu, Lin Dan; Hochberg, Fred H; Breakefield, Xandra O; Carter, Bob S; Skog, Johan

    2012-01-01

    RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups). Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production. Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt

  17. Glioblastoma multiforme of the cerebellum: description of three cases.

    Science.gov (United States)

    Luccarelli, G

    1980-01-01

    Only 43 cases of glioblastoma multiforme of the cerebellum have been reported in the literature. This report is based on the findings of 3 cerebellar glioblastomas in a review of 1,206 consecutive confirmed cases of glioblastoma operated on between 1947 and 1977 at the Istituto Neurologico of Milan, giving an incidence of 0.24%. Clinical features are similar to those of any other fast-growing subtentorial tumour. Neuroradiological studies, including CAT, are of little help in predicting the exact nature of these tumours before surgery. A correct diagnosis can be reached only by microscopic examination. Histological patterns appear in no way to differ from those of cerebral glioblastoma. The biological behaviour of these tumours is in all respects identical to that of glioblastoma of cerebral hemispheres.

  18. Glioblastoma multiforme after radiotherapy for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-07-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed.

  19. Glioblastoma multiforme after radiotherapy for acromegaly

    International Nuclear Information System (INIS)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-01-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed

  20. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  1. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Science.gov (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  2. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  3. Advanced case of glioblastoma multiforme and pregnancy. An ethical dilemma.

    Science.gov (United States)

    Al-Rasheedy, Intisar M; Al-Hameed, Fahad M

    2015-10-01

    Glioblastoma multiforme (GBM) is the most common and malignant form of the glial tumors. Advanced and treated GBM is rarely associated with pregnancy for many reasons. Glioblastoma multiforme presenting during pregnancy carries unique challenges to the patient, baby, family, and health care providers. We describe an unusual case of advanced GBM that was treated with maximum doses of chemotherapy and radiations, and she became pregnant and presented at eighteenth weeks of gestation. Her medical management was associated with a significant ethical dilemma. We managed to deliver the baby safely through cesarean section at week 28 despite the critical condition of the mother. Unfortunately, the mother died 2 weeks post delivery. We concluded that although recurrent and treated GBM is rarely associated with pregnancy and carries dismal prognosis, but if it occurs, it can still be carried, and a multidisciplinary team work is the key for successful outcome.

  4. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...

  5. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure...

  6. Long-term Survival of Six Patients with Glioblastoma Multiforme: Case Series and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Shapour Omidvari

    2012-04-01

    Full Text Available The median overall survival in glioblastoma multiforme is usually less than one year. Long-term survival is rare and is seen in only 3%-6% of GBM patients. The present study reports the characteristics and treatment outcomes of six cases of glioblastoma multiforme with long-term survival. A literature review is also presented.Between 1990 and 2008, 217 glioblastoma multiforme patients have been treated at our center of which six cases (four males survived for three years or longer. The mean age of the six cases was 25.7 years. All patients received postoperative radiotherapy with a mean dose of 55 gray and four patients received nitrosourea-based chemotherapy.Patients' mean survival was 5.2 years. The results of this study and review of the literature have indicated that long-term (more than three years survival is exceptional and mainly observed in younger patients with good performance status and following complete surgical tumor resection.

  7. Survival benefit of surgery in recurrent glioblastoma multiforme.

    Science.gov (United States)

    Choudry, Usama Khalid; Khan, Saad Akhtar; Shamim, Muhammad Shahzad

    2017-12-01

    There is an ongoing debate regarding role of surgery for recurrent glioblastoma multiforme (GBM). Older literature hinted at only modest survival benefits with surgery and a high rate of morbidity. However, more recent literature suggests better survival that may be attributed to better surgical techniques and better options in adjuvant treatment. Herein the authors review recent literature with regards to the possible role of surgery in recurrent GBM and also look into the key factors impacting second surgery. .

  8. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection

    Science.gov (United States)

    Korbecki, Jan; Gutowska, Izabela; Kojder, Ireneusz; Jeżewski, Dariusz; Goschorska, Marta; Łukomska, Agnieszka; Lubkowska, Anna; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2018-01-01

    Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the ‘hallmarks of cancer’ in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme. PMID:29467963

  9. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    Science.gov (United States)

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  10. Glioblastoma multiforme med intra- og ekstramedullær disseminering til spinalkanalen

    DEFF Research Database (Denmark)

    Hansson, Karin; Gutte Borgwardt, Henrik; Idris, Fadi

    2013-01-01

    Metastases to the spinal cord from glioblastoma multiforme (GBM) are uncommon, but important to have in mind when patients with a history of GBM present with symptoms that do not correlate with the primary disease pattern. We report a rare case, where a male with GBM, six months after tumour...

  11. A prospective PET study of patients with glioblastoma multiforme

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Blinkenberg, M; Lassen, U

    2006-01-01

    OBJECTIVE: To study the post-surgical metabolic and structural cerebral changes in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS: We examined ten patients prospectively with newly diagnosed GBM. All patients were primarily treated with surgery, followed by chemotherapy...... compared with structural imaging in the prospective evaluation of GBM. We found a difference in metabolic increase and tumor growth between the two treatment regimens, although this finding has limited relevance due to the design of the study....

  12. On the Concepts and History of Glioblastoma Multiforme - Morphology, Genetics and Epigenetics

    Directory of Open Access Journals (Sweden)

    Stoyanov George St.

    2018-03-01

    Full Text Available Glioblastoma multiforme (GBM is a grade IV WHO malignant tumor with astrocytic differentiation. As one of the most common clinically diagnosed central nervous system (CNS oncological entries, there have been a wide variety of historical reports of the description and evolution of ideas regarding these tumors.

  13. Aplastic anemia as a cause of death in a patient with glioblastoma multiforme treated with temozolomide

    International Nuclear Information System (INIS)

    Kopecky, Jindrich; Priester, Peter; Slovacek, Ladislav; Petera, Jiri; Macingova, Zuzana; Kopecky, Otakar

    2010-01-01

    Background: Standard treatment of glioblastoma multiforme consists of postoperative radiochemotherapy with temozolomide, followed by a 6-month chemotherapy. Serious hematologic complications are rarely reported. Case Report and Results: The authors present the case of a 61-year-old female patient with glioblastoma multiforme treated with external-beam radiation therapy and concomitant temozolomide. After completion of treatment, the patient developed symptoms of serious aplastic anemia that eventually led to death due to prolonged neutro- and thrombocytopenia followed by infectious complications. Conclusion: Lethal complications following temozolomide are, per se, extremely rare, however, a total of four other cases of aplastic anemia have been reported in the literature so far. (orig.)

  14. Aplastic anemia as a cause of death in a patient with glioblastoma multiforme treated with temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Kopecky, Jindrich; Priester, Peter; Slovacek, Ladislav; Petera, Jiri; Macingova, Zuzana [Dept. of Clinical Oncology and Radiotherapy, Charles Univ. Hospital and Faculty of Medicine in Hradec Kralove (Czech Republic); Kopecky, Otakar [Clinical Oncology, Regional Hospital Nachod (Czech Republic)

    2010-08-15

    Background: Standard treatment of glioblastoma multiforme consists of postoperative radiochemotherapy with temozolomide, followed by a 6-month chemotherapy. Serious hematologic complications are rarely reported. Case Report and Results: The authors present the case of a 61-year-old female patient with glioblastoma multiforme treated with external-beam radiation therapy and concomitant temozolomide. After completion of treatment, the patient developed symptoms of serious aplastic anemia that eventually led to death due to prolonged neutro- and thrombocytopenia followed by infectious complications. Conclusion: Lethal complications following temozolomide are, per se, extremely rare, however, a total of four other cases of aplastic anemia have been reported in the literature so far. (orig.)

  15. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Pablo Freire

    Full Text Available The Cancer Genome Atlas project (TCGA has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise.Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome and (http://bioinformaticstation.org, respectively.The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  16. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Science.gov (United States)

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  17. Phase 1/2 Trials of Temozolomide, Motexafin Gadolinium, and 60-Gy Fractionated Radiation for Newly Diagnosed Supratentorial Glioblastoma Multiforme: Final Results of RTOG 0513

    Energy Technology Data Exchange (ETDEWEB)

    Brachman, David G., E-mail: david.brachman@dignityhealth.org [Arizona Oncology Services Foundation, Scottsdale, Arizona (United States); Barrow Neurological Institute, St. Joseph' s Hospital and Medical Center, Phoenix, Arizona (United States); Pugh, Stephanie L. [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Ashby, Lynn S. [Barrow Neurological Institute, St. Joseph' s Hospital and Medical Center, Phoenix, Arizona (United States); Thomas, Theresa A. [Arizona Oncology Services Foundation, Scottsdale, Arizona (United States); Dunbar, Erin M. [University of Florida College of Medicine, Gainesville, Florida (United States); Narayan, Samir [St. Joseph Mercy Hospital, Ann Arbor, Michigan (United States); Robins, H. Ian [University of Wisconsin Hospital, Madison, Wisconsin (United States); Bovi, Joseph A. [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Rockhill, Jason K. [University of Washington Medical Center, Seattle, Washington (United States); Won, Minhee [Barrow Neurological Institute, St. Joseph' s Hospital and Medical Center, Phoenix, Arizona (United States); Curran, Walter P. [Emory University, Atlanta, Georgia (United States)

    2015-04-01

    Purpose: The purpose of phase 1 was to determine the maximum tolerated dose (MTD) of motexafin gadolinium (MGd) given concurrently with temozolomide (TMZ) and radiation therapy (RT) in patients with newly diagnosed supratentorial glioblastoma multiforme (GBM). Phase 2 determined whether this combination improved overall survival (OS) and progression-free survival (PFS) in GBM recursive partitioning analysis class III to V patients compared to therapies for recently published historical controls. Methods and Materials: Dose escalation in phase 1 progressed through 3 cohorts until 2 of 6 patients experienced dose-limiting toxicity or a dose of 5 mg/kg was reached. Once MTD was established, a 1-sided 1-sample log-rank test at significance level of .1 had 85% power to detect a median survival difference (13.69 vs 18.48 months) with 60 deaths over a 12-month accrual period and an additional 18 months of follow-up. OS and PFS were estimated using the Kaplan-Meier method. Results: In phase 1, 24 patients were enrolled. The MTD established was 5 mg/kg, given intravenously 5 days a week for the first 10 RT fractions, then 3 times a week for the duration of RT. The 7 patients enrolled in the third dose level and the 94 enrolled in phase 2 received this dose. Of these 101 patients, 87 were eligible and evaluable. Median survival time was 15.6 months (95% confidence interval [CI]: 12.9-17.6 months), not significantly different from that of the historical control (P=.36). Median PFS was 7.6 months (95% CI: 5.7-9.6 months). One patient (1%) experienced a grade 5 adverse event possibly related to therapy during the concurrent phase, and none experience toxicity during adjuvant TMZ therapy. Conclusions: Treatment was well tolerated, but median OS did not reach improvement specified by protocol compared to historical control, indicating that the combination of standard RT with TMZ and MGd did not achieve a significant survival advantage.

  18. TSPO Imaging in Glioblastoma Multiforme

    DEFF Research Database (Denmark)

    Jensen, Per; Feng, Ling; Law, Ian

    2015-01-01

    -CLINDE is superior to (18)F-FET in predicting progression of glioblastoma multiforme (GBM) at follow-up. METHODS: Three patients with World Health Organization grade IV GBM were scanned with (123)I-CLINDE SPECT, (18)F-FET PET, and gadolinium-enhanced MR imaging. Molecular imaging data were compared with follow......-CLINDE (15%-30%). In contrast, VOIs of increased contrast enhancement at follow-up compared with baseline overlapped to a greater extent with baseline (123)I-CLINDE VOIs than (18)F-FET VOIs (21% vs. 8% and 72% vs. 55%). CONCLUSION: Our preliminary results suggest that TSPO brain imaging in GBM may...... be a useful tool for predicting tumor progression at follow-up and may be less susceptible to changes in blood-brain barrier permeability than (18)F-FET. Larger studies are warranted to test the clinical potential of TSPO imaging in GBM, including presurgical planning and radiotherapy....

  19. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  20. Statin use and survival following glioblastoma multiforme

    DEFF Research Database (Denmark)

    Gaist, David; Hallas, Jesper; Friis, Søren

    2014-01-01

    with glioblastoma multiforme (GBM). METHODS: We identified 1562 patients diagnosed with GBM during 2000-2009 from the Danish Cancer Registry and linked this cohort to Danish nationwide demographic and health registries. Within the GBM cohort, each patient recorded as using statins prior to diagnosis (defined as ≥2......-cause death associated with prediagnostic statin use. RESULTS: A total of 339 GBM patients were included in the analyses. Of these, 325 died during median follow-up of 6.9 months (interquartile range: 3.8-13.4 months). Prediagnostic statin use was associated with a reduced HR of death (0.79; 95% CI: 0......: 0.63-1.01). CONCLUSION: Long-term prediagnostic statin use may improve survival following GBM....

  1. Clinical variables serve as prognostic factors in a model for survival from glioblastoma multiforme

    DEFF Research Database (Denmark)

    Michaelsen, Signe Regner; Christensen, Ib Jarle; Grunnet, Kirsten

    2013-01-01

    Although implementation of temozolomide (TMZ) as a part of primary therapy for glioblastoma multiforme (GBM) has resulted in improved patient survival, the disease is still incurable. Previous studies have correlated various parameters to survival, although no single parameter has yet been...

  2. Pediatric glioblastoma multiforme: A single-institution experience.

    Science.gov (United States)

    Ansari, Mansour; Nasrolahi, Hamid; Kani, Amir-Abbas; Mohammadianpanah, Mohammad; Ahmadloo, Niloofar; Omidvari, Shapour; Mosalaei, Ahmad

    2012-07-01

    Glioblastoma multiforme (GBM) is the most common astrocytoma in adults and has a poor prognosis, with a median survival of about 12 months. But, it is rare in children. We report our experience on the pediatric population (20 years or younger) with GBM. Twenty-three patients with GBM who were treated at our hospital during 1990-2008 were evaluated. The mean age was 15.2 years, and the majority of them (14/23) were male. All had received radiotherapy and some had also received chemotherapy. The mean survival was 16.0 months. Two cases survived more than 5 years. Age, radiation dose and performance status were significantly related to survival. GBM in pediatric patients were not very common in our center, and prognosis was unfavorable.

  3. Difficult diagnosis of brainstem glioblastoma multiforme in a woman: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2009-10-01

    Full Text Available Abstract Introduction Brainstem gliomas are rare in adults. They most commonly occur in the pons and are most likely to be high-grade lesions. The diagnosis of a high-grade brainstem glioma is usually reached due to the presentation of rapidly progressing brainstem, cranial nerve and cerebellar symptoms. These symptoms do, however, overlap with a variety of other central nervous system disorders. Magnetic resonance imaging is the radiographic modality of choice, but can still be misleading. Case presentation A 48-year-old Caucasian woman presented with headache and vomiting followed by cerebellar signs and confusion. Magnetic resonance imaging findings were suggestive of a demyelinating process, but the patient failed to respond to therapy. Her condition rapidly progressed and she died. At autopsy, a high-grade invasive pontine tumor was identified. Histological evaluation revealed glioblastoma multiforme. Conclusion While pontine gliomas are rare in adults, those that do occur tend to be high-grade and rapidly progressive. Progression of symptoms from non-specific findings of headache and vomiting to rapid neurological deterioration, as occurred in our patient, is common in glioblastoma multiforme. While radiographic findings are often suggestive of the underlying pathology, this case represents the possibility of glioblastoma multiforme presenting as a deceptively benign appearing lesion.

  4. Phase II open-label study of nintedanib in patients with recurrent glioblastoma multiforme

    DEFF Research Database (Denmark)

    Muhic, Aida; Poulsen, Hans Skovgaard; Mau-Sørensen, Paul Morten

    2013-01-01

    glioblastoma multiforme (GBM) who had previously failed radiotherapy plus temozolomide as first-line therapy (STUPP), or the same regimen with subsequent bevacizumab-based therapy as second-line treatment (BEV). Patients with a performance status of 0-1, histologically proven GBM, and measurable disease (by...... GBM who had failed 1-2 prior lines of therapy....

  5. Magnetic resonance imaging in 67 cases of glioblastoma multiform and occurrence of metastases

    International Nuclear Information System (INIS)

    Ferreira, Nelson Fortes; Barbosa, Marcelo; Amaral, Lazaro L. Faria do; Mendonca, Renato Adam; Lima, Sergio Santos

    2004-01-01

    The purpose of this paper is to demonstrate the main MRI characteristics of glioblastoma multiform (GBM), the most common CNS primary tumor, emphasizing its location and the occurrence of metastases. The MR imaging of 67 pathologically proven cases of glioblastoma multiform were retrospectively reviewed. The exams were realized in the period between 1995 and 2003, in one of three 1.5 Signa GE units (Milwaukee, WI). The ages of the patients ranged from 4 years to 86 years, mean 60 years, and the occurrence of the tumor was preponderant among men, with 39 cases (58%). The most common location was in the frontal lobes (47%) followed by the temporal lobes (18%) and the parietal lobes (16%). In 19% of the cases there were involvement of more than one site and long distance metastases were seen in 22% of the patients. According to the literature, the most common location of GBM was in the frontal lobe of older than 50 years old men. Metastases occurred in 22% of our cases. (author)

  6. Hemolytic anemia in two patients with glioblastoma multiforme: A possible interaction between vorinostat and dapsone.

    Science.gov (United States)

    Lewis, Jennifer A; Petty, William J; Harmon, Michele; Peacock, James E; Valente, Kari; Owen, John; Pirmohamed, Munir; Lesser, Glenn J

    2015-06-01

    Patients undergoing treatment for glioblastoma multiforme are routinely placed on prophylactic treatment for Pneumocystis jirovecii pneumonia because of significant therapy-induced lymphopenia. In patients with sulfa allergies, dapsone prophylaxis is often used due to its efficacy, long half-life, cost effectiveness, and general safety at low doses. However, dapsone may uncommonly induce a hemolytic anemia, particularly in patients deficient of glucose-6-phosphate dehydrogenase. This hemolysis is thought to be a result of oxidative stress on red blood cells induced by dapsone metabolites which produce reactive oxygen species that disrupt the red blood cell membrane and promote splenic sequestration. A single case report of dapsone-induced hemolytic anemia in a patient with glioblastoma multiforme has been reported. We present two patients with glioblastoma multiforme who developed severe hemolytic anemia shortly after initiating therapy with vorinostat, a pan-active histone deacetylase inhibitor, while on prophylactic dapsone. There are several potential mechanisms by which histone deacetylase inhibition may alter dapsone metabolism including changes in hepatic acetylation or N-glucuronidation leading to an increase in the bioavailability of dapsone's hematotoxic metabolites. In addition, vorinostat may lead to increased hemolysis through inhibition of heat shock protein-90, a chaperone protein that maintains the integrity of the red blood cell membrane cytoskeleton. The potential interaction between dapsone and vorinostat may have important clinical implications as more than 10 clinical trials evaluating drug combinations with vorinostat in patients with malignant glioma are either ongoing or planned in North America. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  8. Radiotherapy in supratentorial gliomas. A study of 821 cases

    International Nuclear Information System (INIS)

    Heesters, M.; Molenaar, W.; Go, G.K.

    2003-01-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  9. Radiotherapy in supratentorial gliomas. A study of 821 cases

    Energy Technology Data Exchange (ETDEWEB)

    Heesters, M. [Dept. of Radiotherapy, Groningen Univ. Hospital (Netherlands); Molenaar, W. [Dept. of Pathology, Groningen Univ. Hospital (Netherlands); Go, G.K. [Dept. of Neurosurgery, Groningen Univ. Hospital (Netherlands)

    2003-09-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  10. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2017-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.

  11. Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution

    International Nuclear Information System (INIS)

    Hulshof, M.C.C.M.; Schimmel, E.C.; Gonzalez, D.G.; Koot, R.W.; Bosch, D.A.; Dekker, F.

    2001-01-01

    Background: To analyze prognostic factors in patients with a glioblastoma multiforme treated in an academic institute over the last 10 years. Patients and method: From 1988 to 1998, 198 patients with pathologically confirmed glioblastoma multiforme were analyzed. Five radiation schedules were used mainly based on pretreatment selection criteria: 1. 60 Gy in 30 fractions followed by an interstitial iridium-192 (Ir-192) boost for selected patients with a good performance and a small circumscribed tumor, 2. 66 Gy in 33 fractions for good performance patients, 3. 40 Gy in eight fractions or 4. 28 Gy in four fractions for poor prognostic patients and 5. no irradiation. Results: Median survival was 16 months, 7 months, 5.6 months, 6.6 months and 1.8 months for the groups treated with Ir-192, 66 Gy, 40 Gy, 28 Gy and the group without treatment, respectively. No significant improvement in survival was encountered over the last 10 years. At multivariate analysis patients treated with a hypofractionated scheme showed a similar survival probability and duration of palliative effect compared to the conventionally fractionated group. The poor prognostic groups receiving radiotherapy had a highly significant better survival compared to the no-treatment group. Patients treated with an Ir-192 boost had a better median survival compared to a historical group matched on selection criteria but without boost treatment (16 vs 9.7 months, n.s.). However, survival at 2 years was similar. Analysis on pretreatment characteristics at multivariate analysis revealed age, neurological performance, addition of radiotherapy, total resection, tumor size post surgery and deterioration before start of radiotherapy (borderline) as significant prognostic factors for survival. Conclusion: Despite technical developments in surgery and radiotherapy over the last 10 years, survival of patients with a glioblastoma multiforme has not improved in our institution. The analysis of prognostic factors

  12. Glioblastoma Multiforme Presenting as Spontaneous Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Cagatay Ozdol

    2014-06-01

    Full Text Available Brain tumors with concomitant intracerebral hemorrhage are rarely encountered. Hemorrhage as the initial presentation of a brain tumour may pose some diagnostic problems, especially if the tumour is small or the hemorrhage is abundant. We present a 47-year-old man who admitted to the emergency department with sudden onset headache, right blurred vision and gait disturbance. A non-contrast cranial computerized tomography scan performed immediately after his admission revealed a well circumscribed right occipitoparietal haematoma with intense peripheral edema causing compression of the ipsilateral ventricles. On 6th hour of his admission the patient%u2019s neurological status deteriorated and he subsequently underwent emergent craniotomy and microsurgical evacuation of the haematoma. The histopathological examination of the mass was consistent with a glioblastoma multiforme. Neoplasms may be hidden behind each case of spontaneous intracerebral hemorrhage. Histological sampling and investigation is mandatory in the presence of preoperative radiological features suggesting a neoplasm.

  13. Glioblastoma Multiforme and Lipid Nanocapsules: A Review.

    Science.gov (United States)

    Aparicio-Blanco, Juan; Torres-Suárez, Ana-Isabel

    2015-08-01

    Epidemiological data on central nervous system disorders call for a focus on the major hindrance to brain drug delivery, blood-central nervous system barriers. Otherwise, there is little chance of improving the short-term survival of patients with diseases such as glioblastoma multiforme, which is one of the brain disorders associated with many years of life lost. Targetable nanocarriers for treating malignant gliomas are a unique way to overcome low chemotherapeutic levels at target sites devoid of systemic toxicity. This review describes the currently available targetable nanocarriers, focusing particularly on one of the newest nanocarriers, lipid nanocapsules. All of the strategies that are likely to be exploited by lipid nanocapsules to bypass blood-central nervous system barriers, including the most recent targeting approaches (mesenchymal cells), and novel administration routes (convection enhanced delivery) are discussed, together with their most remarkable achievements in glioma-implanted animal models. Although these systems are promising, much research remains to be done in this field.

  14. Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, M C.C.M.; Schimmel, E C; Gonzalez, D G [Amsterdam Univ. (Netherlands). Dept. of Radiotherapy; Koot, R W; Bosch, D A [Amsterdam Univ. (Netherlands). Dept. of Neurosurgery; Dekker, F [Amsterdam Univ. (Netherlands). Dept. of Epidemiology

    2001-06-01

    Background: To analyze prognostic factors in patients with a glioblastoma multiforme treated in an academic institute over the last 10 years. Patients and method: From 1988 to 1998, 198 patients with pathologically confirmed glioblastoma multiforme were analyzed. Five radiation schedules were used mainly based on pretreatment selection criteria: 1. 60 Gy in 30 fractions followed by an interstitial iridium-192 (Ir-192) boost for selected patients with a good performance and a small circumscribed tumor, 2. 66 Gy in 33 fractions for good performance patients, 3. 40 Gy in eight fractions or 4. 28 Gy in four fractions for poor prognostic patients and 5. no irradiation. Results: Median survival was 16 months, 7 months, 5.6 months, 6.6 months and 1.8 months for the groups treated with Ir-192, 66 Gy, 40 Gy, 28 Gy and the group without treatment, respectively. No significant improvement in survival was encountered over the last 10 years. At multivariate analysis patients treated with a hypofractionated scheme showed a similar survival probability and duration of palliative effect compared to the conventionally fractionated group. The poor prognostic groups receiving radiotherapy had a highly significant better survival compared to the no-treatment group. Patients treated with an Ir-192 boost had a better median survival compared to a historical group matched on selection criteria but without boost treatment (16 vs 9.7 months, n.s.). However, survival at 2 years was similar. Analysis on pretreatment characteristics at multivariate analysis revealed age, neurological performance, addition of radiotherapy, total resection, tumor size post surgery and deterioration before start of radiotherapy (borderline) as significant prognostic factors for survival. Conclusion: Despite technical developments in surgery and radiotherapy over the last 10 years, survival of patients with a glioblastoma multiforme has not improved in our institution. The analysis of prognostic factors

  15. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  16. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  17. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  18. Increased intracranial pressure in a case of spinal cervical glioblastoma multiforme: analysis of these two rare conditions

    Directory of Open Access Journals (Sweden)

    C.M. de Castro-Costa

    1994-03-01

    Full Text Available The authors describe a rare case of increased intracranial hypertension consequent to a spinal cervical glioblastoma multiforme in a young patient. They analyse the physiopathology of intracranial hypertension in spinal tumors and the rarity of such kind of tumor in this location, and its clinico-pathological aspects.

  19. Connection between cell phone use, p53 gene expression in different zones of glioblastoma multiforme and survival prognoses

    Directory of Open Access Journals (Sweden)

    Reza Akhavan-Sigari

    2014-08-01

    Full Text Available The aim of this paper is to investigate p53 gene expression in the central and peripheral zones of glioblastoma multiforme using a real-time reverse transcription polymerase chain reaction (RT-PCR technique in patients who use cell phones ≥3 hours a day and determine its relationship to clinicopathological findings and overall survival. Sixty-three patients (38 males and 25 females, diagnosed with glioblastoma multiforme (GBM, underwent tumor resection between 2008 and 2011. Patient ages ranged from 25 to 88 years, with a mean age of 55. The levels of expression of p53 in the central and peripheral zone of the GBM were quantified by RT-PCR. Data on p53 gene expression from the central and peripheral zone, the related malignancy and the clinicopatholagical findings (age, gender, tumor location and size, as well as overall survival, were analyzed. Forty-one out of 63 patients (65% with the highest level of cell phone use (≥3 hours/day had higher mutant type p53 expression in the peripheral zone of the glioblastoma; the difference was statistically significant (P=0.034. Results from the present study on the use of mobile phones for ≥3 hours a day show a consistent pattern of increased risk for the mutant type of p53 gene expression in the peripheral zone of the glioblastoma, and that this increase was significantly correlated with shorter overall survival time. The risk was not higher for ipsilateral exposure. We found that the mutant type of p53 gene expression in the peripheral zone of the glioblastoma was increased in 65% of patients using cell phones ≥3 hours a day.

  20. Prospective study evaluating the radiosensitizing effect of reduced doses of temozolomide in the treatment of Egyptian patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Gaber M

    2013-10-01

    Full Text Available May Gaber, Hanan Selim, Tamer El-NahasDepartment of Clinical Oncology, Cairo University, Cairo, EgyptPurpose: In view of the documented toxicity of continuous daily radiosensitizer doses of temozolomide concomitant with radiation in the treatment of glioblastoma multiforme, we aimed to compare it with a different schedule of abbreviated radiosensitizer dosing.Patients and methods: This was a randomized prospective study comparing toxicity and survival in 60 Egyptian patients with glioblastoma multiforme. Patients in arm I received temozolomide at a dose of 75 mg/m2 daily with radiotherapy for 42 days, starting 4 weeks after surgery and reaching to a total radiation dose of 60 Gy/30 Fractions/6 weeks, while patients in arm II received temozolomide at a dose of 75 mg/m2 concomitantly with the same radiotherapy schedule daily in the first and last weeks of the same radiotherapy program.Results: Common grade 1–2 adverse events were malaise in 28 patients (46.7%, followed by alopecia (40% and nausea (26.7%. Grade 3–4 convulsion and decreased level of consciousness was seen in only four patients who were all from arm I. The median progression-free survival (PFS for the entire study population was 10.6 months (95% confidence interval [CI] 7.3–14, and PFS at 12 months was 32%. The median PFS in arm I was 8.8 months (95% CI 5.9–11.7 and in arm II 11.5 months (95% CI 8.9–14.2, and PFS at 12 months for both arms was 32% and 30% respectively (P=0.571. The median overall survival (OS of the whole group of patients was 14.2 months (95% CI 13–15.5, and OS was 70% at 12 months and 25% at 18 months. The median OS for patients in arm I was 12.3 months (95% CI 7.7–16.9, whereas in arm II it was 14.3 months (95% CI 14–14.7 (P=0.83.Conclusion: Reduced radiosensitizer dosing of temozolomide concomitant with radiotherapy in glioblastoma multiforme exhibited comparable efficacy with a classic continuous daily schedule, though with better tolerability

  1. Results of the Phase I Dose-Escalating Study of Motexafin Gadolinium With Standard Radiotherapy in Patients With Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Ford, Judith M.; Seiferheld, Wendy; Alger, Jeffrey R.; Wu, Genevieve; Endicott, Thyra J.; Mehta, Minesh; Curran, Walter; Phan, See-Chun

    2007-01-01

    Purpose: Motexafin gadolinium (MGd) is a putative radiation enhancer initially evaluated in patients with brain metastases. This Phase I trial studied the safety and tolerability of a 2-6-week course (10-22 doses) of MGd with radiotherapy for glioblastoma multiforme. Methods and Materials: A total of 33 glioblastoma multiforme patients received one of seven MGd regimens starting at 10 doses of 4 mg/kg/d MGd and escalating to 22 doses of 5.3 mg/kg/d MGd (5 or 10 daily doses then three times per week). The National Cancer Institute Cancer Therapy Evaluation Program toxicity and stopping rules were applied. Results: The maximal tolerated dose was 5.0 mg/kg/d MGd (5 d/wk for 2 weeks, then three times per week) for 22 doses. The dose-limiting toxicity was reversible transaminase elevation. Adverse reactions included rash/pruritus (45%), chills/fever (30%), and self-limiting vesiculobullous rash of the thumb and fingers (42%). The median survival of 17.6 months prompted a case-matched analysis. In the case-matched analysis, the MGd patients had a median survival of 16.1 months (n = 31) compared with the matched Radiation Therapy Oncology Group database patients with a median survival of 11.8 months (hazard ratio, 0.43; 95% confidence interval, 0.20-0.94). Conclusion: The maximal tolerated dose of MGd with radiotherapy for glioblastoma multiforme in this study was 5 mg/kg/d for 22 doses (daily for 2 weeks, then three times weekly). The baseline survival calculations suggest progression to Phase II trials is appropriate, with the addition of MGd to radiotherapy with concurrent and adjuvant temozolomide

  2. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio

    2014-06-01

    Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

  3. Glioblastoma multiforme and papillary thyroid carcinoma - A rare combination of multiple primary malignancies

    Directory of Open Access Journals (Sweden)

    Swaroopa Pulivarthi

    2015-01-01

    Full Text Available We are describing a 19-year-old white woman who presented with two synchronous primary cancers, namely glioblastoma multiforme and papillary thyroid cancer. The patient was admitted with dizziness, headache, and vomiting. CT head revealed acute intraparenchymal hematoma in the right cingulate gyrus and the splenium of the corpus callosum. Carotid and cerebral angiogram were unremarkable. MRI of the brain demonstrated a non-enhancing and non-hemorrhagic component of the lesion along the lateral margin of the hemorrhage just medial to the atrium of the right lateral ventricle that was suspicious for a tumor or metastasis. Brain biopsy confirmed it as glioblastoma mutiforme. CT chest was done to rule out primary cancer that revealed a 11 mm hypodense lesion in the left lobe of the thyroid and ultrasound-guided fine-needle aspiration biopsy confirmed it as papillary thyroid carcinoma. We should evaluate for multiple primary malignancies in young patients who are found to have primary index cancer.

  4. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  5. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  6. Coexistence of meningioma and glioblastoma multiforme in a same patient: a case report

    International Nuclear Information System (INIS)

    Pereira, C.; Dumont, P.; Romero, P.C.; Lima, J.P.; Caldas, J.G.; Settanni, F.

    1991-01-01

    Tumoral collision has been defined as a coexistence of two or more central nervous system tumors histologically distinct, in a patient not harbouring a neuro-ectodermic disease (phakomatosis). Several theories exist for explaining this phenomenon but most of them assume that there is spacial proximity between the tumors and/or ionizing radiation effects. We report the case of coexistence of meningothelial meningioma and glioblastoma multiforme in a same patient, occurring in different hemispheres on different times. The tomographic aspects of the gliomatous lesion and the difficulty in differentiating by neuroimaging among high grade gliomas and recent hemorrhagic cerebral events are discussed. (author)

  7. Prognostic significance of IDH 1 mutation in patients with glioblastoma multiforme.

    Science.gov (United States)

    Khan, Inamullah; Waqas, Muhammad; Shamim, Muhammad Shahzad

    2017-05-01

    Focus of brain tumour research is shifting towards tumour genesis and genetics, and possible development of individualized treatment plans. Genetic analysis shows recurrent mutation in isocitrate dehydrogenase (IDH1) gene in most Glioblastoma multiforme (GBM) cells. In this review we evaluated the prognostic significance of IDH 1 mutation on the basis of published evidence. Multiple retrospective clinical analyses correlate the presence of IDH1 mutation in GBM with good prognostic outcomes compared to wild-type IDH1. A systematic review reported similar results. Based on the review of current literature IDH1 mutation is an independent factor for longer overall survival (OS) and progression free survival (PFS) in GBM patients when compared to wild-type IDH1. The prognostic significance opens up new avenues for treatment.

  8. Subcutaneous tissue metastasis from glioblastoma multiforme: A case report and review of the literature.

    Science.gov (United States)

    Frade Porto, Natalia; Delgado Fernández, Juan; García Pallero, María de Los Ángeles; Penanes Cuesta, Juan Ramón; Pulido Rivas, Paloma; Gil Simoes, Ricardo

    2018-05-16

    Glioblastoma multiforme is the most common primary brain tumor, despite an aggressive clinical course, less than 2% of patients develop extraneural metastasis. We present a 72-year-old male diagnosed with a right temporal glioblastoma due to headache. He underwent total gross resection surgery and after that the patient was treated with adyuvant therapy. Five months after the patient returned with trigeminal neuralgia, and MRI showed an infratemporal cranial mass which infiltrates masticator space, the surrounding bone, the temporal muscle and superior cervical and parotid lymph nodes. The patient underwent a new surgery reaching partial resection of the temporal lesion. After that the patient continued suffering from disabling trigeminal neuralgia, that's why because of the bad clinical situation and the treatment failure we decided to restrict therapeutic efforts. The patient died 3 weeks after the diagnosis of extracranial metastasis. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    International Nuclear Information System (INIS)

    Inda, Maria-del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-01

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape

  10. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Maria-del-Mar, E-mail: mminda@vhio.net; Bonavia, Rudy [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Seoane, Joan [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08035 (Spain)

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  11. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Directory of Open Access Journals (Sweden)

    Maria-del-Mar Inda

    2014-01-01

    Full Text Available Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM, the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  12. Glioblastoma multiforme: a look inside its heterogeneous nature.

    Science.gov (United States)

    Inda, Maria-Del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  13. Primary glioblastoma multiforme of medulla oblongata: Case report and review of literature

    Science.gov (United States)

    Chotai, Silky P.; Moon, Hong-Joo; Kim, Joo-Han; Kim, Jong-Hyun; Kwon, Taek-Hyun

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common glial tumor of the adult brain. However, the primary GBM of medulla oblongata is a rarity. To the best of our knowledge, only four cases of GBM of medulla oblongata have been reported so far in the literature, and this is the second report of conventional GBM of the medulla oblongata in adults. We describe a case of 51-year-old female, who presented with a heterogeneous mass with exophytic feature located in the caudal brain stem that was approached and a near total tumor removal was achieved by median suboccipital route. A literature review with emphasis on anatomical location, radiological and histopathological findings, extent of tumor resectibility, and outcome is included. PMID:22639691

  14. Molecular Characteristics in MRI-classified Group 1 Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    William E Haskins

    2013-07-01

    Full Text Available Glioblastoma multiforme (GBM is a clinically and pathologically heterogeneous brain tumor. Previous study of MRI-classified GBM has revealed a spatial relationship between Group 1 GBM (GBM1 and the subventricular zone (SVZ. The SVZ is an adult neural stem cell niche and is also suspected to be the origin of a subtype of brain tumor. The intimate contact between GBM1 and the SVZ raises the possibility that tumor cells in GBM1 may be most related to SVZ cells. In support of this notion, we found that neural stem cell and neuroblast markers are highly expressed in GBM1. Additionally, we identified molecular characteristics in this type of GBM that include up-regulation of metabolic enzymes, ribosomal proteins, heat shock proteins, and c-Myc oncoprotein. As GBM1 often recurs at great distances from the initial lesion, the rewiring of metabolism and ribosomal biogenesis may facilitate cancer cells’ growth and survival during tumor migration. Taken together, combined our findings and MRI-based classification of GBM1 would offer better prediction and treatment for this multifocal GBM.

  15. Immune phenotypes predict survival in patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Haouraa Mostafa

    2016-09-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM, a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention.

  16. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Eriksen, Jesper Grau; Broholm, Helle

    2010-01-01

    , hypoxia and mediators of the epidermal growth factor receptor (EGFR) pathway were investigated. Tumor tissue was obtained from a previous phase II study, treating recurrent primary glioblastoma multiforme (GBM) patients with the EGFR inhibitor cetuximab in combination with bevacizumab and irinotecan...... of cetuximab. There is still an urgent need for one or more reliable and reproducible biomarkers able to predict the efficacy of anti-angiogenic therapy....

  17. Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Lin YL

    2015-09-01

    Full Text Available Yu-Ling Lin,1,2,* Kai-Fu Chang,3,* Xiao-Fan Huang,3 Che-Lun Hung,4 Shyh-Chang Chen,5 Wan-Ru Chao,6,7 Kuang-Wen Liao,1,8 Nu-Man Tsai3,9 1College of Biological Science and Technology, 2Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 3School of Medical Laboratory and Biotechnology, Chung Shan Medical University, 4Department of Computer Science and Communication Engineering, Providence University, 5Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, 6Institute of Medicine, Chung Shan Medical University, 7Department of Pathology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, 8Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 9Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan *These authors contributed equally to this work Background: The natural compound n-butylidenephthalide (BP can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo.Objective: The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery.Methods: To protect its structural stability against protein-rich and peroxide solutions, BP was encapsulated into a lipo-PEG-PEI complex (LPPC. Then, the cytotoxicity of BP/LPPC following preincubation in protein-rich, acid/alkaline, and peroxide solutions was analyzed by MTT. Cell uptake of BP/LPPC was also measured by confocal microscopy. The therapeutic effects of BP/LPPC were analyzed in xenograft mice following intratumoral and intravenous injections.Results: When BP was encapsulated in LPPC, its cytotoxicity was maintained following preincubation in protein-rich, acid/alkaline, and peroxide solutions. The cytotoxic activity of encapsulated BP was higher than

  18. Combined stereotactic biopsy and stepping-source interstitial irradiation of glioblastoma multiforme.

    Science.gov (United States)

    Brehmer, Stefanie; Guthier, Christian V; Clausen, Sven; Schneider, Frank; Schulte, Dirk-Michael; Benker, Matthias; Bludau, Frederic; Glatting, Gerhard; Marx, Alexander; Schmiedek, Peter; Hesser, Jürgen; Wenz, Frederik; Giordano, Frank A

    2018-04-01

    Patients diagnosed with glioblastoma multiforme receiving stereotactic biopsy only either due to tumor localization or impaired clinical status face a devastating prognosis with very short survival times. One strategy to provide an initial cytoreductive and palliative therapy at the time of the stereotactic biopsy is interstitial irradiation through the pre-defined trajectory of the biopsy channel. We designed a novel treatment planning system and evaluated the treatment potential of a fixed-source and a stepping-source algorithm for interstitial radiosurgery on non-spherical glioblastoma in direct adjacency to risk structures. Using both setups, we show that radiation doses delivered to 100% of the gross tumor volume shifts from sub-therapeutic (10-12 Gy) to sterilizing single doses (25-30 Gy) when using the stepping source algorithm due to improved sparing of organs-at-risk. Specifically, the maximum doses at the brain stem were 100% of the PTV dose when a fixed central source and 38% when a stepping-source algorithm was used. We also demonstrated precision of intracranial target points and stability of superficial and deep trajectories using both a phantom and a body donor study. Our setup now for the first time provides a basis for a clinical proof-of-concept trial and may widen palliation options for patients with limited life expectancy that should not undergo time-consuming therapies.

  19. Initial care and outcome of glioblastoma multiforme patients in 2 diverse health care scenarios in Brazil: does public versus private health care matter?.

    Science.gov (United States)

    Loureiro, Luiz Victor Maia; Pontes, Lucíola de Barros; Callegaro-Filho, Donato; Koch, Ludmila de Oliveira; Weltman, Eduardo; Victor, Elivane da Silva; Santos, Adrialdo José; Borges, Lia Raquel Rodrigues; Segreto, Roberto Araújo; Malheiros, Suzana Maria Fleury

    2014-07-01

    The aim of this study was to describe the epidemiological and survival features of patients with glioblastoma multiforme treated in 2 health care scenarios--public and private--in Brazil. We retrospectively analyzed clinical, treatment, and outcome characteristics of glioblastoma multiforme patients from 2003 to 2011 at 2 institutions. The median age of the 171 patients (117 public and 54 private) was 59.3 years (range, 18-84). The median survival for patients treated in private institutions was 17.4 months (95% confidence interval, 11.1-23.7) compared with 7.1 months (95% confidence interval, 3.8-10.4) for patients treated in public institutions (P public setting (median of 64 days for the public hospital and 31 days for the private institution; P = .003). The patients at the private hospital received radiotherapy concurrent with chemotherapy in 59.3% of cases; at the public hospital, only 21.4% (P Brazil is critical.

  20. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review.

    Science.gov (United States)

    Anjum, Komal; Shagufta, Bibi Ibtesam; Abbas, Syed Qamar; Patel, Seema; Khan, Ishrat; Shah, Sayed Asmat Ali; Akhter, Najeeb; Hassan, Syed Shams Ul

    2017-08-01

    Glioblastoma multiforme (GBM) is the deadliest form of heterogeneous brain cancer. It affects an enormous number of patients every year and the survival is approximately 8 to 15 months. GBM has driven by complex signaling pathways and considered as a most challenging to treat. Standard treatment of GBM includes surgery, radiation therapy, chemotherapy and also the combined treatment. This review article described inter and intra- tumor heterogeneity of GMB. In addition, recent chemotherapeutic agents, with their mechanism of action have been defined. FDA-approved drugs also been focused over here and most importantly highlighting some natural and synthetic and novel anti- glioma agents, that are the main focus of researchers nowadays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Neoadjuvant bevacizumab and irinotecan versus bevacizumab and temozolomide followed by concomitant chemoradiotherapy in newly diagnosed glioblastoma multiforme

    DEFF Research Database (Denmark)

    Hofland, Kenneth F; Hansen, Steinbjørn; Sorensen, Morten

    2014-01-01

    BACKGROUND: Surgery followed by radiotherapy and concomitant and adjuvant temozolomide is standard therapy in newly diagnosed glioblastoma multiforme (GBM). Bevacizumab combined with irinotecan produces impressive response rates in recurrent GBM. In a randomized phase II study, we investigated...... from febrile neutropenia whereas non-hematological toxicity was manageable. CONCLUSIONS: Only the Bev-Tem arm met the pre-specified level of activity of interest. Our results did not indicate any benefit from Bev-Iri in first-line therapy as opposed to Bev-Tem in terms of response and PFS....

  2. Altered expression of polycomb group genes in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available The Polycomb group (PcG proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM. By systematically interrogating The Cancer Genome Atlas (TCGA, we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy.

  3. Variegated colors of pediatric glioblastoma multiforme: what to expect?

    Directory of Open Access Journals (Sweden)

    Vivek Immanuel

    2017-08-01

    Full Text Available Malignant gliomas account for 35-45% of primary brain tumors; among these glioblastoma multiforme (GBM is the most common adult brain tumor constituting approximately 85%. Its incidence is quite less in the pediatric population and treatment of these patients is particularly challenging. Exposure to ionizing radiation is the only environmental factor found to have any significant association with GBM. Several genetic alterations associated with GBM in adults have been well documented such as epidermal growth factor receptor amplification, overexpression of mouse double minute 2 homolog also known as E3 ubiquitin-protein ligase, Phosphatase and tensin homolog gene mutation, loss of heterozygosity of chromosome 10p and isocitrate dehydrogenase-1 mutation. However, data on genetic mutations in pediatric GBM is still lacking. Exophytic brain stem gliomas are rare tumors and are usually associated with a poor prognosis. The most effective treatment in achieving long-term survival in such patients, is surgical excision of the tumor and then chemoradiotherapy followed by adjuvant chemotherapy by temozolomide. This schedule is the standard treatment for GBM patients. In view of the rarity of pediatric GBM, we report here a case of pontine GBM in a 5-year-old girl.

  4. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression

    OpenAIRE

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-01-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata. Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhi...

  5. Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Arnulf; Vaupel, Peter; Stockinger, Marcus; Schmidberger, Heinz [University Medical Center, Department of Radiooncology and Radiotherapy, Mainz (Germany); Struss, Hans-Garlich [University Medical Center, Department of Laboratory Medicine, Mainz (Germany); Giese, Alf [University Medical Center, Department of Neurosurgery, Mainz (Germany)

    2014-10-15

    In comparison to normal brain tissue, glioblastomas exhibit significantly increased glucose uptake. Brain edema is a common complication during adjuvant chemoradiotherapy, leading to a requirement for glucocorticoid treatment. Glucocorticoid treatment frequently causes considerable deregulation of blood glucose levels. Therefore, episodes of hyperglycemia may contribute to radio- and/or chemoresistance. This study comprises a retrospective analysis of the influence of hyperglycemic episodes (HEs) during adjuvant therapy on the overall survival of 106 glioblastoma multiforme patients. The occurrence of one or more deregulated blood glucose value(s) > 10 mM is associated with a reduction in median overall survival from 16.7 to 8.8 months. A significantly poorer overall survival of patients with hyperglycemia could also be detected in subgroup analyses of patients with complete tumor resection and complete treatment according to the EORTC 22891/26891 trial protocol, as well as in a multivariate Cox proportional hazards analysis. A history of diabetes mellitus had no influence on prognosis. Our data suggest that the observed negative impact of elevated blood glucose levels on overall survival may not solely be explained by the patients' poorer general condition; the elevated blood glucose concentration itself may play a pathogenetic role. This could be due to increased activity of antioxidant systems, elevated expression of DNA damage response proteins and protection of hypoxic tumor cells against apoptosis combined with hypoxia-mediated radioresistance. A possible prognostic impact of elevated blood glucose levels during the period of adjuvant (chemo-) radiotherapy of glioblastoma should be evaluated in a prospective clinical trial. (orig.) [German] Glioblastome zeigen im Vergleich mit normalem Gehirngewebe eine deutlich vermehrte Glukoseaufnahme. Im Rahmen der adjuvanten Radio(chemo)therapie von Glioblastomen treten vielfach Hirnoedeme auf, die eine

  6. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Eriksen, Jesper Grau; Broholm, Helle

    2010-01-01

    , hypoxia and mediators of the epidermal growth factor receptor (EGFR) pathway were investigated. Tumor tissue was obtained from a previous phase II study, treating recurrent primary glioblastoma multiforme (GBM) patients with the EGFR inhibitor cetuximab in combination with bevacizumab and irinotecan....... Of the 37 patients with available tumor tissue, 29 were evaluable for response. We concurrently performed immunohistochemical stainings on tumor tissue from 21 GBM patients treated with bevacizumab and irinotecan. We found a tendency of correlation between the hypoxia-related markers, indicating...

  7. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report.

    Science.gov (United States)

    Stummer, Walter; Beck, Tobias; Beyer, Wolfgang; Mehrkens, Jan Hendrik; Obermeier, Andreas; Etminan, Nima; Stepp, Herbert; Tonn, Jörg-Christian; Baumgartner, Reinhold; Herms, Jochen; Kreth, Friedrich Wilhelm

    2008-03-01

    Glioblastoma multiforme continues to be a devastating disease despite modest improvements in survival achieved at present, and there is an urgent need for innovative treatment concepts. Five-aminolevulinic acid (ALA) is a drug which induces protoporphyrin IX accumulation in malignant gliomas and has been explored for fluorescence-guided resections of these tumors. ALA is also under investigation as a photosensitizer. We report a case of a patient with prior left frontal glioblastoma multiforme treated by surgery, radiation and chemotherapy, who developed a remote lesion in the left insula, which was refractory to secondary treatments. In a compassionate use setting she was treated by oral application of ALA (20 mg/kg bodyweight), and stereotactic phototherapy achieved by positioning four laser diffusors using 3-dimensional irradiation planning, and a 633 nm diode laser. The lesion disappeared 24 h after therapy. Circumferential contrast enhancement was observed at 72 h, which disappeared in the course of subsequent months. Edema resolved completely. The patient is still free of recurrence 56 months after treatment, demonstrating an impressive and long-lasting response to this novel mode of therapy.

  8. Can high-dose fotemustine reverse MGMT resistance in glioblastoma multiforme?

    Science.gov (United States)

    Gallo, Chiara; Buonerba, Carlo; Di Lorenzo, Giuseppe; Romeo, Valeria; De Placido, Sabino; Marinelli, Alfredo

    2010-11-01

    Glioblastoma multiforme (GBM), the highest grade malignant glioma, is associated with a grim prognosis-median overall survival is in the range 12-15 months, despite optimum treatment. Surgery to the maximum possible extent, external beam radiotherapy, and systemic temozolomide chemotherapy are current standard treatments for newly diagnosed GBM, with intracerebral delivery of carmustine wafers (Gliadel). Unfortunately, the effectiveness of chemotherapy can be hampered by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT), which confers resistance both to temozolomide and nitrosoureas, for example fotemustine and carmustine. MGMT activity can be measured by PCR and immunohistochemistry, with the former being the current validated technique. High-dose chemotherapy can deplete MGMT levels in GBM cells and has proved feasible in various trials on temozolomide, in both newly diagnosed and recurrent GBM. We here report the unique case of a GBM patient, with high MGMT expression by immunohistochemistry, who underwent an experimental, high-dose fotemustine schedule after surgery and radiotherapy. Although treatment caused two episodes of grade 3-4 thrombocytopenia, a complete response and survival of more than three years were achieved, with a 30% increase in dose intensity compared with the standard fotemustine schedule.

  9. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  10. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  11. Radiotherapy and chemotherapy with or without carbogen and nicotinamide in inoperable biopsy-proven glioblastoma multiforme

    International Nuclear Information System (INIS)

    Simon, Jean-Marc; Noeel, Georges; Chiras, Jacques; Khe, H.-X.; Delattre, Jean-Yves; Baillet, Francois; Mazeron, Jean-Jacques

    2003-01-01

    Background: Nicotinamide and carbogen have been shown to enhance the radiation effect in tumour models. Purpose: Prospective evaluation of the toxicity and efficacy of carbogen and nicotinamide with external beam radiotherapy in the management of inoperable glioblastoma. Patients and methods: From April 1995 to December 1997, 33 patients with inoperable biopsy-proven glioblastoma multiforme (GBM) were enrolled in a phase II trial, to undergo radiotherapy (59.4 Gy in 1.8 Gy/fraction), intra-arterial cerebral chemotherapy (ACNU 100 mg/m 2 , three cycles), carbogen breathing (15 l/min), and nicotinamide (85 mg/kg). This experimental group was compared to a control group of 38 patients with inoperable GBM treated with radiotherapy and three cycles of nitrosourea-based chemotherapy from January 1990 to March 1995, in our institution. Results: In the experimental group, carbogen breathing was well tolerated, but only 51.5% of patients completed daily nicotinamide over the 6.5-week treatment period. Nausea and vomiting were the most frequent side effects of nicotinamide. No significant difference in overall survival was observed among the two treatment groups: median survival times were 36.7 and 35.3 weeks for patients treated with carbogen and nicotinamide, and for those treated in the control group, respectively. Conclusion: The association of carbogen and nicotinamide with radiotherapy is feasible, but tolerable only in 51.5% of patients with GBM. Carbogen and nicotinamide did not appear to modify the evolution of glioblastoma

  12. Short course of radiation therapy in elderly patients with multiform glioblastoma

    International Nuclear Information System (INIS)

    Idbaih, A.; Taillibert, S.; Simon, J.M.; Lopez, S.; Lang, P.; Toubiana, T.; Feuvret, L.; Mazeron, J.J.; Idbaih, A.; Taillibert, S.; Psimaras, D.; Delattre, J.Y.; Schneble, H.M.

    2008-01-01

    Purpose: The optimal schedule of irradiation in elderly patients suffering from glioblastoma multiform (G.B.M.) is unsettled. Materials and methods: This study reviewed the charts of 28 consecutive G.B.M. patients aged 70 years or more with a Karnofsky Performance Status (K.P.S.) greater than or equal to 70 who received a short course of radiotherapy (40 grays in 15 fractions over three weeks). Results: The median age at surgery was 74.6 years (range, 70.1 - 85.7). No patient received prior or concomitant chemotherapy. The median progression-free survival and overall survival were 21.6 weeks (95% CI, 17.0 - 39.9) and 50.6 weeks (95% CI, 26.3 - 62.0), respectively. Even within a narrow range (< 90 or = 90), K.P.S. remained a prognostic factor (p = 0.03). Tolerance appeared acceptable in terms of K.P.S. changes and corticosteroid use during radiation therapy. Conclusion: These results support the efficacy of short schedule radiotherapy for G.B.M. in elderly patients with a good K.P.S.. (authors)

  13. The PEP-3-KLH (CDX-110) vaccine in glioblastoma multiforme patients

    Science.gov (United States)

    Heimberger, Amy B.; Sampson, John H

    2009-01-01

    Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed on GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received the vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls using this approach are discussed. PMID:19591631

  14. Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations.

    Science.gov (United States)

    Abernathy, Kristen; Burke, Jeremy

    2016-01-01

    Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.

  15. Use of ERC-1671 Vaccine in a Patient with Recurrent Glioblastoma Multiforme after Progression during Bevacizumab Therapy: First Published Report.

    Science.gov (United States)

    Bota, Daniela A; Alexandru-Abrams, Daniela; Pretto, Chrystel; Hofman, Florence M; Chen, Thomas C; Fu, Beverly; Carrillo, Jose A; Schijns, Virgil Ejc; Stathopoulos, Apostolos

    2015-01-01

    Glioblastoma multiforme is a highy aggressive tumor that recurs despite resection, focal beam radiation, and temozolamide chemotherapy. ERC-1671 is an experimental treatment strategy that uses the patient's own immune system to attack the tumor cells. The authors report preliminary data on the first human administration of ERC-1671 vaccination under a single-patient, compassionate-use protocol. The patient survived for ten months after the vaccine administration without any other adjuvant therapy and died of complications related to his previous chemotherapies.

  16. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard

    2013-01-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions...... in the normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC....

  17. Salmonella enterica serovar Enteritidis brain abscess mimicking meningitis after surgery for glioblastoma multiforme: a case report and review of the literature

    OpenAIRE

    Luciani, L?a; Dubourg, Gr?gory; Graillon, Thomas; Honnorat, Estelle; Lepidi, Hubert; Drancourt, Michel; Seng, Piseth; Stein, Andreas

    2016-01-01

    Background Salmonella brain abscess associated with brain tumor is rare. Only 11 cases have been reported to date. Here we report a case of brain abscess caused by Salmonella enterica serovar Enteritidis mimicking post-surgical meningitis in a patient with glioblastoma multiforme. Case presentation A 60-year-old Algerian woman was admitted through an emergency department for a 4-day history of headache, nausea and vomiting, and behavioral disorders. Surgery for cerebral tumor excision was per...

  18. Treatment of newly diagnosed glioblastoma multiforme with carmustine, cisplatin and etoposide followed by radiotherapy. A phase II study

    DEFF Research Database (Denmark)

    Lassen, U; Kristjansen, P E; Wagner, A

    1999-01-01

    fractions. Twenty-nine patients with newly diagnosed glioblastoma multiforme (GBM), mean age 50 (27-66) and performance status (PS) 0-2 were included. Using the Macdonald criteria 33% had partial remission (PR), 41% stable disease (SD) and 26% progressive disease (PD) after chemotherapy. After additional...... (6.0-9.1) and median survival was 11.4 months (10.1-12.7). We conclude that this regimen is effective and feasible in patients with GBM. The short course pre-irradiatory chemotherapy may be less cumbersome than adjuvant chemotherapy and the regimen may be even more active in grade III gliomas....

  19. Correlação clínico-topográfica em glioblastomas multiformes nas síndromes motoras: significados fisiopatológicos Clinical topographic findings in glioblastoma multiforme and the relation with motor impairment

    Directory of Open Access Journals (Sweden)

    Rita de Cássia G. Lucena

    2006-06-01

    Full Text Available O glioblastoma multiforme (GBM é o tumor glial com maior grau de malignidade. Acomete principalmente os hemisférios cerebrais apresentando sintomas e sinais focais ou gerais, relacionados ao tamanho, localização e taxa de crescimento tumoral. OBJETIVO: Analisar a relação do déficit motor com a topografia do GBM. MÉTODO: Foram estudados 43 casos de GBM, referidos quanto à idade, sexo, localização e a síndrome motora. RESULTADOS: O tumor predominou em adultos (média de 55 anos, sexo masculino (55,82%, localização frontal (aproximadamente 40%. A hemiparesia prevaleceu como distúrbio motor, somente não ocorrendo em 2 casos de lesão frontal, 2 temporais, 1 parietal, 1 occipital e 1 fronto-temporal. CONCLUSÃO: Os achados clínico-topográficos favorecem os efeitos infiltrativos (lesões extensas como responsáveis pela síndrome motora em detrimento aos efeitos compressivos (lesões localizadas.Glioblastoma multiforme (GBM is the glial tumor with the highest grade of malignity. It mainly affects the cerebral hemispheres, presenting general or focal signs and symptoms, which depend on the size, the location of the lesion and rate of growth of the tumor. OBJECTIVE: To analyze the relationship between motor impairment and GBM topography. METHOD: We studied 43 cases of GBM, related to the age, gender, localization and motor impairment. RESULTS: The occurrence of the tumor was preponderant in adults (mean age 55 years old, men (55.82%, and frontal lobe (approximately 40%. The principal motor impairment was hemiparesis, with the exception of 2 cases in the frontal lobe, 2 temporal, 1 parietal, 1 occipital and 1 frontotemporal. CONCLUSION: The clinical-topographic findings lead to consider the infiltrative effects (broad lesions are responsible for the motor impairment rather than compressive effects (located lesions.

  20. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall

    Directory of Open Access Journals (Sweden)

    Li Shengwen

    2012-09-01

    Full Text Available Abstract Background The cancer stem cell (CSC hypothesis posits that deregulated neural stem cells (NSCs form the basis of brain tumors such as glioblastoma multiforme (GBM. GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer

  1. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    Directory of Open Access Journals (Sweden)

    Grodzik M

    2011-11-01

    Full Text Available Marta Grodzik1, Ewa Sawosz1, Mateusz Wierzbicki1, Piotr Orlowski1, Anna Hotowy2, Tomasz Niemiec1, Maciej Szmidt3, Katarzyna Mitura4, André Chwalibog21Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark; 3Division of Histology and Embryology, Warsaw University of Life Sciences, Warsaw, Poland; 4Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, PolandAbstract: The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chorioallantoic membrane of chicken embryo and after 7 days of incubation, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, and vessel area. Quantitative real-time polymerase chain reaction analysis showed downregulated fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.Keywords: cancer, nanoparticle, embryo, angiogenesis, FGF-2, VEGF

  2. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts

  3. EGFR gene overexpression retained in an invasive xenograft model by solid orthotopic transplantation of human glioblastoma multiforme into nude mice.

    Science.gov (United States)

    Yi, Diao; Hua, Tian Xin; Lin, Huang Yan

    2011-03-01

    Orthotopic xenograft animal model from human glioblastoma multiforme (GBM) cell lines often do not recapitulate an extremely important aspect of invasive growth and epidermal growth factor receptor (EGFR) gene overexpression of human GBM. We developed an orthotopic xenograft model by solid transplantation of human GBM into the brain of nude mouse. The orthotopic xenografts sharing the same histopathological features with their original human GBMs were highly invasive and retained the overexpression of EGFR gene. The murine orthotopic GBM models constitute a valuable in vivo system for preclinical studies to test novel therapies for human GBM.

  4. Transgenic nude mouse with green fluorescent protein expression-based human glioblastoma multiforme animal model with EGFR expression and invasiveness.

    Science.gov (United States)

    Tan, Guo-Wei; Lan, Fo-Lin; Gao, Jian-Guo; Jiang, Cai-Mou; Zhang, Yi; Huang, Xiao-Hong; Ma, Yue-Hong; Shao, He-Dui; He, Xue-Yang; Chen, Jin-Long; Long, Jian-Wu; Xiao, Hui-Sheng; Guo, Zhi-Tong; Diao, Yi

    2012-08-01

    Previously, we developed an orthotopic xenograft model of human glioblastoma multiforme (GBM) with high EGFR expression and invasiveness in Balb/c nu/nu nude mice. Now we also developed the same orthotopic xenograft model in transgenic nude mice with green fluorescent protein (GFP) expression. The present orthotopic xenografts labeled by phycoerythrin fluorescing red showed high EGFR expression profile, and invasive behavior under a bright green-red dual-color fluorescence background. A striking advantage in the present human GBM model is that the change of tumor growth can be observed visually instead of sacrificing animals in our further antitumor therapy studies.

  5. Optimizing cancer radiotheraphy with 2-deoxy-D-glucose. Dose escalation studies in patients with glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Gupta, J.P. [Dharmshila Cancer Hospital, New Delhi (India); Banerji, A.K. [Vidyasagar Inst. of Mental Health and Neurosciences, New Delhi (India); Dwarakanath, B.S.; Tripathi, R.P.; Mathew, T.L.; Ravindranath, T. [Institute of Nuclear Medicine and Allied Sciences, Delhi (India); Jain, V. [Wright State University, Dayton, OH (United States). Kettering Medical Center

    2005-08-01

    Background and purpose: Higher rates of glucose utilization and glycolysis generally correlate with poor prognosis in several types of malignant tumors. Own earlier studies on model systems demonstrated that the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) could enhance the efficacy of radiotherapy in a dose-dependent manner by selectively sensitizing cancer cells while protecting normal cells. Phase I/II clinical trials indicated that the combination of 2-DG, at an oral dose of 200 mg/kg body weight (BW), with large fractions of {gamma}-radiation was well tolerated in cerebral glioma patients. Since higher 2-DG doses are expected to improve the therapeutic gain, present studies were undertaken to examine the tolerance and safety of escalating 2-DG dose during combined treatment (2-DG + radiotherapy) in glioblastoma multiforme patients. Patients and methods: Untreated patients with histologically proven glioblastoma multiforme (WHO criteria) were included in the study. Seven weekly fractions of {sup 60}C {gamma}-rays (5 Gy/fraction) were delivered to the tumor volume (presurgical CT/MRI evaluation) plus 3 cm margin. Escalating 2-DG doses (200-250-300 mg/kg BW) were administered orally 30 min before irradiation after overnight fasting. Acute toxicity and tolerance were studied by monitoring the vital parameters and side effects. Late radiation damage and treatment responses were studied radiologically and clinically in surviving patients. Results: Transient side effects similar to hypoglycemia were observed in most of the patients. Tolerance and patient compliance to the combined treatment were very good up to a 2-DG dose of 250 mg/kg BW. However, at the higher dose of 300 mg/kg BW, two out of six patients were very restless and could not complete treatment, though significant changes in the vital parameters were not observed even at this dose. No significant damage to the normal brain tissue was observed during follow-up in seven out of ten patients who

  6. Myelin structure is a key difference in the x-ray scattering signature between meningioma, schwannoma and glioblastoma multiforme

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Round, A; Schueltke, E; Kaye, A H; Lewis, R

    2007-01-01

    Small angle x-ray scattering (SAXS) patterns of benign and malignant brain tumour tissue were examined. Independent component analysis was used to find a feature set representing the images collected. A set of coefficients was then used to describe each image, which allowed the use of the statistical technique of flexible discriminant analysis to discover a hidden order in the data set. The key difference was found to be in the intensity and spectral content of the second and fourth order myelin scattering peaks. This has clearly demonstrated that significant differences in the structure of myelin exist in the highly malignant glioblastoma multiforme as opposed to the benign: meningioma and schwannoma

  7. [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: Clinical outcomes and patterns of failure

    International Nuclear Information System (INIS)

    Douglas, James G.; Stelzer, Keith J.; Mankoff, David A.; Tralins, Kevin S.; Krohn, Kenneth A.; Muzi, Mark; Silbergeld, Daniel L.; Rostomily, Robert C.; Scharnhorst, Jeffrey B.S.; Spence, Alexander M.

    2006-01-01

    Purpose: [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for brain tumors has been shown to identify areas of active disease. Radiation dose escalation in the treatment of glioblastoma multiforme may lead to improved disease control. Based on these premises, we initiated a prospective study of FDG-PET for the treatment planning of radiation dose escalation for the treatment of glioblastoma multiforme. Methods and Materials: Forty patients were enrolled. Patients were treated with standard conformal fractionated radiotherapy with volumes defined by MRI imaging. When patients reached a dose of 45-50.4 Gy, they underwent FDG-PET imaging for boost target delineation, for an additional 20 Gy (2 Gy per fraction) to a total dose of 79.4 Gy (n = 30). Results: The estimated 1-year and 2-year overall survival (OS) for the entire group was 70% and 17%, respectively, with a median overall survival of 70 weeks. The estimated 1-year and 2-year progression-free survival (PFS) was 18% and 3%, respectively, with a median of 24 weeks. No significant improvements in OS or PFS were observed for the study group in comparison to institutional historical controls. Conclusions: Radiation dose escalation to 79.4 Gy based on FDG-PET imaging demonstrated no improvement in OS or PFS. This study establishes the feasibility of integrating PET metabolic imaging into radiotherapy treatment planning

  8. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  9. Salmonella enterica serovar Enteritidis brain abscess mimicking meningitis after surgery for glioblastoma multiforme: a case report and review of the literature.

    Science.gov (United States)

    Luciani, Léa; Dubourg, Grégory; Graillon, Thomas; Honnorat, Estelle; Lepidi, Hubert; Drancourt, Michel; Seng, Piseth; Stein, Andreas

    2016-07-07

    Salmonella brain abscess associated with brain tumor is rare. Only 11 cases have been reported to date. Here we report a case of brain abscess caused by Salmonella enterica serovar Enteritidis mimicking post-surgical meningitis in a patient with glioblastoma multiforme. A 60-year-old Algerian woman was admitted through an emergency department for a 4-day history of headache, nausea and vomiting, and behavioral disorders. Surgery for cerebral tumor excision was performed and histopathological analysis revealed glioblastoma multiforme. On the seventh day post-surgery, she presented a sudden neurological deterioration with a meningeal syndrome, confusion, and fever of 39.8°C. Her cerebrospinal fluid sample and blood cultures were positive for S. enterica Enteritidis. She was treated with ceftriaxone and ciprofloxacin. On the 17th day post-surgery, she presented a new neurological disorder and purulent discharge from the surgical wound. Brain computed tomography revealed a large cerebral abscess located at the operative site. Surgical drainage of the abscess was performed and microbial cultures of surgical deep samples were positive for the same S. enterica Enteritidis isolate. She recovered and was discharged 6 weeks after admission. In this case report, a brain abscess was initially diagnosed as Salmonella post-surgical meningitis before the imaging diagnosis of the brain abscess. The diagnosis of brain abscess should be considered in all cases of non-typhoidal Salmonella meningitis after surgery for brain tumor. Surgical brain abscess drainage followed by prolonged antibiotic treatment remains a major therapeutic option.

  10. Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton

    Science.gov (United States)

    Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez

    2017-11-01

    Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.

  11. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report

    Directory of Open Access Journals (Sweden)

    Servadei Franco

    2010-04-01

    Full Text Available Abstract Background Management of glioblastoma multiforme (GBM has been difficult using standard therapy (radiation with temozolomide chemotherapy. The ketogenic diet is used commonly to treat refractory epilepsy in children and, when administered in restricted amounts, can also target energy metabolism in brain tumors. We report the case of a 65-year-old woman who presented with progressive memory loss, chronic headaches, nausea, and a right hemisphere multi-centric tumor seen with magnetic resonance imaging (MRI. Following incomplete surgical resection, the patient was diagnosed with glioblastoma multiforme expressing hypermethylation of the MGMT gene promoter. Methods Prior to initiation of the standard therapy, the patient conducted water-only therapeutic fasting and a restricted 4:1 (fat: carbohydrate + protein ketogenic diet that delivered about 600 kcal/day. The patient also received the restricted ketogenic diet concomitantly during the standard treatment period. The diet was supplemented with vitamins and minerals. Steroid medication (dexamethasone was removed during the course of the treatment. The patient was followed using MRI and positron emission tomography with fluoro-deoxy-glucose (FDG-PET. Results After two months treatment, the patient's body weight was reduced by about 20% and no discernable brain tumor tissue was detected using either FDG-PET or MRI imaging. Biomarker changes showed reduced levels of blood glucose and elevated levels of urinary ketones. MRI evidence of tumor recurrence was found 10 weeks after suspension of strict diet therapy. Conclusion This is the first report of confirmed GBM treated with standard therapy together with a restricted ketogenic diet. As rapid regression of GBM is rare in older patients following incomplete surgical resection and standard therapy alone, the response observed in this case could result in part from the action of the calorie restricted ketogenic diet. Further studies are needed

  12. Phase II Radiation therapy oncology group trial of weekly paclitaxel and conventional external beam radiation therapy for supratentorial glioblastoma multiforme

    International Nuclear Information System (INIS)

    Langer, Corey J.; Ruffer, James; Rhodes, Harker; Paulus, Rebecca; Murray, Kevin; Movsas, Benjamin; Curran, Walter

    2001-01-01

    Purpose: Fractionated external beam radiotherapy (EBRT) ± carmustine (BCNU) is the standard of care for patients with glioblastoma multiforme (GBM), but survival results remain poor. Preclinical studies indicate synergy between RT and paclitaxel (TAX) in astrocytoma cell lines. Phase I studies in GBM have demonstrated a maximum tolerated dose for TAX of 225 mg/m 2 /3 h/week x 6, during EBRT, with no exacerbation of typical RT-induced toxicities. The Radiation Therapy Oncology Group (RTOG) therefore mounted a Phase II study to determine the feasibility and efficacy of conventional EBRT and concurrent weekly TAX at its MTD. Patients and Methods: Sixty-two patients with histologic diagnosis of GBM were enrolled from 8/16/96 through 3/21/97 in a multi-institutional Phase II trial of EBRT and TAX 225 mg/m 2 /3 h (1-3 h before EBRT), administered the first treatment day of each RT week. Total EBRT dose was 60 Gy (200 cGy/fraction), 5 days per week. A smaller treatment field, to include gross disease plus a margin only, was used after 46 Gy. Results: Sixty-one patients (98%) were evaluable. Median age was 55 years (range, 28-78). Seventy-four percent were ≥50 years. Recursive partitioning analysis (RPA) Classes III, IV, V, VI included 10 (17%), 21 (34%), 25 (41%), and 5 (8%) patients, respectively. Gross total resection was performed in only 16%. There was no Grade 3 or 4 neutropenia or thrombocytopenia. Hypersensitivity reactions precluding further use of TAX occurred in 4 patients. There were 2 instances of late neurotoxicity (4% Grade 3 or 4). Ninety-one percent of patients received treatment per protocol. Seventy-seven percent completed prescribed treatment (6 weeks). Of 35 patients with measurable disease, CR/PR was observed in 23%, MR in 17%, and SD in 43%. Seventeen percent demonstrated progression at first follow-up. Median potential follow-up time is 20 months. Median survival is 9.7 months, with median survivals for RPA classes III, IV, V, and VI of 16.3, 10

  13. Comparing predictive models of glioblastoma multiforme built using multi-institutional and local data sources.

    Science.gov (United States)

    Singleton, Kyle W; Hsu, William; Bui, Alex A T

    2012-01-01

    The growing amount of electronic data collected from patient care and clinical trials is motivating the creation of national repositories where multiple institutions share data about their patient cohorts. Such efforts aim to provide sufficient sample sizes for data mining and predictive modeling, ultimately improving treatment recommendations and patient outcome prediction. While these repositories offer the potential to improve our understanding of a disease, potential issues need to be addressed to ensure that multi-site data and resultant predictive models are useful to non-contributing institutions. In this paper we examine the challenges of utilizing National Cancer Institute datasets for modeling glioblastoma multiforme. We created several types of prognostic models and compared their results against models generated using data solely from our institution. While overall model performance between the data sources was similar, different variables were selected during model generation, suggesting that mapping data resources between models is not a straightforward issue.

  14. The use of positron emission tomography in BNCT treatment planning for metastatic malignant melanoma and glioblastoma multiforme

    International Nuclear Information System (INIS)

    Kabalka, G.; Nichols, T.; Smith, G.; Miller, L.; Kahn, M.

    2000-01-01

    Positron emission tomography (PET) evaluations of six glioblastoma multiforme (GBM) and one metastatic melanoma (MM) patient have been carried out utilizing fluorine-18 labeled p-boronophenylalanine. Four of the GBM patients were imaged both prior to and post BNCT. In one GBM patient, biopsy derived boron distribution data compared favorably to the PET derived data. The PET data have been used as input to dosimetry calculations and the results vary from those obtained using current protocols. In addition, PET images of the thorax would indicate that the utility of PET for staging tumors for BNCT may extend beyond the brain. However, higher than anticipated levels of activity in the lungs (as also seen in salivary glands) indicate the more effective BNCT agents will be required. (author)

  15. Glioblastoma multiforme subterfuge as acute cerebral hemorrhage: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Seidu A. Richard

    2018-04-01

    Full Text Available Hemorrhagic related Glioblastoma multiforme (GBM are rare and characterizes with severe clinical scuffle. The etiology of this presentation although not well known is believed to be multifactorial. We present a case as well as review on the pathogenesis of evolution of the hematoma into ring enhancing features of GBM on imaging studies. We present a case of 28 years old man who suddenly went into coma for 9 hours preceded with seizures that latest for 10 minutes. He had no focal neurological signs. CT-Scans images indicated acute cerebral hemorrhage near the frontal horn of the left ventricle with brain edema about the hemorrhagic lesion and MRI done a week later revealed a cerebral ring enhancing lesion. The lesion was partially resected during surgery and immunohistochemical staining confirmed GBM (WHO, grade 4. The diagnosis of intratumoral hemorrhage in GBM was very challenging at the initial stages but with time the hematoma evolved into ring enhancing images typical of GBM. It’s not every intracranial hematoma that is of pure vascular origin.

  16. Role of 5-ALA in improving extent of tumour resection in patients with Glioblastoma Multiforme.

    Science.gov (United States)

    Waqas, Muhammad; Khan, Inamullah; Shamim, Muhammad Shahzad

    2017-10-01

    Goal of surgery for patients with Glioblastoma Multiforme (GBM) is gross total resection with no new neurological deficits. Surgical resection is often restricted due the difficulty in differentiating the tumour from surrounding normal brain using either naked eye, or standard intra-operative white light microscopy. GBM uptakes orally administered 5-ALA becomes fluorescent when viewed by a special light, and this property has been used to improve intra-operative tumour identification. This technique should therefore allow better extent of tumour resection. The hypothesis has been tested through several studies and even though most studies are of low quality, they strongly favour the use of 5- ALA in improving the extent of resection when compared to white light microscopy. A systematic review on the topic had a similar conclusion. Few studies have also hinted on a high false negative rate with the use of this technique..

  17. Treatment outcome and prognostic factors of adult glioblastoma multiforme.

    Science.gov (United States)

    Ahmadloo, Niloofar; Kani, Amir-Abbas; Mohammadianpanah, Mohammad; Nasrolahi, Hamid; Omidvari, Shapour; Mosalaei, Ahmad; Ansari, Mansour

    2013-03-01

    This study aimed to report the characteristics, prognostic factors and treatment outcome of 223 patients with glioblastoma multiforme (GBM). This retrospective study was carried out by reviewing the medical records of 223 adult patients diagnosed at a tertiary academic hospital between 1990 and 2008. Patients' follow up ranged from 1 to 69 months (median 11 months). Surgery was attempted in all patients in whom complete resection in 15 patients (7%), subtotal resection in 77 patients (34%), partial resection in 73 patients (33%) and biopsy alone in 58 patients (26%) were done. In addition, we performed a literature review of PubMed to find out and analyze major related series. In all, we collected and analyzed the data of 33 major series including more than 11,000 patients with GBM. There were 141 men and 82 women. The median progression free- and overall survival were 6 (95% CI=5.711-8.289) and 11 (95% CI=9.304-12.696) months respectively. In univariate analysis for overall survival, age (P=0.003), tumor size (P<0.013), performance status (P<0.001), the extent of surgical resection (P=0.009), dose of radiation (P<0.001), and adjuvant chemotherapy (P<0.001) were prognostic factors. However, in multivariate analysis, only radiation dose, extent of surgical resection, and adjuvant chemotherapy were independent prognostic factors for overall survival. The prognosis of adult patients with GBM remains poor; however, complete surgical resection and adjuvant treatments improve progression-free and overall survival. Copyright © 2012. Production and hosting by Elsevier B.V.

  18. Treatment outcome and prognostic factors of adult glioblastoma multiforme

    International Nuclear Information System (INIS)

    Ahmadloo, N.; Mohammadianpanah, M.; Nasrolahi, H.; Omidvari, Sh.; Ansari, M.; Kani, A.A.; Mosalaei, A.

    2013-01-01

    Introduction: This study aimed to report the characteristics, prognostic factors and treatment outcome of 223 patients with glioblastoma multiforme (GBM). Subjects and method: This retrospective study was carried out by reviewing the medical records of 223 adult patients diagnosed at a tertiary academic hospital between 1990 and 2008. Patients’ follow up ranged from 1 to 69 months (median 11 months). Surgery was attempted in all patients in whom complete resection in 15 patients (7%), subtotal resection in 77 patients (34%), partial resection in 73 patients (33%) and biopsy alone in 58 patients (26%) were done. In addition, we performed a literature review of Pub Med to find out and analyze major related series. In all, we collected and analyzed the data of 33 major series including more than 11,000 patients with GB M. Results: There were 141 men and 82 women. The median progression free- and overall survival were 6 (95% Cl = 5.711-8.289) and 11 (95% Cl = 9.304-12.696) months respectively. In univariate analysis for overall survival, age (P = 0.003), tumor size (P < 0.013), performance status (P < 0.001), the extent of surgical resection (P - 0.009), dose of radiation (P < 0.001), and adjuvant chemotherapy (P < 0.001) were prognostic factors. However, in multivariate analysis, only radiation dose, extent of surgical resection, and adjuvant chemotherapy were independent prognostic factors for overall survival. Conclusion: The prognosis of adult patients with GBM remains poor; however, complete surgical resection and adjuvant treatments improve progression-free and overall survival

  19. What’s the clinical significance of adding diffusion and perfusion MRI in the differentiation of glioblastoma multiforme and solitary brain metastasis?

    Directory of Open Access Journals (Sweden)

    Amr F. Mourad

    2017-09-01

    Full Text Available Objective: To evaluate the additional diagnostic value of diffusion and perfusion MRI in the differentiation of glioblastoma multiforme (GBM and solitary brain metastasis. Patients and methods: This retrospective study included 24 patients with histologically proven brain tumors who underwent conventional MRI with analysis of diffusion (DWI and perfusion (PWI MRI findings of each tumor. The Apparent Diffusion Coefficient (ADC values were calculated in the minimum (ADC-MIN, mean (ADC-MEAN, and maximum (ADC-MAX in all the tumors and the peritumoral regions. The PWI data was expressed as maximum regional cerebral blood volume (rCBV of the tumors and peritumoral regions. Results: After adding diffusion and perfusion to conventional MRI findings, we found that the accuracy of differentiation between glioblastoma multiforme (GBM and solitary metastasis increased from 70% to 90%.There is a significant difference in DWI signal intensity between GBM and metastatic tumors (P < 0.05. The ADC values of GBM were lower than that of metastatic tumors. On perfusion MRI, the maximum rCBV of the peritumoral region (rCBVP of GBM was higher than that of brain metastases (P < 0.001. Conclusion: The addition of diffusion and perfusion to the MRI protocol increases the accuracy of differentiation between GBM and solitary brain metastasis and should be considered routinely. Keywords: Diffusion MRI, Perfusion MRI, GBM, Solitary brain metastases

  20. Tumor grading of adult astrocytic glioma on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Hyun; Choi, Choong Gon; Han, Moon Hee; Lee, Seon Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of); Suh, Jung Ho [Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Ho Kyu; Suh, Dae Chul [Ulsan University College of Medicine, Seoul (Korea, Republic of); Choi, Kyu Ho [Catholic University College of Medicine, Seoul (Korea, Republic of); Byun, Hong Sik [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Choi, Woo Suk [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1994-09-15

    The purpose of this study is to determine predictive MR features for grading of astrocytic gliomas and to evaluate the accuracy of MR grading in these tumors. We retrospectively reviewed 135 cases of supratentorial astrocytic gliomas in adult (age > 15 years), all of which were proved by open biopsy. Two observers analysed MR images independently with criteria of margin, edema, mass effect, signal heterogeneity, necrosis, cyst formation, hemorrhage, tumor vascularity, enhancement degree, and enhancement size. The patterns of enhancement were categorized into no, homogeneous, heterogeneous, thin smooth rim, thin irregular rim, and thick irregular rim enhancement patterns. Observers finally diagnosed each case as one of low-grade astrocytoma, anaplastic astrocytoma or glioblastoma multiforme. Statistically significant MR features for grading of these tumors were revealed as necrosis (p < 0.001), edema (0.008), and signal heterogeneity (p < 0.025). When compared with histopathologic grading, MR graded correctly 76%- 77% of cases in two tired system(low-grade astrocytoma versus high-grade astrocytoma), but only 67%-69% of cases in three tiered system(low-grade astrocytoma, anaplastic astrocytoma, glioblastoma multiforme). No contrast enhancement was seen in 45% and 23% of low-grade astrocytoma and anaplastic astrocytoma respectively. Glioblastoma multiforme frequently showed thick irregular rim enhancement (57%), but no enhancement at all in 8%. We have concluded that necrosis and edema are significant predictive MR features for grading of supratentorial astrocytic gliomas in adult, and MR was correct in 76%-77% of cases for predicting pathologic grading astrocytomas in two tiered system.

  1. Tumor grading of adult astrocytic glioma on MR imaging

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Choi, Choong Gon; Han, Moon Hee; Lee, Seon Kyu; Suh, Jung Ho; Lee, Ho Kyu; Suh, Dae Chul; Choi, Kyu Ho; Byun, Hong Sik; Choi, Woo Suk

    1994-01-01

    The purpose of this study is to determine predictive MR features for grading of astrocytic gliomas and to evaluate the accuracy of MR grading in these tumors. We retrospectively reviewed 135 cases of supratentorial astrocytic gliomas in adult (age > 15 years), all of which were proved by open biopsy. Two observers analysed MR images independently with criteria of margin, edema, mass effect, signal heterogeneity, necrosis, cyst formation, hemorrhage, tumor vascularity, enhancement degree, and enhancement size. The patterns of enhancement were categorized into no, homogeneous, heterogeneous, thin smooth rim, thin irregular rim, and thick irregular rim enhancement patterns. Observers finally diagnosed each case as one of low-grade astrocytoma, anaplastic astrocytoma or glioblastoma multiforme. Statistically significant MR features for grading of these tumors were revealed as necrosis (p < 0.001), edema (0.008), and signal heterogeneity (p < 0.025). When compared with histopathologic grading, MR graded correctly 76%- 77% of cases in two tired system(low-grade astrocytoma versus high-grade astrocytoma), but only 67%-69% of cases in three tiered system(low-grade astrocytoma, anaplastic astrocytoma, glioblastoma multiforme). No contrast enhancement was seen in 45% and 23% of low-grade astrocytoma and anaplastic astrocytoma respectively. Glioblastoma multiforme frequently showed thick irregular rim enhancement (57%), but no enhancement at all in 8%. We have concluded that necrosis and edema are significant predictive MR features for grading of supratentorial astrocytic gliomas in adult, and MR was correct in 76%-77% of cases for predicting pathologic grading astrocytomas in two tiered system

  2. Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review

    DEFF Research Database (Denmark)

    Henriksson, Roger; Asklund, Thomas; Poulsen, Hans Skovgaard

    2011-01-01

    The maintenance of quality of life (QoL) in patients with high-grade glioma is an important endpoint during treatment, particularly in those with glioblastoma multiforme (GBM) given its dismal prognosis despite limited advances in standard therapy. It has proven difficult to identify new therapies...... that extend survival in patients with recurrent GBM, so one of the primary aims of new therapies is to reduce morbidity, restore or preserve neurologic functions, and the capacity to perform daily activities. Apart from temozolomide, cytotoxic chemotherapeutic agents do not appear to significantly impact...... response or survival, but produce toxicity that is likely to negatively impact QoL. New biological agents, such as bevacizumab, can induce a clinically meaningful proportion of durable responses among patients with recurrent GBM with an acceptable safety profile. Emerging evidence suggests that bevacizumab...

  3. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    Science.gov (United States)

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Role of Intra-operative MRI (iMRI) in Improving Extent of Resection and Survival in Patients with Glioblastoma Multiforme.

    Science.gov (United States)

    Khan, Inamullah; Waqas, Muhammad; Shamim, Muhammad Shahzad

    2017-07-01

    Multiple intraoperative aids have been introduced to improve the extent of resection (EOR) in Glioblastoma Multiforme (GBM) patients, avoiding any new neurological deficits. Intraoperative MRI (iMRI) has been debated for its utility and cost for nearly two decades in neurosurgical literature. Review of literature suggests improved EOR in GBM patients who underwent iMRI assisted surgical resections leading to higher overall survival (OS) and progression free survival (PFS). iMRI provides real time intraoperative imaging with reasonable quality. Higher risk for new postoperative deficits with increased EOR is not reported in any study using iMRI. The level of evidence regarding prognostic benefits of iMRI is still of low quality..

  5. Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B

    2014-01-01

    Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously

  6. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    International Nuclear Information System (INIS)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-01-01

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report

  7. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L. [Brookhaven National Lab., Upton, NY (United States); Bergland, R.; Elowitz, E. [Beth Israel Medical Center, New York, NY (United States). Dept. of Neurosurgery; Chadha, M. [Beth Israel Medical Center, New York, NY (United States). Dept. of Radiation Oncology

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  8. Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Guckenberger, Matthias; Mayer, Mario; Sweeney, Reinhart A.; Flentje, Michael [University Hospital Wuerzburg (Germany). Dept. of Radiation Oncology; Buttmann, Mathias [University Hospital Wuerzburg (Germany). Dept. of Neurology; Vince, Giles H. [University Hospital Wuerzburg (Germany). Dept. of Neurosurgery

    2011-09-15

    The goal of this study was to evaluate accelerated radiotherapy with and without temozolomide (TMZ) for glioblastoma multiforme (GBM). This retrospective analysis evaluated 86 patients with histologically proven GBM who were treated with accelerated radiotherapy of 1.8 Gy twice daily to a total dose of 54 Gy within 3 weeks. Median age was 62 years and median Karnofsky index was 90. A total of 41 patients received radiotherapy only from 2002-2005 and 45 patients were treated with TMZ concomitantly and after radiotherapy from 2005-2007. Median overall survival (OS) was 12.5 months and 2-year OS was 15.4%. Patient characteristics were well balanced between the two groups except for better performance status (p = 0.05) and higher frequency of retreatment for the first recurrence (p = 0.02) in the TMZ group. Age at diagnosis (HR 2.83) and treatment with TMZ (HR 0.60) were correlated with OS in the multivariate analysis: treatment with and without TMZ resulted in median OS of 16 months and 11.3 months, respectively. Hematological toxicity grade > II was observed in 2/45 patients and 5/37 patients during simultaneous radiochemotherapy and adjuvant TMZ. TMZ added to accelerated radiotherapy for GBM resulted in prolonged overall survival with low rates of severe hematological toxicity. (orig.)

  9. Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Mayer, Mario; Sweeney, Reinhart A.; Flentje, Michael; Buttmann, Mathias; Vince, Giles H.

    2011-01-01

    The goal of this study was to evaluate accelerated radiotherapy with and without temozolomide (TMZ) for glioblastoma multiforme (GBM). This retrospective analysis evaluated 86 patients with histologically proven GBM who were treated with accelerated radiotherapy of 1.8 Gy twice daily to a total dose of 54 Gy within 3 weeks. Median age was 62 years and median Karnofsky index was 90. A total of 41 patients received radiotherapy only from 2002-2005 and 45 patients were treated with TMZ concomitantly and after radiotherapy from 2005-2007. Median overall survival (OS) was 12.5 months and 2-year OS was 15.4%. Patient characteristics were well balanced between the two groups except for better performance status (p = 0.05) and higher frequency of retreatment for the first recurrence (p = 0.02) in the TMZ group. Age at diagnosis (HR 2.83) and treatment with TMZ (HR 0.60) were correlated with OS in the multivariate analysis: treatment with and without TMZ resulted in median OS of 16 months and 11.3 months, respectively. Hematological toxicity grade > II was observed in 2/45 patients and 5/37 patients during simultaneous radiochemotherapy and adjuvant TMZ. TMZ added to accelerated radiotherapy for GBM resulted in prolonged overall survival with low rates of severe hematological toxicity. (orig.)

  10. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  11. Evaluation of early imaging response criteria in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Gladwish, Adam; Koh, Eng-Siew; Hoisak, Jeremy; Lockwood, Gina; Millar, Barbara-Ann; Mason, Warren; Yu, Eugene; Laperriere, Normand J; Ménard, Cynthia

    2011-01-01

    Early and accurate prediction of response to cancer treatment through imaging criteria is particularly important in rapidly progressive malignancies such as Glioblastoma Multiforme (GBM). We sought to assess the predictive value of structural imaging response criteria one month after concurrent chemotherapy and radiotherapy (RT) in patients with GBM. Thirty patients were enrolled from 2005 to 2007 (median follow-up 22 months). Tumor volumes were delineated at the boundary of abnormal contrast enhancement on T1-weighted images prior to and 1 month after RT. Clinical Progression [CP] occurred when clinical and/or radiological events led to a change in chemotherapy management. Early Radiologic Progression [ERP] was defined as the qualitative interpretation of radiological progression one month post-RT. Patients with ERP were determined pseudoprogressors if clinically stable for ≥6 months. Receiver-operator characteristics were calculated for RECIST and MacDonald criteria, along with alternative thresholds against 1 year CP-free survival and 2 year overall survival (OS). 13 patients (52%) were found to have ERP, of whom 5 (38.5%) were pseudoprogressors. Patients with ERP had a lower median OS (11.2 mo) than those without (not reached) (p < 0.001). True progressors fared worse than pseudoprogressors (median survival 7.2 mo vs. 19.0 mo, p < 0.001). Volume thresholds performed slightly better compared to area and diameter thresholds in ROC analysis. Responses of > 25% in volume or > 15% in area were most predictive of OS. We show that while a subjective interpretation of early radiological progression from baseline is generally associated with poor outcome, true progressors cannot be distinguished from pseudoprogressors. In contrast, the magnitude of early imaging volumetric response may be a predictive and quantitative metric of favorable outcome

  12. Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide

    International Nuclear Information System (INIS)

    Dobelbower, Michael C.; Burnett, Omer L. III; Haytt, Mark D.; Fiveash, John B.; Nordal, Robert A.; Nabors, Louis B.; Markert, James M.

    2011-01-01

    To analyse patterns of failure in patients with glioblastoma multiforme treated with concurrent radiation and temozolomide. A retrospective review of patients treated with concurrent radiation and temozolomide was performed. Twenty patients treated at the University of Alabama at Birmingham, with biopsy-proven disease, documented disease progression after treatment, and adequate radiation dosimetry and imaging records were included in the study. Patients generally received 46 Gy to the primary tumour and surrounding oedema plus 1 cm, and 60 Gy to the enhancing tumour plus 1 cm. MRIs documenting failure after therapy were fused to the original treatment plans. Contours of post-treatment tumour volumes were generated from MRIs showing tumour failure and were overlaid onto the original isodose curves. The recurrent tumours were classified as in-field, marginal or regional. Recurrences were also evaluated for distant failure. Of the 20 documented failures, all patients had some component of failure at the primary site. Eighteen patients (90%) failed in-field, 2 patients (10%) had marginal failures, and no regional failures occurred. Four patients (20%) had a component of distant failure in which an independent satellite lesion was located completely outside of the 95% isodose curve. Radiation concurrent with temozolomide appears to be associated with a moderate risk of distant brain failure in addition to the high rate of local failure. The risk of distant failure was consistent with that observed with radiation alone, suggesting that temozolomide does not act to reduce distant brain failure but to improve local control.

  13. Copper-64 Dichloride as Theranostic Agent for Glioblastoma Multiforme: A Preclinical Study

    Directory of Open Access Journals (Sweden)

    Cristina Ferrari

    2015-01-01

    Full Text Available Glioblastoma multiforme (GBM is the most common primary malignant brain tumor in adults with a median survival time less than one year. To date, there are only a limited number of effective agents available for GBM therapy and this does not seem to add much survival advantage over the conventional approach based on surgery and radiotherapy. Therefore, the development of novel therapeutic approaches to GBM is essential and those based on radionuclide therapy could be of significant clinical impact. Experimental evidence has clearly demonstrated that cancer cells have a particularly high fractional content of copper inside the nucleus compared to normal cells. This behavior can be conveniently exploited both for diagnosis and for delivering therapeutic payloads (theranostic of the radionuclide copper-64 into the nucleus of cancerous cells by intravenous administration of its simplest chemical form as dichloride salt [64Cu]CuCl2. To evaluate the potential theranostic role of [64Cu]CuCl2 in GBM, the present work reports results from a preclinical study carried out in a xenografted GBM tumor mouse model. Biodistribution data of this new agent were collected using a small-animal PET tomograph. Subsequently, groups of tumor implanted nude mice were treated with [64Cu]CuCl2 to simulate single- and multiple-dose therapy protocols, and results were analyzed to estimate therapeutic efficacy.

  14. In silico studies on marine actinomycetes as potential inhibitors for Glioblastoma multiforme

    Science.gov (United States)

    Kirubakaran, Palani; Kothapalli, Roopa; Singh, Kh Dhanachandra; Nagamani, Selvaraman; Arjunan, Subramanian; Muthusamy, Karthikeyan

    2011-01-01

    Glioblastoma multiforme (GBM) is considered to be the most common and often deadly disorder which affects the brain. It is caused by the over expression of proteins such as ephrin type-A receptor 2 (EphA2), epidermal growth factor receptor (EGFR) and EGFRvIII. These 3 proteins are considered to be the potential therapeutic targets for GBM. Among these, EphA2 is reported to be over-expressed in ˜90% of GBM. Herein we selected 35 compounds from marine actinomycetes, 5 in vitro and in vivo studied drug candidates and 4 commercially available drugs for GBM which were identified from literature and analysed by using comparative docking studies. Based on the glide scores and other in silico parameters available in Schrödinger, two selected marine actinomycetes compounds which include Tetracenomycin D and Chartreusin exhibited better binding energy among all the compounds studied in comparative docking. In this study we have demonstrated the inhibition of the 3 selected targets by the two bioactive compounds from marine actinomycetes through in-silico docking studies. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted with the 3 molecular targets (EphA2 receptor, EGFR, EGFRvIII) for GBM. Our results suggest that Tetracinomycin D and Chartreusin are the novel and potential inhibitor for the treatment of GBM. PMID:21584184

  15. The Radiologic Features of Cystic versus Noncystic Glioblastoma Multiforme as Significant Prognostic Factors

    International Nuclear Information System (INIS)

    Choi, Seung Joon; Hwang, Hee Young; Kim, Na Rae; Lee, Sheen Woo; Kim, Jeong Ho; Choi, Hye Young; Kim, Hyung Sik

    2010-01-01

    The purpose of this study was to determine the preoperative radiological characteristic and survival differences of glioblastoma multiforme (GBM) with and without cysts. Twenty-one GBMs were collected retrospectively; these tumors were pathologic confirmed as GBM. Based on the preoperative MR imaging, we compared the cystic GBMs with the noncystic GBMs according to the the tumor size, the tumor interface, the tumor wall thickness and peritumoral edema. Seven cases were classified as cystic GBMs and fourteen were noncystic GBMs. The cystic GBMs had a well-defined tumor interface, a less than 2 cm thickness of the tumor wall and less than 40 cm 3 thick peritumoral edema as compared to that of the noncystic GBMs. There was a statistically significant difference in age between the patients with cystic tumors and those with noncystic tumors. For the patients with cystic GBMs and noncystic GBMs, median survival time after surgery was 43.8 months and 12.5 months, respectively. The cystic GBMs had a well-defined tumor interface, a thin wall and minimal edema, as compared with that of the noncystic GBMs. The patients with cystic GBMs were significantly younger and they had more favorable survival outcomes than did the patients with noncystic GBMs

  16. Prognostic relevance of cytochrome C oxidase in primary glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Corinne E Griguer

    Full Text Available Patients with primary glioblastoma multiforme (GBM have one of the lowest overall survival rates among cancer patients, and reliable biomarkers are necessary to predict patient outcome. Cytochrome c oxidase (CcO promotes the switch from glycolytic to OXPHOS metabolism, and increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure. Thus, we investigated the relationship between tumor CcO activity and the survival of patients diagnosed with primary GBM. A total of 84 patients with grade IV glioma were evaluated in this retrospective cohort study. Cumulative survival was calculated by the Kaplan-Meier method and analyzed by the log-rank test, and univariate and multivariate analyses were performed with the Cox regression model. Mitochondrial CcO activity was determined by spectrophotometrically measuring the oxidation of cytochrome c. High CcO activity was detected in a subset of glioma tumors (∼30%, and was an independent prognostic factor for shorter progression-free survival and overall survival [P = 0.0087 by the log-rank test, hazard ratio = 3.57 for progression-free survival; P<0.001 by the log-rank test, hazard ratio = 10.75 for overall survival]. The median survival time for patients with low tumor CcO activity was 14.3 months, compared with 6.3 months for patients with high tumor CcO activity. High CcO activity occurs in a significant subset of high-grade glioma patients and is an independent predictor of poor outcome. Thus, CcO activity may serve as a useful molecular marker for the categorization and targeted therapy of GBMs.

  17. Glioblastoma multiforme in Klippel-Trenaunay-Weber syndrome: a case report.

    Science.gov (United States)

    Yilmaz, Tevfik; Cikla, Ulas; Kirst, Alice; Baskaya, Mustafa K

    2015-04-17

    Klippel-Trenaunay-Weber syndrome (KTWS) is a rare syndrome in which patients usually present with cutaneous hemangiomas, venous varicosities, and bone and soft tissue hypertrophy of the affected limb. Intracranial lesions in patients with KTWS are extremely rare, and are generally reported as single cases in the literature. We describe a rare case, where a patient with KTWS was found with a hemorrhagic grade IV astrocytoma. Although central nervous system abnormalities such as intracranial aneurysms and cerebral and spinal cord cavernomas have been described in patients with KTWS, to the best of our knowledge, this is the first report of an association between glioblastoma multiforme (grade IV astrocytoma) and KTWS in the English-language medical literature. A 61-year-old white Caucasian man with a history of KTWS presented with seizures. Left upper and lower extremity hypertrophy, left foot, leg and ear gigantism and left-sided abdominal capillary hemangiomas were noted in the physical examination. Cranial computed tomography (CT) and magnetic resonance imaging (MRI) were obtained, showing a heterogeneous lesion in the cingulate gyrus, with peripheral and central areas of T1 hyperintensity and layering T2 hypointensity consistent with a hemorrhage. A right parasagittal frontal craniotomy was performed with an interhemispheric approach. We had difficulty controlling the bleeding with bipolar electrocautery during surgery and finally were able to stop the bleeding using surgicel and gelfoam. Postoperative cranial CT and MRI scans showed intraparenchymal hemorrhage centered within the medial right frontal lobe. There was no increase in hematoma size in consecutive CT scans. Co-occurrence of vascular abnormalities with KWTS should be taken into consideration to avoid perilous preoperative and postoperative complications.

  18. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Xiao, Zui Xuan; Chen, Ruo Qiao; Hu, Dian Xing; Xie, Xiao Qiang; Yu, Shang Bin; Chen, Xiao Qian

    2017-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the gene expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients. - Highlights: • Gene expression signarue in long-term survived GBM patients are identified from Gene Expression Omnibus database. • Repaglinide is identified as a survival-related drug for GBM via drug repositioning in CMap. • Repaglinide effectively kills GBM cells, inhibits GBM cell migration and increases survival of mice bearing orthotopic glioma. • Repaglinide reduces Bcl-2, Beclin-1 and PD-L1 in GBM tissues.

  19. Bilateral posterior RION after concomitant radiochemotherapy with temozolomide in a patient with glioblastoma multiforme: a case report

    International Nuclear Information System (INIS)

    Schreiber, Stefanie; Prox-Vagedes, Vanessa; Elolf, Erck; Brueggemann, Ines; Gademann, Guenther; Galazky, Imke; Bartels, Claudius

    2010-01-01

    Radiation induced optic neuropathy (RION) is a rare but severe consequence of radiation therapy that is associated with adjuvant chemotherapy, specifically therapy with vincristine or nitrosoureas. However, there is very little evidence regarding the occurrence of RION after concomitant radiochemotherapy with temozolomide. The case of a 63 year old woman with glioblastoma multiforme and concomitant radiochemotherapy with temozolomide is described. Due to a slight depressive episode the patient also took hypericum perforatum. Five months after cessation of fractionated radiation and adjuvant chemotherapy with temozolomide (cumulative dose of 11040 mg) the patient developed bilateral amaurosis due to RION. Tumor regrowth was excluded by magnetic resonance imaging. After the application of gadolinium a pathognomonic contrast enhancement of both prechiasmatic optic nerves could be observed. In this patient, the occurrence of RION may have been the result of radiosensitization by temozolomide, which could have been strengthened by hypericin. Consequently, physicians should avoid a concomitant application of hypericum perforatum and radiochemotherapy

  20. Bilateral posterior RION after concomitant radiochemotherapy with temozolomide in a patient with glioblastoma multiforme: a case report

    Directory of Open Access Journals (Sweden)

    Gademann Guenther

    2010-10-01

    Full Text Available Abstract Background Radiation induced optic neuropathy (RION is a rare but severe consequence of radiation therapy that is associated with adjuvant chemotherapy, specifically therapy with vincristine or nitrosoureas. However, there is very little evidence regarding the occurrence of RION after concomitant radiochemotherapy with temozolomide. Case Presentation The case of a 63 year old woman with glioblastoma multiforme and concomitant radiochemotherapy with temozolomide is described. Due to a slight depressive episode the patient also took hypericum perforatum. Five months after cessation of fractionated radiation and adjuvant chemotherapy with temozolomide (cumulative dose of 11040 mg the patient developed bilateral amaurosis due to RION. Tumor regrowth was excluded by magnetic resonance imaging. After the application of gadolinium a pathognomonic contrast enhancement of both prechiasmatic optic nerves could be observed. Conclusions In this patient, the occurrence of RION may have been the result of radiosensitization by temozolomide, which could have been strengthened by hypericin. Consequently, physicians should avoid a concomitant application of hypericum perforatum and radiochemotherapy.

  1. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shouping [Department of Diagnostic Imaging, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Wang, Xianjun [Department of Neurology, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Li, Xiao [Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Cao, Yuandong, E-mail: yuandongcao@sina.com [Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China)

    2015-11-13

    MicroRNA-139-5p was identified to be significantly down-regulated in glioblastoma multiform (GBM) by miRNA array. In this report we aimed to clarify its biological function, molecular mechanisms and direct target gene in GBM. Twelve patients with GBM were analyzed for the expression of miR-139-5p by quantitative RT-PCR. miR-139-5p overexpression was established by transfecting miR-139-5p-mimic into U87MG and T98G cells, and its effects on cell proliferation were studied using MTT assay and colony formation assays. We concluded that ectopic expression of miR-139-5p in GBM cell lines significantly suppressed cell proliferation and inducing apoptosis. Bioinformatics coupled with luciferase and western blot assays also revealed that miR-139-5p suppresses glioma cell proliferation by targeting ELTD1 and regulating cell cycle. - Highlights: • miR-139-5p is downregulated in GBM. • miR-139-5p regulates cell proliferation through inducing apoptosis. • miR-139-5p regulates glioblastoma tumorigenesis by targeting 3′UTR of ELTD1. • miR-139-5p is involved in cell cycle regulation.

  2. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  3. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  4. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    Science.gov (United States)

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  5. Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Broholm, Helle; Villingshøj, Mette

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common, and most aggressive primary brain tumor among adults. A vast majority of the tumors express high levels of the epidermal growth factor receptor (EGFR) as a consequence of gene amplification. Furthermore, gene amplification is often associated...... with mutation of EGFR, and the constitutive activated deletion variant EGFRvIII is the most common EGFR mutation found in GBM. Activated EGFR signaling, through overexpression and/or mutation, is involved in increased tumorigenic potential. As such, EGFR is an attractive target for GBM therapy. However......, clinical studies with EGFR inhibitors have shown inconsistent results, and as such, further knowledge regarding the role of EGFR and EGFRvIII in GBM is needed. For this, an appropriate in vivo/in vitro tumor model is required. Here, we report the establishment of an experimental GBM model in which...

  6. What is the value of emission tomography studies in patients with a primary glioblastoma multiforme treated by 192Ir brachytherapy?

    International Nuclear Information System (INIS)

    Koot, R.W.; Bosch, D.A.; Habraken, J.B.A.; Hulshof, M.C.C.M.; Paans, A.M.J.; Pruim, J.

    2008-01-01

    We studied the use of 201 thallium SPECT and L-[1- 11 C]-tyrosine PET in patients with a primary glioblastoma multiforme treated with 192 Ir brachytherapy after surgery and external beam radiation therapy. We hypothesised that the patients most likely to benefit from further surgery after deterioration would be those with radiation necrosis and would be recognised by a negative emission tomography scan. Twenty-one patients underwent 201 thallium SPECT performed before brachytherapy, and this was repeated in 19 patients when recurrence was suspected. Nine patients also underwent a PET scan at the same time. Nine patients underwent a second operation. SPECT and PET were highly concordant concerning the prediction of radionecrosis and/or tumor recurrence. Repeat surgery did not lead to a significant increase in survival. There was no significant association between the duration of survival and tumor-to-background ratio but the number studied was small. Both SPECT and PET showed highly active lesions, which were proved to be recurrent tumor by clinical and histological follow-up. Although PET and SPECT are both highly sensitive in detecting active tumor tissue, emission tomography was not clinically valuable in the investigation of patients with a primary glioblastoma treated with brachytherapy. (author)

  7. Radiotherapy with concurrent or sequential temozolomide in elderly patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Hashem, Sameh A.; Salem, Ahmed; Al-Rashdan, Abdulla

    2012-01-01

    The objective of this article was to evaluate therapeutic outcomes of elderly patients with glioblastoma multiforme (GBM) treated by surgery followed by combined modality therapy and compare achievable outcomes to those of a younger age population. Seventy-eight adult patients with histologically confirmed grade IV astrocytoma were treated at King Hussein Cancer Center (Amman, Jordan) between September 2004 and December 2008. Records were retrospectively reviewed and included 55 males and 23 females between 19 and 78 years of age (median age 50 years). This case series included 20 patients aged 60 years or older. All patients underwent craniotomy followed radiotherapy and concurrent or sequential temozolomide. The follow-up ranged from 1 to 56 months (median 9.4 months). The median survival for the whole cohort was 13.8 months. The median survival for patients less than 60 years was 14.3 months and for patients 60 years or older was 12.3 months (P = 0.19). Among elderly patients, radical surgical resection (P = 0.002), concurrent delivery of chemoradiation (0.041) and radiotherapy dose ≥5400 cGy (P = 0.0001) conferred statistically significant improvements in overall survival. Management of GBM in elderly patients should include maximal surgical resection followed by radiotherapy and temozolomide whenever medically feasible. Outcomes comparable to those obtained in younger age groups can be expected. Our results indicate that concurrent chemoradiation is superior to sequential chemoradiation in these patients.

  8. Transcranial sonography: integration into target volume definition for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Becker, Georg; Flentje, Michael; Richter, Susanne; Goerttler-Krauspe, Irene; Koelbl, Oliver

    2000-01-01

    Purpose: Recent studies indicate that transcranial sonography (TCS) reliably displays the extension of malignant brain tumors. The effect of integrating TCS into radiotherapy planning for glioblastoma multiforme (GBM) was investigated herein. Methods and Materials: Thirteen patients subtotally resected for GBM underwent TCS during radiotherapy planning and were conventionally treated (54 to 60 Gy). Gross tumor volumes (GTVs) and stereotactic boost planning target volumes (PTVs, 3-mm margin) were created, based on contrast enhancement on computed tomography (CT) only (PTV CT ) or the combined CT and TCS information (PTV CT+TCS ). Noncoplonar conformal treatment plans for both PTVs were compared. Tumor progression patterns and preoperative magnetic resonance imaging (MRI) were related to both PTVs. Results: A sufficient temporal bone window for TCS was present in 11 of 13 patients. GTVs as defined by TCS were considerably larger than the respective CT volumes: Of the composite GTV CT+TCS (median volume 42 ml), 23%, 13%, and 66% (medians) were covered by the overlap of both methods, CT only and TCS only, respectively. Median sizes of PTV CT and PTV CT+TCS were 34 and 74 ml, respectively. Addition of TCS to CT information led to a median increase of the volume irradiated within the 80% isodose by 32 ml (median factor 1.51). PTV CT+TCS volume was at median 24% of a 'conventional' MRI(T2)-based PTV. Of eight progressions analyzed, three and six occurred inside the 80% isodose of the plans for PTV CT and for PTV CT+TCS , respectively. Conclusion: Addition of TCS tumor volume to the contrast-enhancing CT volume in postoperative radiotherapy planning for GBM increases the treated volume by a median factor of 1.5. Since a high frequency of marginal recurrences is reported from dose-escalation trials of this disease, TCS may complement established methods in PTV definition

  9. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  10. A Pilot Safety Study of Lenalidomide and Radiotherapy for Patients With Newly Diagnosed Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Drappatz, Jan; Wong, Eric T.; Schiff, David; Kesari, Santosh; Batchelor, Tracy T.; Doherty, Lisa; LaFrankie, Debra Conrad; Ramakrishna, Naren; Weiss, Stephanie; Smith, Sharon T.; Ciampa, Abigail; Zimmerman, Jennifer; Ostrowsky, Louis; David, Karly; Norden, Andrew

    2009-01-01

    Purpose: To define the maximum tolerated dose (MTD) of lenalidomide, an analogue of thalidomide with enhanced immunomodulatory and antiangiogenic properties and a more favorable toxicity profile, in patients with newly diagnosed glioblastoma multiforme (GBM) when given concurrently with radiotherapy. Patients and Methods: Patients with newly diagnosed GBM received radiotherapy concurrently with lenalidomide given for 3 weeks followed by a 1-week rest period and continued lenalidomide until tumor progression or unacceptable toxicity. Dose escalation occurred in groups of 6. Determination of the MTD was based on toxicities during the first 12 weeks of therapy. The primary endpoint was toxicity. Results: Twenty-three patients were enrolled, of whom 20 were treated and evaluable for both toxicity and tumor response and 2 were evaluable for toxicity only. Common toxicities included venous thromboembolic disease, fatigue, and nausea. Dose-limiting toxicities were eosinophilic pneumonitis and transaminase elevations. The MTD for lenalidomide was determined to be 15 mg/m 2 /d. Conclusion: The recommended dose for lenalidomide with radiotherapy is 15 mg/m 2 /d for 3 weeks followed by a 1-week rest period. Venous thromboembolic complications occurred in 4 patients, and prophylactic anticoagulation should be considered

  11. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery.

    Science.gov (United States)

    Carlson, Brett L; Pokorny, Jenny L; Schroeder, Mark A; Sarkaria, Jann N

    2011-03-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short-term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies.

  12. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    Glioblastoma Multiforme (GBM) is the most common and aggressive brain tumor in adults with a median survival for newly diagnosed GBM patients at less than 1.5 year. Despite intense treatment efforts the vast majority of patients will experience relapse and much research today is therefore searching...... for new molecular and cellular targets that can improve the prognosis for GBM patients. One such target is the brain cancer stem-like cells (bCSC) that are believed to be responsible for tumor initiation, progression, treatment resistance and ultimately relapse. bCSC are identified based...... on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...

  13. What is the value of emission tomography studies in patients with a primary glioblastoma multiforme treated by {sup 192}Ir brachytherapy?

    Energy Technology Data Exchange (ETDEWEB)

    Koot, R W; Bosch, D A [Academic Medical Center, Department of Neurosurgery, University of Amsterdam, Amsterdam (Netherlands); Habraken, J B.A. [Academic Medical Center, Department of Nuclear Medicine, University of Amsterdam, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology, University of Amsterdam, Amsterdam (Netherlands); Hulshof, M C.C.M. [Academic Medical Center, Department of Radiotherapy, University of Amsterdam, Amsterdam (Netherlands); Paans, A M.J.; Pruim, J. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen (Netherlands)], e-mail: r.w.koot@lumc.nl

    2008-07-01

    We studied the use of {sup 201}thallium SPECT and L-[1-{sup 11}C]-tyrosine PET in patients with a primary glioblastoma multiforme treated with {sup 192}Ir brachytherapy after surgery and external beam radiation therapy. We hypothesised that the patients most likely to benefit from further surgery after deterioration would be those with radiation necrosis and would be recognised by a negative emission tomography scan. Twenty-one patients underwent {sup 201}thallium SPECT performed before brachytherapy, and this was repeated in 19 patients when recurrence was suspected. Nine patients also underwent a PET scan at the same time. Nine patients underwent a second operation. SPECT and PET were highly concordant concerning the prediction of radionecrosis and/or tumor recurrence. Repeat surgery did not lead to a significant increase in survival. There was no significant association between the duration of survival and tumor-to-background ratio but the number studied was small. Both SPECT and PET showed highly active lesions, which were proved to be recurrent tumor by clinical and histological follow-up. Although PET and SPECT are both highly sensitive in detecting active tumor tissue, emission tomography was not clinically valuable in the investigation of patients with a primary glioblastoma treated with brachytherapy. (author)

  14. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  15. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  16. Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Huang, Shi-Xiong; Zhao, Zhong-Yan; Weng, Guo-Hu; He, Xiang-Ying; Wu, Chan-Ji; Fu, Chuan-Yi; Sui, Zhi-Yan; Ma, Yu-Shui; Liu, Tao

    2017-01-01

    Glioblastoma stem-like cells (GSCs) are responsible for the initiation and progression of glioblastoma multiforme (GBM), and microRNAs (miRNAs) play an important role in this disease. However, the mechanisms underlying the role of miRNAs in the stemness of GSCs have not been completely elucidated. We previously showed that miR-181a is downregulated in GBM and may predict prognosis in patients with this disease. Here, we demonstrate that the upregulation of miR-181a suppressed GSC formation and inhibited GBM tumorigenesis by targeting the Notch2 oncogene. We found that miR-181a was downregulated in GSCs derived from human glioblastoma U87MG and U373MG cells. The high expression of miR-181a inhibited the levels of stemness-related markers CD133 and BMI1, attenuated sphere proliferation, promoted cell apoptosis, and reduced the tumorigenicity of GSCs. MiR-181a decreased the expression of Notch2 by targeting the 3’-untranslated region of its mRNA. Notch2 overexpression inhibited the effects of miR-181a downregulation on GSCs, and was negatively correlated with miR-181a expression. Moreover, high Notch2 expression together with low miR-181a expression was correlated with a shorter median overall survival for GBM patients. Together, these data show that miR-181a may play an essential role in GSC formation and GBM progression by targeting Notch2, suggesting that Notch2 and miR-181a have potential prognostic value as tumor biomarkers in GBM patients. - Highlights: • MiR-181a suppressed GSC formation and GBM tumorigenesis by targeting Notch2. • Notch2 and miR-181a expression were correlated with OS for GBM patients. • Notch2 and miR-181a have potential prognostic value in GBM patients.

  17. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; Pirollo, Kathleen F; Chang, Esther H

    2015-02-01

    Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide

    International Nuclear Information System (INIS)

    Gebhardt, Brian J; Dobelbower, Michael C; Ennis, William H; Bag, Asim K; Markert, James M; Fiveash, John B

    2014-01-01

    To analyze patterns of failure in patients with glioblastoma multiforme (GBM) treated with limited-margin radiation therapy and concurrent temozolomide. We hypothesize that patients treated with margins in accordance with Adult Brain Tumor Consortium guidelines (ABTC) will demonstrate patterns of failure consistent with previous series of patients treated with 2–3 cm margins. A retrospective review was performed of patients treated at the University of Alabama at Birmingham for GBM between 2000 and 2011. Ninety-five patients with biopsy-proven disease and documented disease progression after treatment were analyzed. The initial planning target volume includes the T1-enhancing tumor and surrounding edema plus a 1 cm margin. The boost planning target volume includes the T1-enhancing tumor plus a 1 cm margin. The tumors were classified as in-field, marginal, or distant if greater than 80%, 20-80%, or less than 20% of the recurrent volume fell within the 95% isodose line, respectively. The median progression-free survival from the time of diagnosis to documented failure was 8 months (range 3–46). Of the 95 documented recurrences, 77 patients (81%) had an in-field component of treatment failure, 6 (6%) had a marginal component, and 27 (28%) had a distant component. Sixty-three patients (66%) demonstrated in-field only recurrence. The low rate of marginal recurrence suggests that wider margins would have little impact on the pattern of failure, validating the use of limited margins in accordance ABTC guidelines

  19. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review.

    Science.gov (United States)

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry; Rauch, Bernhard H

    2017-11-17

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.

  20. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme.

    Science.gov (United States)

    Saxena, Vipin; Hussain, Muhammad Delwar

    2013-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in human. 17-Allylamino-17-demethoxy geldanamycin (17-AAG) is an inhibitor of heat shock protein 90 (HSP90). The highly lipophilic nature and selective targeting of tumor cells makes 17-AAG a promising candidate for therapy of GBMs but poor water solubility, short biological half-life and hepatotoxicity limited its clinical use. Polymeric mixed micelles composed of Pluronic® P-123 and F-127 (2:1 (w/w)) containing 17-AAG were prepared and characterized. Cellular uptake and in vitro cytotoxicity of the prepared micelles were determined in U87MG human glioblastoma cells. The particle size of 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles was 22.2 ± 0.1 nm; drug loading was about 4.0 ± 0.5% (w/w) with 88.2 ± 3.1% (w/w) encapsulation efficiency. About 90% of drug was released from the nanoparticles over 8 days. Cellular uptake studies showed intracellular uptake of mixed micelles. Cytotoxicity study showed 5-fold increase (P AAG-loaded mixed micelles to free 17-AAG. Due to their targeting ability, size, high drug loading and controlled release behavior, 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles might be developed as a delivery system for GBM treatment. © 2013 Elsevier B.V. All rights reserved.

  1. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Noorden, Cornelis J. F.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor.

  2. Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme.

    Science.gov (United States)

    Baumann, Brian C; Dorsey, Jay F; Benci, Joseph L; Joh, Daniel Y; Kao, Gary D

    2012-09-25

    Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments. This method is also well-tolerated by the animals with low perioperative morbidity and mortality.

  3. Improved Outcomes with Intensity Modulated Radiation Therapy Combined with Temozolomide for Newly Diagnosed Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Noel J. Aherne

    2014-01-01

    Full Text Available Purpose. Glioblastoma multiforme (GBM is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months. We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  4. Improved outcomes with intensity modulated radiation therapy combined with temozolomide for newly diagnosed glioblastoma multiforme.

    Science.gov (United States)

    Aherne, Noel J; Benjamin, Linus C; Horsley, Patrick J; Silva, Thomaz; Wilcox, Shea; Amalaseelan, Julan; Dwyer, Patrick; Tahir, Abdul M R; Hill, Jacques; Last, Andrew; Hansen, Carmen; McLachlan, Craig S; Lee, Yvonne L; McKay, Michael J; Shakespeare, Thomas P

    2014-01-01

    Purpose. Glioblastoma multiforme (GBM) is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT) is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT) in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy) and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months). We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  5. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  6. Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning.

    Science.gov (United States)

    Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori

    2010-04-20

    We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.

  7. Understanding cytoskeleton regulators in glioblastoma multiforme for therapy design

    Directory of Open Access Journals (Sweden)

    Masoumi S

    2016-09-01

    Full Text Available Samaneh Masoumi,1,*, Aditya Harisankar,2,* Aileen Gracias,3 Fabian Bachinger,1 Temesgen Fufa,1,4 Gayathri Chandrasekar,5 Frank Gaunitz,4 Julian Walfridsson,2 Satish S Kitambi1 1Department of Microbiology Tumor and Cell Biology, 2Center for Hematology and Regenerative Medicine, Department of Medicine, 3Department of Neuroscience, Karolinska Institutet, Solna, Sweden; 4Department of Neurosurgery, University Hospital, Leipzig, Germany; 5Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden *These authors contributed equally to this work Abstract: The cellular cytoskeleton forms the primary basis through which a cell governs the changes in size, shape, migration, proliferation, and forms the primary means through which the cells respond to their environment. Indeed, cell and tissue morphologies are used routinely not only to grade tumors but also in various high-content screening methods with an aim to identify new small molecules with therapeutic potential. This study examines the expression of various cytoskeleton regulators in glioblastoma multiforme (GBM. GBM is a very aggressive disease with a low life expectancy even after chemo- and radiotherapy. Cancer cells of GBM are notorious for their invasiveness, ability to develop resistance to chemo- and radiotherapy, and to form secondary site tumors. This study aims to gain insight into cytoskeleton regulators in GBM cells and to understand the effect of various oncology drugs, including temozolomide, on cytoskeleton regulators. We compare the expression of various cytoskeleton regulators in GBM-derived tumor and normal tissue, CD133-postive and -negative cells from GBM and neural cells, and GBM stem-like and differentiated cells. In addition, the correlation between the expression of cytoskeleton regulators with the clinical outcome was examined to identify genes associated with longer patient survival. This was followed by a small molecule screening with US Food and Drug

  8. Radiation Therapy Dose Escalation for Glioblastoma Multiforme in the Era of Temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Badiyan, Shahed N.; Markovina, Stephanie; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Tran, David D.; Linette, Gerry [Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri (United States); Jalalizadeh, Rohan [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Dacey, Ralph; Rich, Keith M.; Chicoine, Michael R.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H. [Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri (United States); Huang, Jiayi, E-mail: jhuang@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-11-15

    Purpose: To review clinical outcomes of moderate dose escalation using high-dose radiation therapy (HDRT) in the setting of concurrent temozolomide (TMZ) in patients with newly diagnosed glioblastoma multiforme (GBM), compared with standard-dose radiation therapy (SDRT). Methods and Materials: Adult patients aged <70 years with biopsy-proven GBM were treated with SDRT (60 Gy at 2 Gy per fraction) or with HDRT (>60 Gy) and TMZ from 2000 to 2012. Biological equivalent dose at 2-Gy fractions was calculated for the HDRT assuming an α/β ratio of 5.6 for GBM. Results: Eighty-one patients received SDRT, and 128 patients received HDRT with a median (range) biological equivalent dose at 2-Gy fractions of 64 Gy (61-76 Gy). Overall median follow-up time was 1.10 years, and for living patients it was 2.97 years. Actuarial 5-year overall survival (OS) and progression-free survival (PFS) rates for patients that received HDRT versus SDRT were 12.4% versus 13.2% (P=.71), and 5.6% versus 4.1% (P=.54), respectively. Age (P=.001) and gross total/near-total resection (GTR/NTR) (P=.001) were significantly associated with PFS on multivariate analysis. Younger age (P<.0001), GTR/NTR (P<.0001), and Karnofsky performance status ≥80 (P=.001) were associated with improved OS. On subset analyses, HDRT failed to improve PFS or OS for those aged <50 years or those who had GTR/NTR. Conclusion: Moderate radiation therapy dose escalation above 60 Gy with concurrent TMZ does not seem to improve clinical outcomes for patients with GBM.

  9. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    International Nuclear Information System (INIS)

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-01-01

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated γ-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of γ-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 μmol/L (AMC-3046), 3 μmol/L (VU-109), and 2.5 μmol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to γ-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene

  10. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  11. Phase I Trial of Gross Total Resection, Permanent Iodine-125 Brachytherapy, and Hyperfractionated Radiotherapy for Newly Diagnosed Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Chen, Allen M.; Chang, Susan; Pouliot, Jean; Sneed, Penny K.; Prados, Michael D.; Lamborn, Kathleen R.; Malec, Mary K.; McDermott, Michael W.; Berger, Mitchell S.; Larson, David A.

    2007-01-01

    Purpose: To evaluate the feasibility of gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy for patients with newly diagnosed glioblastoma. Methods and Materials: From April 1999 to May 2002, 21 patients with glioblastoma multiforme were enrolled on a Phase I protocol investigating planned gross total resection and immediate placement of permanent I-125 seeds, followed by postoperative hyperfractionated radiotherapy to a dose of 60 Gy at 100 cGy b.i.d., 5 days per week. Median age and Karnofsky performance status were 50 years (range, 32-65 years) and 90 (range, 70-100), respectively. Toxicity was assessed according to Radiation Therapy Oncology Group criteria. Results: Eighteen patients completed treatment according to protocol. The median preoperative tumor volume on magnetic resonance imaging was 18.6 cm 3 (range, 4.4-41.2 cm 3 ). The median brachytherapy dose measured 5 mm radially outward from the resection cavity was 400 Gy (range, 200-600 Gy). Ten patients underwent 12 reoperations, with 11 of 12 reoperations demonstrating necrosis without evidence of tumor. Because of high toxicity, the study was terminated early. Median progression-free survival and overall survival were 57 and 114 weeks, respectively, but not significantly improved compared with historical patients treated at University of California, San Francisco, with gross total resection and radiotherapy without brachytherapy. Conclusions: Treatment with gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy as performed in this study results in high toxicity and reoperation rates, without demonstrated improvement in survival

  12. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  13. In Vivo Bioluminescence Imaging Validation of a Human Biopsy–Derived Orthotopic Mouse Model of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Monika A. Jarzabek

    2013-05-01

    Full Text Available Glioblastoma multiforme (GBM, the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI. A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  14. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme.

    Science.gov (United States)

    Reardon, David A; Egorin, Merrill J; Quinn, Jennifer A; Rich, Jeremy N; Rich, Jeremy N; Gururangan, Sridharan; Gururangan, Idharan; Vredenburgh, James J; Desjardins, Annick; Sathornsumetee, Sith; Provenzale, James M; Herndon, James E; Dowell, Jeannette M; Badruddoja, Michael A; McLendon, Roger E; Lagattuta, Theodore F; Kicielinski, Kimberly P; Dresemann, Gregor; Sampson, John H; Friedman, Allan H; Salvado, August J; Friedman, Henry S

    2005-12-20

    We performed a phase II study to evaluate the combination of imatinib mesylate, an adenosine triphosphate mimetic, tyrosine kinase inhibitor, plus hydroxyurea, a ribonucleotide reductase inhibitor, in patients with recurrent glioblastoma multiforme (GBM). Patients with GBM at any recurrence received imatinib mesylate plus hydroxyurea (500 mg twice a day) orally on a continuous, daily schedule. The imatinib mesylate dose was 500 mg twice a day for patients on enzyme-inducing antiepileptic drugs (EIAEDs) and 400 mg once a day for those not on EIAEDs. Assessments were performed every 28 days. The primary end point was 6-month progression-free survival (PFS). Thirty-three patients enrolled with progressive disease after prior radiotherapy and at least temozolomide-based chemotherapy. With a median follow-up of 58 weeks, 27% of patients were progression-free at 6 months, and the median PFS was 14.4 weeks. Three patients (9%) achieved radiographic response, and 14 (42%) achieved stable disease. Cox regression analysis identified concurrent EIAED use and no more than one prior progression as independent positive prognostic factors of PFS. The most common toxicities included grade 3 neutropenia (16%), thrombocytopenia (6%), and edema (6%). There were no grade 4 or 5 events. Concurrent EIAED use lowered imatinib mesylate exposure. Imatinib mesylate clearance was decreased at day 28 compared with day 1 in all patients, suggesting an effect of hydroxyurea. Imatinib mesylate plus hydroxyurea is well tolerated and associated with durable antitumor activity in some patients with recurrent GBM.

  15. The development of glioblastoma multiforme reactive monoclonal antibodies and their use in drug targeting

    International Nuclear Information System (INIS)

    Klaich, G.M.

    1989-01-01

    The objectives of this project were to develop monoclonal antibodies reactive with the tumor glioblastoma multiforme and to use them to study and develop new treatment modalities for this disease. A tumor antigen enriched immunogen, prepared by immunoaffinity chromatography, was compared to a whole tumor homogenate immunogen with the difference in the yield of tumor reactive, normal brain unreactive monoclonal antibodies proving to be significant. Monoclonal antibody A7, reactive with tumor tissue but unreactive with normal tissue, was isotyped to be an IgG2a immunoglobulin and could be purified to electrophoretic homogeneity by using serum-free culture conditions and protein A sepharose chromatography. Monoclonal antibody A7 is noncytotoxic as measured by the 3 H-nicotinamide release assay and binds to a 138 kd membrane antigen which is not internalized. Localization studies using 14 C-labeled monoclonal antibody A7 and the U-87 MG nude mouse xenograft model resulted in a tumor:serum ratio of 1.25:1.0 as compared to 0.29:1.0 for the negative control. A monoclonal antibody A7-doxorubicin immunoconjugate proved to be more cytotoxic than free doxorubicin in vitro while lethality studies using Swiss mice demonstrated the lack of toxicity of the immunoconjugate as compared to free doxorubicin. In vivo chemotherapy studies using the U-87 MG nude mouse xenograft failed to demonstrate any immunoconjugate anti-tumor activity which may be attributable to the route of administration

  16. Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software.

    Science.gov (United States)

    Lee, Myungeun; Woo, Boyeong; Kuo, Michael D; Jamshidi, Neema; Kim, Jong Hyo

    2017-01-01

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC NDR ≥1), while above 35% of the texture features showed poor NDR (software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics.

  17. Activation of PPARγ mediates icaritin-induced cell cycle arrest and apoptosis in glioblastoma multiforme.

    Science.gov (United States)

    Liu, Yongji; Shi, Ling; Liu, Yuan; Li, Peng; Jiang, Guoping; Gao, Xiaoning; Zhang, Yongbin; Jiang, Chuanwu; Zhu, Weiping; Han, Hongxing; Ju, Fang

    2018-04-01

    Glioblastoma multiforme (GBM) is the most prevalent primary malignancy of the brain. This study was designed to investigate whether icaritin exerts anti-neoplastic activity against GBM in vitro. Cell Counting Kit-8 (CCK-8) assay was utilized to examine the viability of GBM cells. The apoptotic cell population was measured by flow cytometry analysis. Cell cycle distribution was detected by flow cytometry as well. Western blot analysis was performed to examine the level of biomarker proteins in GBM cells. Levels of PPARγ mRNA and protein were detected by qPCR and western blot analysis, respectively. To examine the role of PPARγ in the anti-neoplastic activity of icaritin, PPARγ antagonist GW9662 or PPARγ siRNA was used. The activity of PPARγ was determined by DNA binding and luciferase assays. Our findings revealed that icaritin markedly suppresses cell growth in a dose-dependent and time-dependent fashion. The cell population at the G0/G1 phase of the cell cycle was significantly increased following icaritin treatment. Meanwhile, icaritin promoted apoptotic cell death in T98G and U87MG cells. Further investigation showed upregulation of PPARγ played a key role in the anti-neoplastic activities of icaritin. Moreover, our result demonstrated activation of AMPK signaling by icaritin mediated the modulatory effect of icaritin on PPARγ. Our results suggest the PPARγ may mediate anti-neoplastic activities against GBM. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  19. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature

    Directory of Open Access Journals (Sweden)

    Samy Eljamel

    2015-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA induced FIGR. Materials: Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. Results: The mean gross total resection (GTR rate was 75.4% (95% CI: 67.4–83.5, p < 0.001. The mean time to tumor progression (TTP was 8.1 months (95% CI: 4.7–12, p < 0.001. The mean overall survival gain reported was 6.2 months (95% CI: −1–13, p < 0.001. The specificity was 88.9% (95% CI: 83.9–93.9, p < 0.001 and the sensitivity was 82.6% (95% CI: 73.9–91.9, p < 0.001. Conclusion: 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP.

  20. Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival

    Directory of Open Access Journals (Sweden)

    Sandra Bien-Möller

    2018-01-01

    Full Text Available Patients with glioblastoma multiforme (GBM are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin as well as differentiation and microglia markers (GFAP, Iba1, and Sparc in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed.

  1. Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival

    Science.gov (United States)

    Balz, Ellen; Herzog, Susann; Plantera, Laura; Vogelgesang, Silke; Seifert, Carolin; Bialke, Angela; Venugopal, Chitra; Singh, Sheila K.; Hoffmann, Wolfgang; Schroeder, Henry W. S.

    2018-01-01

    Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed. PMID:29535786

  2. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme.

    Science.gov (United States)

    Günzle, Jessica; Osterberg, Nadja; Saavedra, Joseph E; Weyerbrock, Astrid

    2016-09-01

    The nitric oxide (NO) donor JS-K is specifically activated by glutathione S-transferases (GSTs) in GST-overexpressing cells. We have shown the induction of cell death in glioblastoma multiforme (GBM) cells at high JS-K doses but the mechanism remains unclear. The aim of this study was to determine whether NO-induced cell death is triggered by induction of apoptotic or necrotic pathways. For the first time, we demonstrate that NO induces cell death via mitotic catastrophe (MC) with non-apoptotic mechanisms in GBM cells. Moreover, the level of morphological changes indicating MC correlates with increased necrosis. Therefore, we conclude that MC is the main mechanism by which GBM cells undergo cell death after treatment with JS-K associated with necrosis rather than apoptosis. In addition, we show that PARP1 is not an exclusive marker for late apoptosis but is also involved in MC. Activating an alternative way of cell death can be useful for the multimodal cancer therapy of GBM known for its strong anti-apoptotic mechanisms and drug resistance.

  3. 23Na-MRI of recurrent glioblastoma multiforme after intraoperative radiotherapy: technical note

    International Nuclear Information System (INIS)

    Haneder, Stefan; Buesing, Karen A.; Schoenberg, Stefan O.; Ong, Melissa M.; Giordano, Frank A.; Wenz, Frederik; Konstandin, Simon; Schad, Lothar R.; Brehmer, Stefanie; Schmiedek, Peter

    2015-01-01

    We report the first case of an intraoperative radiotherapy (IORT) in a patient with recurrent glioblastoma multiforme (GBM) who was followed up with a novel magnetic resonance imaging (MRI) method - 23 Na-MRI - in comparison to a standard contrast-enhanced 1 H-MRI and 18 F-FET-PET. A 56-year-old female patient with diagnosed GBM in July 2012 underwent tumor resection, radiochemotherapy, and three cycles of chemotherapy. After a relapse, 6 months after the initial diagnosis, an IORT was recommended which was performed in March 2013 using the INTRABEAM system (Carl Zeiss Meditec AG, Germany) with a 3-cm applicator and a surface dose of 20 Gy. Early post-operative contrast-enhanced and 1-month follow-up 1 H-MRI and a 18 F-FET-PET were performed. In addition, an IRB-approved 23 Na-MRI was performed on a 3.0-T MR scanner (MAGNETOM TimTrio, Siemens Healthcare, Germany). After re-surgery and IORT in March 2013, only a faint contrast enhancement but considerable surrounding edema was visible at the medio-posterior resection margins. In April 2013, new and progressive contrast enhancement, edema, 23 Na content, and increased uptake in the 18 F-FET-PET were visible, indicating tumor recurrence. Increased sodium content within the area of contrast enhancement was found in the 23 Na-MRI, but also exceeding this area, very similar to the increased uptake depicted in the 18 F-FET-PET. The clearly delineable zone of edema in both examinations exhibits a lower 23 Na content compared to areas with suspected proliferating tumor tissue. 23 Na-MRI provided similar information in the suspicious area compared to 18 F-FET-PET, exceeding conventional 1 H-MRI. Still, 23 Na-MRI remains an investigational technique, which is worth to be further evaluated. (orig.)

  4. The response of human glioblastoma in culture to radiation

    International Nuclear Information System (INIS)

    Masuda, Koji; Aramaki, Ryoji; Takagi, Tosuke

    1980-01-01

    Cells from two human glioblastoma multiforme and one mouse glioma were grown in tissue cultures and their X-ray survival curve parameters were determined under oxygenated and hypoxic conditions. These were compared with the survival parameters for mouse fibroblasts (L5) and established cell lines from human carcinoma coli (HeLa S3) irradiated under identical conditions. There was no significant difference in response among the cell lines used. Repair of potentially lethal damage for human glioblastoma and HeLa S3 was assessed by the increase in survival which occurred as the cells were held in density inhibited stationary phase. The magnitude of repair of potentially lethal damage (slope modifying factors) for the glioblastoma and HeLa were 1.9 and 1.1, respectively. (author)

  5. Saponin 1 induces apoptosis and suppresses NF-κB-mediated survival signaling in glioblastoma multiforme (GBM.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells and human hepatocellular carcinoma (Hep-G2 cells. Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP family members,(e.g., survivin and XIAP by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.

  6. Saponin 1 Induces Apoptosis and Suppresses NF-κB-Mediated Survival Signaling in Glioblastoma Multiforme (GBM)

    Science.gov (United States)

    Tang, Chi; Li, Bo; Wang, Yuangang; Gao, Zhenhui; Luo, Peng; Yin, Anan; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-01-01

    Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM. PMID:24278406

  7. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  8. Reinduction of Bevacizumab in Combination with Pegylated Liposomal Doxorubicin in a Patient with Recurrent Glioblastoma Multiforme Who Progressed on Bevacizumab/Irinotecan

    Directory of Open Access Journals (Sweden)

    Mohammed Almubarak

    2008-01-01

    Full Text Available Glioblastoma multiforme (GBM carries a dismal prognosis despite the current standard of multimodality treatments. Recent studies showed promising results to a regimen consisting of a VEGF inhibitor, (bevacizumab and a topoisomerase I inhibitor (irinotecan [BI] in recurrent GBM. However, those patients with GBM who progress on BI will succumb to their disease generally in a very short period of time. We report a case of a 56-year-old male patient with GBM who declined surgical resection and received chemoradiation with temozolomide. This treatment was withheld secondary to significant thrombocytopenia. Subsequently, he achieved stable disease for 10 months with a regimen consisting of thalidomide and tamoxifen before progressing. This was followed by bevacizumab with irinotecan [BI], for which he had a significant partial response for 8 months with subsequent progression. Reinducing the patient with bevacizumab in combination with a pegylated liposomal doxorubicin [PLD] (a topoisomerase II inhibitor demonstrated antitumor activity with significant shrinkage of contrast enhancing mass and peritumoral edema.

  9. Toroidal-spiral particles for codelivery of anti-VEGFR-2 antibody and irinotecan: a potential implant to hinder recurrence of glioblastoma multiforme.

    Science.gov (United States)

    Sharma, Vishal; Köllmer, Melanie; Szymusiak, Magdalena; Nitsche, Ludwig C; Gemeinhart, Richard A; Liu, Ying

    2014-03-10

    Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ~ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components.

  10. Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival

    Science.gov (United States)

    Herzog, Susann; Fink, Matthias Alexander; Weitmann, Kerstin; Friedel, Claudius; Hadlich, Stefan; Langner, Sönke; Kindermann, Katharina; Holm, Tobias; Böhm, Andreas; Eskilsson, Eskil; Miletic, Hrvoje; Hildner, Markus; Fritsch, Michael; Vogelgesang, Silke; Havemann, Christoph; Ritter, Christoph Alexander; Meyer zu Schwabedissen, Henriette Elisabeth; Rauch, Bernhard; Hoffmann, Wolfgang; Kroemer, Heyo Klaus; Schroeder, Henry; Bien-Möller, Sandra

    2015-01-01

    Background The current therapy for glioblastoma multiforme (GBM), the most aggressive and common primary brain tumor of adults, involves surgery and a combined radiochemotherapy that controls tumor progression only for a limited time window. Therefore, the identification of new molecular targets is highly necessary. Inhibition of kinases has become a standard of clinical oncology, and thus the oncogenic kinase Pim1 might represent a promising target for improvement of GBM therapy. Methods Expression of Pim1 and associated signaling molecules was analyzed in human GBM samples, and the potential role of this kinase in patients' prognosis was evaluated. Furthermore, we analyzed the in vivo role of Pim1 in GBM cell growth in an orthotopic mouse model and examined the consequences of Pim1 inhibition in vitro to clarify underlying pathways. Results In comparison with normal brain, a strong upregulation of Pim1 was demonstrated in human GBM samples. Notably, patients with short overall survival showed a significantly higher Pim1 expression compared with GBM patients who lived longer than the median. In vitro experiments with GBM cells and analysis of patients' GBM samples suggest that Pim1 regulation is dependent on epidermal growth factor receptor. Furthermore, inhibition of Pim1 resulted in reduced cell viability accompanied by decreased cell numbers and increased apoptotic cells, as seen by elevated subG1 cell contents and caspase-3 and -9 activation, as well as modulation of several cell cycle or apoptosis regulatory proteins. Conclusions Altogether, Pim1 could be a novel therapeutic target, which should be further analyzed to improve the outcome of patients with aggressive GBM. PMID:25155357

  11. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    OpenAIRE

    Goffart, Nicolas; KROONEN, Jérôme

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays sti...

  12. A phase II study of concurrent temozolomide and cis-retinoic acid with radiation for adult patients with newly diagnosed supratentorial glioblastoma

    International Nuclear Information System (INIS)

    Butowski, Nicholas; Prados, Michael D.; Lamborn, Kathleen R.; Larson, David A.; Sneed, Patricia K.; Wara, William M.; Malec, Mary; Rabbitt, Jane; Page, Margaretta; Chang, Susan M.

    2005-01-01

    Purpose: This Phase II study was designed to determine the median survival time of adults with supratentorial glioblastoma treated with a combination of temozolomide (TMZ) and 13-cis-retinoic acid (cRA) given daily with conventional radiation therapy (XRT). Methods and Materials: This was a single arm, open-labeled, Phase II study. Patients were treated with XRT in conjunction with cRA and TMZ. Both drugs were administered starting on Day 1 of XRT, and chemotherapy cycles continued after the completion of XRT to a maximum of 1 year. Results: Sixty-one patients were enrolled in the study. Time to progression was known for 55 patients and 6 were censored. The estimated 6-month progression-free survival was 38% and the estimated 1-year progression-free survival was 15%. Median time to progression was estimated as 21 weeks. The estimated 1-year survival was 57%. The median survival was 57 weeks. Conclusions: The combined therapy was relatively well tolerated, but there was no survival advantage compared with historical studies using XRT either with adjuvant nitrosourea chemotherapy, with TMZ alone, or with the combination of TMZ and thalidomide. Based on this study, cRA does not seem to add a significant synergistic effect to TMZ and XRT

  13. FNAB cytology of extra-cranial metastasis of glioblastoma multiforme may resemble a lung primary: A diagnostic pitfall

    Directory of Open Access Journals (Sweden)

    Dincer HE

    2005-01-01

    Full Text Available Abstract Background As extra-cranial metastasis of glioblastoma multiforme (GBM is rare, it may create a diagnostic dilemma especially during interpretation of fine needle aspiration biopsy (FNAB cytology. Case presentation We present transbronchial FNAB findings in a 62-year-old smoker with lung mass clinically suspicious for a lung primary. The smears of transbronchial FNAB showed groups of cells with ill-defined cell margins and cytological features overlapping with poorly differentiated non-small cell carcinoma. The tumor cells demonstrated lack of immunoreactivity for cytokeratin, thyroid transcription factor-1, and usual neuroendocrine markers, synaptophysin and chromogranin in formalin-fixed cellblock sections. However, they were immunoreactive for the other neuroendocrine immunomarker, CD56, suggesting neural nature of the cells. Further scrutiny of clinical details revealed a history of GBM, 13 months status-post surgical excision with radiation therapy and systemic chemotherapy. The tumor recurred 7 months earlier and was debulked surgically and with intra-cranial chemotherapy. Additional evaluation of tumor cells for glial fibrillary acidic protein (GFAP immunoreactivity with clinical details resulted in final interpretation of metastatic GBM. Conclusion Lack of clinical history and immunophenotyping may lead to a diagnostic pitfall with possible misinterpretation of metastatic GBM as poorly differentiated non-small cell carcinoma of lung in a smoker.

  14. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

    Science.gov (United States)

    Elkamhawy, Ahmed; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Kim, Hyeon Young; Heo, Jin-Chul; Park, Woo-Kyu; Lee, Chong-Ock; Yang, Heekyoung; Kim, Kang Ho; Nam, Do-Hyun; Seol, Ho Jun; Cho, Heeyeong; Roh, Eun Joo

    2015-10-20

    Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ewa Sawosz

    2015-10-01

    Full Text Available Our previous studies revealed that graphene had anticancer properties in experiments in vitro with glioblastoma multiforme (GBM cells and in tumors cultured in vivo. We hypothesized that the addition of arginine or proline to graphene solutions might counteract graphene agglomeration and increase the activity of graphene. Experiments were performed in vitro with GBM U87 cells and in vivo with GBM tumors cultured on chicken embryo chorioallantoic membranes. The measurements included cell morphology, mortality, viability, tumor morphology, histology, and gene expression. The cells and tumors were treated with reduced graphene oxide (rGO and rGO functionalized with arginine (rGO + Arg or proline (rGO + Pro. The results confirmed the anticancer effect of graphene on GBM cells and tumor tissue. After functionalization with amino acids, nanoparticles were distributed more specifically, and the flakes of graphene were less agglomerated. The molecule of rGO + Arg did not increase the expression of TP53 in comparison to rGO, but did not increase the expression of MDM2 or the MDM2/TP53 ratio in the tumor, suggesting that arginine may block MDM2 expression. The expression of NQO1, known to be a strong protector of p53 protein in tumor tissue, was greatly increased. The results indicate that the complex of rGO + Arg has potential in GBM therapy.

  16. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner

    Science.gov (United States)

    Sawosz, Ewa; Jaworski, Sławomir; Kutwin, Marta; Vadalasetty, Krishna Prasad; Grodzik, Marta; Wierzbicki, Mateusz; Kurantowicz, Natalia; Strojny, Barbara; Hotowy, Anna; Lipińska, Ludwika; Jagiełło, Joanna; Chwalibog, André

    2015-01-01

    Our previous studies revealed that graphene had anticancer properties in experiments in vitro with glioblastoma multiforme (GBM) cells and in tumors cultured in vivo. We hypothesized that the addition of arginine or proline to graphene solutions might counteract graphene agglomeration and increase the activity of graphene. Experiments were performed in vitro with GBM U87 cells and in vivo with GBM tumors cultured on chicken embryo chorioallantoic membranes. The measurements included cell morphology, mortality, viability, tumor morphology, histology, and gene expression. The cells and tumors were treated with reduced graphene oxide (rGO) and rGO functionalized with arginine (rGO + Arg) or proline (rGO + Pro). The results confirmed the anticancer effect of graphene on GBM cells and tumor tissue. After functionalization with amino acids, nanoparticles were distributed more specifically, and the flakes of graphene were less agglomerated. The molecule of rGO + Arg did not increase the expression of TP53 in comparison to rGO, but did not increase the expression of MDM2 or the MDM2/TP53 ratio in the tumor, suggesting that arginine may block MDM2 expression. The expression of NQO1, known to be a strong protector of p53 protein in tumor tissue, was greatly increased. The results indicate that the complex of rGO + Arg has potential in GBM therapy. PMID:26512645

  17. Hypofractionated High-Dose Irradiation with Positron Emission Tomography Data for the Treatment of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Kazuhiro Miwa

    2014-01-01

    Full Text Available This research paper presents clinical outcomes of hypofractionated high-dose irradiation by intensity-modulated radiation therapy (Hypo-IMRT with 11C-methionine positron emission tomography (MET-PET data for the treatment of glioblastoma multiforme (GBM. A total of 45 patients with GBM were treated with Hypo-IMRT after surgery. Gross tumor volume (GTV was defined as the area of enhanced lesion on MRI, including MET-PET avid region; clinical target volume (CTV was the area with 5 mm margin surrounding the GTV; planning target volume (PTV was the area with 15 mm margin surrounding the CTV, including MET-PET moderate region. Hypo-IMRT was performed in 8 fractions; planning the dose for GTV was escalated to 68 Gy and that for CTV was escalated to 56 Gy, while keeping the dose delivered to the PTV at 40 Gy. Concomitant and adjuvant TMZ chemotherapy was administered. At a median follow-up of 18.7 months, median overall survival (OS was 20.0 months, and median progression-free survival was 13.0 months. The 1- and 2-year OS rates were 71.2% and 26.3%, respectively. Adjuvant TMZ chemotherapy was significantly predictive of OS on multivariate analysis. Late toxicity included 7 cases of Grade 3-4 radiation necrosis. Hypo-IMRT with MET-PET data appeared to result in favorable survival outcomes for patients with GBM.

  18. Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association.

    Science.gov (United States)

    Chang, Hang; Han, Ju; Borowsky, Alexander; Loss, Leandro; Gray, Joe W; Spellman, Paul T; Parvin, Bahram

    2013-04-01

    Automated analysis of whole mount tissue sections can provide insights into tumor subtypes and the underlying molecular basis of neoplasm. However, since tumor sections are collected from different laboratories, inherent technical and biological variations impede analysis for very large datasets such as The Cancer Genome Atlas (TCGA). Our objective is to characterize tumor histopathology, through the delineation of the nuclear regions, from hematoxylin and eosin (H&E) stained tissue sections. Such a representation can then be mined for intrinsic subtypes across a large dataset for prediction and molecular association. Furthermore, nuclear segmentation is formulated within a multi-reference graph framework with geodesic constraints, which enables computation of multidimensional representations, on a cell-by-cell basis, for functional enrichment and bioinformatics analysis. Here, we present a novel method, multi-reference graph cut (MRGC), for nuclear segmentation that overcomes technical variations associated with sample preparation by incorporating prior knowledge from manually annotated reference images and local image features. The proposed approach has been validated on manually annotated samples and then applied to a dataset of 377 Glioblastoma Multiforme (GBM) whole slide images from 146 patients. For the GBM cohort, multidimensional representation of the nuclear features and their organization have identified 1) statistically significant subtypes based on several morphometric indexes, 2) whether each subtype can be predictive or not, and 3) that the molecular correlates of predictive subtypes are consistent with the literature. Data and intermediaries for a number of tumor types (GBM, low grade glial, and kidney renal clear carcinoma) are available at: http://tcga.lbl.gov for correlation with TCGA molecular data. The website also provides an interface for panning and zooming of whole mount tissue sections with/without overlaid segmentation results for quality

  19. Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis

    Directory of Open Access Journals (Sweden)

    Junle Zhu

    2017-04-01

    Full Text Available OBJECTIVE: The present study aimed to explore the expression profiles of circular RNAs (circRNAs in glioblastoma multiforme (GBM in an attempt to identify potential core genes in the pathogenesis of this tumor. METHODS: Differentially expressed circRNAs were screened between tumor tissues from five GBM patients and five normal brain samples using Illumina Hiseq. Bioinformatics analysis was used to analyze their potential function. CircBRAF was further detected in different WHO grades glioma tissues and normal brain tissues. Kaplan-Meier curves and multivariate Cox's analysis were used to analyze the association between circBRAF expression level and prognosis of glioma patients. RESULTS: A total of 1411 differentially expressed circRNAs were identified in GBM patients including 206 upregulated circRNAs and 1205 downregulated circRNAs. Differential expression of circRNAs was closely associated with the biological process and molecular function. The downregulated circRNAs were mainly associated with ErbB and Neurotrophin signaling pathways. Moreover, the expression level of circBRAF in normal brain tissues was significantly higher than that in glioma tissues (P < .001. CircBRAF was significantly lower in glioma patients with high pathological grade (WHO III & IV than those with low grade (WHO I & II (P < .001. Cox analysis revealed that high circBRAF expression was an independent biomarker for predicting good progression-free survival and overall survival in glioma patients (HR = 0.413, 95% CI 0.201-0.849; HR = 0.299, 95% CI 0.135-0.661; respectively. CONCLUSION: The present study identified a profile of dysregulated circRNAs in GBM. Bioinformatics analysis showed that dysregulated circRNAs might be associated with tumorigenesis and development of GBM. In addition, circBRAF could severe as a biomarker for predicting pathological grade and prognosis in glioma patients.

  20. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing.

    Science.gov (United States)

    Rajagopalan, Vishal; Vaidyanathan, Muthukumar; Janardhanam, Vanisree Arambakkam; Bradner, James E

    2014-10-01

    Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.

  1. Quality of radiomic features in glioblastoma multiforme: Impact of semi-automated tumor segmentation software

    International Nuclear Information System (INIS)

    Lee, Myung Eun; Kim, Jong Hyo; Woo, Bo Yeong; Ko, Micheal D.; Jamshidi, Neema

    2017-01-01

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics

  2. Tectal glioblastoma Glioblastoma tetal

    Directory of Open Access Journals (Sweden)

    Feres Chaddad Neto

    2007-12-01

    Full Text Available Brain stem gliomas are a heterogeneous group of neoplasms arising mostly in paediatric patients. Tectal plate gliomas represent a particular type of brain stem tumours usually with a benign, indolent clinical course, presenting with signs of raised intracranial hipertension due to supra-tentorialhydrocephalous caused by aqueductal stenosis. Seldom high-grade lesions arise in this location with tremendous therapeutic implications. When a malignant tumour is clinically and radiographically suspected a biopsy should be performed to obtain histhological confirmation. Treatment is then planned in a case-by-case basis. We present the case of a glioblastoma of the tectal plate in a 22 years-old woman operated upon by a supracerebellar-infratentorial approach.Os gliomas do tronco cerebral são um grupo heterogêneo de neoplasias que acometem habitualmente crianças. Os gliomas da placa quadrigeminal representam um tipo particular de tumores do tronco cerebral, habitualmente com um curso benigno e indolente, surgindo com sinais de hipertensão intracraniana devido a hidrocefalia supra-tentorial provocada por compressão do aqueduto cerebral. Raramente surgem lesões de alto grau nesta região, mas as implicações terapêuticas são tremendas. Quando existe suspeita clínica e imagiológica de que se trata de lesão maligna, esta deve ser biopsada para se obter confirmação histológica. O tratamento deve então ser planejado caso a caso. Apresentamos o caso de glioblastoma da placa quadrigeminal em uma paciente de 22 anos intervencionado por via supracerebelar-infratentorial.

  3. Second-line chemotherapy with dacarbazine and fotemustine in nitrosourea-pretreated patients with recurrent glioblastoma multiforme.

    Science.gov (United States)

    Fazeny-Dörner, Barbara; Veitl, Mario; Wenzel, Catharina; Piribauer, Maria; Rössler, Karl; Dieckmann, Karin; Ungersböck, Karl; Marosi, Christine

    2003-07-01

    The aim of this study was to assess the efficacy and toxicity of a combination of dacarbazine (D) and fotemustine (F) administered to a homogenous group of patients with recurrent or progressive glioblastoma multiforme (GBM). Thirty-one patients with computed tomography or magnetic resonance imaging scan evidence of recurrent or progressive GBM after first-line chemotherapy with nitrosoureas as well as radiation therapy were given a combination of D (200 mg/m2) and F (100 mg/m2). At 30 min after termination of D administration, F was given over 60 min. Treatment was performed in an outpatient setting every 21 days. A total of 140 cycles (range 1-12 cycles; median 4 cycles) was administered. One partial response (3%) lasting for 11 weeks was observed. Sixteen (52%) patients reached stable disease lasting between 7 and 94 weeks. Median survival from start of the D/F combination was 45 (range 10-150) weeks. Median time to progression was 17 (3-101) weeks for all patients. Major toxicity was myelosuppression resulting in exclusion from study in seven (23%) patients [due to thrombocytopenia common toxicity criteria (CTC) grade 2 persisting longer than 3 weeks in three patients, due to thrombocytopenia CTC grade >/=3 in three and due to leukopenia CTC grade 3 in one patient]. No other toxicity than alopecia occurred. We conclude that the D/F combination is a well-tolerated second-line regimen and can be administered in a complete outpatient setting. D/F shows efficacy even in nitrosourea-pretreated patients and justifies further investigation.

  4. DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme

    Science.gov (United States)

    Yang, Jian-kai; Song, Jian; Huo, Hao-ran; Zhao, Yin-long; Zhang, Guang-yu; Zhao, Zong-mao; Sun, Guo-zhu; Jiao, Bao-hua

    2017-01-01

    Background: Glioblastoma multiforme (GBM) is the most aggressive and deadly primary brain cancer that arises from astrocytes and classified as grade IV. Recently, exosomes have been reported as an essential mediator in diverse cancer carcinogenesis and metastasis. However, their role in GBM is still unclear. In this study, we aimed to investigate whether blood exosomes can be potential clinical diagnostic markers for GBM. Methods: We used a xenograft orthotopic mouse model to detect the differentially expressed genes in the brain and blood exosomes of original/recurrent GBM. Results: We found that recurrent GBM had stronger growth capacity and lethality than original GBM in the mouse model. A gene microarray of original tumors and blood exosomes from GBM orthotopic xenografts results showed that DNM3, p65 and CD117 expressions increased, whereas PTEN and p53 expressions decreased in both original tumors and blood exosomes. In the recurrent GBM tumor model, DNM3 and p65 showed increased expressions, whereas ST14 and p53 showed decreased expressions in tumor and blood exosomes of the recurrent GBM mouse model. Conclusion: In summary, we found that DNM3, p65 and p53 had a similar trend in brain and blood exosomes both for original and recurrent GBM, and could serve as potential clinical diagnostic markers for GBM. PMID:29449895

  5. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate

    NARCIS (Netherlands)

    Hovinga, Koos E.; Shimizu, Fumiko; Wang, Rong; Panagiotakos, Georgia; van der Heijden, Maartje; Moayedpardazi, Hamideh; Correia, Ana Sofia; Soulet, Denis; Major, Tamara; Menon, Jayanthi; Tabar, Viviane

    2010-01-01

    Glioblastoma multiforme (GBM) is a highly heterogeneous malignant tumor. Recent data suggests the presence of a hierarchical organization within the GBM cell population that involves cancer cells with stem-like behavior, capable of repopulating the tumor and contributing to its resistance to

  6. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-12-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata . Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhibited the invasion and migration abilities of GBM8401 and U251 cells. Furthermore, andrographolide inhibited matrix metalloproteinase (MMP)-2 activity and expression. Real-time PCR and promoter activity assays indicated that andrographolide inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of CREB DNA-binding activity and CREB expression. Mechanistically, andrographolide inhibited the cell motility of GBM8401 cells through the extracellular-regulated kinase (ERK) 1/2 pathway, and the blocking of the ERK 1/2 pathway could reverse MMP-2-mediated cell motility. In conclusion, CREB is a crucial target of andrographolide for suppressing MMP-2-mediated cell motility in GBM cells. Therefore, a combination of andrographolide and an ERK inhibitor might be a good strategy for preventing GBM metastasis.

  7. Regrowth patterns of supratentorial gliomas: estimation from computed tomographic scans

    International Nuclear Information System (INIS)

    Tsuboi, K.; Yoshii, Y.; Nakagawa, K.; Maki, Y.

    1986-01-01

    To clarify the regrowth patterns of benign and malignant gliomas, we chose 27 intervals (between two operations or between an operation and autopsy) from 21 patients with pathologically verified recurrent supratentorial gliomas. Serial computed tomographic (CT) scans of these cases were analyzed to determine the doubling time (Td) calculated from the change in volume of enhanced and low density areas, the enhancement effect graded from 0 to 4 according to the Hounsfield number, and the presence of dissemination and contralateral extension. We studied 5 benign gliomas (including 1 case of radiation necrosis), 8 malignant astrocytomas, and 8 glioblastomas. The Td's of enhanced areas on CT scans of benign gliomas, malignant astrocytomas, and glioblastomas were 937 +/- 66.5 days, 65.1 +/- 29.4 days, and 48.1 +/- 20.9 days, respectively. The Td's of low density areas were 895 +/- 130.6 days, 70.8 +/- 22.2 days, and 50.5 +/- 14.7 days. There was a significant correlation between the Td's of the enhanced and low density areas (0.97). The enhancement effect increased at recurrence in 55% of the cases, with an average increase of 1.1 grades. The increase in enhancement effect at recurrence showed a tendency to become smaller as the tumor's degree of anaplasia increased. Radiotherapy was effective in significantly retarding the growth rate of malignant gliomas, whose Td's were doubled. Although the Td's of both enhanced and low density areas of benign gliomas were significantly longer than those of malignant gliomas, there was no significant difference in the Td's of enhanced areas between malignant astrocytomas and glioblastomas

  8. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Kusumawidjaja G

    2016-03-01

    Full Text Available Grace Kusumawidjaja,1 Patricia Zhun Hong Gan,1 Whee Sze Ong,2 Achiraya Teyateeti,3 Pittaya Dankulchai,3 Daniel Yat Harn Tan,1 Eu Tiong Chua,1 Kevin Lee Min Chua,1 Chee Kian Tham,4 Fuh Yong Wong,1 Melvin Lee Kiang Chua1,5 1Division of Radiation Oncology, National Cancer Centre, Singapore; 2Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore; 3Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand; 4Division of Medical Oncology, National Cancer Centre, Singapore; 5Duke-NUS Graduate Medical School, Singapore Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor with high relapse rate. In this study, we aimed to determine if dose-escalated (DE radiotherapy improved tumor control and survival in GBM patients. Methods: We conducted a retrospective analysis of 49 and 23 newly-diagnosed histology-proven GBM patients, treated with DE radiotherapy delivered in 70 Gy (2.33 Gy per fraction and conventional doses (60 Gy, respectively, between 2007 and 2013. Clinical target volumes for 70 and 60 Gy were defined by 0.5 and 2.0 cm expansion of magnetic resonance imaging T1-gadolinium-enhanced tumor/surgical cavity, respectively. Bilateral subventricular zones (SVZ were contoured on a co-registered pre-treatment magnetic resonance imaging and planning computed tomography dataset as a 5 mm wide structure along the lateral margins of the lateral ventricles. Survival outcomes of both cohorts were compared using log-rank test. Radiation dose to SVZ in the DE cohort was evaluated. Results: Median follow-up was 13.6 and 15.1 months for the DE- and conventionally-treated cohorts, respectively. Median overall survival (OS of patients who received DE radiotherapy was 15.2 months (95% confidence interval [CI] =11.0–18.6, while median OS of the latter cohort was 18.4 months (95% CI =12.5–31.4, P=0.253. Univariate analyses of

  9. Radiation induced sarcoma after treatment of glioblastoma: case report; Sarcoma radioinduzido pós-tratamento de glioblastoma: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris, E-mail: fernandaperia@fmrp.usp.br, E-mail: victor_lisita@yahoo.com.br, E-mail: carolinesanjos@gmail.com, E-mail: priscilabarile@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Hospital das Clinicas

    2016-07-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia.

  10. Strategies of temozolomide in future glioblastoma treatment

    Directory of Open Access Journals (Sweden)

    Lee CY

    2017-01-01

    Full Text Available Chooi Yeng Lee School of Pharmacy, Monash University Malaysia, Selangor, Malaysia Abstract: Glioblastoma multiforme (GBM may be one of the most challenging brain tumors to treat, as patients generally do not live more than 2 years. This review aimed to give a timely review of potential future treatments for GBM by looking at the latest strategies, involving mainly the use of temozolomide (TMZ. Although these studies were carried out either in vitro or in rodents, the findings collectively suggested that we are moving toward developing a more efficacious therapy for GBM patients. Nanoparticles preparation was, by far, the most extensively studied strategy for targeted brain delivery. Therefore, the first section of this review presents a treatment strategy using TMZ-loaded nanocarriers, which encompassed nanoparticles, nanoliposomes, and nanosponges. Besides nanocarriers, new complexes that were formed between TMZ and another chemical agent or molecule have shown increased cytotoxicity and antitumor activity. Another approach was by reducing GBM cell resistance to TMZ, and this was achieved either through the suppression of metabolic change occurring in the cells, inhibition of the DNA repair protein, or up-regulation of the protein that mediates autophagy. Finally, the review collates a list of substances that have demonstrated the ability to suppress tumor cell growth. Keywords: cellular resistance, glioblastoma multiforme, nanoparticles, targeted delivery, temozolomide

  11. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Hansen, Steinbjørn

    2010-01-01

    The aim of this clinical trial was to investigate safety and efficacy when combining cetuximab with bevacizumab and irinotecan in patients with recurrent primary glioblastoma multiforme (GBM). Patients were included with recurrent primary GBM and progression within 6 months of ending standard tre...

  12. SU-F-T-392: Superior Brainstem and Cochlea Sparing with VMAT for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Briere, TM; McAleer, MF; Levy, LB; Yang, JN; Anderson, MD [Cancer Ctr., Houston, TX (United States)

    2016-06-15

    Purpose: Volumetric arc therapy (VMAT) can provide similar target coverage and normal tissue sparing as IMRT but with shorter treatment times. At our institution VMAT was adopted for the treatment glioblastoma multiforme (GBM) after a small number of test plans demonstrated its non-inferiority. In this study, we compare actual clinical treatment plans for a larger cohort of patients treated with either VMAT or IMRT. Methods: 90 GBM patients were included in this study, 45 treated with IMRT and 45 with VMAT. All planning target volumes (PTVs) were prescribed a dose of 50 Gy, with a simultaneous integrated boost to 60 Gy. Most IMRT plans used 5 non-coplanar beams, while most VMAT plans used 2 coplanar beams. Statistical analysis was performed using Fisher’s exact test or the Wilcoxon-Mann-Whitney rank sum test. Included in the analysis were patient and treatment characteristics as well as the doses to the target volumes and organs at risk. Results: Treatment times for the VMAT plans were reduced by 5 minutes compared with IMRT. The PTV coverage was similar, with at least 95% covered for all plans, while the median boost PTV dose differed by 0.1 Gy between the IMRT and VMAT cohorts. The doses to the brain, optic chiasm, optic nerves and eyes were not significantly different. The mean dose to the brainstem, however, was 9.4 Gy less with VMAT (p<0.001). The dose to the ipsilateral and contralateral cochleae were respectively 19.7 and 9.5 Gy less (p<0.001). Conclusion: Comparison of clinical treatment plans for separate IMRT and VMAT cohorts demonstrates that VMAT can save substantial treatment time while providing similar target coverage and superior sparing of the brainstem and cochleae. To our knowledge this is the first study to demonstrate this benefit of VMAT in the management of GBM.

  13. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Aldaz

    Full Text Available Glioblastoma multiforme (GBM-initiating cells (GICs represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.

  14. Quality of radiomic features in glioblastoma multiforme: Impact of semi-automated tumor segmentation software

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Eun; Kim, Jong Hyo [Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of); Woo, Bo Yeong [Dept. of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon (Korea, Republic of); Ko, Micheal D.; Jamshidi, Neema [Dept. of Radiological Sciences, University of California, Los Angeles, Los Angeles (United States)

    2017-06-15

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics.

  15. Marital status, treatment, and survival in patients with glioblastoma multiforme: a population based study.

    Science.gov (United States)

    Chang, Susan M; Barker, Fred G

    2005-11-01

    Social factors influence cancer treatment choices, potentially affecting patient survival. In the current study, the authors studied the interrelations between marital status, treatment received, and survival in patients with glioblastoma multiforme (GM), using population-based data. The data source was the Surveillance, Epidemiology, and End Results (SEER) Public Use Database, 1988-2001, 2004 release, all registries. Multivariate logistic, ordinal, and Cox regression analyses adjusted for demographic and clinical variables were used. Of 10,987 patients with GM, 67% were married, 31% were unmarried, and 2% were of unknown marital status. Tumors were slightly larger at the time of diagnosis in unmarried patients (49% of unmarried patients had tumors larger than 45 mm vs. 45% of married patients; P = 0.004, multivariate analysis). Unmarried patients were less likely to undergo surgical resection (vs. biopsy; 75% of unmarried patients vs. 78% of married patients) and were less likely to receive postoperative radiation therapy (RT) (70% of unmarried patients vs. 79% of married patients). On multivariate analysis, the odds ratio (OR) for resection (vs. biopsy) in unmarried patients was 0.88 (95% confidence interval [95% CI], 0.79-0.98; P = 0.02), and the OR for RT in unmarried patients was 0.69 (95% CI, 0.62-0.77; P Unmarried patients more often refused both surgical resection and RT. Unmarried patients who underwent surgical resection and RT were found to have a shorter survival than similarly treated married patients (hazard ratio for unmarried patients, 1.10; P = 0.003). Unmarried patients with GM presented with larger tumors, were less likely to undergo both surgical resection and postoperative RT, and had a shorter survival after diagnosis when compared with married patients, even after adjustment for treatment and other prognostic factors. (c) 2005 American Cancer Society.

  16. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study.

    Science.gov (United States)

    Morana, Giovanni; Piccardo, Arnoldo; Milanaccio, Claudia; Puntoni, Matteo; Nozza, Paolo; Cama, Armando; Zefiro, Daniele; Cabria, Massimo; Rossi, Andrea; Garrè, Maria Luisa

    2014-05-01

    Infiltrative astrocytomas (IAs) represent a group of astrocytic gliomas ranging from low-grade to highly malignant, characterized by diffuse invasion of the brain parenchyma. When compared with their adult counterpart, pediatric IAs may be considered biologically distinct entities; nevertheless, similarly to those in adults they represent a complex oncologic challenge. The aim of this study was to investigate the diagnostic role, clinical contribution, and prognostic value of fused (18)F-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET/MR images in pediatric supratentorial IAs. Pediatric patients with supratentorial IAs involving at least 2 cerebral lobes, either newly diagnosed or with suspected disease progression, prospectively underwent (18)F-DOPA PET and conventional MR imaging, performed within 10 d of each other. (18)F-DOPA PET data were interpreted qualitatively and semiquantitatively, fusing images with MR images. PET scans were classified as positive if tumors identified on MR imaging exhibited tracer uptake above the level of the corresponding contralateral normal brain. Maximum standardized uptake values, tumor-to-normal contralateral tissue ratios, and tumor-to-normal striatum ratios were calculated for all tumors. Correlations between the degree and extent of (18)F-DOPA uptake, MR imaging tumor characteristics, and histologic results were investigated. The contribution of (18)F-DOPA PET/MR image fusion was considered relevant if it enabled one to select the most appropriate biopsy site, discriminate between disease progression and treatment-related changes, or influence treatment strategy. The patient's outcome was finally correlated with (18)F-DOPA uptake. Thirteen patients (8 boys and 5 girls) were included (5 diffuse astrocytomas, 2 anaplastic astrocytomas, 5 gliomatosis cerebri, and 1 glioblastoma multiforme). The (18)F-DOPA uptake pattern was heterogeneous in all positive scans (9/13), revealing metabolic heterogeneities within each tumor. Significant

  17. The addition of temozolomide does not change the pattern of progression glioblastoma multiforme post-radiotherapy

    International Nuclear Information System (INIS)

    Gunjur, Ashray; Bressel, Mathias; Ryan, Gail

    2012-01-01

    To determine whether the pattern of progressive disease (PD) for glioblastoma multiforme (GBM) patients has changed with the introduction of the current standard of care protocol – postoperative conformal radiotherapy to a dose of 60 Gray in 30 fractions with concurrent low-dose (75–100 mg/m 2 ) temozolomide, followed by six cycles of adjuvant high-dose (150–200 mg/m 2 ) temozolomide – as compared with radiotherapy alone. For GBM patients commencing combined modality treatment between October 2005 and August 2009, the MRI scan confirming progression (if any) was co-registered with the original planning CT scan, and progression site(s) marked. Coverage of the composite progression volume (PDvol) by the original 95% prescription isodose volume was obtained from dose-volume histogram (DVH) data, and assigned as ‘central’, ‘in field’, ‘marginal’ and ‘out of field’, corresponding to >95%, >80%, 20–80% and <20% coverage. Of 68 consecutive patients identified, 54 (79.4%) had documented PD. Of the 47 (87%) evaluable patients, 43 (91%) had in field progression with 36 (77%) of these being central. Of the remaining four cases, three (6%) had marginal progression, and only one patient (2%) had out of field progression. Median overall and progression-free survival were 11.6 and 6.6 months, respectively. The pattern of progression in our GBM patients does not appear to have been altered by the addition of temozolomide. The overwhelming majority of first PD occurred within the original radiotherapy planning target volume, as is the case in patients treated with radiotherapy alone. Major changes to radiotherapy volumes are not indicated, with alternative strategies required to improve outcomes.

  18. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  19. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    Science.gov (United States)

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  20. Prognostic value of the Glasgow Prognostic Score for glioblastoma multiforme patients treated with radiotherapy and temozolomide.

    Science.gov (United States)

    Topkan, Erkan; Selek, Ugur; Ozdemir, Yurday; Yildirim, Berna A; Guler, Ozan C; Ciner, Fuat; Mertsoylu, Huseyin; Tufan, Kadir

    2018-04-25

    To evaluate the prognostic value of the Glasgow Prognostic Score (GPS), the combination of C-reactive protein (CRP) and albumin, in glioblastoma multiforme (GBM) patients treated with radiotherapy (RT) and concurrent plus adjuvant temozolomide (GPS). Data of newly diagnosed GBM patients treated with partial brain RT and concurrent and adjuvant TMZ were retrospectively analyzed. The patients were grouped into three according to the GPS criteria: GPS-0: CRP L and albumin > 35 g/L; GPS-1: CRP L and albumin L or CRP > 10 mg/L and albumin > 35 g/L; and GPS-2: CRP > 10 mg/L and albumin L. Primary end-point was the association between the GPS groups and the overall survival (OS) outcomes. A total of 142 patients were analyzed (median age: 58 years, 66.2% male). There were 64 (45.1%), 40 (28.2%), and 38 (26.7%) patients in GPS-0, GPS-1, and GPS-2 groups, respectively. At median 15.7 months follow-up, the respective median and 5-year OS rates for the whole cohort were 16.2 months (95% CI 12.7-19.7) and 9.5%. In multivariate analyses GPS grouping emerged independently associated with the median OS (P GPS grouping and the RTOG RPA classification were found to be strongly correlated in prognostic stratification of GBM patients (correlation coefficient: 0.42; P GPS appeared to be useful in prognostic stratification of GBM patients into three groups with significantly different survival durations resembling the RTOG RPA classification.

  1. Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

    Science.gov (United States)

    Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi; Orr, Brent A; Eberhart, Charles G; Siu, I-Mei; Lim, Michael; Weingart, Jon D; Quinones-Hinojosa, Alfredo; Bettegowda, Chetan; Kassam, Amin B; Olivi, Alessandro; Brem, Henry; Riggins, Gregory J; Gallia, Gary L

    2016-01-01

    Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

  2. Primary pontine gliobastoma multiforme: A case report and review of the literature

    International Nuclear Information System (INIS)

    Baik, Ji Yeon; Baek, Hye Jin; Moon, Jin Il; Cho, Soo Buem; Choi, Bo Hwa; Bae, Kyung Soo; Jeon, Kyung Nyeo; Choi, Dae Seob; Shin, Hwa Seon

    2016-01-01

    Glioblastoma multiforme (GBM) most commonly occurs in the pons while it is rare in the brainstem. However, diagnosis of brainstem GBM can be difficult due to its rarity and nonspecific clinical manifestations. Herein, we presented a case of a 47-year-old female patient confirmed as primary pontine GBM by histopathological examination. This case highlights that GBM should be considered in the differential diagnosis of patients with a space-occupying lesion in the brainstem as well as the importance of a meticulous radiological review with clinical suspicion

  3. Primary pontine gliobastoma multiforme: A case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Ji Yeon; Baek, Hye Jin [Dept. of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan (Korea, Republic of); Moon, Jin Il; Cho, Soo Buem; Choi, Bo Hwa; Bae, Kyung Soo; Jeon, Kyung Nyeo [Dept. of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital, Changwon (Korea, Republic of); Choi, Dae Seob; Shin, Hwa Seon [Dept. of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju (Korea, Republic of)

    2016-08-15

    Glioblastoma multiforme (GBM) most commonly occurs in the pons while it is rare in the brainstem. However, diagnosis of brainstem GBM can be difficult due to its rarity and nonspecific clinical manifestations. Herein, we presented a case of a 47-year-old female patient confirmed as primary pontine GBM by histopathological examination. This case highlights that GBM should be considered in the differential diagnosis of patients with a space-occupying lesion in the brainstem as well as the importance of a meticulous radiological review with clinical suspicion.

  4. {sup 23}Na-MRI of recurrent glioblastoma multiforme after intraoperative radiotherapy: technical note

    Energy Technology Data Exchange (ETDEWEB)

    Haneder, Stefan; Buesing, Karen A.; Schoenberg, Stefan O.; Ong, Melissa M. [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Giordano, Frank A.; Wenz, Frederik [University of Heidelberg, Department of Radiation Oncology, University Medical Center Mannheim, Mannheim (Germany); Konstandin, Simon; Schad, Lothar R. [Heidelberg University, Computer Assisted Clinical Medicine, Mannheim (Germany); Brehmer, Stefanie; Schmiedek, Peter [Heidelberg University, Department of Neurosurgery, University Medical Center Mannheim, Mannheim (Germany)

    2015-03-01

    We report the first case of an intraoperative radiotherapy (IORT) in a patient with recurrent glioblastoma multiforme (GBM) who was followed up with a novel magnetic resonance imaging (MRI) method - {sup 23}Na-MRI - in comparison to a standard contrast-enhanced {sup 1}H-MRI and {sup 18}F-FET-PET. A 56-year-old female patient with diagnosed GBM in July 2012 underwent tumor resection, radiochemotherapy, and three cycles of chemotherapy. After a relapse, 6 months after the initial diagnosis, an IORT was recommended which was performed in March 2013 using the INTRABEAM system (Carl Zeiss Meditec AG, Germany) with a 3-cm applicator and a surface dose of 20 Gy. Early post-operative contrast-enhanced and 1-month follow-up {sup 1}H-MRI and a {sup 18}F-FET-PET were performed. In addition, an IRB-approved {sup 23}Na-MRI was performed on a 3.0-T MR scanner (MAGNETOM TimTrio, Siemens Healthcare, Germany). After re-surgery and IORT in March 2013, only a faint contrast enhancement but considerable surrounding edema was visible at the medio-posterior resection margins. In April 2013, new and progressive contrast enhancement, edema, {sup 23}Na content, and increased uptake in the {sup 18}F-FET-PET were visible, indicating tumor recurrence. Increased sodium content within the area of contrast enhancement was found in the {sup 23}Na-MRI, but also exceeding this area, very similar to the increased uptake depicted in the {sup 18}F-FET-PET. The clearly delineable zone of edema in both examinations exhibits a lower {sup 23}Na content compared to areas with suspected proliferating tumor tissue. {sup 23}Na-MRI provided similar information in the suspicious area compared to {sup 18}F-FET-PET, exceeding conventional {sup 1}H-MRI. Still, {sup 23}Na-MRI remains an investigational technique, which is worth to be further evaluated. (orig.)

  5. Regrowth patterns of supratentorial gliomas: estimation from computed tomographic scans

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, K.; Yoshii, Y.; Nakagawa, K.; Maki, Y.

    1986-12-01

    To clarify the regrowth patterns of benign and malignant gliomas, we chose 27 intervals (between two operations or between an operation and autopsy) from 21 patients with pathologically verified recurrent supratentorial gliomas. Serial computed tomographic (CT) scans of these cases were analyzed to determine the doubling time (Td) calculated from the change in volume of enhanced and low density areas, the enhancement effect graded from 0 to 4 according to the Hounsfield number, and the presence of dissemination and contralateral extension. We studied 5 benign gliomas (including 1 case of radiation necrosis), 8 malignant astrocytomas, and 8 glioblastomas. The Td's of enhanced areas on CT scans of benign gliomas, malignant astrocytomas, and glioblastomas were 937 +/- 66.5 days, 65.1 +/- 29.4 days, and 48.1 +/- 20.9 days, respectively. The Td's of low density areas were 895 +/- 130.6 days, 70.8 +/- 22.2 days, and 50.5 +/- 14.7 days. There was a significant correlation between the Td's of the enhanced and low density areas (0.97). The enhancement effect increased at recurrence in 55% of the cases, with an average increase of 1.1 grades. The increase in enhancement effect at recurrence showed a tendency to become smaller as the tumor's degree of anaplasia increased. Radiotherapy was effective in significantly retarding the growth rate of malignant gliomas, whose Td's were doubled. Although the Td's of both enhanced and low density areas of benign gliomas were significantly longer than those of malignant gliomas, there was no significant difference in the Td's of enhanced areas between malignant astrocytomas and glioblastomas.

  6. CXCR4 expression varies significantly among different subtypes of glioblastoma multiforme (GBM) and its low expression or hypermethylation might predict favorable overall survival.

    Science.gov (United States)

    Ma, Xinlong; Shang, Feng; Zhu, Weidong; Lin, Qingtang

    2017-09-01

    CXCR4 is an oncogene in glioblastoma multiforme (GBM) but the mechanism of its dysregulation and its prognostic value in GBM have not been fully understood. Bioinformatic analysis was performed by using R2 and the UCSC Xena browser based on data from GSE16011 in GEO datasets and in GBM cohort in TCGA database (TCGA-GBM). Kaplan Meier curves of overall survival (OS) were generated to assess the association between CXCR4 expression/methylation and OS in patients with GBM. GBM patients with high CXCR4 expression had significantly worse 5 and 10 yrs OS (p GBM subtypes, there was an inverse relationship between overall DNA methylation and CXCR4 expression. CXCR4 expression was significantly lower in CpG island methylation phenotype (CIMP) group than in non CIMP group. Log rank test results showed that patients with high CXCR4 methylation (first tertile) had significantly better 5 yrs OS (p = 0.038). CXCR4 expression is regulated by DNA methylation in GBM and its low expression or hypermethylation might indicate favorable OS in GBM patients.

  7. Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin

    Science.gov (United States)

    Lee, Woo Sang; Woo, Eun Young; Kwon, Junhye; Park, Myung-Jin; Lee, Jae-Seon; Han, Young-Hoon; Bae, In Hwa

    2013-01-01

    Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM. However, there is no information from studies of the role of Bcl-w in GBM. In the current study, we showed that Bcl-w is upregulated in human glioblastoma multiforme (WHO grade IV) tissues, compared with normal and glioma (WHO grade III) tissues. Bcl-w promotes the mesenchymal traits of glioblastoma cells by inducing vimentin expression via activation of transcription factors, β-catenin, Twist1 and Snail in glioblastoma U251 cells. Moreover, Bcl-w induces invasiveness by promoting MMP-2 and FAK activation via the PI3K-p-Akt-p-GSK3β-β-catenin pathway. We further confirmed that Bcl-w has the capacity to induce invasiveness in several human cancer cell lines. In particular, Bcl-w-stimulated β-catenin is translocated into the nucleus as a transcription factor and promotes the expression of target genes, such as mesenchymal markers or MMPs, thereby increasing mesenchymal traits and invasiveness. Our findings collectively indicate that Bcl-w functions as a positive regulator of invasiveness by inducing mesenchymal changes and that trigger their aggressiveness of glioblastoma cells. PMID:23826359

  8. Radiation induced sarcoma after treatment of glioblastoma: case report

    International Nuclear Information System (INIS)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris

    2016-01-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia

  9. Phase I trial of verubulin (MPC-6827) plus carboplatin in patients with relapsed glioblastoma multiforme.

    Science.gov (United States)

    Grossmann, Kenneth F; Colman, Howard; Akerley, Wallace A; Glantz, Michael; Matsuoko, Yuko; Beelen, Andrew P; Yu, Margaret; De Groot, John F; Aiken, Robert D; Olson, Jeffrey J; Olsen, Jeffery J; Evans, Brent A; Jensen, Randy L

    2012-11-01

    Verubulin (MPC-6827) is a microtubule-destabilizing agent that achieves high concentrations in the brain. Verubulin disrupts newly formed blood vessels in xenografts. We determined the safety and tolerability of verubulin administered in combination with carboplatin in patients with relapsed glioblastoma multiforme (GBM). Three pre-selected doses of verubulin were tested: 2.1, 2.7, and 3.3 mg/m(2) in a standard "3+3" design. Verubulin was given every second week of a 6-week cycle in the 2.1 mg/m(2) cohort or weekly for 3 weeks of a 4-week cycle in subsequent cohorts. Carboplatin was administered intravenously at an area under the curve (AUC) dosage 4 every 2 weeks for the 2.1 mg/m(2) cohort or on day 1 of each 4-week cycle in subsequent cohorts. Nineteen patients with GBM in first or second relapse were enrolled. Four patients (21 %) experienced a grade 3 or greater verubulin- or carboplatin-related adverse event, including hypesthesia, cerebral ischemia, anemia, and thrombocytopenia. The mean plasma half life of verubulin was 3.2 h (SD = 0.82). Two patients achieved at least a partial response by Macdonald criteria. One of these patients remains progression free and off treatment more than 24 months beyond his initiation of verubulin. Five patients had stable disease. Median progression-free survival (PFS) across all patients was 8 weeks, and the 6-month PFS rate was 21 %. The combination of verubulin at the previously determined single-agent maximum tolerated dose of 3.3 mg/m(2) with carboplatin in patients with recurrent/refractory GBM is safe and well tolerated. In this patient population with a highly vascularized tumor, no cerebral hemorrhage was observed.

  10. Impact of CD133 positive stem cell proportion on survival in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Kase, Marju; Minajeva, Ave; Niinepuu, Kristi; Kase, Sandra; Vardja, Markus; Asser, Toomas; Jaal, Jana

    2013-01-01

    The aim of the study was to assess the impact of CD133-positive (CD133+) cancer stem cell proportions on treatment results of glioblastoma multiforme (GBM) patients. Patients with GBM (n = 42) received postoperative radiotherapy (± chemotherapy). Surgically excised GBM tissue sections were immunohistochemically examined for CD133 expression. The proportions of CD133+ GBM cells were determined (%). The proportion of CD133+ GBM stem cells was established by 2 independent researchers whose results were in good accordance (R = 0.8, p < 0.01). Additionally, CD133 expression levels were correlated with patients overall survival. The proportion of CD133+ cells varied between patients, being from 0.5% to 82%. Mean and median proportions of CD133+ cells of the entire study group were 33% ± 24% (mean ± SD) and 28%, respectively. Clinical data do not support the association between higher proportion of stem cells and the aggressiveness of GBM. Median survival time of the study group was 10.0 months (95% CI 9.0–11.0). The survival time clearly depended on the proportion of CD133+ cells (log rank test, p = 0.02). Median survival times for patients with low (< median) and high (≥ median) proportion of CD133+ cells were 9.0 months (95% CI 7.6–10.5) and 12.0 months (95% CI 9.3–14.7), respectively. In multivariate analysis, the proportion of CD133+ cells emerged as a significant independent predictor for longer overall survival (HR 2.0, 95% CI 1.0–3.8, p = 0.04). In patients with higher stem cell proportion, significantly longer survival times after postoperative radiotherapy were achieved. Underlying reasons and possible higher sensitivity of GBM stem cells to fractionated radio-therapy should be clarified in further studies

  11. 18F-Fluorothymidine-Pet Imaging of Glioblastoma Multiforme: Effects of Radiation Therapy on Radiotracer Uptake and Molecular Biomarker Patterns

    Directory of Open Access Journals (Sweden)

    Sanjay Chandrasekaran

    2013-01-01

    Full Text Available Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional 18F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. 18F-Fluorothymidine (FLT in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of 18F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT, and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with 18F-FDG and 18F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67, DNA damage and repair (γH2AX, hypoxia (HIF-1α, and angiogenesis (VEGF. Results. We confirmed that 18F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that 18F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. 18F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.

  12. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  13. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  14. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    International Nuclear Information System (INIS)

    Basanta, David; Scott, Jacob G; Anderson, Alexander R A; Rockne, Russ; Swanson, Kristin R

    2011-01-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints

  15. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    Science.gov (United States)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  16. Herpes Simplex Virus (HSV-1 Encephalitis Mimicking Glioblastoma: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Burke A. Cunha

    2014-12-01

    Full Text Available Glioblastoma multiforme (GBM often presents as a brain mass with encephalitis. In a patient with GBM, subsequent presentation with new onset encephalitis may be due to another GBM or Herpes simplex virus 1 (HSV-1 encephalitis. We present a case of HSV-1 encephalitis mimicking GBM in a patient with previous GBM.

  17. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  18. Antiangiogenic Therapies and Extracranial Metastasis in Glioblastoma: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mohamed H. Khattab

    2015-01-01

    Full Text Available We present a case report of a patient with glioblastoma multiforme (GBM complicated by extracranial metastasis (ECM whose survival of nearly four years surpassed the anticipated life expectancy given numerous negative prognostic factors including EGFRvIII-mutation, unmethylated MGMT promoter status, and ECM. Interestingly, while this patient suffered from locally aggressive disease with multiple intracranial recurrences, the proximal cause of death was progressive extracranial disease and complications related to pulmonary metastases. Herein, we review potential mechanisms of ECM with an emphasis upon glioblastoma molecular and genetic profiles and the potential implications of targeted agents such as bevacizumab.

  19. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette

    2014-01-01

    BACKGROUND: Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present...... a promising target in GBM research. The Notch signaling pathway is often deregulated in GBM and we have previously characterized GBM-derived bCSC cultures based on their expression of the Notch-1 receptor and found that it could be used as predictive marker for the effect of Notch inhibition. The aim...... of the present project was therefore to further elucidate the significance of Notch pathway activity for the tumorigenic properties of GBM-derived bCSC. METHODS: Human-derived GBM xenograft cells previously established as NSC-like neurosphere cultures were used. Notch inhibition was accomplished by exposing...

  20. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy

    International Nuclear Information System (INIS)

    Nguyen, Dan; Rwigema, Jean-Claude M; Yu, Victoria Y; Kaprealian, Tania; Kupelian, Patrick; Selch, Michael; Lee, Percy; Low, Daniel A; Sheng, Ke

    2014-01-01

    Glioblastoma multiforme (GBM) frequently recurs at the same location after radiotherapy. Further dose escalation using conventional methods is limited by normal tissue tolerance. 4π non-coplanar radiotherapy has recently emerged as a new potential method to deliver highly conformal radiation dose using the C-arm linacs. We aim to study the feasibility of very substantial GBM dose escalation while maintaining normal tissue tolerance using 4π. 11 GBM patients previously treated with volumetric modulated arc therapy (VMAT/RapidArc) on the NovalisTx™ platform to a prescription dose of either 59.4 Gy or 60 Gy were included. All patients were replanned with 30 non-coplanar beams using a 4π radiotherapy platform, which inverse optimizes both beam angles and fluence maps. Four different prescriptions were used including original prescription dose and PTV (4πPTV PD ), 100 Gy to the PTV and GTV (4πPTV 100Gy ), 100 Gy to the GTV only while maintaining prescription dose to the rest of the PTV (4πGTV 100Gy ), and a 5 mm margin expansion plan (4πPTV PD+5mm ). OARs included in the study are the normal brain (brain – PTV), brainstem, chiasm, spinal cord, eyes, lenses, optical nerves, and cochleae. The 4π plans resulted in superior dose gradient indices, as indicated by >20% reduction in the R50, compared to the clinical plans. Among all of the 4π cases, when compared to the clinical plans, the maximum and mean doses were significantly reduced (p < 0.05) by a range of 47.01-98.82% and 51.87-99.47%, respectively, or unchanged (p > 0.05) for all of the non-brain OARs. Both the 4πPTV PD and 4π GTV 100GY plans reduced the mean normal brain mean doses. 4π non-coplanar radiotherapy substantially increases the dose gradient outside of the PTV and better spares critical organs. Dose escalation to 100 Gy to the GTV or additional margin expansion while meeting clinical critical organ dose constraints is feasible. 100 Gy to the PTV result in higher normal brain doses but may

  1. CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5

    OpenAIRE

    Pham, Kien; Luo, Defang; Liu, Che; Harrison, Jeffrey K.

    2012-01-01

    Glioblastoma multiforme (GBM) is the most malignant brain tumor. Microglia/macrophages are found within human GBM where they likely promote tumor progression. We report that CCL5, CCR1, and CCR5 are expressed in glioblastoma. Individual deletion of CCR1 or CCR5 had little to no effect on survival of tumor bearing mice, or numbers of glioblastoma-infiltrated microglia/macrophages or lymphocytes. CCL5 promoted in vitro migration of wild type, CCR1- or CCR5-deficient microglia/macrophages that w...

  2. Tumor-associated macrophages in glioblastoma multiforme-a suitable target for somatostatin receptor-based imaging and therapy?

    Directory of Open Access Journals (Sweden)

    Constantin Lapa

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN',N″,N'″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM.15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68, proliferative activity (Ki67 as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET imaging using 68Ga-DOTATATE was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry.The amount of microglia/macrophages ranged from 50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns.SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.

  3. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  4. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  5. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells.

    Science.gov (United States)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-01-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  6. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide

    DEFF Research Database (Denmark)

    Dresemann, G.; Weller, M.; Ostenfeld-Rosenthal, Ann Maria

    2010-01-01

    A randomized, multicenter, open-label, phase 3 study of patients with progressive, recurrent glioblastoma multiforme (GBM) for whom front-line therapy had failed was conducted. This study was designed to determine whether combination therapy with imatinib and hydroxyurea (HU) has superior antitumor...

  8. ATM and p53 combined analysis predicts survival in glioblastoma multiforme patients: A clinicopathologic study.

    Science.gov (United States)

    Romano, Francesco Jacopo; Guadagno, Elia; Solari, Domenico; Borrelli, Giorgio; Pignatiello, Sara; Cappabianca, Paolo; Del Basso De Caro, Marialaura

    2018-06-01

    Glioblastoma is one of the most malignant cancers, with a distinguishing dismal prognosis: surgery followed by chemo- and radiotherapy represents the current standard of care, and chemo- and radioresistance underlie disease recurrence and short overall survival of patients suffering from this malignancy. ATM is a kinase activated by autophosphorylation upon DNA doublestrand breaks arising from errors during replication, byproducts of metabolism, chemotherapy or ionizing radiations; TP53 is one of the most popular tumor suppressor, with a preeminent role in DNA damage response and repair. To study the effects of the immunohistochemical expression of p-ATM and p53 in glioblastoma patients, 21 cases were retrospectively examined. In normal brain tissue, p-ATM was expressed only in neurons; conversely, in tumors cells, the protein showed a variable cytoplasmic expression (score: +,++,+++), with being completely undetectable in three cases. Statistical analysis revealed that high p-ATM score (++/+++) strongly correlated to shorter survival (P = 0.022). No difference in overall survival was registered between p53 normally expressed (NE) and overexpressed (OE) glioblastoma patients (P = 0.669). Survival analysis performed on the results from combined assessment of the two proteins showed that patients with NE p53 /low pATM score had longer overall survival than the NE p53/ high pATM score counterpart. Cox-regression analysis confirmed this finding (HR = 0.025; CI 95% = 0.002-0.284; P = 0.003). Our study outlined the immunohistochemical expression of p-ATM/p53 in glioblastomas and provided data on their possible prognostic/predictive of response role. A "non-oncogene addiction" to ATM for NEp53 glioblastoma could be postulated, strengthening the rationale for development of ATM inhibiting drugs. © 2018 Wiley Periodicals, Inc.

  9. The prognostic significance of midline shift at presentation on survival in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Gamburg, Eugene S.; Regine, William F.; Patchell, Roy A.; Strottmann, James M.; Mohiuddin, Mohammed; Young, A. Byron

    2000-01-01

    Purpose: While patients with glioblastoma multiforme (GBM) who present with midline shift have a presumably worse prognosis, there is little literature evaluating the prognostic significance of this presentation in multivariate analysis in the context of other known prognostic factors. Methods and Materials: From March 1981 to September 1993, 219 patients underwent irradiation for intracranial glioma at our institution. One hundred fourteen patients with a diagnosis of a primary GBM were analyzed for the influence of the presence of midline shift at diagnosis on survival with respect to other known prognostic factors, including age, Karnofsky performance status (KPS), and extent of surgery. Eighty-five patients (74%) presented with midline shift. Surgical treatment consisted of subtotal/total resection in 86 patients (75%). Among patients presenting with midline shift, 68 (80%) underwent subtotal/total resection before irradiation. Results: Multivariate analysis of the entire cohort of patients found none of the potential prognostic factors analyzed to significantly influence survival. The overall median survival was 6 months. However, when multivariate analysis was limited to patients with a KPS of ≥ 70, only the presence of midline shift and age were found to significantly influence survival. Patients with a KPS ≥ 70 and with midline shift present at diagnosis had a median survival of 8 months, as compared to 14 months for those not having midline shift at presentation (p = 0.04). Patients with a KPS ≥ 70 and age > 50 years had a median survival of 5 months as compared to 11 months for those ≤ 50 (p 0.02). Conclusion: In this series, where 80% of patients who presented with a midline shift underwent decompressive resection of GBM before irradiation, the presence of midline shift at diagnosis remained an independent prognostic factor influencing survival among good performance status patients. While the role of decompressive surgery in this setting is

  10. A Non-randomized Controlled Trial of EMDR on Affective Symptoms in Patients With Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Monika Szpringer

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is a highly aggressive brain cancer and its survival after diagnosis is less than 2 years. Therefore, GBM patients are especially prone to co-occurring psychological conditions such as anxiety and depressive disorders. Furthermore, aggressive medical therapies affect patients’ lives, undermining their sense of meaning and coherence. The main aim of this study was to determine the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR therapy on anxiety, depression and sense of coherence in patients with GBM. Thirty-seven GBM-diagnosed women were included in this trial and received standard medical care. Of those, 18 patients were treated during 4 months with 10–12 individual EMDR sessions (60–90 minutes each. Nineteen GBM patients were used as a non-randomized control group as they consented to psychological evaluations but not to a psychotherapeutic intervention. The groups were homogeneous in terms of gender, age, educational level and treatment, but not in anxiety and depressive levels at baseline. All patients were evaluated at baseline, after treatment (4 months and at follow-up (further 4 months by the Hospital Anxiety and Depression Scale (HADS-M and the Sense of Coherence Scale (SOC-29. Caregivers in both groups were interviewed by the Patient Caregiver Questionnaire after 4 months follow-up. Statistical analyses were conducted using ANOVA statistics, correlation and regression analysis. Results showed a statistically significant decrease in the EMDR group in anxiety, depression and anger, when compared to the experimental group. EMDR therapy also had a positive impact upon the sense of coherence level in the experimental group, whereas in the control group this declined. Finally, the caregivers reported beneficial outcomes of the EMDR therapy with less anxiety- and anger-related behaviors in patients in the experimental group compared to the control group. This study is the first to show

  11. An Update in the Use of Antibodies to Treat Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Glioblastoma is a deadly brain disease and modest improvement in survival has been made. At initial diagnosis, treatment consists of maximum safe surgical resection, followed by temozolomide and chemoirradiation or adjuvant temozolomide alone. However, these treatments do not improve the prognosis and survival of patients. New treatment strategies are being sought according to the biology of tumors. The epidermal growth factor receptor has been considered as the hallmark in glioma tumors; thereby, some antibodies have been designed to bind to this receptor and block the downstream signaling pathways. Also, it is known that vascularization plays an important role in supplying new vessels to the tumor; therefore, new therapy has been guided to inhibit angiogenic growth factors in order to limit tumor growth. An innovative strategy in the treatment of glial tumors is the use of toxins produced by bacteria, which may be coupled to specific carrier-ligands and used for tumoral targeting. These carrier-ligands provide tumor-selective properties by the recognition of a cell-surface receptor on the tumor cells and promote their binding of the toxin-carrier complex prior to entry into the cell. Here, we reviewed some strategies to improve the management and treatment of glioblastoma and focused on the use of antibodies.

  12. Supratentorial endodermal cysts: review of literature and case report.

    Science.gov (United States)

    Caruso, Riccardo; Artico, Marco; Colonnese, Claudio; Marrocco, Luigi; Wierzbicki, Venceslao

    2013-11-01

    Supratentorial endodermal cysts are very rare pathological entities. Their pathoembryology is largely unknown and they can represent a diagnostic challenge. A research performed on the PubMed database in December 2010, to screen for supratentorial endodermal cyst studies, demonstrated that since 1960 only 31 supratentorial endodermal cysts have been described in the literature, including our case: a 42-year-old woman with a parasellar endodermal cyst. These lesions are usually benign. As with other types of brain cysts, the signs and symptoms caused by supratentorial endodermal cysts are mainly linked to the compression or irritation of surrounding neural structures. Upon neuroimaging examination, they typically appear as a round or lobulated mass. The signal intensity may vary depending on the protein content of the cyst. The majority of reported supratentorial endodermal cysts were completely excised with good or excellent results. Incomplete excision can result in an increased risk of recurrence, infection, and dissemination. Georg Thieme Verlag KG Stuttgart · New York.

  13. The future role of personalized medicine in the treatment of glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Jing Li

    2010-08-01

    Full Text Available Jing Li1,2, Chunhui Di1,2, Austin K Mattox1,2, Linda Wu1,2, D Cory Adamson1,2,3,41Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, North Carolina, USA; 2Department of Surgery (Neurosurgery, Duke Medical Center, Durham, North Carolina, USA; 3Department of Neurobiology, Duke Medical Center, Durham, North Carolina, USA; 4Neurosurgery Section, Durham VA Medical Center, Durham, North Carolina, USAAbstract: Glioblastoma multiforme (GBM remains one of the most malignant primary central nervous system tumors. Personalized therapeutic approaches have not become standard of care for GBM, but science is fast approaching this goal. GBM’s heterogeneous genomic landscape and resistance to radiotherapy and chemotherapy make this tumor one of the most challenging to treat. Recent advances in genome-wide studies and genetic profiling show that there is unlikely to be a single genetic or cellular event that can be effectively targeted in all patients. Instead, future therapies will likely require personalization for each patient’s tumor genotype or proteomic profile. Over the past year, many investigations specifically focused simultaneously on strategies to target oncogenic pathways, angiogenesis, tumor immunology, epigenomic events, glioma stem cells (GSCs, and the highly migratory glioma cell population. Combination therapy targeting multiple pathways is becoming a fast growing area of research, and many studies put special attention on small molecule inhibitors. Because GBM is a highly vascular tumor, therapy that directs monoclonal antibodies or small molecule tyrosine kinase inhibitors toward angiogenic factors is also an area of focus for the development of new therapies. Passive, active, and adoptive immunotherapies have been explored by many studies recently, and epigenetic regulation of gene expression with microRNAs is also becoming an important area of study. GSCs can be useful targets to stop tumor recurrence and

  14. Early post-treatment pseudo-progression amongst glioblastoma multiforme patients treated with radiotherapy and temozolomide: a retrospective analysis

    International Nuclear Information System (INIS)

    Gunjur, Ashray; Lau, Eddie; Taouk, Yamna; Ryan, Gail

    2011-01-01

    To evaluate the incidence and impact of early post-chemoradiation (cRT) 'pseudoprogression' (PsPD) amongst glioblastoma multiforme (GBM) patients treated with the current standard of care – 60 Gy conformal radiotherapy with concurrent low-dose temozolomide, followed by six cycles of high-dose temozolomide (the 'Stupp protocol'). Clinical notes and radiology reports for GBM patients treated as per the Stupp protocol were reviewed. PsPD was defined as apparent radiological progression on the first post-cRT scan, with further imaging within 3 months being stable or improving, while true early progression (ePD) was confirmed by continued progression in the subsequent 3 months following the first post-cRT scan. Of the 68 patients evaluated, 14 (21%) and 27 (40%) experienced PsPD and ePD, respectively; 3/14 (21%) patients experiencing PsPD and 14/27(52%), ePD were symptomatic for progression on first post-cRT follow-up (P = 0.096 for difference). Median survival for patients with ePD, PsPD and neither were 10.4, 27.4 and 13.0 months, respectively (P = 0.003 for ePD vs. PsPD, P = 0.19 for neither vs. PsPD groups). These data confirm a significant incidence of PsPD in post-cRT GBM patients, associated with improved median survival compared with those with neither ePD nor PsPD (not statistically significant). It appears likely that PsPD actually represents tumour response, conflicting with the traditional notion that increase in lesion size on contrast-enhanced imaging represents disease progression. Early post-cRT imaging should thus be interpreted with caution. Accompanying clinical symptoms are more commonly associated with ePD, but do not reliably distinguish PsPD from ePD.

  15. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours

    DEFF Research Database (Denmark)

    Mollenhauer, J; Wiemann, S; Scheurlen, W

    1997-01-01

    Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80% of the tumo......Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80....... Intragenic homozygous deletions has been detected in 2/20 medulloblastomas and in 9/39 glioblastomas multiformes. Lack of DMBT1 expression has been demonstrated in 4/5 brain-tumour cell lines. We suggest that DMBT1 is a putative tumour-suppressor gene implicated in the carcinogenesis of medulloblastoma...

  16. The novel Hsp90 inhibitor NXD30001 induces tumor regression in a genetically engineered mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Zhu, Haihao; Woolfenden, Steve; Bronson, Roderick T; Jaffer, Zahara M; Barluenga, Sofia; Winssinger, Nicolas; Rubenstein, Allan E; Chen, Ruihong; Charest, Al

    2010-09-01

    Glioblastoma multiforme (GBM) has an abysmal prognosis. We now know that the epidermal growth factor receptor (EGFR) signaling pathway and the loss of function of the tumor suppressor genes p16Ink4a/p19ARF and PTEN play a crucial role in GBM pathogenesis: initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. We have recently shown that this genetic combination is sufficient to promote the development of GBM in adult mice. Therapeutic agents raised against single targets of the EGFR signaling pathway have proven rather inefficient in GBM therapy, showing the need for combinatorial therapeutic approaches. An effective strategy for concurrent disruption of multiple signaling pathways is via the inhibition of the molecular chaperone heat shock protein 90 (Hsp90). Hsp90 inhibition leads to the degradation of so-called client proteins, many of which are key effectors of GBM pathogenesis. NXD30001 is a novel second generation Hsp90 inhibitor that shows improved pharmacokinetic parameters. Here we show that NXD30001 is a potent inhibitor of GBM cell growth in vitro consistent with its capacity to inhibit several key targets and regulators of GBM biology. We also show the efficacy of NXD30001 in vivo in an EGFR-driven genetically engineered mouse model of GBM. Our findings establish that the Hsp90 inhibitor NXD30001 is a therapeutically multivalent molecule, whose actions strike GBM at the core of its drivers of tumorigenesis and represent a compelling rationale for its use in GBM treatment.

  17. Inhibition of Y-box binding protein-1 slows the growth of glioblastoma multiforme and sensitizes to temozolomide independent O6-methylguanine-DNA methyltransferase.

    Science.gov (United States)

    Gao, Yuanyuan; Fotovati, Abbas; Lee, Cathy; Wang, Michelle; Cote, Gilbert; Guns, Emma; Toyota, Brian; Faury, Damien; Jabado, Nada; Dunn, Sandra E

    2009-12-01

    Glioblastoma multiforme (GBM) is an aggressive type of brain tumor where 5 years. In adults, GBM is the most common type of brain tumor. It is rarer in children, where it constitutes approximately 15% of all brain tumors diagnosed. These tumors are often invasive, making surgical resection difficult. Further, they can be refractory to current therapies such as temozolomide. The current dogma is that temozolomide resistance rests on the expression of O6-methylguanine-DNA methyltransferase (MGMT) because it cleaves methylated DNA adducts formed by the drug. Our laboratory recently reported that another drug resistance gene known as the Y-box binding protein-1 (YB-1) is highly expressed in primary GBM but not in normal brain tissues based on the evaluation of primary tumors. We therefore questioned whether GBM depend on YB-1 for growth and/or response to temozolomide. Herein, we report that YB-1 inhibition reduced tumor cell invasion and growth in monolayer as well as in soft agar. Moreover, blocking this protein ultimately delayed tumor onset in mice. Importantly, inhibiting YB-1 enhanced temozolomide sensitivity in a manner that was independent of MGMT in models of adult and pediatric GBM. In conclusion, inhibiting YB-1 may be a novel way to improve the treatment of GBM.

  18. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Monjazeb, Arta M., E-mail: arta.monjazeb@ucdmc.ucdavis.edu [U.C. Davis School of Medicine, Department of Radiation Oncology, Sacramento, CA (United States); Ayala, Deandra; Jensen, Courtney [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Case, L. Douglas [Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Bourland, J. Daniel; Ellis, Thomas L. [Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC (United States); McMullen, Kevin P.; Chan, Michael D. [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Tatter, Stephen B. [Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Lesser, Glen J. [Hematology Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Shaw, Edward G. [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States)

    2012-02-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4-5 acute neurotoxicity attributable to radiotherapy. Results: All patients experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.

  19. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Monjazeb, Arta M.; Ayala, Deandra; Jensen, Courtney; Case, L. Douglas; Bourland, J. Daniel; Ellis, Thomas L.; McMullen, Kevin P.; Chan, Michael D.; Tatter, Stephen B.; Lesser, Glen J.; Shaw, Edward G.

    2012-01-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4–5 acute neurotoxicity attributable to radiotherapy. Results: All patients experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.

  20. Diagnostic challenges in primary brain stem glioblastoma multiform; a case report

    Directory of Open Access Journals (Sweden)

    Muhammad Taimur Malik, MD

    2017-12-01

    Full Text Available Brainstem gliomas are rare form of primary brain tumors in adult and represent <2% of gliomas. Glioblastomas (GBM are much less common in pediatric patients; adult GBM vary in presentation and response to therapy, and generally have a very poor prognosis. GBM is less common in the brainstem, comprising <2% gliomas and there is therefore limited data available to provide a standard of care. Here we present a case report of a patient who presented with aggressive primary pontine GBM.

  1. Clinical and MRI features of supratentorial gliomas with adult-onset epilepsy

    International Nuclear Information System (INIS)

    Hashimoto, Takahiro; Yamaura, Akira; Watanabe, Osamu.

    1992-01-01

    Although some patients with supratentorial gliomas develop epilepsy in their clinical course, the details of adult-onset epilepsy with gliomas have not been fully evaluated. This paper reports on 15 cases of supratentorial glioma with the sole symptom of adult-onset epilepsy and characterizes their clinical and MRI features. The patients, 5 males and 10 females, developed the first epilepsy at the mean age of 37 years. Generalized seizure was encountered in all cases and focal seizure alone was never seen. Seizure was satisfactorily controlled with anticonvulsants in all except 2 cases. The tumor was located in the frontal lobe (9 cases) or temporal lobe (6 cases). Histologically, there were 12 astrocytomas, 2 glioblastomas, and 1 oligoastrocytoma. Of these, 12 were benign gliomas. Surprisingly, CT scan and MRI revealed tumors larger than predicted. The abnormal intensity region was delineated most prominently on T 2 -weighted SE image and was broader on T 2 -weighted spin echo image than on T 1 -weighted spin echo and inversion recovery image. The authors conclude that gliomas presenting with epilepsy tend to be histologically benign, are predominantly seen in middle-aged women, and are located in the frontal and temporal lobes. Although a tumor may be large enough to be detected on CT scan or MRI, as in the present study, histological examination is needed to establish the diagnosis. Additionally, gliomas with equivocal abnormalities on CT and MRI do evolve despite further neurological deficits, so meticulous evaluation including stereotactic biopsy is the method of choice. Finally, T 2 -weighted SE image in the coronal plane is advocated for patients with adult-onset epilepsy to achieve accurate diagnosis and to initiate early treatment. (author)

  2. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard

    2009-01-01

    Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes......, such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically upregulated in glioma...... and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally...

  3. Dysphagia Post Subcortical and Supratentorial Stroke.

    Science.gov (United States)

    Wan, Ping; Chen, Xuhui; Zhu, Lequn; Xu, Shuangjin; Huang, Li; Li, Xiangcui; Ye, Qing; Ding, Ruiying

    2016-01-01

    Studies have recognized that the damage in the subcortical and supratentorial regions may affect voluntary and involuntary aspects of the swallowing function. The current study attempted to explore the dysphagia characteristics in patients with subcortical and supratentorial stroke. Twelve post first or second subcortical and supratentorial stroke patients were included in the study. The location of the stroke was ascertained by computed tomography and magnetic resonance imaging. The characteristics of swallowing disorder were assessed by video fluoroscopic swallowing assessment/fiberoptic endoscopic evaluation of swallowing. The following main parameters were analyzed: oral transit time, pharyngeal delay time, presence of cricopharyngeal muscle achalasia (CMA), distance of laryngeal elevation, the amounts of vallecular residue and pyriform sinus residue (PSR), and the extent of pharyngeal contraction. Eighty-three percent of the 12 patients were found suffering from pharyngeal dysphagia, with 50% having 50%-100% PSRs, 50% having pharyngeal delay, and 41.6% cases demonstrating CMA. Simple regression analysis showed PSRs were most strongly associated with CMA. Pharyngeal delay in the study can be caused by infarcts of basal ganglia/thalamus, infarcts of sensory tract, infarcts of swallowing motor pathways in the centrum semiovale, or a combination of the three. Subcortical and supratentorial stroke may result in pharyngeal dysphagia such as PSR and pharyngeal delay. PSR was mainly caused by CMA. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment

    Directory of Open Access Journals (Sweden)

    Jason A. Ellis

    2015-01-01

    Full Text Available Effective treatment for glioblastoma (GBM will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed.

  5. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Larson, David A.; Prados, Michael D.; Malec, Mary K.; McDermott, Michael W.; Weaver, Keith A.; Phillips, Theodore L.; Wara, William M.; Gutin, Philip H.

    1996-01-01

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125 I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm 3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy

  6. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    Science.gov (United States)

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  7. Glioblastoma Stem-Like Cells—Biology and Therapeutic Implications

    International Nuclear Information System (INIS)

    Gürsel, Demirkan B.; Shin, Benjamin J.; Burkhardt, Jan-Karl; Kesavabhotla, Kartik; Schlaff, Cody D.; Boockvar, John A.

    2011-01-01

    The cancer stem-cell hypothesis proposes that malignant tumors are likely to encompass a cellular hierarchy that parallels normal tissue and may be responsible for the maintenance and recurrence of glioblastoma multiforme (GBM) in patients. The purpose of this manuscript is to review methods for optimizing the derivation and culturing of stem-like cells also known as tumor stem cells (TSCs) from patient-derived GBM tissue samples. The hallmarks of TSCs are that they must be able to self-renew and retain tumorigenicity. The isolation, optimization and derivation of TSCs as outlined in this review, will be important in understanding biology and therapeutic applications related to these cells

  8. Long-Term Survival and Improved Quality of Life following Multiple Repeat Gamma Knife Radiosurgeries for Recurrent Glioblastoma Multiforme: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Erik W. Larson

    2013-01-01

    Full Text Available The management of glioblastoma multiforme (GBM is in most cases complex and must be specifically tailored to the needs of the patient with the goals of extended survival and improved quality of life. Despite advancements in therapy, treatment outcomes remain almost universally poor. Salvage treatment options for the recurrence of the disease is an area of intense study. The following case highlights the utility of Gamma Knife Radiosurgery (GKRS as a salvage treatment. In this clinical situation, three sequential GKRS treatments led to prolonged survival (beyond four years after diagnosis and improved quality of life in a patient who was unable to receive further chemotherapy regimens and was unwilling to undergo further aggressive resection. To date, there have been few reports of three or more sequential GKRS treatment sessions utilized as salvage therapy for recurrent GBM in patients who can no longer tolerate chemotherapy. This report provides evidence that aggressive local treatment with GKRS at the time of recurrence may be appropriate, depending on a patient’s individual clinical situation, and can lead to prolonged survival and improved quality of life.

  9. Postoperative treatment of glioblastoma multiforme with radiation therapy plus concomitant and adjuvant temozolomide : A mono-institutional experience of 215 patients

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Julka

    2013-01-01

    Full Text Available Objective: To study the clinical results and prognostic factors of patients with glioblastoma multiforme (GBM treated by postoperative radiation therapy (PORT and concomitant temozolomide followed by adjuvant temozolomide. Methods: From 2005 to 2008, 215 patients (median age 48 years with GBM were treated with PORT plus temozolomide chemotherapy. Radiation therapy (RT was employed with a dose of 60 Gy in 30 fractions over 6 weeks by conventional fractionation with concomitant temozolomide (75 mg/m 2 /day. Adjuvant therapy consisted of 6 cycles of temozolomide (150 mg/m 2 for 5 days, 28 days cycle. The primary end point of the study was overall survival (OS, and the secondary end points were progression free survival (PFS and toxicity. OS was determined with respect to different variables to study the prognostic significance. Results: Median follow up was 11 months (range 2-50 months. Median OS and PFS were 13 months and 11 months respectively. The 1-year and 2-year OS was 44% and 18% respectively. There was no statistical significant impact of age, sex, KP score, anatomical location and extent of surgery. Presentation without seizures (on univariate analysis and 6 cycles of adjuvant temozolomide therapy (on univariate as well as multivariate analysis were found significant prognostic factors. Sixteen patients developed grade III-IV neutropenia/thrombocytopenia during the course of RT. Conclusion: Our results authenticate the role of concomitant and adjuvant temozolomide chemotherapy in combination with PORT for the management of GBM patients. We strongly recommend complete 6 cycle of adjuvant temozolomide since it significantly improved the survival in our study.

  10. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  11. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel [Cedars-Sinai Medical Center, Department of Medical Imaging, Los Angeles, CA (United States); Erly, William; Nael, Kambiz [University of Arizona Medical Center, Department of Medical Imaging, Tucson, AZ (United States)

    2015-07-15

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K{sup trans}, and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K{sup trans}, and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K{sup trans} were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  12. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    International Nuclear Information System (INIS)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel; Erly, William; Nael, Kambiz

    2015-01-01

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K trans , and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K trans , and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K trans were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  13. Hypofractionated intensity-modulated radiotherapy with temozolomide chemotherapy may alter the patterns of failure in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Reddy, Krishna; Chen, Changhu; Gaspar, Laurie E.; Kavanagh, Brian D.

    2014-01-01

    The objective of this study was to report the patterns of failure in patients with glioblastoma multiforme (GBM) treated on a phase II trial of hypofractionated intensity-modulated radiotherapy (hypo-IMRT) with concurrent and adjuvant temozolomide (TMZ). Patients with newly diagnosed GBM post-resection received postoperative hypo-IMRT to 60Gy in 10 fractions. TMZ was given concurrently at 75mg/m 2 /day for 28 consecutive days and adjuvantly at 150–200mg/m 2 /day for 5 days every 28 days. Radiographic failure was defined as any new T1-enhancing lesion or biopsy-confirmed progressive enhancement at the primary site. MRIs obtained at the time of failure were fused to original hypo-IMRT plans. Central, in-field, marginal and distant failure were defined as ≥95%, 80% to 95%, any to 80% and 0% of the volume of a recurrence receiving 60Gy, respectively. Twenty-four patients were treated on the trial. Median follow-up was 14.8 months (range 2.7–34.2). Seventeen of 24 patients experienced radiographic failure: one central, five in-field, two marginal, eight distant and one both in-field and distant. Two of the eight distant failures presented with leptomeningeal disease. Two other patients died without evidence of radiographic recurrence. Five of 24 patients demonstrated asymptomatic, gradually progressive in-field T1 enhancement, suggestive of post-treatment changes, without clear evidence of failure; three of these patients received a biopsy/second resection, with 100% radiation necrosis found. The median overall survival of this group was 33.0 months. A 60-Gy hypo-IMRT treatment delivered in 6-Gy fractions with TMZ altered the patterns of failure in GBM, with more distant failures.

  14. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    Science.gov (United States)

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  15. Temozolomide during radiotherapy of glioblastoma multiforme. Daily administration improves survival

    Energy Technology Data Exchange (ETDEWEB)

    Nachbichler, Silke Birgit; Schupp, Gabi; Ballhausen, Hendrik; Niyazi, Maximilian; Belka, Claus [LMU Munich, Department of Radiation Oncology, Munich (Germany)

    2017-11-15

    Temozolomide-(TMZ)-based chemoradiotherapy defines the current gold standard for the treatment of newly diagnosed glioblastoma. Data regarding the influence of TMZ dose density during chemoradiotherapy are currently not available. We retrospectively compared outcomes in patients receiving no TMZ, TMZ during radiotherapy on radiotherapy days only, and TMZ constantly 7 days a week. From 2002-2012, a total of 432 patients with newly diagnosed glioblastoma received radiotherapy in our department: 118 patients had radiotherapy alone, 210 had chemoradiotherapy with TMZ (75 mg/m{sup 2}) daily (7/7), and 104 with TMZ only on radiotherapy days (5/7). Radiotherapy was applied to a total dose of 60 Gy. Median survival after radiotherapy alone was 9.1 months, compared to 12.6 months with 5/7-TMZ and to 15.7 months with 7/7-TMZ. The 1-year survival rates were 33, 52, and 64%, respectively. Kaplan-Meier analysis showed a significant improvement of TMZ-7/7 vs. 5/7 (p = 0.01 by the log-rank test), while 5/7-TMZ was still superior to no TMZ at all (p = 0.02). Multivariate Cox regression showed a significant influence of TMZ regimen (p = 0.009) on hazard rate (+58% between groups) even in the presence of confounding factors age, sex, resection status, and radiotherapy dose concept. Our results confirm the findings of the EORTC/NCIC trial. It seems that also a reduced TMZ scheme can at first prolong the survival of glioblastoma patients, but not as much as the daily administration. (orig.) [German] Eine Temozolomid-(TMZ-)basierte Radiochemotherapie ist der gegenwaertige Goldstandard in der Behandlung von neu diagnostizierten Glioblastomen. Daten bezueglich des Einflusses der TMZ-Dosisdichte waehrend der Radiochemotherapie sind derzeit nicht vorhanden. Wir haben retrospektiv die Ergebnisse von Patienten verglichen, die entweder kein TMZ, TMZ zur Strahlentherapie nur an Bestrahlungstagen oder TMZ konstant 7 Tage/Woche erhalten hatten. Von 2002-2012 bekamen insgesamt 432 Patienten mit

  16. Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells.

    Science.gov (United States)

    Daniele, Simona; Sestito, Simona; Pietrobono, Deborah; Giacomelli, Chiara; Chiellini, Grazia; Di Maio, Danilo; Marinelli, Luciana; Novellino, Ettore; Martini, Claudia; Rapposelli, Simona

    2017-01-18

    The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.

  17. Clinical and MRI features of supratentorial gliomas with adult-onset epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takahiro; Yamaura, Akira (Chiba Univ. (Japan). School of Medicine); Watanabe, Osamu

    1992-02-01

    Although some patients with supratentorial gliomas develop epilepsy in their clinical course, the details of adult-onset epilepsy with gliomas have not been fully evaluated. This paper reports on 15 cases of supratentorial glioma with the sole symptom of adult-onset epilepsy and characterizes their clinical and MRI features. The patients, 5 males and 10 females, developed the first epilepsy at the mean age of 37 years. Generalized seizure was encountered in all cases and focal seizure alone was never seen. Seizure was satisfactorily controlled with anticonvulsants in all except 2 cases. The tumor was located in the frontal lobe (9 cases) or temporal lobe (6 cases). Histologically, there were 12 astrocytomas, 2 glioblastomas, and 1 oligoastrocytoma. Of these, 12 were benign gliomas. Surprisingly, CT scan and MRI revealed tumors larger than predicted. The abnormal intensity region was delineated most prominently on T[sub 2]-weighted SE image and was broader on T[sub 2]-weighted spin echo image than on T[sub 1]-weighted spin echo and inversion recovery image. The authors conclude that gliomas presenting with epilepsy tend to be histologically benign, are predominantly seen in middle-aged women, and are located in the frontal and temporal lobes. Although a tumor may be large enough to be detected on CT scan or MRI, as in the present study, histological examination is needed to establish the diagnosis. Additionally, gliomas with equivocal abnormalities on CT and MRI do evolve despite further neurological deficits, so meticulous evaluation including stereotactic biopsy is the method of choice. Finally, T[sub 2]-weighted SE image in the coronal plane is advocated for patients with adult-onset epilepsy to achieve accurate diagnosis and to initiate early treatment. (author).

  18. Supratentorial ependymoma in child: a case report

    International Nuclear Information System (INIS)

    Santa Anna, Tatiana Kelly Brasileiro de; Zuppani, Aguinaldo Cunha

    2008-01-01

    Ependymoma is a neuro epithelial tumor of the glioneural group which originates in the ependyma, with slow growth and infratentorial location in 2/3 of the cases. The infratentorials are more common in children and the supratentorials in adults. This report describes a case in childhood, supratentorial, in close contact with the lateral ventricle, predominantly cystic, with solid areas, little regional expansive effect and evidenced by the pathology as an infrequent subtype in this age group, the subependymoma. (author)

  19. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    Directory of Open Access Journals (Sweden)

    Rahul Jandial

    2018-01-01

    Full Text Available Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1 to detoxify the toxic glycolytic byproduct methylglyoxal (MG and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs. Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM, the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA approaches. Inhibition of GLO1 with S-(p-bromobenzyl glutathione dicyclopentyl ester (p-BrBzGSH(Cp2 increased levels of the DNA-AGE N2-1-(carboxyethyl-2′-deoxyguanosine (CEdG, a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE; and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  20. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    Science.gov (United States)

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  1. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  2. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    OpenAIRE

    Grazia eMaugeri; Agata Grazia eD'Amico; Agata Grazia eD'Amico; Rita eReitano; Gaetano eMagro; Sebastiano eCavallaro; Salvatore eSalomone; Velia eD'Agata

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs), perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation...

  3. Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution

    OpenAIRE

    Li, Rui; Li, Hailin; Yan, Wei; Yang, Pei; Bao, Zhaoshi; Zhang, Chuanbao; Jiang, Tao; You, Yongping

    2015-01-01

    Glioblastoma multiforme (GBM) is classified into primary (pGBM) or secondary (sGBM) based on clinical progression. However, there are some limits to this classification for insight into genetically and clinically distinction between pGBM and sGBM. The aim of this study is to characterize pGBM and sGBM associating with differential molecular subtype distribution. Whole transcriptome sequencing data was used to assess the distribution of molecular subtypes and genetic alterations in 88 pGBM and...

  4. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Parameter optimization for constructing competing endogenous RNA regulatory network in glioblastoma multiforme and other cancers.

    Science.gov (United States)

    Chiu, Yu-Chiao; Hsiao, Tzu-Hung; Chen, Yidong; Chuang, Eric Y

    2015-01-01

    In addition to direct targeting and repressing mRNAs, recent studies reported that microRNAs (miRNAs) can bridge up an alternative layer of post-transcriptional gene regulatory networks. The competing endogenous RNA (ceRNA) regulation depicts the scenario where pairs of genes (ceRNAs) sharing, fully or partially, common binding miRNAs (miRNA program) can establish coexpression through competition for a limited pool of the miRNA program. While the dynamics of ceRNA regulation among cellular conditions have been verified based on in silico and in vitro experiments, comprehensive investigation into the strength of ceRNA regulation in human datasets remains largely unexplored. Furthermore, pan-cancer analysis of ceRNA regulation, to our knowledge, has not been systematically investigated. In the present study we explored optimal conditions for ceRNA regulation, investigated functions governed by ceRNA regulation, and evaluated pan-cancer effects. We started by investigating how essential factors, such as the size of miRNA programs, the number of miRNA program binding sites, and expression levels of miRNA programs and ceRNAs affect the ceRNA regulation capacity in tumors derived from glioblastoma multiforme patients captured by The Cancer Genome Atlas (TCGA). We demonstrated that increased numbers of common targeting miRNAs as well as the abundance of binding sites enhance ceRNA regulation and strengthen coexpression of ceRNA pairs. Also, our investigation revealed that the strength of ceRNA regulation is dependent on expression levels of both miRNA programs and ceRNAs. Through functional annotation analysis, our results indicated that ceRNA regulation is highly associated with essential cellular functions and diseases including cancer. Furthermore, the highly intertwined ceRNA regulatory relationship enables constitutive and effective intra-function regulation of genes in diverse types of cancer. Using gene and microRNA expression datasets from TCGA, we successfully

  6. Primary central nervous system lymphoma: is absence of intratumoral hemorrhage a characteristic finding on MRI?

    Science.gov (United States)

    Sakata, Akihiko; Okada, Tomohisa; Yamamoto, Akira; Kanagaki, Mitsunori; Fushimi, Yasutaka; Dodo, Toshiki; Arakawa, Yoshiki; Takahashi, Jun C; Miyamoto, Susumu; Togashi, Kaori

    2015-06-01

    Previous studies have shown that intratumoral hemorrhage is a common finding in glioblastoma multi-forme, but is rarely observed in primary central nervous system lymphoma. Our aim was to reevaluate whether intratumoral hemorrhage observed on T2-weighted imaging (T2WI) as gross intratumoral hemorrhage and on susceptibility-weighted imaging as intratumoral susceptibility signal can differentiate primary central nervous system lymphoma from glioblastoma multiforme. A retrospective cohort of brain tumors from August 2008 to March 2013 was searched, and 58 patients (19 with primary central nervous system lymphoma, 39 with glioblastoma multiforme) satisfied the inclusion criteria. Absence of gross intratumoral hemorrhage was examined on T2WI, and an intratumoral susceptibility signal was graded using a 3-point scale on susceptibility-weighted imaging. Results were compared between primary central nervous system lymphoma and glioblastoma multiforme, and values of P central nervous system lymphoma and 23 patients (59%) with glioblastoma multiforme. Absence of gross intratumoral hemorrhage could not differentiate between the two disorders (P = 0.20). However, intratumoral susceptibility signal grade 1 or 2 was diagnostic of primary central nervous system lymphoma with 78.9% sensitivity and 66.7% specificity (P central nervous system lymphoma from glioblastoma multiforme. However, specificity in this study was relatively low, and primary central nervous system lymphoma cannot be excluded based solely on the presence of an intratumoral susceptibility signal.

  7. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    International Nuclear Information System (INIS)

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Hattori, Naoya; Magota, Keiichi; Tanaka, Shinya; Kuge, Yuji

    2012-01-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that 18 F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and 18 F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM

  8. Supratentorial primary intra-axial tumors in children. MR and CT evaluation

    International Nuclear Information System (INIS)

    Higano, S.; Takahashi, S.; Kurihara, N.; Singh, L.N.; Yamada, S.; Ishii, K.; Matsumoto, K.; Shirane, R.; Katakura, R.

    1997-01-01

    Purpose: To evaluate the MR and CT features of pediatric supratentorial intra-axial tumors with respect to different diagnosis and the role of each investigation modality. Material and Methods: MR and CT findings in 40 children with 12 types of pathologically proven histological tumors were reviewed. Results: The location of tumors might be one clue to differential diagnosis. In our material, cysts (60%), calcifications (45%), and intratumoral hemorrhages (27%) were found in the tumors. Characteristic features noted in some lesions included: peritumoral hemosiderin deposition in cavernous angiomas; intratumoral flow void in a choroid plexus carcinoma and in glioblastomas; and hemicerebral atrophy in germinomas. A comparison between malignant and benign tumors showed perifocal edema and a mass effect to be signifcantly more common in malignant lesions. Homogeneous enhancement suggested a benign tumor and an inhomogeneous pattern represented malignancy, while the lack of obvious enhancement did not always suggest benignity. Intratumoral calcium deposition was a not uncommon finding in malignant tumors. Conclusion: In most cases, the exact diagnosis should be made hy histological examination but it is important for treatment planning that the appropriate depiction of tumor extension and tissue characterization be made by MR and CT. (orig.)

  9. How specific is the MRI appearance of supratentorial atypical teratoid rhabdoid tumors?

    Energy Technology Data Exchange (ETDEWEB)

    Au Yong, Kong Jung; Jaremko, Jacob L.; Bhargava, Ravi [University of Alberta Hospital, Department of Radiology and Diagnostic Imaging, Edmonton (Canada); Jans, Lennart [Ghent University Hospital, Department of Radiology and Medical Imaging, Gent (Belgium); Coleman, Lee T. [University of Melbourne and Murdoch Children' s Research Institute, Department of Radiology and Pediatrics, Melbourne (Australia); Medical Imaging, Royal Children' s Hospital, Parkville (Australia); Mehta, Vivek [University of Alberta Hospital, Department of Neurosurgery, Edmonton (Canada); Ditchfield, Michael R. [Monash Children' s and Monash University, Monash Medical Centre, Diagnostic Imaging, Clayton (Australia)

    2013-03-15

    Supratentorial atypical teratoid rhabdoid tumor (ATRT) in many cases has a distinctive appearance on post-gadolinium MRI. We sought to determine whether this is a unique appearance allowing ATRT to be distinguished accurately from other types of pediatric supratentorial tumors. Retrospective review of all available preoperative MRI of pediatric supratentorial tumors at two tertiary children's hospitals, and systematic literature review of case series and reports describing the MRI imaging appearances of supratentorial ATRT. We had 61 supratentorial tumors, including 32 gliomas, 6 ATRT, 8 ependymomas, 6 gangliogliomas, 2 pilomyxoid astrocytomas, 3 primitive neuro-ectodermal tumors, 2 choroid plexus papillomas, and 2 meningiomas. ATRT presented in significantly younger patients than astrocytomas (mean age 2.6 years vs. 9.9 years, P < 0.05). The visual pattern of a thick, wavy (irregular) heterogeneously enhancing wall around a cystic center was seen in 5/6 (83%) ATRTs and only 3/55 (5.4%) other tumors (P < 0.0001), for specificity of 95%, sensitivity of 83%, positive predictive value of 63% and a negative predictive value of 95%. A supratentorial tumor with a thick, wavy (irregular) heterogeneously enhancing wall surrounding a central cystic region is suggestive of ATRT in the appropriate clinical setting, especially in a child of preschool age. (orig.)

  10. How specific is the MRI appearance of supratentorial atypical teratoid rhabdoid tumors?

    International Nuclear Information System (INIS)

    Au Yong, Kong Jung; Jaremko, Jacob L.; Bhargava, Ravi; Jans, Lennart; Coleman, Lee T.; Mehta, Vivek; Ditchfield, Michael R.

    2013-01-01

    Supratentorial atypical teratoid rhabdoid tumor (ATRT) in many cases has a distinctive appearance on post-gadolinium MRI. We sought to determine whether this is a unique appearance allowing ATRT to be distinguished accurately from other types of pediatric supratentorial tumors. Retrospective review of all available preoperative MRI of pediatric supratentorial tumors at two tertiary children's hospitals, and systematic literature review of case series and reports describing the MRI imaging appearances of supratentorial ATRT. We had 61 supratentorial tumors, including 32 gliomas, 6 ATRT, 8 ependymomas, 6 gangliogliomas, 2 pilomyxoid astrocytomas, 3 primitive neuro-ectodermal tumors, 2 choroid plexus papillomas, and 2 meningiomas. ATRT presented in significantly younger patients than astrocytomas (mean age 2.6 years vs. 9.9 years, P < 0.05). The visual pattern of a thick, wavy (irregular) heterogeneously enhancing wall around a cystic center was seen in 5/6 (83%) ATRTs and only 3/55 (5.4%) other tumors (P < 0.0001), for specificity of 95%, sensitivity of 83%, positive predictive value of 63% and a negative predictive value of 95%. A supratentorial tumor with a thick, wavy (irregular) heterogeneously enhancing wall surrounding a central cystic region is suggestive of ATRT in the appropriate clinical setting, especially in a child of preschool age. (orig.)

  11. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. class III beta-tubulin

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Dráberová, Eduarda; Legido, A.; Dumontet, C.; Dráber, Pavel

    2009-01-01

    Roč. 221, č. 3 (2009), s. 505-513 ISSN 0021-9541 R&D Projects: GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514 Keywords : Beta-II-tubulin * glioblastoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2009

  12. Investigating Ceria Nanocrystals Uptake by Glioblastoma Multiforme Cells and its Related Effects: An Electron Microscopy Study

    KAUST Repository

    Aloufi, Bader

    2017-01-22

    Cerium oxide nanoparticles have been utilized widely nowadays in cancer research. It has been suggested by many studies that these nanoparticles are capable of having dual antioxidant behavior in healthy and cancer microenvironment; where in physiological condition, they act as antioxidant and do not affect the healthy cells, while in tumor-like condition; they act as an oxidase, and result in a selective killing for the cancer cells. In this experiment, the interaction of nanoceria with glioblastoma and healthy astrocyte cells was examined, and further correlated with the in vitro cytotoxic effects of various nanoceria concentrations (100 and 300 µg/ml) and exposure times (12, 24, and 48 hours). Electron microscopes were used to investigate the cellular-NPs interactions, and to examine the related cytotoxic effects in combination with trypan blue and propidium iodide viability assays. Our data suggest the following results. First, the two cell lines demonstrated capability of taken up the ceria through endocytosis pathway, where the NPs were recognized engulfed by double membrane vesicles at various regions over the cellular cytoplasm. Secondly, cerium oxide nanoparticles were found to affect the glioblastoma cells, but not so severely the corresponding healthy astrocytes at the various concentrations and incubation times, as revealed by the viability assays and the electron microscopy analysis. Thirdly, the viability of the glioblastoma cells after the treatment displayed a declined trend when increasing the ceria concentrations, but did not show such dependency with regard to the different time points. In all cases, the healthy astrocyte cells showed slight alterations in mitochondrial shape which did not influence their viability. Among the various nanoceria concentrations and exposure times, the most efficient dose of treatment was found to be with a concentration of 300 µg/ml at a time point of 24-hour, where higher reduction on the viability of

  13. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  14. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  15. Supratentorial CNS malformations

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2012-01-01

    Full text: Clinical suspicion of a developmental anomaly of the central nervous system (CNS) is a frequent indication for performing and magnetic resonance imaging (MRI) examination of the brain. Classification systems for malformation of the CNS are constantly revised according to newer scientific research. Developmental abnormalities can be classified in two main types. The first category consists of disorders of organogenesis in which genetic defects or any ischemic, metabolic, toxic or infectious insult to the developing brain can cause malformation. These malformations result from abnormal neuronal and glial proliferation and from anomalies of neuronal migration and or cortical organization. They are divided into supra- and infratentorial and may involve grey or white matter or both. The second category of congenital brain abnormalities is disorders of histogenesis which result from abnormal cell differentiation with a relatively normal brain appearance. Supratentorial CNS malformations could be divided into anomalies in telencephalic commissure, holoprosencephalies and malformations in cortical development. There are three main telencephalic commissures: the anterior commissure, the hippocampal commissure and the corpus callosum. Their morphology (hypoplasia, hyperplasia, agenesis, dysgenesis, even atrophy) reflects the development of the brain. Their agenesis, complete or partial, is one of the most commonly observed features in the malformations of the brain and is a part of many syndromes. Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development. The common clinical presentation is refractory epilepsy and or developmental delay. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria, schizencephaly, pachygyria and lizencephaly. The exact knowledge of the brain anatomy and embryology is mandatory to provide a better apprehension of the

  16. A Retrospective Comparative Study of Concomitant Chemoradiotherapy followed by Adjuvant Temozolomide Versus Radiotherapy Alone In Newly Diagnosed Glioblastoma Multiforme - An Experience at Radium Institute, Patna Medical College and Hospital, India.

    Science.gov (United States)

    Raj, S; Pandit, P N; Kishor, K

    2016-01-01

    Glioblastoma Multiforme (WHO grade IV glioma) still remains a dreadful diagnosis in oncology with the median survival ranging between 12 to 17 months, despite the recent advances in its management. It is the most common malignant primary tumour in adults(13). The standard of care is Maximal Safe Resection followed by Concomitant ChemoRadiotherapy. During the period 2006 to 2010 at Radium Institute, Patna Medical College and Hospital (PMCH) in India, a study was conducted on 37 newly diagnosed GBM cases in which the control-arm (c-arm) received Conventional Radiotherapy (60Gy/30#) only whereas the study arm (s-arm) received Concomitant Chemoradiotherapy followed by Adjuvant Temozolomide. The median survival was 15.4 months in the s-arm as compared to 12.4 months in the c-arm. The OS showed a significant improvement with p-value of 0.05 and PFS also showed a benefit with a p-value of 0.005. The results were encouraging with improvement in OS as well as PFS in the s-arm and were at par with the other similar studies conducted in different parts of the world.

  17. A population-based study of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Paszat, Lawrence; Laperriere, Normand; Groome, Patti; Schulze, Karleen; Mackillop, William; Holowaty, Eric

    2001-01-01

    Purpose: To describe (1) the use of surgery and radiotherapy (RT) in the treatment of patients with glioblastoma (GBM) in Ontario, (2) survival, and (3) proportion of survival time spent in the hospital after diagnosis. Methods and Materials: We performed a population-based cohort study of all Ontario Cancer Registry (OCR) cases of GBM diagnosed between 1982 and 1994. We linked OCR records, hospital files containing surgical procedure codes from the Canadian Institute for Health Information, and province-wide RT records. We studied the odds of treatment using multivariate logistic regression. We expressed the time spent in the hospital as the mean number of days per case, and as a proportion of the interval between diagnosis and death, or 24 months following diagnosis, whichever came first. We used the life-table method and Cox proportional hazards regression to describe survival. Results: The proportion of patients with GBM undergoing any surgery directed at the tumor varied with age (p<0.0001) and region of residence (p<0.0001). The proportion undergoing RT varied with age (p<0.0001), region of residence (p<0.0001), and year of diagnosis (p=0.01). RT dose ≥53.5 Gy varied with age (p<0.0001), region of residence (p<0.0001), and year of diagnosis (p=0.0002). Median survival was 11 months among patients receiving RT and 3 months among those not receiving RT. The percentage of survival time spent in the hospital was similar among those who received from 49.5 to <53.5 Gy, compared to ≥53.5 Gy. Overall survival and the adjusted relative risk of death varied with age and region of residence. Conclusion: We observed practice variation in the treatment of patients with GBM according to age, region of residence, and year of diagnosis. Survival did not increase during the study period. The variation in RT dose between those receiving from 49.5 to <53.5 Gy compared to ≥53.5 Gy was not paralleled by variation in survival between regions where one or the other of the

  18. Erythema multiforme associated with gemfibrozil monotherapy.

    Science.gov (United States)

    Yaçsar, Hamiyet Yilmaz; Ertuğrul, Ozden; Deniz, Coçskun

    2010-01-01

    A case of erythema multiforme associated with gemfibrozil monotherapy. A 46-year-old man with hyperlipidemia was treated with 600 mg gemfibrozil twice a day. On the fifth day of treatment, skin lesions consistent with erythema multiforme appeared. With the discontinuation of the treatment and start of a topical steroid treatment, the lesions recovered after 4 weeks. After 6 months, when gemfibrozil therapy was restarted, lesions reappeared on the fourth day of therapy. Lesions recovered again following the previous treatment strategies after 4 weeks. An objective casualty assessment suggests that erythema multiforme was probably related to gemfibrozil monotherapy. Patients starting gemfibrozil therapy should be warned about the occurrence of erythema multiforme in addition to previous reported and established side effects.

  19. {sup 18}F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro [Graduate School of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Hattori, Naoya [Graduate School of Medicine, Hokkaido University, Department of Molecular Imaging, Sapporo (Japan); Magota, Keiichi [Hokkaido University Hospital, Department of Radiology, Sapporo (Japan); Tanaka, Shinya [Graduate School of Medicine, Hokkaido University, Department of Cancer Pathology, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan)

    2012-05-15

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that {sup 18}F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and {sup 18}F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p {<=} 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 {+-} 0.60, range 1.71-3.81) than in non-GBM patients (1.22 {+-} 0.06, range 1.09-1.29, p {<=} 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also

  20. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  1. SU-F-R-17: Advancing Glioblastoma Multiforme (GBM) Recurrence Detection with MRI Image Texture Feature Extraction and Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, V; Ruan, D; Nguyen, D; Kaprealian, T; Chin, R; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, along with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable

  2. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    International Nuclear Information System (INIS)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke

    2015-01-01

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  3. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Brittany A Goods

    Full Text Available Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1 have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM, the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25-CD127+Foxp3-effector cells in healthy subjects and in patients with GBM. In healthy subjects, we found that PD-1+CD4+ effector cells are dysfunctional: they do not proliferate but can secrete large quantities of IFNγ. Strikingly, blocking antibodies against PD-1 did not rescue proliferation. RNA-sequencing revealed features of exhaustion in PD-1+ CD4 effectors. In the context of GBM, tumors were enriched in PD-1+ CD4+ effectors that were similarly dysfunctional and unable to proliferate. Furthermore, we found enrichment of PD-1+TIM-3+ CD4+ effectors in tumors, suggesting that co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. RNA-sequencing of blood and tumors from GBM patients revealed distinct differences between CD4+ effectors from both compartments with enrichment in multiple gene sets from tumor infiltrating PD-1-CD4+ effectors cells. Enrichment of these gene sets in tumor suggests a more metabolically active cell state with signaling through other co-receptors. PD-1 expression on CD4 cells identifies a dysfunctional subset refractory to rescue with PD-1 blocking antibodies, suggesting that the influence of immune checkpoint inhibitors may involve recovery of function in the PD-1-CD4+ T cell compartment. Additionally, co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial.

  4. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  5. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  6. Stereological estimates of nuclear volume and other quantitative variables in supratentorial brain tumors. Practical technique and use in prognostic evaluation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Braendgaard, H; Chistiansen, A O

    1991-01-01

    The use of morphometry and modern stereology in malignancy grading of brain tumors is only poorly investigated. The aim of this study was to present these quantitative methods. A retrospective feasibility study of 46 patients with supratentorial brain tumors was carried out to demonstrate...... the practical technique. The continuous variables were correlated with the subjective, qualitative WHO classification of brain tumors, and the prognostic value of the parameters was assessed. Well differentiated astrocytomas (n = 14) had smaller estimates of the volume-weighted mean nuclear volume and mean...... nuclear profile area, than those of anaplastic astrocytomas (n = 13) (2p = 3.1.10(-3) and 2p = 4.8.10(-3), respectively). No differences were seen between the latter type of tumor and glioblastomas (n = 19). The nuclear index was of the same magnitude in all three tumor types, whereas the mitotic index...

  7. ω-3 and ω-6 Fatty Acids Modulate Conventional and Atypical Protein Kinase C Activities in a Brain Fatty Acid Binding Protein Dependent Manner in Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Marwa E. Elsherbiny

    2018-04-01

    Full Text Available Glioblastoma multiforme (GBM is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA to docosahexaenoic acid (DHA driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054 between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4% in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.

  8. Characterization of radioresistant variant from U251 human glioblastoma cell line and the role of antioxdant enzymes in its radioresistancy

    International Nuclear Information System (INIS)

    Lee, Hyung Chahn; Park, In Chul; Park, Myung Jin; Woo, Sang Hyeok; Rhee, Chang Hum; Hong, Seok-II

    2004-01-01

    To investigate the radioresistant mechanism in glioblastoma multiforme(GBM), we isolated the radioresistant clone (RRC) from U251 human glioblastoma cell line by exposing to repeated fractions of 3 Gy γ-radiation for six months. RRC had higher radioresistance than the parent cell line as measured by clonogenic survival assay. FACS analysis showed that RRC had a delayed G2 arrest after radiation. Antioxidant enzymes, such as SOD, catalase, glutathione peroxidase (GPX), glutathione reductase (GR), were activated up to 5 folds in RRC after radiation. Erk 1/2 activation was higher in RRC than in the parent cell. Therefore, radioresistancy in RRC might be due to the delayed cell cycle, the coordinated high activation of antioxidant enzyme rather than a single enzyme alone,and higher activation of Erk 1/2

  9. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture

    OpenAIRE

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mo...

  10. Biomimetic strategies for the glioblastoma microenvironment

    Science.gov (United States)

    Cha, Junghwa; Kim, Pilnam

    2017-12-01

    Glioblastoma multiforme (GBM) is a devastating type of tumor with high mortality, caused by extensive infiltration into adjacent tissue and rapid recurrence. Most therapies for GBM have focused on the cytotoxicity, and have not targeted GBM spread. However, there have been numerous attempts to improve therapy by addressing GBM invasion, through understanding and mimicking its behavior using three-dimensional (3D) experimental models. Compared with two-dimensional models and in vivo animal models, 3D GBM models can capture the invasive motility of glioma cells within a 3D environment comprising many cellular and non-cellular components. Based on tissue engineering techniques, GBM invasion has been investigated within a biologically relevant environment, from biophysical and biochemical perspectives, to clarify the pro-invasive factors of GBM. This review discusses the recent progress in techniques for modeling the microenvironments of GBM tissue and suggests future directions with respect to recreating the GBM microenvironment and preclinical applications.

  11. Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: Results of North Central Cancer Treatment Group protocol N0177

    International Nuclear Information System (INIS)

    Krishnan, Sunil; Brown, Paul D.; Ballman, Karla V.; Fiveash, John B.; Uhm, Joon H.; Giannini, Caterina; Jaeckle, Kurt A.; Geoffroy, Francois J.; Nabors, L. Burt; Buckner, Jan C.

    2006-01-01

    Purpose: To evaluate the toxicity and maximum tolerated dose (MTD) of erlotinib plus radiation therapy (RT) in patients with glioblastoma multiforme (GBM) in a multicenter phase I trial. Methods and Materials: Patients were stratified on the basis of the use of enzyme-inducing anticonvulsants (EIACs). After resection or biopsy, patients were treated with erlotinib for 1 week before concurrent erlotinib and 6 weeks (60 Gy) of RT and maintained on erlotinib until progression. The erlotinib dose was escalated in cohorts of 3 starting at 100 mg/day. Results: Twenty patients were enrolled and 19 were evaluable for the MTD and efficacy endpoints. Of these patients, 14 were males and 5 were females, with a median age of 54 years. Seven had undergone biopsy only, 5 had subtotal resections, and 7 had gross total resections. The highest dose level was 150 mg/day erlotinib for patients not on EIACs (Group 1) and 200 mg/day for patients on EIACs (Group 2). MTD was not reached in either group. In Group 1 at 100 mg (n = 6) and at 150 mg (n = 4), only 1 dose-limiting toxicity (DLT) occurred (stomatitis at 100 mg). No DLTs have occurred in Group 2 at 100 mg (n = 3), 150 mg (n = 3), and 200 mg (n = 3). With a median follow-up of 52 weeks, progression was documented in 16 patients and 13 deaths occurred. Median time to progression was 26 weeks, and median survival was 55 weeks. Conclusion: Toxicity is acceptable at the current doses of erlotinib plus RT. The study was modified to include concurrent and adjuvant temozolomide, and accrual is in progress

  12. Integration of gene expression and methylation to unravel biological networks in glioblastoma patients.

    Science.gov (United States)

    Gadaleta, Francesco; Bessonov, Kyrylo; Van Steen, Kristel

    2017-02-01

    The vast amount of heterogeneous omics data, encompassing a broad range of biomolecular information, requires novel methods of analysis, including those that integrate the available levels of information. In this work, we describe Regression2Net, a computational approach that is able to integrate gene expression and genomic or methylation data in two steps. First, penalized regressions are used to build Expression-Expression (EEnet) and Expression-Genomic or Expression-Methylation (EMnet) networks. Second, network theory is used to highlight important communities of genes. When applying our approach, Regression2Net to gene expression and methylation profiles for individuals with glioblastoma multiforme, we identified, respectively, 284 and 447 potentially interesting genes in relation to glioblastoma pathology. These genes showed at least one connection in the integrated networks ANDnet and XORnet derived from aforementioned EEnet and EMnet networks. Although the edges in ANDnet occur in both EEnet and EMnet, the edges in XORnet occur in EMnet but not in EEnet. In-depth biological analysis of connected genes in ANDnet and XORnet revealed genes that are related to energy metabolism, cell cycle control (AATF), immune system response, and several cancer types. Importantly, we observed significant overrepresentation of cancer-related pathways including glioma, especially in the XORnet network, suggesting a nonignorable role of methylation in glioblastoma multiforma. In the ANDnet, we furthermore identified potential glioma suppressor genes ACCN3 and ACCN4 linked to the NBPF1 neuroblastoma breakpoint family, as well as numerous ABC transporter genes (ABCA1, ABCB1) suggesting drug resistance of glioblastoma tumors. © 2016 WILEY PERIODICALS, INC.

  13. Radiation and misonidazole in children with brain stem gliomas and supratentorial glioblastoma

    International Nuclear Information System (INIS)

    Bloom, H.J.G.; Bugden, R.D.

    1982-01-01

    In a series of 484 children with intracranial tumors referred to the Royal Marsden Hospital for radiotherapy, there were 47 (12%) examples of inoperable pontine and medullary tumors for which the 5-year survival rate was 17%. The limited local tumor mass in brain stem tumors, the absence of cerebro-spinal or distant metastases, and their often initial good but short-lived response to irradiation, all support the trial of a chemical radiosensitizing agent with which to try and achieve greater and more prolonged local control of the disease. Since the prognosis for cerebral hemisphere glioblastoma, which is relatively uncommon in children, is also extremely poor, such cases were included in this pilot study. The problems and possible risks associated with combined radiotherapy and a chemical radiosensitizer in children with brain tumors is discussed. So far, 8 children with brain stem tumors and 3 children with cerebral hemisphere gliomas heave been treated in this study. In addtion, data is also available on 3 children re-treated for incurrent medulloblastomas. Preliminary observations regarding experience with this small series will be reported including blood misonidazole levels, drug tolerance and the possible influence of anticonvulsants and steriods on toxicity

  14. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme.

    Science.gov (United States)

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W S; Rauch, Bernhard H

    2016-03-15

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient´s survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient´s survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells.In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation.

  15. SU-F-R-42: Association of Radiomic and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Lopez, C; Nagornaya, N; Parra, N; Kwon, D; Ishkanian, F; Markoe, A; Maudsley, A; Stoyanova, R

    2016-01-01

    Purpose: High-throughput extraction of imaging and metabolomic quantitative features from MRI and MR Spectroscopy Imaging (MRSI) of Glioblastoma Multiforme (GBM) results in tens of variables per patient. In radiotherapy (RT) of GBM, the relevant metabolic tumor volumes (MTVs) are related to aberrant levels of N-acetyl Aspartate (NAA) and Choline (Cho). Corresponding Clinical Target Volumes (CTVs) for RT planning are based on Contrast Enhancing T1-weighted MRI (CE-T1w) and T2-weighted/Fluid Attenuated Inversion Recovery (FLAIR) MRI. The objective is to build a framework for investigation of associations between imaging, CTV, and MTV features better understanding of the underlying information in the CTVs and dependencies between these volumes. Methods: Necrotic portions, enhancing lesion and edema were manually contoured on T1w/T2w images for 17 GBM patients. CTVs and MTVs for NAA (MTV NAA ) and Cho (MTV Cho ) were constructed. Tumors were scored categorically for ten semantic imaging traits by neuroradiologist. All features were investigated for redundancy. Two-way correlations between imaging and RT/MTV features were visualized as heat maps. Associations between MTV NAA , MTV Cho and imaging features were studied using Spearman correlation. Results: 39 imaging features were computed per patient. Half of the imaging traits were replaced with automatically extracted continuous variables. 21 features were extracted from MTVs/CTVs. There were a high number (43) of significant correlations of imaging with CTVs/MTV NAA while very few (10) significant correlations were with CTVs/MTV Cho . MTV NAA was found to be closely associated with MRI volumes, MTV Cho remains elusive for characterization with imaging. Conclusion: A framework for investigation of co-dependency between MRI and RT/metabolic features is established. A series of semantic imaging traits were replaced with automatically extracted continuous variables. The approach will allow for exploration of relationships

  16. SU-F-R-42: Association of Radiomic and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, C; Nagornaya, N; Parra, N; Kwon, D; Ishkanian, F; Markoe, A; Maudsley, A; Stoyanova, R [University of Miami, Miami, Florida (United States)

    2016-06-15

    Purpose: High-throughput extraction of imaging and metabolomic quantitative features from MRI and MR Spectroscopy Imaging (MRSI) of Glioblastoma Multiforme (GBM) results in tens of variables per patient. In radiotherapy (RT) of GBM, the relevant metabolic tumor volumes (MTVs) are related to aberrant levels of N-acetyl Aspartate (NAA) and Choline (Cho). Corresponding Clinical Target Volumes (CTVs) for RT planning are based on Contrast Enhancing T1-weighted MRI (CE-T1w) and T2-weighted/Fluid Attenuated Inversion Recovery (FLAIR) MRI. The objective is to build a framework for investigation of associations between imaging, CTV, and MTV features better understanding of the underlying information in the CTVs and dependencies between these volumes. Methods: Necrotic portions, enhancing lesion and edema were manually contoured on T1w/T2w images for 17 GBM patients. CTVs and MTVs for NAA (MTV{sub NAA}) and Cho (MTV{sub Cho}) were constructed. Tumors were scored categorically for ten semantic imaging traits by neuroradiologist. All features were investigated for redundancy. Two-way correlations between imaging and RT/MTV features were visualized as heat maps. Associations between MTV{sub NAA}, MTV{sub Cho} and imaging features were studied using Spearman correlation. Results: 39 imaging features were computed per patient. Half of the imaging traits were replaced with automatically extracted continuous variables. 21 features were extracted from MTVs/CTVs. There were a high number (43) of significant correlations of imaging with CTVs/MTV{sub NAA} while very few (10) significant correlations were with CTVs/MTV{sub Cho}. MTV{sub NAA} was found to be closely associated with MRI volumes, MTV{sub Cho} remains elusive for characterization with imaging. Conclusion: A framework for investigation of co-dependency between MRI and RT/metabolic features is established. A series of semantic imaging traits were replaced with automatically extracted continuous variables. The approach will

  17. Supratentorial Ependymoma: Disease Control, Complications, and Functional Outcomes After Irradiation

    International Nuclear Information System (INIS)

    Landau, Efrat; Boop, Frederick A.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2013-01-01

    Purpose: Ependymoma is less commonly found in the supratentorial brain and has known clinical and molecular features that are unique. Our single-institution series provides valuable information about disease control for supratentorial ependymoma and the complications of supratentorial irradiation in children. Methods and Materials: A total of 50 children with newly diagnosed supratentorial ependymoma were treated with adjuvant radiation therapy (RT); conformal methods were used in 36 after 1996. The median age at RT was 6.5 years (range, 1-18.9 years). The entire group was characterized according to sex (girls 27), race (white 43), extent of resection (gross-total 46), and tumor grade (anaplastic 28). The conformal RT group was prospectively evaluated for neurologic, endocrine, and cognitive effects. Results: With a median follow-up time of 9.1 years from the start of RT for survivors (range, 0.2-23.2 years), the 10-year progression-free and overall survival were 73% + 7% and 76% + 6%, respectively. None of the evaluated factors was prognostic for disease control. Local and distant failures were evenly divided among the 16 patients who experienced progression. Eleven patients died of disease, and 1 of central nervous system necrosis. Seizure disorders were present in 17 patients, and 4 were considered to be clinically disabled. Clinically significant cognitive effects were limited to children with difficult-to-control seizures. The average values for intelligence quotient and academic achievement (reading, spelling, and math) were within the range of normal through 10 years of follow-up. Central hypothyroidism was the most commonly treated endocrinopathy. Conclusion: RT may be administered with acceptable risks for complications in children with supratentorial ependymoma. These results suggest that outcomes for these children are improving and that complications may be limited by use of focal irradiation methods

  18. Supratentorial Ependymoma: Disease Control, Complications, and Functional Outcomes After Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Efrat [Department of Radiation Oncology, Sheba Medical Center, Ramat Gan (Israel); Boop, Frederick A. [Department of Neurosurgery, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Conklin, Heather M. [Department of Psychology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: Ependymoma is less commonly found in the supratentorial brain and has known clinical and molecular features that are unique. Our single-institution series provides valuable information about disease control for supratentorial ependymoma and the complications of supratentorial irradiation in children. Methods and Materials: A total of 50 children with newly diagnosed supratentorial ependymoma were treated with adjuvant radiation therapy (RT); conformal methods were used in 36 after 1996. The median age at RT was 6.5 years (range, 1-18.9 years). The entire group was characterized according to sex (girls 27), race (white 43), extent of resection (gross-total 46), and tumor grade (anaplastic 28). The conformal RT group was prospectively evaluated for neurologic, endocrine, and cognitive effects. Results: With a median follow-up time of 9.1 years from the start of RT for survivors (range, 0.2-23.2 years), the 10-year progression-free and overall survival were 73% + 7% and 76% + 6%, respectively. None of the evaluated factors was prognostic for disease control. Local and distant failures were evenly divided among the 16 patients who experienced progression. Eleven patients died of disease, and 1 of central nervous system necrosis. Seizure disorders were present in 17 patients, and 4 were considered to be clinically disabled. Clinically significant cognitive effects were limited to children with difficult-to-control seizures. The average values for intelligence quotient and academic achievement (reading, spelling, and math) were within the range of normal through 10 years of follow-up. Central hypothyroidism was the most commonly treated endocrinopathy. Conclusion: RT may be administered with acceptable risks for complications in children with supratentorial ependymoma. These results suggest that outcomes for these children are improving and that complications may be limited by use of focal irradiation methods.

  19. Multifuntional Nanotherapeutics for the Combinatorial Drug and Gene Therapy in the Treatment of Glioblastoma Multiforme

    Science.gov (United States)

    Hourigan, Breanne

    Glioblastoma multiforme (GBM), a grade IV glioma, is the most common primary brain tumor, affecting about 3 out of 100,000 persons per year in the United States. GBM accounts for about 80% of primary malignant brain tumors, and is also the most aggressive of malignant brain tumors. With exhaustive treatment, survival only averages between 12 and 15 months, with a 2-year survival rate less than 25%. New therapeutic strategies are necessary to improve the outcomes of this disease. Chemotherapy with temozolomide (TMZ), a DNA alkylating agent, is used as a first-line of treatment for GBM. However, GBM tumors develop resistance to TMZ over time due to increased expression of O6-methylguanine-DNA methyltransferase (MGMT), a gene responsible for DNA repair. We previously developed cationic, amphiphilic copolymer poly(lactide-co-glycolide)-g-polyethylenimine (PgP) and demonstrated its utility for nucleic acid delivery. Here, we examine the ability of PgP polyplexes to overcome TMZ resistance and improve therapeutic efficacy through combination drug and gene therapy for GBM treatment. In this study, we evaluated the ability of PgP to deliver siRNA targeting to MGMT (siMGMT), a gene responsible for drug resistance in GBM. Our results demonstrated that PgP effectively forms stable complex with siRNA and protects siRNAs from heparin competition assay, serum- and ribonuclease-mediated degradation, confirming the potential of the polyplex for in vivo delivery. Results from MTT assays showed that PgP/siRNA polyplexes exhibited minimal cytotoxicity compared to untreated cells when incubated with T98G human GBM cells. We also demonstrated that PgP/siMGMT polyplexes mediate knockdown of MGMT protein as well as a significant ˜56% and ˜68% knockdown of MGMT mRNA in T98G GBM cells compared to cells treated with PgP complexed with non-targeting siRNA (siNT) at a 60:1 and 80:1 nitrogen:phosphate (N:P) ratio, respectively. Further, co-incubation of PgP/siMGMT polyplexes with TMZ

  20. Glioblastoma treated with postoperative radio-chemotherapy: Prognostic value of apparent diffusion coefficient at MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Fumiyuki; Sugiyama, Kazuhiko [Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Ohtaki, Megu [Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Takeshima, Yukio [Department of Pathology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Abe, Nobukazu; Akiyama, Yuji; Takaba, Junko [Department of Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Amatya, Vishwa Jeet [Department of Pathology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Saito, Taiichi; Kajiwara, Yoshinori; Hanaya, Ryosuke [Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Kurisu, Kaoru [Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan)], E-mail: kuka422@hiroshima-u.ac.jp

    2010-03-15

    Purpose: To retrospectively evaluate whether the mean, minimum, and maximum apparent diffusion coefficient (ADC) of glioblastomas obtained from pretreatment MR images is of prognostic value in patients with glioblastoma. Materials and methods: The institutional review board approved our study and waived the requirement for informed patient consent. Between February 1998 and January 2006, 33 patients (24 males, 9 females; age range 10-76 years) with supratentorial glioblastoma underwent pretreatment magnetic resonance (MR) imaging. The values of the mean, minimum, and maximum ADC (ADC{sub mean}, ADC{sub MIN}, and ADC{sub MAX}, respectively) of each tumor were preoperatively determined from several regions of interest defined in the tumors. After surgical intervention, all patients underwent irradiation and chemotherapy performed according to our hospital protocol. The patient age, symptom duration, Karnofsky performance scale score, extent of surgery, and ADC were assessed using factor analysis of overall survival. Prognostic factors were evaluated using Kaplan-Meier survival curves, the log-rank test, and multiple regression analysis with the Cox proportional hazards model. Results: Likelihood ratio tests confirmed that ADC{sub MIN} was the strongest among the three prognostic factors. Total surgical removal was the most important predictive factor for overall survival (P < 0.01). ADC{sub MIN} was also statistically correlated with overall survival (P < 0.05) and could be used to classify patients into different prognostic groups. Interestingly, ADC{sub MIN} was also the strongest prognostic factor (P < 0.01) in the group of patients in whom total tumor removal was not possible. Conclusion: The ADC{sub MIN} value obtained from pretreatment MR images is a useful clinical prognostic biomarker in patients with glioblastoma.

  1. Extensive Supratentorial Hemorrhages Following Posterior Fossa ...

    African Journals Online (AJOL)

    Remote supratentorial hematoma soon after posterior fossa surgery for the removal of a space-occupying lesion is a rare but dramatic and dreaded complication, carrying significant morbidity and mortality. A 47-year-old woman presented with headache of 1-year duration that worsened over last 2 months, progressive ...

  2. Computed tomography of benign supratentorial astrocytomas of infancy and childhood

    International Nuclear Information System (INIS)

    Pedersen, H.; Gjerris, F.; Klinken, L.

    1981-01-01

    The CT findings of 15 benign supratentorial astrocytomas in children less than 15 years of age are compared with the CT findings of 19 supratentorial tumors of other histological types in the same age group. Astrocytomas were more often hypodense, lacked calcification and showed greater contrast enhancement than other tumors. Seven of the 15 astrocytomas were hypodense, without calcification and showed contrast enhancement of more than 10 Hounsfield units, whereas this coexistence was not present in any of the 19 tumors of the other histological types. (orig.)

  3. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity.

    Science.gov (United States)

    Schijns, Virgil E J C; Pretto, Chrystel; Devillers, Laurent; Pierre, Denis; Hofman, Florence M; Chen, Thomas C; Mespouille, Pascal; Hantos, Peter; Glorieux, Philippe; Bota, Daniela A; Stathopoulos, Apostolos

    2015-05-28

    Glioblastoma multiforme (GBM) patients have a poor prognosis. After tumor recurrence statistics suggest an imminent death within 1-4.5 months. Supportive preclinical data, from a rat model, provided the rational for a prototype clinical vaccine preparation, named Gliovac (or ERC 1671) composed of autologous antigens, derived from the patient's surgically removed tumor tissue, which is administered together with allogeneic antigens from glioma tissue resected from other GBM patients. We now report the first results of the Gliovac treatment for treatment-resistant GBM patients. Nine (9) recurrent GBM patients, after standard of care treatment, including surgery radio- and chemotherapy temozolomide, and for US patients, also bevacizumab (Avastin™), were treated under a compassionate use/hospital exemption protocol. Gliovac was given intradermally, together with human GM-CSF (Leukine(®)), and preceded by a regimen of regulatory T cell-depleting, low-dose cyclophosphamide. Gliovac administration in patients that have failed standard of care therapies showed minimal toxicity and enhanced overall survival (OS). Six-month (26 weeks) survival for the nine Gliovac patients was 100% versus 33% in control group. At week 40, the published overall survival was 10% if recurrent, reoperated patients were not treated. In the Gliovac treated group, the survival at 40 weeks was 77%. Our data suggest that Gliovac has low toxicity and a promising efficacy. A phase II trial has recently been initiated in recurrent, bevacizumab naïve GBM patients (NCT01903330). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. In vivo radiation sensitivity of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Taghian, Alphonse; Freeman, Jill; Suit, Herman; DuBois, Willem; Budach, Wilfried; Baumann, Michael

    1995-01-01

    Purpose: Human glioblastoma (GBM) is one of the most resistant tumors to radiation. In previous reports, we have demonstrated a wide range of radiation sensitivity of GBM in vitro; that is, SF 2 values of 0.2 to 0.8. The great sensitivity of some of the cell lines is not in accord with the almost invariably fatal clinical outcome of patients with GBM. The sensitivity of cells in vitro pertains to cells cultured in optimal nutritional conditions. The TCD 50 (the radiation dose necessary to control 50% of the tumors locally) determined in lab animals is analogous to the use of radiation with curative intent in clinical radiation oncology. The aim of the present study was (a) to evaluate the sensitivity of GBM in vivo relative to that of other tumor types and (b) assess the relationship between the single dose TCD 50 of the xenografts and the sensitivity of the corresponding cell lines in vitro. Methods and Materials: The TCD 50 assay was used to study twelve human tumor lines. Four previously published values were added. A total of 10 GBM, 4 squamous cell carcinoma (SCC), 1 soft tissue sarcoma (STS), and 1 cancer colon (CC) are included in the analysis. For further suppression of the residual immune system, all the animals received 6 Gy whole-body irradiation 1 day before transplantation. Local tumor irradiations were given as a single dose, under conditions of clamp hypoxia using a Cs irradiator. Results: The TCD 50 values for the 10 GBM xenografts varied between 32.5 and 75.2 Gy, with an average of 47.2 ± 13.1 Gy. The TCD 50 values for the SCC were similar to those of the GBM and ranged from 40.7 and 54.4 Gy, with a mean of 46.8 ± 6.4. The difference between the average TCD 50 of GBM and SCC was not significant. The STS and CC xenografts had TCD 50 values of 46.0 and 49.2 Gy, respectively. No correlation was found between the TCD 50 in vivo and the SF 2 or D 0 in vitro. Conclusions: Our data on GBM xenografts showed a wide range of sensitivities to single dose

  5. In vivo radiation sensitivity of glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Taghian, Alphonse; Freeman, Jill; Suit, Herman; DuBois, Willem; Budach, Wilfried; Baumann, Michael

    1995-04-30

    Purpose: Human glioblastoma (GBM) is one of the most resistant tumors to radiation. In previous reports, we have demonstrated a wide range of radiation sensitivity of GBM in vitro; that is, SF{sub 2} values of 0.2 to 0.8. The great sensitivity of some of the cell lines is not in accord with the almost invariably fatal clinical outcome of patients with GBM. The sensitivity of cells in vitro pertains to cells cultured in optimal nutritional conditions. The TCD{sub 50} (the radiation dose necessary to control 50% of the tumors locally) determined in lab animals is analogous to the use of radiation with curative intent in clinical radiation oncology. The aim of the present study was (a) to evaluate the sensitivity of GBM in vivo relative to that of other tumor types and (b) assess the relationship between the single dose TCD{sub 50} of the xenografts and the sensitivity of the corresponding cell lines in vitro. Methods and Materials: The TCD{sub 50} assay was used to study twelve human tumor lines. Four previously published values were added. A total of 10 GBM, 4 squamous cell carcinoma (SCC), 1 soft tissue sarcoma (STS), and 1 cancer colon (CC) are included in the analysis. For further suppression of the residual immune system, all the animals received 6 Gy whole-body irradiation 1 day before transplantation. Local tumor irradiations were given as a single dose, under conditions of clamp hypoxia using a Cs irradiator. Results: The TCD{sub 50} values for the 10 GBM xenografts varied between 32.5 and 75.2 Gy, with an average of 47.2 {+-} 13.1 Gy. The TCD{sub 50} values for the SCC were similar to those of the GBM and ranged from 40.7 and 54.4 Gy, with a mean of 46.8 {+-} 6.4. The difference between the average TCD{sub 50} of GBM and SCC was not significant. The STS and CC xenografts had TCD{sub 50} values of 46.0 and 49.2 Gy, respectively. No correlation was found between the TCD{sub 50} in vivo and the SF{sub 2} or D{sub 0} in vitro. Conclusions: Our data on GBM

  6. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    International Nuclear Information System (INIS)

    Zhou, Wenchao; Bao, Shideng

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described

  7. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenchao; Bao, Shideng, E-mail: baos@ccf.org [Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2014-03-26

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.

  8. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Energy Technology Data Exchange (ETDEWEB)

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: Bernard.Register@ulg.ac.be [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)

    2013-08-14

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  9. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    International Nuclear Information System (INIS)

    Goffart, Nicolas; Kroonen, Jérôme; Rogister, Bernard

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology

  10. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Directory of Open Access Journals (Sweden)

    Nicolas Goffart

    2013-08-01

    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  11. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence

    Science.gov (United States)

    Auffinger, Brenda; Spencer, Drew; Pytel, Peter; Ahmed, Atique U.; Lesniak, Maciej S.

    2016-01-01

    Glioma stem cells (GSCs) constitute a slow-dividing, small population within a heterogeneous glioblastoma. They are able to self-renew, recapitulate a whole tumor, and differentiate into other specific GBM subpopulations. Therefore, they have been held responsible for malignant relapse after primary standard therapy and the poor prognosis of recurrent GBM. The failure of current therapies to eliminate specific GSC subpopulations has been considered a major factor contributing to the inevitable recurrence in GBM patients following treatment. Here, we discuss the molecular mechanisms of chemoresistance of GSCs and the reasons why complete eradication of GSCs is so difficult to achieve. We will also describe the targeted therapies currently available towards GSCs and possible mechanisms to overcome such chemoresistance and avoid therapeutic relapse. PMID:26027432

  12. Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, R.A. (Dept. of Nuclear Medicine, Middelheim Hospital, Antwerp (Belgium)); Martin, J.J. (Dept. of Neurology, University Hospital, Antwerp (Belgium) Lab. of Neuropathology, Born-Bunge Foundation, Univ. of Antwerp (Belgium)); Dobbeleir, A. (Dept. of Nuclear Medicine, Middelheim Hospital, Antwerp (Belgium)); Crols, R. (Dept. of Neurology, Middelheim Hospital, Antwerp (Belgium)); Neetens, I. (Dept. of Pathology, Middelheim Hospital, Antwerp (Belgium)); Deyn, P.P. de (Lab. of Neuropathology, Born-Bunge Foundation, Univ. of Antwerp (Belgium) Lab. of Neurochemistry and Behaviour, Born-Bunge Foundation, Univ. of Antwerp (Belgium))

    1994-07-01

    Histologically tumours consisted of astrocytoma stage I or II, astrocytoma stage III, glioblastoma multiforme and oligodendroglioma, brain metastasis, lymphoma, meningioma, pituitary adenoma, pineal tumour, colloid cyst and craniopharyngioma. False-negative studies included pineal tumour, colloid cyst, craniopharyngioma, astrocytomas stage I or II and stage III, oligodendroglioma and metastasis in the brain stem. Additional metastases approximately < 1.5 cm were not detected in two patients and [sup 201]Tl SPET underestimated tumoral extent in one patient suffering from glioblastoma multiforme. A false-positive study was obtained in a patient with skull metastasis. All 15 patients who were finally shown to suffer from ischaemic infarction had a normal SPET study 9-28 days after the onset of symptomatology. Of five patients with haemorrhagic infarction, studied within 2 weeks, four were false-positive. Of six patients with intracranial haemorrhage, studied 9-39 days later, one showed focal [sup 201]Tl accumulation. Two further false-positive studies consisted of angioma and epidural haematoma. Finally, SPET studies were normal in six patients with definite diagnosis of (reactive) gliosis, Binswanger's encephalopathy, postinfectious encephalopathy and multiple sclerosis. In the patient population presented, sensitivity of [sup 201]Tl SPET for supratentorial brain tumours was 71.7% and specificity was 80.9%. Clinical information and control SPET studies in combination with early, 30-min and 3- to 4-h delayed imaging may be expected to improve on these figures. On the other hand it seems that, in addition to tumoral histology, the presence of tumours in the fossa posterior and small volumes contribute to the occurrence of false-negative [sup 201]Tl SPET studies. (orig.)

  13. Mesothelin as a novel biomarker and immunotherapeutic target in human glioblastoma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Rao, Martin; Poiret, Thomas

    2017-01-01

    Glioblastoma multiforme (GBM) presents the most malignant form of glioma, with a 5-year survival rate below 3% despite standard therapy. Novel immune-based therapies in improving treatment outcomes in GBM are therefore warranted. Several molecularly defined targets have been identified mediating...... anti-GBM cellular immune responses. Mesothelin is a tumor-associated antigen (TAA) which is expressed in several solid tumors with different histology. Here, we report the immunological significance of mesothelin in human malignant glioma. Expression of mature, surface-bound mesothelin protein...... was found to bein human GBM defined by immunofluorescence microscopy, and on freshly isolated, single cell suspension of GBM tumor cells and GBM tumor cell lines, determined by based on flow cytometric analysis. Peripheral blood (PB) from patients with GBM, stimulated with mesothelin peptides and IL-2, IL...

  14. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide

    DEFF Research Database (Denmark)

    Dresemann, G.; Weller, M.; Ostenfeld-Rosenthal, Ann Maria

    2010-01-01

    A randomized, multicenter, open-label, phase 3 study of patients with progressive, recurrent glioblastoma multiforme (GBM) for whom front-line therapy had failed was conducted. This study was designed to determine whether combination therapy with imatinib and hydroxyurea (HU) has superior antitumor...... activity compared with HU monotherapy in the treatment of recurrent GBM. The target population consisted of patients with confirmed recurrent GBM and an Eastern Cooperative Oncology Group performance status of 0-2 who had completed previous treatment comprising surgical resection, irradiation therapy...

  15. Association of the CC genotype of the regulatory BCL2 promoter polymorphism (-938C>A) with better 2-year survival in patients with glioblastoma multiforme.

    Science.gov (United States)

    El Hindy, Nicolai; Bachmann, Hagen S; Lambertz, Nicole; Adamzik, Michael; Nückel, Holger; Worm, Karl; Zhu, Yuan; Sure, Ulrich; Siffert, Winfried; Sandalcioglu, I Erol

    2011-06-01

    Bcl-2 plays a key role in the downregulation of apoptosis and proliferation and leads to increased chemoresistance in glioblastoma multiforme (GBM). The authors investigated the role of a common regulatory single-nucleotide polymorphism (-938C>A), which is located in the inhibitory P2 promoter of BCL2. Data from 160 patients suffering from GBM were retrospectively evaluated. Study inclusion criteria consisted of available DNA and, in patients still alive, a follow-up of at least 24 months. Results were analyzed with respect to the basic clinical data, type of surgical intervention (gross-total resection [GTR] versus stereotactic biopsy [SB]), adjuvant therapy, MGMT promoter methylation, and survival at the 2-year follow-up. At the 2-year follow-up, 127 (79.4%) of the 160 patients had died. Kaplan-Meier curves revealed a significantly higher rate of survival for homo- and heterozygous C-allele carriers (p = 0.031). In the GTR group, the survival rate was 47.1% for homozygous C-allele carriers, 32.0% for heterozygous C-allele carriers, and only 21.4% for homozygous A-allele carriers (p = 0.024). The SB group showed no genotype-dependent differences. Multivariable Cox regression revealed that the BCL2 (-938AA) genotype was an independent negative prognostic factor for 2-year survival in the GTR group according to the BCL2 (-938CC) genotype reference group (hazard ratio 2.50, 95% CI 1.14-5.48, p = 0.022). These results suggested that the (-938C>A) polymorphism is a survival prognosticator as well as a marker for a high-risk group among patients with GBM who underwent GTR.

  16. Clinical Course and Outcomes of Small Supratentorial Intracerebral Hematomas.

    Science.gov (United States)

    Behrouz, Réza; Misra, Vivek; Godoy, Daniel A; Topel, Christopher H; Masotti, Luca; Klijn, Catharina J M; Smith, Craig J; Parry-Jones, Adrian R; Slevin, Mark A; Silver, Brian; Willey, Joshua Z; Masjuán Vallejo, Jaime; Nzwalo, Hipólito; Popa-Wagner, Aurel; Malek, Ali R; Hafeez, Shaheryar; Di Napoli, Mario

    2017-06-01

    Intracerebral hemorrhage (ICH) volume, particularly if ≥30 mL, is a major determinant of poor outcome. We used a multinational ICH data registry to study the characteristics, course, and outcomes of supratentorial hematomas with volumes hematoma expansion, Glasgow Outcome Scale (GOS), and in-hospital death. Poor outcome was defined as composite of in-hospital death and severe disability (GOS ≤ 3). Comparison was conducted based on hemorrhage location. Logistic regression using dichotomized outcome scales was applied to determine predictors of poor outcome. Among 375 cases of supratentorial ICH with volumes hematomas <30 mL expands, leading to END or death. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. Diversity of cytogenetic and pathohistologic profiles in glioblastoma.

    Science.gov (United States)

    Hassler, Marco; Seidl, Sonja; Fazeny-Doerner, Barbara; Preusser, Matthias; Hainfellner, Johannes; Rössler, Karl; Prayer, Daniela; Marosi, Christine

    2006-04-01

    We present a small series of patients with primary glioblastoma multiforme (GBM), and combine individual genetic data with pathohistologic characteristics and clinical outcome. Eighteen patients (12 men, 6 women, median age 51 years) with histologically proven GBM underwent surgical debulking followed by radiotherapy. Fifteen received concomitant chemotherapy. Histologic typing, immunohistochemistry for CD34, karyotypic analysis, and classification of the pattern of neovascularization was done in all patients. In 12/18, we performed methylation-specific polymerase chain reaction of the MGMT gene (O-6-methylguanine-DNA methyltransferase). The survival duration of patients spanned 3-58 months. By classical banding methods, 15/18 patients showed at least one aberration characteristic for primary glioblastoma (+7 in 7/18, deletions of 9p in 10/18 and -10 or deletions from 10q in 8/18 patients). We could not assess whether patients who survived for longer periods showed less complex or fewer aberrations than the patients who survived less than one year. Losses of 6p21(VEGF), 4q27(bFGF), and 12p11 approximately p13 (ING4) were associated with the "bizarre" pattern of neoangiogenesis. Methylation of the MGMT promoter was found in 3/12 patients. Even in this small series, the main characteristic of GBM was its diversity regarding all investigated histologic and genetic characteristics. This extreme diversity should be considered in the design of targeted therapies in GBM.

  18. The value of CT-scanning in supratentorial haemangioblastomas

    International Nuclear Information System (INIS)

    Pinto, J.A.; Pereira, J.R.; Guimaraes, A.; Veiga-Pires, J.A.

    1987-01-01

    The authors describe a case of supratentorial haemangioblastoma, presenting with epileptic fits, without association with polyoythemia, or Von Hippel-Lindau syndrome, which, if present, would have given a clinical clue as to the nature of the lesion. (orig.)

  19. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma

    International Nuclear Information System (INIS)

    Geng Ling; Shinohara, Eric T.; Kim, Dong; Tan Jiahuai; Osusky, Kate; Shyr, Yu; Hallahan, Dennis E.

    2006-01-01

    Purpose: Glioblastoma multiforme (GBM) is a devastating brain neoplasm that is essentially incurable. Although radiation therapy prolongs survival, GBMs progress within areas of irradiation. Recent studies in invertebrates have shown that STI571 (Gleevec; Novartis, East Hanover, NJ) enhances the cytotoxicity of ionizing radiation. In the present study, the effectiveness of STI571 in combination with radiation was studied in mouse models of GBM. Methods and Materials: Murine GL261 and human D54 GBM cell lines formed tumors in brains and hind limbs of C57BL6 and nude mice, respectively. GL261 and D54 cells were treated with 5 μmol/L of STI571 for 1 h and/or irradiated with 3 Gy. Protein was analyzed by Western immunoblots probed with antibodies to caspase 3, cleaved caspase 3, phospho-Akt, Akt, and platelet-derived growth factor receptor (PDGFR) α and β. Tumor volumes were assessed in mice bearing GL261 or D54 tumors treated with 21 Gy administered in seven fractionated doses. Histologic sections from STI571-treated mice were stained with phospho-Akt and phospho-PDGFR β antibodies. Kaplan-Meier survival curves were used to study the response of mice bearing intracranial implants of GL261. Results: STI571 penetrated the blood-brain barrier, which resulted in a reduction in phospho-PDGFR in GBM. STI571-induced apoptosis in GBM was significantly enhanced by irradiation. STI571 combined with irradiation induced caspase 3 cleavage in GBM cells. Glioblastoma multiforme response to therapy correlated with an increase in tumor growth delay and survival when STI571 was administered in conjunction with daily irradiation. Conclusion: These findings suggest that STI571 has the potential to augment radiotherapy and thereby improve median survival

  20. MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IκBα both in vitro and in vivo

    KAUST Repository

    Yang, Guang

    2014-01-23

    BackgroundRecent studies have revealed that miR-196a is upregulated in glioblastoma multiforme (GBM) and that it correlates with the clinical outcome of patients with GBM. However, its potential regulatory mechanisms in GBM have never been reported.MethodsWe used quantitative real-time PCR to assess miR-196a expression levels in 132 GBM specimens in a single institution. Oncogenic capability of miR-196a was detected by apoptosis and proliferation assays in U87MG and T98G cells. Immunohistochemistry was used to determine the expression of IκBα in GBM tissues, and a luciferase reporter assay was carried out to confirm whether IκBα is a direct target of miR-196a. In vivo, xenograft tumors were examined for an antiglioma effect of miR-196a inhibitors.ResultsWe present for the first time evidence that miR-196a could directly interact with IκBα 3′-UTR to suppress IκBα expression and subsequently promote activation of NF-κB, consequently promoting proliferation of and suppressing apoptosis in GBM cells both in vitro and in vivo. Our study confirmed that miR-196a was upregulated in GBM specimens and that high levels of miR-196a were significantly correlated with poor outcome in a large cohort of GBM patients. Our data from human tumor xenografts in nude mice treated with miR-196 inhibitors demonstrated that inhibition of miR-196a could ameliorate tumor growth in vivo.ConclusionsMiR-196a exerts its oncogenic effect in GBM by inhibiting IκBα both in vitro and in vivo. Our findings provide new insights into the pathogenesis of GBM and indicate that miR-196a may predict clinical outcome of GBM patients and serve as a new therapeutic target for GBM. © 2014 © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Rare Infratentorial and Supratentorial Localization of Juvenile Angiofibroma: A Case Report.

    Science.gov (United States)

    Pašalić, Ivan; Trninić, Ines; Nemir, Jakob; Jednačak, Hrvoje; Žarković, Kamelija; Mrak, Goran

    2016-01-01

    Angiofibromas are rare tumors of the head and neck that mostly occur in the sphenopalatine region. We present a case of angiofibroma in a young male patient with an unusual and extremely rare localization, which to our knowledge has not been described before. It was situated in the tentorium and spread to the supratentorial and infratentorial regions. The patient initially presented with symptoms of increased intracranial pressure. After a diagnostic evaluation was done, the whole tumor was successfully removed using the supratentorial and infratentorial approach and the microsurgical technique. © 2016 S. Karger AG, Basel.

  2. Long-Term Survival after Gamma Knife Radiosurgery in a Case of Recurrent Glioblastoma Multiforme: A Case Report and Review of the Literature

    Science.gov (United States)

    Thumma, Sudheer R.; Elaimy, Ameer L.; Daines, Nathan; Mackay, Alexander R.; Lamoreaux, Wayne T.; Fairbanks, Robert K.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.

    2012-01-01

    The management of recurrent glioblastoma is highly challenging, and treatment outcomes remain uniformly poor. Glioblastoma is a highly infiltrative tumor, and complete surgical resection of all microscopic extensions cannot be achieved at the time of initial diagnosis, and hence local recurrence is observed in most patients. Gamma Knife radiosurgery has been used to treat these tumor recurrences for select cases and has been successful in prolonging the median survival by 8–12 months on average for select cases. We present the unique case of a 63-year-old male with multiple sequential recurrences of glioblastoma after initial standard treatment with surgery followed by concomitant external beam radiation therapy and chemotherapy (temozolomide). The patient was followed clinically as well as with surveillance MRI scans at every 2-3-month intervals. The patient underwent Gamma Knife radiosurgery three times for 3 separate tumor recurrences, and the patient survived for seven years following the initial diagnosis with this aggressive treatment. The median survival in patients with recurrent glioblastoma is usually 8–12 months after recurrence, and this unique case illustrates that aggressive local therapy can lead to long-term survivors in select situations. We advocate that each patient treatment at the time of recurrence should be tailored to each clinical situation and desire for quality of life and improved longevity. PMID:22548078

  3. Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme.

    Science.gov (United States)

    Kim, Young-Hoon; Kim, Tackeun; Joo, Jin-Deok; Han, Jung Ho; Kim, Yu Jung; Kim, In Ah; Yun, Chang-Ho; Kim, Chae-Yong

    2015-09-01

    A chemosensitizing effect of levetiracetam (LEV) has been suggested because LEV inhibits O-6 methylguanine-DNA methyltransferase (MGMT). However, the survival benefit of LEV has not been clinically documented. The objective of this study was to assess the survival benefit of LEV compared with other antiepileptic drugs as a chemosensitizer to temozolomide for patients with glioblastoma. In total, 103 consecutive patients with primary glioblastoma who received concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide were retrospectively reviewed, and 58 patients (56%) received LEV during temozolomide chemotherapy for at least 3 months. A Cox regression survival analysis was performed to adjust for confounding factors, including age, extent of lesion, Karnofsky performance scale score, extent of removal, and MGMT promoter methylation status. The median progression-free survival (PFS) and overall survival (OS) for patients who received LEV in combination with temozolomide (PFS: median, 9.4 months; 95% confidence interval [CI], 7.5-11.3 months; OS: median, 25.7 months; 95% CI, 21.7-29.7 months) were significantly longer than those for patients who did not receive LEV (PFS: median, 6.7 months; 95% CI, 5.8-7.6 months; OS: median, 16.7 months; 95% CI, 12.1-21.3 months; P = .010 and P = .027, respectively). In multivariate analysis, the variables that were identified as significant prognostic factors for OS were preoperative Karnofsky performance scale score (hazard ratio [HR], 0.37; P = .016), MGMT promoter methylation (HR, 0.30; P = .002), and receipt of LEV (HR, 0.31; P benefit in patients with glioblastoma who receive temozolomide-based chemotherapy. A prospective randomized study may be indicated. © 2015 American Cancer Society.

  4. Atividade antiproliferativa e antineoplásica de flavonóides da espécie Brosimum acutifolium em modelo de glioblastoma in vitro

    OpenAIRE

    MAUÉS, Luis Antônio Loureiro

    2013-01-01

    Dentre os tumores que acometem o sistema nervoso, o glioblastoma multiforme (GBM), destaca-se por seu alto grau de agressividade e baixo prognóstico, apresentando em média uma sobrevida de 15 meses a partir do diagnóstico. O presente estudo objetivou investigar a atividade antiproliferativa e antineoplásica de quatro flavonoides isolados da espécie Brosimum acutifolium (Huber), duas flavanas: 4’-hidroxi-7,8-(2”,2”-dimetilpirano) flavana (BAS-1) e 7,4’-dihidroxi-8,(3,3-dimetilalil)-flavana, (B...

  5. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  6. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  7. Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling

    Directory of Open Access Journals (Sweden)

    Hernández-Moneo Jose-Luis

    2006-09-01

    Full Text Available Abstract Background Conventional cytogenetic and comparative genomic hybridization (CGH studies in brain malignancies have shown that glioblastoma multiforme (GBM is characterized by complex structural and numerical alterations. However, the limited resolution of these techniques has precluded the precise identification of detailed specific gene copy number alterations. Results We performed a genome-wide survey of gene copy number changes in 20 primary GBMs by CGH on cDNA microarrays. A novel amplicon at 4p15, and previously uncharacterized amplicons at 13q32-34 and 1q32 were detected and are analyzed here. These amplicons contained amplified genes not previously reported. Other amplified regions containg well-known oncogenes in GBMs were also detected at 7p12 (EGFR, 7q21 (CDK6, 4q12 (PDGFRA, and 12q13-15 (MDM2 and CDK4. In order to identify the putative target genes of the amplifications, and to determine the changes in gene expression levels associated with copy number change events, we carried out parallel gene expression profiling analyses using the same cDNA microarrays. We detected overexpression of the novel amplified genes SLA/LP and STIM2 (4p15, and TNFSF13B and COL4A2 (13q32-34. Some of the candidate target genes of amplification (EGFR, CDK6, MDM2, CDK4, and TNFSF13B were tested in an independent set of 111 primary GBMs by using FISH and immunohistological assays. The novel candidate 13q-amplification target TNFSF13B was amplified in 8% of the tumors, and showed protein expression in 20% of the GBMs. Conclusion This high-resolution analysis allowed us to propose novel candidate target genes such as STIM2 at 4p15, and TNFSF13B or COL4A2 at 13q32-34 that could potentially contribute to the pathogenesis of these tumors and which would require futher investigations. We showed that overexpression of the amplified genes could be attributable to gene dosage and speculate that deregulation of those genes could be important in the development

  8. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.

    Science.gov (United States)

    Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis

    2004-01-01

    Despite major advances in treatment modalities, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. Exploring hypofractionated regimens to replace the standard 6-week radiotherapy schedule is an attractive strategy as an attempt to prevent accelerated tumor cell repopulation. There is equally interest in dose escalation to the gross tumor volume where the majority of failures occur. We report our preliminary results using hypofractionated intensity-modulated accelerated radiotherapy regimen in the treatment of patients with GBM. Between July 1998 and December 2001, 25 patients with histologically proven diagnosis of GBM, Karnofsky performance status > or =60, and a postoperative tumor volume step-and-shoot technique), 60 Gy in 20 daily fractions of 3 Gy each were given to the GTV, whereas the planning target volume received a minimum of 40 Gy in 20 fractions of 2 Gy each at its periphery. Treatments were delivered over a 4-week period using 5 daily fractions per week. Dose was prescribed at the isocenter (ICRU point). Three beam angles were used in all of the cases. Treatments were well tolerated. Acute toxicity was limited to increased brain edema during radiotherapy in 2 patients who were on tapering doses of corticosteroids. This was corrected by increasing the steroid dose. At a median follow-up of 8.8 months, no late toxicity was observed. One patient experienced visual loss at 9 months after completion of treatment. MRI suggested nonspecific changes to the optic chiasm. On review of the treatment plan, the total dose to the optic chiasm was confirmed to be equal to or less than 40 Gy in 20 fractions. When Radiation Therapy Oncology Group recursive partitioning analysis was used, 10 patients were class III-IV, and 15 patients were class V-VI. To date, 21 patients have had clinical and/or radiologic evidence of disease progression, and 16 patients have died. The median survival was 9.5 months (range: 2.8-22.9 months), the 1-year survival

  9. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J., E-mail: bje@mayo.edu [Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Coufalova, Lucie [Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Department of Neurosurgery of First Faculty of Medicine, Charles University in Prague, Military University Hospital, Prague 128 21 (Czech Republic); International Clinical Research Center, St. Anne’s University Hospital Brno, Brno 656 91 (Czech Republic); Lachance, Daniel H. [Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Parney, Ian F. [Department of Neurologic Surgery, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Carter, Rickey E. [Department of Health Sciences Research, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Buckner, Jan C. [Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States)

    2016-06-15

    Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.

  10. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

    International Nuclear Information System (INIS)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.; Coufalova, Lucie; Lachance, Daniel H.; Parney, Ian F.; Carter, Rickey E.; Buckner, Jan C.

    2016-01-01

    Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O 6 -methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.

  11. Management of supratentorial cavernous malformations: craniotomy versus gammaknife radiosurgery.

    Science.gov (United States)

    Shih, Yang-Hsin; Pan, David Hung-Chi

    2005-02-01

    Although craniotomy is the preferred treatment for symptomatic solitary supratentorial cavernous malformation (CM), radiosurgery is also an option. Our aim was to see which of these strategies was the most effective and under what circumstances. Of the 46 patients with solitary supratentorial CM that we retrospectively studied, 24 presented with seizures, 16 with focal neurological deficits due to intracerebral hemorrhage, and 6 with both seizures and bleeding. Sixteen were treated with craniotomy and 30 with gammaknife radiosurgery (GKRS). The main outcome measures for comparing craniotomy with GKRS were the proportion of postoperative seizure-free patients and the proportion of patients in whom no rebleeding occurred. Of patients presenting with seizures with/without bleeding, a significantly higher proportion of the craniotomy group than the GKRS group became and remained seizure-free (11/14 [79%] versus 4/16 [25%]; P < 0.002), and of those presenting with bleeding with/without seizures, a somewhat (though nonsignificantly) higher proportion did not rebleed (4/4 [100%] versus 12/18 [67%]) after surgery. The remaining 2 of the 16 craniotomy patients did not rebleed and had no residual tumor at follow up. Twelve of the 30 GKRS patients had evidence of tumor regression at follow up. In the clinical management of solitary supratentorial CM, craniotomy for lesionectomy resulted in better seizure control and rebleeding avoidance than GKRS.

  12. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype.

    Science.gov (United States)

    Zadran, Sohila; Remacle, Francoise; Levine, Raphael

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.

  13. Utility of chromogenic in situ hybridization (CISH) for detection of EGFR amplification in glioblastoma: comparison with fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Fischer, Ingeborg; de la Cruz, Clarissa; Rivera, Andreana L; Aldape, Kenneth

    2008-12-01

    In this study, we test the reliability of chromogenic in situ hybridization (CISH) for the detection of epidermal growth factor receptor (EGFR) gene amplification in glioblastoma. Earlier reports have described EGFR CISH in glioblastoma multiforme, but a comparison of CISH with a "gold standard" testing method, such as fluorescence in situ hybridization (FISH), has not been described. Therapies targeting the EGFR-signaling pathway might increase the importance of assessment of EGFR-amplification status. CISH is a potential alternative to FISH as a testing method. To test its reliability, EGFR-amplification status by CISH was assessed in 89 cases of glioblastoma and compared with FISH results, and correlated with the protein expression using immunohistochemistry (IHC) for EGFR. FISH was scored as being EGFR-amplified in 47/89 tumors, CISH as being amplified in 43/89 tumors. The CISH and FISH results were in agreement in 83/89 cases (93%). Four glioblastomas were scored as being amplified by FISH, but not by CISH; whereas amplification was detected in 2 tumors by CISH that were not amplified using FISH. Forty-eight of the 89 cases were positive for EGFR expression by IHC. EGFR amplification was highly correlated with protein expression by IHC, as 40/48 (83%) EGFR IHC-positive cases were found to be EGFR-amplified. The high concordance of CISH and FISH for the assessment of EGFR gene-amplification status indicates that CISH is a viable alternative to FISH for the detection of EGFR gene amplification in glioblastoma. Detectable EGFR expression by IHC can occur in the absence of gene amplification, but is uncommon.

  14. Heterogeneity maintenance in glioblastoma: a social network.

    Science.gov (United States)

    Bonavia, Rudy; Inda, Maria-del-Mar; Cavenee, Webster K; Furnari, Frank B

    2011-06-15

    Glioblastoma multiforme (GBM), the most common intracranial tumor in adults, is characterized by extensive heterogeneity at the cellular and molecular levels. This insidious feature arises inevitably in almost all cancers and has great significance for the general outcome of the malignancy, because it confounds our understanding of the disease and also intrinsically contributes to the tumor's aggressiveness and poses an obstacle to the design of effective therapies. The classic view that heterogeneity arises as the result of a tumor's "genetic chaos" and the more contemporary cancer stem cell (CSC) hypothesis tend to identify a single cell population as the therapeutic target: the prevailing clone over time in the first case and the CSC in the latter. However, there is growing evidence that the different tumor cell populations may not be simple bystanders. Rather, they can establish a complex network of interactions between each other and with the tumor microenvironment that eventually strengthens tumor growth and increases chances to escape therapy. These differing but complementary ideas about the origin and maintenance of tumor heterogeneity and its importance in GBM are reviewed here.

  15. Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy

    Directory of Open Access Journals (Sweden)

    Michele Patrizii

    2018-02-01

    Full Text Available Despite substantial effort and resources dedicated to drug discovery and development, new anticancer agents often fail in clinical trials. Among many reasons, the lack of reliable predictive preclinical cancer models is a fundamental one. For decades, immortalized cancer cell cultures have been used to lay the groundwork for cancer biology and the quest for therapeutic responses. However, cell lines do not usually recapitulate cancer heterogeneity or reveal therapeutic resistance cues. With the rapidly evolving exploration of cancer “omics,” the scientific community is increasingly investigating whether the employment of short-term patient-derived tumor cell cultures (two- and three-dimensional and/or patient-derived xenograft models might provide a more representative delineation of the cancer core and its therapeutic response. Patient-derived cancer models allow the integration of genomic with drug sensitivity data on a personalized basis and currently represent the ultimate approach for preclinical drug development and biomarker discovery. The proper use of these patient-derived cancer models might soon influence clinical outcomes and allow the implementation of tailored personalized therapy. When assessing drug efficacy for the treatment of glioblastoma multiforme (GBM, currently, the most reliable models are generated through direct injection of patient-derived cells or more frequently the isolation of glioblastoma cells endowed with stem-like features and orthotopically injecting these cells into the cerebrum of immunodeficient mice. Herein, we present the key strengths, weaknesses, and potential applications of cell- and animal-based models of GBM, highlighting our experience with the glioblastoma stem-like patient cell-derived xenograft model and its utility in drug discovery.

  16. Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and {sup 18}F-fluorodeoxyglucose positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Koji; Yoshiura, Takashi; Hiwatashi, Akio; Togao, Osamu; Abe, Koichiro; Kikuchi, Kazufumi; Maruoka, Yasuhiro; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Yoshimoto, Koji; Mizoguchi, Masahiro [Kyushu University, Department of Neurosurgery, Graduate School of Medical Sciences, Fukuoka (Japan); Suzuki, Satoshi O.; Iwaki, Toru [Kyushu University, Department of Neuropathology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2013-02-15

    Our purpose was to evaluate the diagnostic performance of arterial spin labeling (ASL) perfusion imaging, diffusion-weighted imaging (DWI), and {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating primary central nervous system lymphomas (PCNSLs) from glioblastoma multiformes (GBMs). Fifty-six patients including 19 with PCNSL and 37 with GBM were retrospectively studied. From the ASL data, an absolute tumor blood flow (aTBF) and a relative tumor blood flow (rTBF) were obtained within the enhancing portion of each tumor. In addition, the minimum apparent diffusion coefficient (ADCmin) and the maximum standard uptake value (SUVmax) were obtained from DWI and FDG-PET data, respectively. Each of the four parameters was compared between PCNSLs and GBMs using Kruskal-Wallis test. The performance in discriminating between PCNSLs and GBMs was evaluated using the receiver-operating characteristics analysis. Area-under-the-curve (AUC) values were compared among the four parameters using a nonparametric method. The aTBF, rTBF, and ADCmin were significantly higher in GBMs (mean aTBF {+-} SD = 91.6 {+-} 56.0 mL/100 g/min, mean rTBF {+-} SD = 2.61 {+-} 1.61, mean ADCmin {+-} SD = 0.78 {+-} 0.19 x 10{sup -3} mm{sup 2}/s) than in PCNSLs (mean aTBF {+-} SD = 37.3 {+-} 10.5 mL/100 g/min, mean rTBF {+-} SD = 1.24 {+-} 0.37, mean ADCmin {+-} SD = 0.61 {+-} 0.13 x 10{sup -3} mm{sup 2}/s) (p < 0.005, respectively). In addition, SUVmax was significantly lower in GBMs (mean {+-} SD = 13.1 {+-} 6.34) than in PCNSLs (mean {+-} SD = 22.5 {+-} 7.83) (p < 0.005). The AUC for aTBF (0.888) was higher than those for rTBF (0.810), ADCmin (0.768), and SUVmax (0.848), although their difference was not statistically significant. ASL perfusion imaging is useful for differentiating PCNSLs from GBMs as well as DWI and FDG-PET. (orig.)

  17. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    International Nuclear Information System (INIS)

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis

  18. Suppression of Peroxiredoxin 4 in Glioblastoma Cells Increases Apoptosis and Reduces Tumor Growth

    Science.gov (United States)

    Kim, Tae Hyong; Song, Jieun; Alcantara Llaguno, Sheila R.; Murnan, Eric; Liyanarachchi, Sandya; Palanichamy, Kamalakannan; Yi, Ji-Yeun; Viapiano, Mariano Sebastian; Nakano, Ichiro; Yoon, Sung Ok; Wu, Hong; Parada, Luis F.; Kwon, Chang-Hyuk

    2012-01-01

    Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future. PMID:22916164

  19. Suppression of peroxiredoxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth.

    Directory of Open Access Journals (Sweden)

    Tae Hyong Kim

    Full Text Available Glioblastoma multiforme (GBM, the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4 is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.

  20. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    Science.gov (United States)

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  1. PTEN and DMBT1 homozygous deletion and expression in medulloblastomas and supratentorial primitive neuroectodermal tumors.

    Science.gov (United States)

    Inda, María Mar; Mercapide, Javier; Muñoz, Jorge; Coullin, Philippe; Danglot, Giséle; Tuñon, Teresa; Martínez-Peñuela, José María; Rivera, José María; Burgos, Juan J; Bernheim, Alain; Castresana, Javier S

    2004-12-01

    Medulloblastoma, which accounts for 20-25% of all childhood brain tumors, is defined as a primitive neuroectodermal tumor (PNET) located in the cerebellum. Supratentorial PNET are less frequent than medulloblastoma. But their clinical outcome is worse than in medulloblastomas. Chromosome 10q contains at least 2 tumor suppressor genes that might play a role in brain tumor development: PTEN and DMBT1. The aim of this study was to compare the status of homozygous deletion and expression of PTEN and DMBT1 genes in PNET primary tumor samples and cell lines. Homozygous deletions of PTEN and DMBT1 were studied in 32 paraffin-embedded PNET samples (23 medulloblastomas and 9 supratentorial PNET) and in 7 PNET cell lines, by differential PCR and by FISH. PTEN homozygous losses were demonstrated in 7 medulloblastomas (32%) and in no supratentorial PNET, while homozygous deletions of DMBT1 appeared in 1 supratentorial PNET (20%) and in 7 medulloblastomas (33%). No homozygous deletion of PTEN or DMBT1 was detected in any of the PNET cell lines either by differential PCR or by FISH. Expression study of the 2 genes was performed in the 7 PNET cell lines by RT-PCR. One PNET cell line lacked PTEN and DMBT1 expression, while 2 medulloblastoma cell lines did not express DMBT1. Our results add some positive data to the hypothesis that supratentorial PNETs and medulloblastomas might be genetically different.

  2. Extracts of Artocarpus communis Induce Mitochondria-Associated Apoptosis via Pro-oxidative Activity in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chiang-Wen Lee

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is an extremely aggressive and devastating malignant tumor in the central nervous system. Its incidence is increasing and the prognosis is poor. Artocarpin is a natural prenylated flavonoid with various anti-inflammatory and anti-tumor properties. Studies have shown that artocarpin is associated with cell death of primary glioblastoma cells. However, the in vivo effects and the cellular and molecular mechanisms modulating the anticancer activities of artocarpin remain unknown. In this study, we demonstrated that treating the glioblastoma cell lines U87 and U118 cells with artocarpin induced apoptosis. Artocarpin-induced apoptosis is associated with caspase activation and poly (ADP-ribose polymerase (PARP cleavage and is mediated by the mitochondrial pathway. This is associated with mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS production, cytochrome c release, Bad and Bax upregulations, and Bcl-2 downregulation. Artocarpin induced NADPH oxidase/ROS generation plays an important role in the mitochondrial pathway activation. Furthermore, we found artocarpin-induced ROS production in mitochondria is associated with Akt- and ERK1/2 activation. After treatment with artocarpin, ROS causes PI3K/Akt/ERK1/2-induced cell death of these tumor cells. These observations were further verified by the results from the implantation of both U87 and U118 cells into in vivo mouse. In conclusion, our findings suggest that artocarpin induces mitochondria-associated apoptosis of glioma cells, suggesting that artocarpine can be a potential chemotherapeutic agent for future GBM treatment.

  3. Clinical variables serve as prognostic factors in a model for survival from glioblastoma multiforme: an observational study of a cohort of consecutive non-selected patients from a single institution

    International Nuclear Information System (INIS)

    Michaelsen, Signe Regner; Christensen, Ib Jarle; Grunnet, Kirsten; Stockhausen, Marie-Thérése; Broholm, Helle; Kosteljanetz, Michael; Poulsen, Hans Skovgaard

    2013-01-01

    Although implementation of temozolomide (TMZ) as a part of primary therapy for glioblastoma multiforme (GBM) has resulted in improved patient survival, the disease is still incurable. Previous studies have correlated various parameters to survival, although no single parameter has yet been identified. More studies and new approaches to identify the best and worst performing patients are therefore in great demand. This study examined 225 consecutive, non-selected GBM patients with performance status (PS) 0–2 receiving postoperative radiotherapy with concomitant and adjuvant TMZ as primary therapy. At relapse, patients with PS 0–2 were mostly treated by reoperation and/or combination with bevacizumab/irinotecan (BEV/IRI), while a few received TMZ therapy if the recurrence-free period was >6 months. Median overall survival and time to progression were 14.3 and 8.0 months, respectively. Second-line therapy indicated that reoperation and/or BEV/IRI increased patient survival compared with untreated patients and that BEV/IRI was more effective than reoperation alone. Patient age, ECOG PS, and use of corticosteroid therapy were significantly correlated with patient survival and disease progression on univariate analysis, whereas p53, epidermal growth factor receptor, and O 6 -methylguanine-DNA methyltransferase expression (all detected by immunohistochemistry), tumor size or multifocality, and extent of primary operation were not. A model based on age, ECOG PS, and corticosteroids use was able to predict survival probability for an individual patient. The survival of RT/TMZ-treated GBM patients can be predicted based on patient age, ECOG PS, and corticosteroid therapy status

  4. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    International Nuclear Information System (INIS)

    Huang, Peigen; Allam, Ayman; Perez, Luis A.; Taghian, Alphonse; Freeman, Jill; Suit, Herman D.

    1995-01-01

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-α) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-α with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm 3 , mice were randomly assigned to treatment: rHuTNF-α alone compared with normal saline control; or local radiation plus rHuTNF-α vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-α on this tumor. The TCD 50 (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-α with local radiation. Results: Tumor growth in mice treated with a dose of 150 μg/kg body weight rHuTNF-α, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-α also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-α starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD 50 from the control value of 60.9 Gy to 50.5 Gy (p 50 value in the treatment vs. the control groups

  5. Can diffusion tensor imaging predict the functional outcome of supra-tentorial stroke?

    International Nuclear Information System (INIS)

    Maeda, Takahiro; Ishizaki, Ken-ichi; Yura, Shigeki

    2005-01-01

    We used diffusion tensor imaging (DTI) to assess wallerian degeneration of the pyramidal tract after the onset of supra-tentorial stroke, and correlation of the extent of Wallerian degeneration with the motor function at 3 months after stroke. Twenty eight patients with supra-tentorial acute stroke were examined, two weeks and one month after stroke by DTI. We measured fractional anisotropy (FA) of affected side/unaffected side (FA ratio) in the cerebral peduncle. We used modified Rankin Scale (mRS) for assessment of motor function at 3 months after stroke. FA ratio was significantly reduced at 2 weeks after stroke (0.833±0.146) compared to on admission (0.979±0.0797). But no significant change of FA ratio was seen between two weeks and one month after stroke in 7 cases examined (0.758±0.183 vs. 0.754±0.183). In all patients in whom the FA ratio was under 0.8 at 2 weeks after stroke, motor function showed poor recovery (mRS 4 and 5) at 3 months after stroke. When FA ratio was over 0.8 at 2 weeks after stroke, motor function at 3 months after stroke showed good recovery (mRS 0 to 3) expect for three elderly patients. With the use of DTI, Wallerian degeneration could be detected in the corticospinal tracts at midbrain level during the early phase of supra-tentorial stroke. We conclude that DTI may be useful for early prediction of motor function prognosis in patients with supra-tentorial acute stroke. (author)

  6. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors.

    Science.gov (United States)

    Serletis, Demitre; Bernstein, Mark

    2007-07-01

    The authors prospectively assessed the value of awake craniotomy used nonselectively in patients undergoing resection of supratentorial tumors. The demographic features, presenting symptoms, tumor location, histological diagnosis, outcomes, and complications were documented for 610 patients who underwent awake craniotomy for supratentorial tumor resection. Intraoperative brain mapping was used in 511 cases (83.8%). Mapping identified eloquent cortex in 115 patients (22.5%) and no eloquent cortex in 396 patients (77.5%). Neurological deficits occurred in 89 patients (14.6%). In the subset of 511 patients in whom brain mapping was performed, 78 (15.3%) experienced postoperative neurological worsening. This phenomenon was more common in patients with preoperative neurological deficits or in those individuals in whom mapping successfully identified eloquent tissue. Twenty-five (4.9%) of the 511 patients suffered intraoperative seizures, and two of these individuals required intubation and induction of general anesthesia after generalized seizures occurred. Four (0.7%) of the 610 patients developed wound complications. Postoperative hematomas developed in seven patients (1.1%), four of whom urgently required a repeated craniotomy to allow evacuation of the clot. Two patients (0.3%) required readmission to the hospital soon after being discharged. There were three deaths (0.5%). Awake craniotomy is safe, practical, and effective during resection of supratentorial lesions of diverse pathological range and location. It allows for intraoperative brain mapping that helps identify and protect functional cortex. It also avoids the complications inherent in the induction of general anesthesia. Awake craniotomy provides an excellent alternative to surgery of supratentorial brain lesions in patients in whom general anesthesia has been induced.

  7. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor.

    Directory of Open Access Journals (Sweden)

    Yayoi Yoshimura

    Full Text Available Glioblastoma multiforme (GBM is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.

  8. Erythema multiforme due to contact with laurel oil.

    Science.gov (United States)

    Athanasiadis, G I; Pfab, F; Klein, A; Braun-Falco, M; Ring, J; Ollert, M

    2007-08-01

    Erythema multiforme is a relatively common skin disorder. The best known cause is herpes simplex virus infection. We report the first case of erythema multiforme due to contact with laurel oil. The diagnosis was confirmed by the positive patch test to laurel oil, the histopathological studies of the lesions and the histopathological studies of the positive patch test to laurel oil.

  9. Clinical Course and Outcomes of Small Supratentorial Intracerebral Hematomas

    NARCIS (Netherlands)

    Behrouz, R.; Misra, V.; Godoy, D.A.; Topel, C.H.; Masotti, L.; Klijn, C.J.M.; Smith, C.J.; Parry-Jones, A.R.; Slevin, M.A.; Silver, B.; Willey, J.Z.; Vallejo, J. Masjuan; Nzwalo, H.; Popa-Wagner, A.; Malek, A.R.; Hafeez, S.; Napoli, M. Di

    2017-01-01

    BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) volume, particularly if >/=30 mL, is a major determinant of poor outcome. We used a multinational ICH data registry to study the characteristics, course, and outcomes of supratentorial hematomas with volumes <30 mL. METHODS: Basic

  10. Immunohistochemically determined total epidermal growth factor receptor levels not of prognostic value in newly diagnosed glioblastoma multiforme: Report from the Radiation Therapy Oncology Group

    International Nuclear Information System (INIS)

    Chakravarti, Arnab; Seiferheld, Wendy; Tu Xiaoyu; Wang Huijun; Zhang Huazhong; Ang, K. Kian; Hammond, Elizabeth; Curran, Walter; Mehta, Minesh

    2005-01-01

    Purpose: The Radiation Therapy Oncology Group (RTOG) performed an analysis of patterns of immunohistochemically detected total epidermal growth factor receptor (EGFR) protein expression levels and their prognostic significance on archival tissue in newly diagnosed glioblastoma multiforme (GBM) patients from prior prospective RTOG clinical trials. Methods and materials: Patients in this study had been treated on previous RTOG GBM trials (RTOG 7401, 7918, 8302, 8409, 9006, 9305, 9602, and 9806). Tissue microarrays were prepared from 155 patients enrolled in these trials. These specimens were stained using a mouse monoclonal antibody specific for the extracellular binding domain of EGFR to detect total EGFR (including both wild-type phosphorylated and wild-type unphosphorylated isoforms with some cross-reactivity with EGFRvIII). The intensity of total EGFR protein expression was measured by computerized quantitative image analysis using the SAMBA 4000 Cell Image Analysis System. The parameters measured were the mean optical densities over the labeled areas and the staining index, which represents the proportion of stained area relative to the mean stain concentration. Both parameters were correlated with the clinical outcome. Results: No differences in either overall or progression-free survival could be demonstrated by the mean optical density class or mean optical density quartile or the staining index of total EGFR immunostaining among the representative RTOG GBM cases. Conclusion: Total EGFR protein expression levels, as measured immunohistochemically, do not appear to be of prognostic value in newly diagnosed GBM patients. Given the accumulating clinical evidence of the activity of anti-EGFR agents in GBM and the preclinical data suggesting the important role of downstream mediators as effectors of EGFR signaling, the RTOG is conducting additional investigations into the prognostic value of activation patterns of EGFR signaling, both at the level of the receptor

  11. Eritema multiforme mayor desencadenado por antimicrobianos Big multiform erythema triggered by antimicrobials

    Directory of Open Access Journals (Sweden)

    Ronaldo de Carvalho Raimundo

    2010-03-01

    Full Text Available El eritema multiforme, aparece como una enfermedad sistémica con la participación de la piel y las membranas mucosas en relación con varios factores como las infecciones bacterianas o virales, y en particular la administración de drogas, analgésicos y antibióticos en general. Se presenta un paciente masculino de 29 años de edad con eritema multiforme mayor desencadenado por antimicrobianos con la aparición de lesiones vesiculares-bulloso-ulcerosas en las regiones de los labios, encías, la lengua y la mucosa genital en tratamiento de una infección del tracto urinario con norfloxacino 400 mg por una semana. Fue realizado un tratamiento de soporte con el uso de colutorios para la higienización bucal y pomada a base de corticoide para protección de las úlceras, antihistamínicos y orientación nutricional de dieta líquida hipercalórica e hiperproteica. Este síndrome está caracterizado como un proceso eruptivo buloso agudo que compromete la calidad de vida del paciente y no hay pruebas de laboratorio específicas por lo que su diagnóstico debe estar basado en la revisión minuciosa de la anamnesis y en los hallazgos clínicos.The multiform erythema appears as a systemic disease where skin and the mucous membranes have participation in relation to some factors such as bacterial or viral infections and in particular the drugs administration, analgesics and antibiotics in general. The aim of present paper was the presentation of case of big multiform erythema triggering by antimicrobials. Authors present the case of a male patient aged 29 with appearance of ulcerous bullous-vesicular lesions in lips, gums, tongue and genital mucosa under treatment with 400 mg norfloxacin due to urinary tract infection for a week. We made support treatment using mouthwashes for oral hygiene and corticoids ointment for ulcer protection, antihistaminics and nutritional guiding of a hypercaloric and hyperprotein liquid diet. This syndrome is characterized

  12. Angioarchitectural characteristics associated with initial hemorrhagic presentation in supratentorial brain arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianwei, E-mail: swordman_pan@yahoo.com.cn [Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006 (China); Feng, Lei, E-mail: lei_feng66@yahoo.com [Department of Radiology, Kaiser Permanente Medical Center, Los Angeles, CA 90027 (United States); Vinuela, Fernando, E-mail: fvinuela@mednet.ucla.edu [Interventional Neuroradiology Division, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095 (United States); He, Hongwei, E-mail: ttyyhhw@126.com [Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, Capital Medical University, 6 Tiantan Xili, Beijing 100050 (China); Wu, Zhongxue, E-mail: 252694812@qq.com [Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, Capital Medical University, 6 Tiantan Xili, Beijing 100050 (China); Zhan, Renya, E-mail: neurovasword@gmail.com [Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006 (China)

    2013-11-01

    Objective: The difference in arterial supply, venous drainage, functional localization in supratentorial and infratentorial compartments may contribute to the conflicting results about risk factors for hemorrhage in published case series of brain arteriovenous malformation (bAVM). Further investigation focused on an individual brain compartment is thus necessary. This retrospective study aims to identify angioarchitectural characteristics associated with the initial hemorrhagic event of supratentorial bAVMs. Materials and methods: The clinical and angiographic features of 152 consecutive patients with supratentorial bAVMs who presented to our hospital from 2005 to 2008 were retrospectively reviewed. All these patients had new diagnosis of bAVM. Univariate (χ{sup 2} test) and multivariate analyses were conducted to assess the angiographic features in patients with and without initial hemorrhagic presentations. A probability value of less than 0.05 was considered statistically significant in each analysis. Results: In 152 patients with supratentorial AVMs, 70.6% of deep and 52.5% of superficial sbAVMs presented with hemorrhage. The deep location was correlated with initial hemorrhagic presentation in univariate analysis (χ{sup 2} = 3.499, p = 0.046) but not in the multivariate model (p = 0.144). There were 44 sbAVMs with perforating feeders, 39 (88.6%) of which bled at a significantly higher rate than those with terminal feeders (χ{sup 2} = 25.904, p = 0.000). 87.5% (21/24) of exclusive deep venous drainage presented with hemorrhage, a significantly higher rate than those of the other type of venous drainage (χ{sup 2} = 11.099, p = 0.004). All 10 patients with both perforating feeders and exclusive deep draining vein presented with initial hemorrhage. Hemorrhagic presentation was correlated with perforating feeders (p = 0.000) and exclusive deep draining vein (p = 0.007) in multivariate analysis as well. Conclusions: Supratentorial bAVMs with perforating feeders

  13. Angioarchitectural characteristics associated with initial hemorrhagic presentation in supratentorial brain arteriovenous malformations

    International Nuclear Information System (INIS)

    Pan, Jianwei; Feng, Lei; Vinuela, Fernando; He, Hongwei; Wu, Zhongxue; Zhan, Renya

    2013-01-01

    Objective: The difference in arterial supply, venous drainage, functional localization in supratentorial and infratentorial compartments may contribute to the conflicting results about risk factors for hemorrhage in published case series of brain arteriovenous malformation (bAVM). Further investigation focused on an individual brain compartment is thus necessary. This retrospective study aims to identify angioarchitectural characteristics associated with the initial hemorrhagic event of supratentorial bAVMs. Materials and methods: The clinical and angiographic features of 152 consecutive patients with supratentorial bAVMs who presented to our hospital from 2005 to 2008 were retrospectively reviewed. All these patients had new diagnosis of bAVM. Univariate (χ 2 test) and multivariate analyses were conducted to assess the angiographic features in patients with and without initial hemorrhagic presentations. A probability value of less than 0.05 was considered statistically significant in each analysis. Results: In 152 patients with supratentorial AVMs, 70.6% of deep and 52.5% of superficial sbAVMs presented with hemorrhage. The deep location was correlated with initial hemorrhagic presentation in univariate analysis (χ 2 = 3.499, p = 0.046) but not in the multivariate model (p = 0.144). There were 44 sbAVMs with perforating feeders, 39 (88.6%) of which bled at a significantly higher rate than those with terminal feeders (χ 2 = 25.904, p = 0.000). 87.5% (21/24) of exclusive deep venous drainage presented with hemorrhage, a significantly higher rate than those of the other type of venous drainage (χ 2 = 11.099, p = 0.004). All 10 patients with both perforating feeders and exclusive deep draining vein presented with initial hemorrhage. Hemorrhagic presentation was correlated with perforating feeders (p = 0.000) and exclusive deep draining vein (p = 0.007) in multivariate analysis as well. Conclusions: Supratentorial bAVMs with perforating feeders and deep venous

  14. Supratentorial arachnoid cyst and associated subdural hematoma: neuroradiologic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, M. [Dept. of Radiology, Nagasaki Univ. School of Medicine, (Japan); Morikawa, M. [Dept. of Radiology, Nagasaki Univ. School of Medicine, (Japan)]|[Dept. of Radiology, National Nagasaki Chuo Hospital, Ohmura (Japan); Ogino, A. [Dept. of Radiology, Nagasaki Univ. School of Medicine, (Japan); Nagaoki, K. [Dept. of Radiology, Nagasaki Univ. School of Medicine, (Japan)]|[Dept. of Radiology, Isahaya General Hospital (Japan); Hayashi, K. [Dept. of Radiology, Nagasaki Univ. School of Medicine, (Japan)

    1996-10-01

    CT and MR images of 8 patients with supratentorial arachnoid cyst complicated by subdural hematoma were studied and compared with those of 8 patients who developed nontraumatic subdural hematoma without arachnoid cyst. Ot the 8 patients with supratentorial arachnoid cyst, CT and MR disclosed temporal bulging and/or thinning of the temporal squama in all 6 patients with middle fossa arachnoid cysts, and the thinning of the calvaria was evident in another patient with a convexity cyst. Calvarial thinning at the site corresponding to interhemispheric arachnoid cyst was clearly depicted on coronal MR images. In contrast, none of the 8 young patients with nontraumatic subdural hematoma without arachnoid cyst had abnormal calvaria. Temporal bulging and thinning of the overlying calvaria were identified as diagnostic CT and MR features of arachnoid cyst with complicating intracystic and subdural hermorrhage. Radiologists should be aware of this association and should evaluate the bony structure carefully. (orig.)

  15. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Science.gov (United States)

    Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A

    2012-01-01

    Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  16. Fotemustine as second-line treatment for recurrent or progressive glioblastoma after concomitant and/or adjuvant temozolomide: a phase II trial of Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO).

    Science.gov (United States)

    Brandes, Alba A; Tosoni, A; Franceschi, E; Blatt, V; Santoro, A; Faedi, M; Amistà, P; Gardiman, M; Labianca, R; Bianchini, C; Ermani, M; Reni, M

    2009-09-01

    Standardized salvage treatment has not yet proved effective in glioblastoma multiforme (GBM) patients who receive prior standard radiotherapy plus concomitant and adjuvant temozolomide. Patients with progressive GBM after radiotherapy plus concomitant and/or adjuvant temozolomide received three-weekly doses (100-75 mg m(2)) of fotemustine followed, after a 5-week rest, by fotemustine (100 mg m(2)) every 3 weeks for nitrosourea activity. Moreover, this is the first study to evaluate correlation between MGMT promoter status and outcome of fotemustine for relapsing GBM previously treated with radiotherapy and temozolomide.

  17. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Directory of Open Access Journals (Sweden)

    Southey Bruce R

    2011-06-01

    . Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death. Conclusions Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.

  18. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  19. Clinical Implications of the Epidermal Growth Factor Receptor overexpression in the High-grade Astrocytomas

    International Nuclear Information System (INIS)

    Hong, Seong Eon; Kang, Jin Oh; Lee, Hye Kyoung; Yang, Moon Ho; Leem, Won; Cho, Kyung Sam

    1996-01-01

    To determine the incidence and prognostic effects of EGFR overexpression in the high-grade astrocytomas. With 23 paraffin blocks of the high-garde astrocytomas, expression of EGFR were evaluated by immunohistochemical staining employing polyclonal antibody raised to short cytoplasmic domain of the molecule. Two out of 7 anaplastic astrocytomas and 9 out of 16 glioblastoma multiform patients showed overexpression of EGFR(p=0.44). Three out of 11 patients of age below 55 and 8 out of 12 patients of age over 54 showed EGFR overexpression(p=0.141). Median survival of the EGFR negative anaplastic astrocytoma patient was 37 months. Median survival of the glioblastoma multiform patients were 11 months in EGFR negative group and 7 months in EGFR positive group. But survival difference was not significant(p=0.17). There was a marked trend of increasing overexpression of EGFR in older patients. But survival of the glioblastoma multiform decreased by the overexpression of the EGFR without significant

  20. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  1. Erythema multiforme as the result of taking carbamazepine

    Directory of Open Access Journals (Sweden)

    Maharani Laillyza Apriasari

    2010-06-01

    Full Text Available Background: Erythema multiforme is an acute mucocutaneus disease which is caused by the hypersensitivity reaction. It is characterized by target lesions on the skin or ulcerative oral lesion. Etiology of the disease is unknown, it is currently considered as immunologic disease. The triggering factors is the use of certain type of drugs like antibiotics, anticonvulsant, and NSAID. Most of the dentists do not know about it is mechanism, so a lot of people consider it as a malpractice. Purpose: This paper reported a case of a man, 46 years old which had ulcerative oral mucous, peeled and pain lips after taking carbamazepine drugs. Case: The clinical diagnosis of this case was erythema multiforme because of the hypersensitivity reaction as the result of taking carbamazepine. Case management: The final diagnosis based on anamnesis history of taking systemic drugs and clinical manifestation of erythema multiforme in the oral cavity. The drugs therapy that had been given were antihistamine, oral corticosteroid, gargle liquid contained of topical anesthetic, corticosteroid, and antibiotic. Conclusion: In this case, it can be concluded that erythema multiforme appeared was triggered by taking carbamazepine as the drug of choice for trigeminal neuralgia therapy. These drugs can cause type III hypersensitivity reaction. The final diagnosis based on anamnesis history of taking carbamazepine before lesions erupted and the characterized clinical manifestation.Latar belakang: Erythema multiforme adalah penyakit mukokutaneus akut yang menyerang kulit dan mukosa sebagai akibat dari reaksi hipersensitivitas. Secara karakteristik ditandai oleh lesi target pada kulit atau lesi ulserasi pada mukosa rongga mulut. Etiologi penyakit ini belum jelas, diduga karena adanya reaksi imunologi. Pencetusnya dikarenakan adanya pemakaian obat-obatan tertentu seperti antibiotik, antikonvulsan dan NSAID. Banyak dokter gigi kurang memahami mekanisme timbulnya penyakit ini, sehingga

  2. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2017-04-27

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  3. Reverse Engineering of Modified Genes by Bayesian Network Analysis Defines Molecular Determinants Critical to the Development of Glioblastoma

    Science.gov (United States)

    Kunkle, Brian W.; Yoo, Changwon; Roy, Deodutta

    2013-01-01

    In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors. PMID:23737970

  4. Reverse engineering of modified genes by Bayesian network analysis defines molecular determinants critical to the development of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Brian W Kunkle

    Full Text Available In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV, and 'key genes' within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated. These 10 genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential 'hubs of activity'. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several 'key genes' may be required for the development of glioblastoma. Further studies are needed to validate these 'key genes' as useful tools for early detection and novel therapeutic options for these tumors.

  5. Concordance between local, institutional, and central pathology review in glioblastoma: implications for research and practice: a pilot study.

    Science.gov (United States)

    Gupta, Tejpal; Nair, Vimoj; Epari, Sridhar; Pietsch, Torsten; Jalali, Rakesh

    2012-01-01

    There is significant inter-observer variation amongst the neuro-pathologists in the typing, subtyping, and grading of glial neoplasms for diagnosis. Centralized pathology review has been proposed to minimize this inter-observer variation and is now almost mandatory for accrual into multicentric trials. We sought to assess the concordance between neuro-pathologists on histopathological diagnosis of glioblastoma. Comparison of local, institutional, and central neuro-oncopathology reporting in a cohort of 34 patients with newly diagnosed supratentorial glioblastoma accrued consecutively at a tertiary-care institution on a prospective trial testing the addition of a new agent to standard chemo-radiation regimen. Concordance was sub-optimal between local histological diagnosis and central review, fair between local diagnosis and institutional review, and good between institutional and central review, with respect to histological typing/subtyping. Twelve (39%) of 31 patients with local histological diagnosis had identical tumor type, subtype and grade on central review. Overall agreement was modestly better (52%) between local diagnosis and institutional review. In contrast, 28 (83%) of 34 patients had completely concordant histopathologic diagnosis between institutional and central review. The inter-observer reliability test showed poor agreement between local and central review (kappa statistic=0.12, 95% confidence interval (CI): -0.03-0.32, P=0.043), but moderate agreement between institutional and central review (kappa statistic=0.51, 95%CI: 0.17-0.84, P=0.00003). Agreement between local diagnosis and institutional review was fair. There exists significant inter-observer variation regarding histopathological diagnosis of glioblastoma with significant implications for clinical research and practice. There is a need for more objective, quantitative, robust, and reproducible criteria for better subtyping for accurate diagnosis.

  6. High resolution array-based comparative genomic hybridisation of medulloblastomas and supra-tentorial primitive neuroectodermal tumours

    Science.gov (United States)

    McCabe, Martin Gerard; Ichimura, Koichi; Liu, Lu; Plant, Karen; Bäcklund, L Magnus; Pearson, Danita M; Collins, Vincent Peter

    2010-01-01

    Medulloblastomas and supratentorial primitive neuroectodermal tumours are aggressive childhood tumours. We report our findings using array comparative genomic hybridisation (CGH) on a whole-genome BAC/PAC/cosmid array with a median clone separation of 0.97Mb to study 34 medulloblastomas and 7 supratentorial primitive neuroectodermal tumours. Array CGH allowed identification and mapping of numerous novel small regions of copy number change to genomic sequence, in addition to the large regions already known from previous studies. Novel amplifications were identified, some encompassing oncogenes, MYCL1, PDGFRA, KIT and MYB, not previously reported to show amplification in these tumours. In addition, one supratentorial primitive neuroectodermal tumour had lost both copies of the tumour suppressor genes CDKN2A & CDKN2B. Ten medulloblastomas had findings suggestive of isochromosome 17q. In contrast to previous reports using conventional CGH, array CGH identified three distinct breakpoints in these cases: Ch 17: 17940393-19251679 (17p11.2, n=6), Ch 17: 20111990-23308272 (17p11.2-17q11.2, n=4) and Ch 17: 38425359-39091575 (17q21.31, n=1). Significant differences were found in the patterns of copy number change between medulloblastomas and supratentorial primitive neuroectodermal tumours, providing further evidence that these tumours are genetically distinct despite their morphological and behavioural similarities. PMID:16783165

  7. MRI diagnosis of supratentorial and intraspinal primitive neuroectodermal tumors

    International Nuclear Information System (INIS)

    Liu Meili; Cui Shimin; Han Tong; Li Tao; Liu Li; Lei Jing; Qing Jingxi; Yan Xiaoling; Kong Fanming

    2004-01-01

    Objective: To analyze the MRI features of supratentorial and intraspinal primitive neuroectodermal tumors (PNET) and improve the diagnostic accuracy. Methods: MRI manifestations of 9 PNET diagnosed via operation and pathological examination were analyzed. There were 6 men and 3 women, and the mean age was 32.6 years. In all 9 cases, conventional plain MR scans were performed, including spin echo (SE), fast spin echo (FSE), and fluid attenuated inversion recovery (FLAIR) sequences. Diffusion weighted images (DWIs) and postcontrast MR images were obtained in 2 and 4 cases, respectively. Results: The 8 cases with supratentorial lesions included fronto-temporal lesion in 2 cases, occipital lesion in 2 cases, fronto-parietal lobe, parietal lobe, frontal lobe lesion in each 1 case, and posterior part of third ventricle in 1 case, and the lesion located in the thoracic spinal canal in 1 case. All the lesions were quite large in volume, and the largest one was 6.0 cm x 6.9 cm x 4.9 cm. Except for the round-like lesion in the posterior part of third ventricle, the other 7 supratentorial lesions were irregular in shape, well demarked, and often with solid consistency and slight peritumoral edema. The lesions demonstrated long T 1 and long or slightly long T 2 signal intensity in 4 cases, mixed signal intensity on T 1 WI, T 2 WI, and FLAIR images in 4 cases. Small cystic degeneration could be seen in 2 cases, hemorrhage in 4 cases, and flow void vessels in 3 cases. 3 cases demonstrated irregular ring-like enhancement and ependymal dissemination. The lesion in the thoracic canal demonstrated as a slightly enhanced soft tissue mass with adjacent bony destruction and muscle infiltration. Conclusion: MR findings of PNET are rather characteristic, but the final diagnosis relies on pathology

  8. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Directory of Open Access Journals (Sweden)

    Mehmet Baysan

    Full Text Available Glioblastoma Multiforme (GBM is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  9. Phase II, two-arm RTOG trial (94-11) of bischloroethyl-nitrosourea plus accelerated hyperfractionated radiotherapy (64.0 or 70.4 Gy) based on tumor volume (> 20 or ≤ 20 cm2, respectively) in the treatment of newly-diagnosed radiosurgery-ineligible glioblastoma multiforme patients

    International Nuclear Information System (INIS)

    Coughlin, C.; Scott, C.; Langer, C.; Coia, L.; Curran, W.; Rubin, P.

    2000-01-01

    Purpose: To compare survivorship, and acute and delayed toxicities following radiation therapy (RT) of radiosurgery-ineligible glioblastoma multiforme (GBM) patients treated with tumor volume-influenced, high-dose accelerated, hyperfractionated RT plus bischloroethyl-nitrosourea (BCNU), using prior RTOG malignant glioblastoma patients as historical controls. Methods and Materials: One hundred four of 108 patients accrued from June 1994 through May 1995 from 26 institutions were analyzable. Patients were histologically confirmed with GBM, and previously untreated. Treatment assignment (52 patients/arm) was based on tumor mass (TM), defined as the product of the maximum diameter and greatest perpendicular dimension of the titanium-gadolinium-enhanced postoperative MRI: Arm A, 64 Gy, TM > 20 cm 2 ; or Arm B, 70.4 Gy, TM ≤ 20 cm 2 . Both Arms A and B received BCNU (80 mg/m 2 , under hyperhydration) days 1-3, 56-58, then 4 cycles, each 8 weeks, for a total of 6 treatment series. Results: During the 24 months immediately post-treatment, the overall median survival was 9.1 months in Arm A (64 Gy) and 11.0 months in Arm B (70.4 Gy). Median survival in recursive partitioning analysis (RPA) Class III/IV was 10.4 months in Arm A and 12.2 months in Arm B, while RPA Class V/VI was 7.6 months in Arm A and 6.1 months in Arm B. There were no grade 4 neurological toxicities in Arm A; 2 grade 4 neurological toxicities were observed in Arm B (1 motor deficit, 1 necrosis at 157 days post-treatment). Conclusion: This strategy of high-dose, accelerated hyperfractionated radiotherapy shortens overall RT treatment times while allowing dose escalation, and it provides the potential for combination with currently available, as well as newer, chemotherapy agents. Survival is comparable with previously published RTOG data, and toxicities are within acceptable limits.

  10. Influence of the depth of sedation on regional cerebral oxygen saturation monitoring in neurosurgery of supratentorial gliomas

    Directory of Open Access Journals (Sweden)

    ZHANG Kai⁃ying

    2012-12-01

    Full Text Available Objective To investigate the influence on regional cerebral oxygen saturation (rScO2 of sedation depth during anesthesia induction and maintenance in supratentorial glioma resections. Methods Thirty patients with Ⅰ - Ⅱ supratentorial glioma (graded by American Society of Anesthesiologists underwent elective supratentorial glioma resection were included in this study. Rocuronium, sufentanil and propofol were used for anesthesia induction. After trachea cannula, total intravenous anesthesia (TIVA was maintained with plasma concentration of propofol 2.80-3.20 μg/ml and remifentanil 0.10-0.20 μg/(kg·min. Thirty groups of rScO2, bispectral index (BIS, mean arterial pressure (MAP and heart rate (HR were recorded continuously till the incision. Results During anesthesia induction, BIS decreased along with the infusion of anesthetics, and there was significant negative correlation between BIS and rScO2 (r = ⁃0.803, P = 0.001. During anesthesia maintenance, rScO2 and BIS were not significantly related (r = 0.147, P = 0.396. Conclusion The rScO2 monitoring can reflect the influence of sedation depth on cerebral oxygen delivery and consumption balance during supratentorial glioma resection under TIVA.

  11. The Effect of Z-Ligustilide on the Mobility of Human Glioblastoma T98G Cells.

    Directory of Open Access Journals (Sweden)

    Jun Yin

    Full Text Available Z-ligustilide (LIG, an essential oil extract from Radix Angelica sinensis, has broad pharmaceutical applications in treating cardio-vascular diseases and ischemic brain injury. Recently, LIG has been connected to Glioblastoma multiforme (GBM because of its structural similarity to 3-n-alkyphthalide (NBP, which is specifically cytotoxic to GBM cells. Hence, we investigated LIG's effect on GBM T98G cells. The study shows that LIG can significantly reduce T98G cells' migration in a dose-dependent manner. Furthermore, the attenuation of cellular mobility can be linked to the activity of the Rho GTPases (RhoA, Rac1 and Cdc42, the three critical molecular switches governing cytoskeleton remodeling; thus, regulating cell migration. LIG significantly reduces the expression of RhoA and affects in a milder manner the expression of Cdc42 and Rac1.

  12. CircSMARCA5 Inhibits Migration of Glioblastoma Multiforme Cells by Regulating a Molecular Axis Involving Splicing Factors SRSF1/SRSF3/PTB

    Directory of Open Access Journals (Sweden)

    Davide Barbagallo

    2018-02-01

    Full Text Available Circular RNAs (circRNAs have recently emerged as a new class of RNAs, highly enriched in the brain and very stable within cells, exosomes and body fluids. To analyze their involvement in glioblastoma multiforme (GBM pathogenesis, we assayed the expression of twelve circRNAs, physiologically enriched in several regions of the brain, through real-time PCR in a cohort of fifty-six GBM patient biopsies and seven normal brain parenchymas. We focused on hsa_circ_0001445 (circSMARCA5: it was significantly downregulated in GBM biopsies as compared to normal brain tissues (p-value < 0.00001, student’s t-test, contrary to its linear isoform counterpart that did not show any differential expression (p-value = 0.694, student’s t-test. Analysis of a public dataset revealed a negative correlation between the expression of circSMARCA5 and glioma’s histological grade, suggesting its potential negative role in the progression to malignancy. Overexpressing circSMARCA5 in U87MG cells significantly decreased their migration, but not their proliferation rate. In silico scanning of circSMARCA5 sequence revealed an enrichment in binding motifs for several RNA binding proteins (RBPs, specifically involved in splicing. Among them, serine and arginine rich splicing factor 1 (SRSF1, a splicing factor known to be a positive controller of cell migration and known to be overexpressed in GBM, was predicted to bind circSMARCA5 by three different prediction tools. Direct interaction between circSMARCA5 and SRSF1 is supported by enhanced UV crosslinking and immunoprecipitation (eCLIP data for SRSF1 in K562 cells from Encyclopedia of DNA Elements (ENCODE. Consistently, U87MG overexpressing circSMARCA5 showed an increased expression of serine and arginine rich splicing factor 3 (SRSF3 RNA isoform containing exon 4, normally skipped in a SRSF1-dependent manner, resulting in a non-productive non-sense mediated decay (NMD substrate. Interestingly, SRSF3 is known to interplay

  13. Recidiverende erythema multiforme udløst af herpes simplex-virus

    DEFF Research Database (Denmark)

    Vestergård Grejsen, Dorthe; Henningsen, Emil

    2012-01-01

    We describe two cases of recurrent erythema multiforme, both associated to infection with herpes simplex virus. The importance of subclinical herpes is illustrated. Antiviral and additional treatment is described.......We describe two cases of recurrent erythema multiforme, both associated to infection with herpes simplex virus. The importance of subclinical herpes is illustrated. Antiviral and additional treatment is described....

  14. PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients

    DEFF Research Database (Denmark)

    Liu, Yawei; Carlsson, Robert; Ambjørn, Malene

    2013-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. In general, tumor growth requires disruption of the tissue microenvironment, yet how this affects glioma progression is unknown. We studied program death-ligand (PD-L)1 in neurons and gliomas in tumors from GBM patients...... and associated the findings with clinical outcome. Remarkably, we found that upregulation of PD-L1 by neurons in tumor-adjacent brain tissue (TABT) associated positively with GBM patient survival, whereas lack of neuronal PD-L1 expression was associated with high PD-L1 in tumors and unfavorable prognosis...... in GBM patients, better survival in wild-type mice was associated with high neuronal PD-L1 in TABT and downregulation of PD-L1 in tumors, which was defective in Ifnb-/- mice. Our data indicated that neuronal PD-L1 signaling in brain cells was important for GBM patient survival. Reciprocal PD-L1...

  15. Differential diagnosis in patients with ring-like thallium-201 uptake in brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kinuya, Keiko; Ohashi, Masahiro; Itoh, Syotaro [Tonami General Hospital, Toyama (Japan)] (and others)

    2002-09-01

    This study was performed to investigate lesions with ring-like thallium-201 ({sup 201}Tl) uptake and to determine whether SPECT provides any information in differential diagnosis. A total of 244 {sup 201}Tl SPECT images were reviewed. In each study, early (15 min postinjection) and late (3 hr) brain SPECT images were obtained with 111 MBq of {sup 201}Tl. The early uptake ratio (ER; lesion to normal brain average count ratio) and the late uptake ratio (LR) and the L/E ratio (ratio of LR to ER) were calculated. Ring-like uptake was observed in pre-therapeutic 26 SPECT images, including ten glioblastoma multiformes (ER, 3.45{+-}0.64; LR, 2.74{+-}0.54; L/E ratio 0.80{+-}0.13), five meningiomas (6.48{+-}2.34; 4.41{+-}1.41; 0.72{+-}0.19), four metastatic lung cancers (3.47{+-}1.23; 2.40{+-}0.98; 0.70{+-}0.14), four brain abscesses (2.48{+-}1.06; 1.59{+-}0.30; 0.78{+-}0.15), one invasive lesion of squamous cell carcinoma from the ethmoid sinus (1.54; 1.52; 0.99), one medulloblastoma (3.53; 3.52; 1.00) and one hematoma (3.32; 2.36; 0.71). The ER of meningioma was significantly higher than those of glioblastoma multiforme (p<0.0005), metastatic lung cancer (p<0.005) and brain abscess (p<0.0005). There were no significant differences among these three entities. The LR of meningioma was significantly higher than those of glioblastoma multiforme (p<0.005), metastatic lung cancer (p<0.005) and brain abscess (p<0.0001). The LR of brain abscess was significantly lower than that of glioblastoma multiforme (p<0.05). The L/E ratio could not differentiate these four entities. High ER and high LR in a lesion with ring-like uptake is likely an indicator of meningioma. The LR of brain abscess was significantly lower than that of glioblastoma multiforme, but {sup 201}Tl SPECT has still difficulty in differentiating abscess from brain tumor. (author)

  16. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mary, I. Reeta [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Department of Physics, Government Arts College, Coimbatore 641018 (India); Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Ponpandian, N., E-mail: ponpandian@buc.edu.in [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)

    2016-01-15

    Graphical abstract: - Highlights: • Novel multiform morphologies of hydroxyapatite from nanoscale building blocks. • Facile hydro/solvothermal method under mild reaction conditions without the necessity of post-annealing treatment. • Growth mechanism by Ostwald ripening and self-assembly processes. - Abstract: Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).

  17. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme.

    Science.gov (United States)

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Suresh Kumar, M A; Lee, Stephen; Peña, Louis A; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2015-01-01

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24h. However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP

    OpenAIRE

    Sander, Philip; Mostafa, Haouraa; Soboh, Ayman; Schneider, Julian M.; Pala, Andrej; Baron, Ann-Kathrin; Moepps, Barbara; Wirtz, C. Rainer; Georgieff, Michael; Schneider, Marion

    2017-01-01

    Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-...

  19. Erythema multiforme and persistent erythema as early cutaneous manifestations of Lyme disease

    NARCIS (Netherlands)

    Schuttelaar, M L; Laeijendecker, R; Heinhuis, R J; Van Joost, T

    1997-01-01

    We report two cases of borreliosis (Lyme disease) with unusual cutaneous manifestations, erythema multiforme, and persistent erythema. The lesions in both of our patients had distinctive histopathologic features. To our knowledge, this is the first report of erythema multiforme and persistent

  20. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  1. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  2. Glioblastoma formation from cell population depleted of Prominin1-expressing cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nishide

    2009-08-01

    Full Text Available Prominin1 (Prom1, also known as CD133 in human has been widely used as a marker for cancer stem cells (CSCs, which self-renew and are tumorigenic, in malignant tumors including glioblastoma multiforme (GBM. However, there is other evidence showing that Prom1-negative cancer cells also form tumors in vivo. Thus it remains controversial whether Prom1 is a bona fide marker for CSCs. To verify if Prom1-expressing cells are essential for tumorigenesis, we established a mouse line, whose Prom1-expressing cells can be eliminated conditionally by a Cre-inducible DTA gene on the Prom1 locus together with a tamoxifen-inducible CreER(TM, and generated glioma-initiating cells (GICs-LD by overexpressing both the SV40 Large T antigen and an oncogenic H-Ras(L61 in neural stem cells of the mouse line. We show here that the tamoxifen-treated GICs-LD (GICs-DTA form tumor-spheres in culture and transplantable GBM in vivo. Thus, our studies demonstrate that Prom1-expressing cells are dispensable for gliomagenesis in this mouse model.

  3. A clinical review of treatment outcomes in glioblastoma multiforme - the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival?

    LENUS (Irish Health Repository)

    Rock, K

    2012-01-03

    Objective: Glioblastoma multiforme (GBM) accounts for up to 60% of all malignant primary brain tumours in adults, occurring in 2-3 cases per 100 000 in Europe and North America. In 2005, a Phase III clinical trial demonstrated a significant improvement in survival over 2, and subsequently, 5 years with the addition of concurrent and adjuvant temozolomide (TMZ) to radical radiotherapy (RT) (Stupp R, Hegi M, van den Bent M, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009:10:459-66). The aim of this study was to investigate if the demonstrated improved survival in the literature translated to clinical practice.Methods: This was a retrospective study including all patients with histologically proven GBM diagnosed from 1999 to 2008 and treated with adjuvant RT at our institution. A total of 273 patients were identified. Statistical analysis was carried out using SPSS v18.Results: The median survival for the whole group (n = 273) over the 10-year period was 7.6 months (95% confidence interval 6.7-8.4 months). Overall, the cumulative probability of survival at 1 and 2 years was 31.5 and 9.4%, respectively. In total, 146 patients received radical RT. 103 patients were treated with radical RT and TMZ and 43 patients received radical RT alone. The median survival for patients receiving radical RT with TMZ was 13.4 months (95% CI 10.9-15.8 months) vs 8.8 months for radical RT alone (95% CI 6.9 - 10.7 months, p = 0.006). 2-year survival figures were 21.2 vs 4.7%, respectively. On multivariate analysis, independent predictors of survival included KPS, RT dose, TMZ and extent of surgery. The strongest predictors of poorer outcome based on the hazard ratio were palliative RT, followed by not receiving TMZ chemotherapy, then KPS <90 and a biopsy only surgical approach.Conclusion: This paper demonstrates

  4. A clinical review of treatment outcomes in glioblastoma multiforme - the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival?

    LENUS (Irish Health Repository)

    2012-02-01

    Objective: Glioblastoma multiforme (GBM) accounts for up to 60% of all malignant primary brain tumours in adults, occurring in 2-3 cases per 100 000 in Europe and North America. In 2005, a Phase III clinical trial demonstrated a significant improvement in survival over 2, and subsequently, 5 years with the addition of concurrent and adjuvant temozolomide (TMZ) to radical radiotherapy (RT) (Stupp R, Hegi M, van den Bent M, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009:10:459-66). The aim of this study was to investigate if the demonstrated improved survival in the literature translated to clinical practice.Methods: This was a retrospective study including all patients with histologically proven GBM diagnosed from 1999 to 2008 and treated with adjuvant RT at our institution. A total of 273 patients were identified. Statistical analysis was carried out using SPSS v18.Results: The median survival for the whole group (n = 273) over the 10-year period was 7.6 months (95% confidence interval 6.7-8.4 months). Overall, the cumulative probability of survival at 1 and 2 years was 31.5 and 9.4%, respectively. In total, 146 patients received radical RT. 103 patients were treated with radical RT and TMZ and 43 patients received radical RT alone. The median survival for patients receiving radical RT with TMZ was 13.4 months (95% CI 10.9-15.8 months) vs 8.8 months for radical RT alone (95% CI 6.9 - 10.7 months, p = 0.006). 2-year survival figures were 21.2 vs 4.7%, respectively. On multivariate analysis, independent predictors of survival included KPS, RT dose, TMZ and extent of surgery. The strongest predictors of poorer outcome based on the hazard ratio were palliative RT, followed by not receiving TMZ chemotherapy, then KPS <90 and a biopsy only surgical approach.Conclusion: This paper demonstrates improved

  5. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells

    Science.gov (United States)

    Valdor, Rut; García-Bernal, David; Bueno, Carlos; Ródenas, Mónica; Moraleda, José M.; Macian, Fernando; Martínez, Salvador

    2017-01-01

    The establishment of immune tolerance during Glioblastoma Multiforme (GBM) progression, is characterized by high levels expression of anti-inflammatory cytokines, which suppress the function of tumor assocciated myeloid cells, and the activation and expansion of tumor antigen specific T cells. However, the mechanisms underlying the failed anti-tumor immune response around the blood vessels during GBM, are poorly understood. The consequences of possible interactions between cancer cells and the perivascular compartment might affect the tumor growth. In this work we show for the first time that GBM cells induce immunomodulatory changes in pericytes in a cell interaction-dependent manner, acquiring an immunosuppresive function that possibly assists the evasion of the anti-tumor immune response and consequently participates in tumor growth promotion. Expression of high levels of anti-inflammatory cytokines was detected in vitro and in vivo in brain pericytes that interacted with GBM cells (GBC-PC). Furthermore, reduction of surface expression of co-stimulatory molecules and major histocompatibility complex molecules in GBC-PC correlated with a failure of antigen presentation to T cells and the acquisition of the ability to supress T cell responses. In vivo, orthotopic xenotransplant of human glioblastoma in an immunocompetent mouse model showed significant GBM cell proliferation and tumor growth after the establishment of interspecific immunotolerance that followed GMB interaction with pericytes. PMID:28978142

  6. EGFR and EGFRvIII Promote Angiogenesis and Cell Invasion in Glioblastoma: Combination Therapies for an Effective Treatment

    Directory of Open Access Journals (Sweden)

    Stefanie Keller

    2017-06-01

    Full Text Available Epidermal growth factor receptor (EGFR and the mutant EGFRvIII are major focal points in current concepts of targeted cancer therapy for glioblastoma multiforme (GBM, the most malignant primary brain tumor. The receptors participate in the key processes of tumor cell invasion and tumor-related angiogenesis and their upregulation correlates with the poor prognosis of glioma patients. Glioma cell invasion and increased angiogenesis share mechanisms of the degradation of the extracellular matrix (ECM through upregulation of ECM-degrading proteases as well as the activation of aberrant signaling pathways. This review describes the role of EGFR and EGFRvIII in those mechanisms which might offer new combined therapeutic approaches targeting EGFR or EGFRvIII together with drug treatments against proteases of the ECM or downstream signaling to increase the inhibitory effects of mono-therapies.

  7. A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects

    Directory of Open Access Journals (Sweden)

    Georgios S Stamatakos

    2017-01-01

    Full Text Available A novel explicit triscale reaction-diffusion numerical model of glioblastoma multiforme tumor growth is presented. The model incorporates the handling of Neumann boundary conditions imposed by the cranium and takes into account both the inhomogeneous nature of human brain and the complexity of the skull geometry. The finite-difference time-domain method is adopted. To demonstrate the workflow of a possible clinical validation procedure, a clinical case/scenario is addressed. A good agreement of the in silico calculated value of the doubling time (ie, the time for tumor volume to double with the value of the same quantity based on tomographic imaging data has been observed. A theoretical exploration suggests that a rough but still quite informative value of the doubling time may be calculated based on a homogeneous brain model. The model could serve as the main component of a continuous mathematics-based glioblastoma oncosimulator aiming at supporting the clinician in the optimal patient-individualized design of treatment using the patient’s multiscale data and experimenting in silico (ie, on the computer.

  8. A very rare case report of long-term survival: A patient operated on in 1994 of glioblastoma multiforme and currently in perfect health

    Directory of Open Access Journals (Sweden)

    Riccardo Caruso

    2017-01-01

    Conclusion: The fact that there are extremely rare cases of long-term survival and even zero recurrence of the glioblastoma should serve as a stimulus to continue the research effort and not give up the fight against this tumor on a day-to-day basis.

  9. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Glioblastoma Multiforme (GBM cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration.

  10. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  11. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

    Energy Technology Data Exchange (ETDEWEB)

    Verhaak, Roel GW; Hoadley, Katherine A; Purdom, Elizabeth; Wang, Victoria; Qi, Yuan; Wilkerson, Matthew D; Miller, C Ryan; Ding, Li; Golub, Todd; Mesirov, Jill P; Alexe, Gabriele; Lawrence, Michael; O' Kelly, Michael; Tamayo, Pablo; Weir, Barbara A; Gabriel, Stacey; Winckler, Wendy; Gupta, Supriya; Jakkula, Lakshmi; Feiler, Heidi S; Hodgson, J Graeme; James, C David; Sarkaria, Jann N; Brennan, Cameron; Kahn, Ari; Spellman, Paul T; Wilson, Richard K; Speed, Terence P; Gray, Joe W; Meyerson, Matthew; Getz, Gad; Perou, Charles M; Hayes, D Neil; Network, The Cancer Genome Atlas Research

    2009-09-03

    The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.

  12. Presurgical Planning for Supratentorial Lesions with Free Slicer Software and Sina App.

    Science.gov (United States)

    Chen, Ji-Gang; Han, Kai-Wei; Zhang, Dan-Feng; Li, Zhen-Xing; Li, Yi-Ming; Hou, Li-Jun

    2017-10-01

    Neuronavigation systems are used widely in the localization of intracranial lesions with satisfactory accuracy. However, they are expensive and difficult to learn. Therefore, a simple and practical augmented reality (AR) system using mobile devices might be an alternative technique. We introduce a mobile AR system for the localization of supratentorial lesions. Its practicability and accuracy were examined by clinical application in patients and comparison with a standard neuronavigation system. A 3-dimensional (3D) model including lesions was created with 3D Slicer. A 2-dimensional image of this 3D model was obtained and overlapped on the patient's head with the Sina app. Registration was conducted with the assistance of anatomical landmarks and fiducial markers. The center of lesion projected on scalp was identified with our mobile AR system and standard neuronavigation system, respectively. The difference in distance between the centers identified by these 2 systems was measured. Our mobile AR system was simple and accurate in the localization of supratentorial lesions with a mean distance difference of 4.4 ± 1.1 mm. Registration added on an average of 141.7 ± 39 seconds to operation time. There was no statistically significant difference for the required time among 3 registrations (P = 0.646). The mobile AR system presents an alternative technology for image-guided neurosurgery and proves to be practical and reliable. The technique contributes to optimal presurgical planning for supratentorial lesions, especially in the absence of a neuronavigation system. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  14. Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro.

    Science.gov (United States)

    Tezcan, Gulcin; Taskapilioglu, Mevlut Ozgur; Tunca, Berrin; Bekar, Ahmet; Demirci, Hilal; Kocaeli, Hasan; Aksoy, Secil Ak; Egeli, Unal; Cecener, Gulsah; Tolunay, Sahsine

    2017-06-01

    Patients with glioblastoma multiforme (GBM) that are cancer stem-cell-positive (GSC [+]) essentially cannot benefit from anti-angiogenic or anti-invasive therapy. In the present study, the potential anti-angiogenic and anti-invasive effects of Olea europaea (olive) leaf extract (OLE) were tested using GSC (+) tumours. OLE (2mg/mL) caused a significant reduction in tumour weight, vascularisation, invasiveness and migration (p=0.0001, p<0.001, p=0.004; respectively) that was associated with reducing the expression of VEGFA, MMP-2 and MMP-9. This effect was synergistically increased in combination with bevacizumab. Therefore, our current findings may contribute to research on drugs that inhibit the invasiveness of GBM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  16. Regional cerebral blood flow and CSF pressures during Cushing response induced by a supratentorial expanding mass

    International Nuclear Information System (INIS)

    Schrader, H.; Zwetnow, N.N.; Moerkrid, L.

    1985-01-01

    In order to delineate the critical blood flow pattern during the Cushing response in intracranial hypertension, regional cerebral blood flow was measured with radioactive microspheres in 12 anesthetized dogs at respiratory arrest caused either by expansion of an epidural supratentorial balloon or by cisternal infusion. Regional cerebrospinal fluid pressures were recorded and the local cerebral perfusion pressure calculated in various cerebrospinal compartments. In the 8 dogs of the balloon expansion group, the systemic arterial pressure was unmanipulated in 4, while it was kept at a constant low level (48 and 70 mm Hg) in 2 dogs and, in another 2 dogs, at a constant high level (150 and 160 mm Hg) induced by infusion of Aramine. At respiratory arrest, regional cerebral blood flow had a stereotyped pattern and was largely independent of the blood pressure level. In contrast, concomitant pressure gradients between the various cerebrospinal compartments varied markedly in the 3 animal groups increasing with higher arterial pressure. Flow decreased by 85-100% supratentorially and by 70-100% in the upper brain stem down to the level of the upper pons, while changes in the lower brain stem were minor, on the average 25%. When intracranial pressure was raised by cisternal infusion in 4 dogs, the supratentorial blood flow pattern at respiratory arrest was appriximately similar to the flow pattern in the balloon inflation group. However, blood flow decreased markedly (74-85%) also in the lower brain stem. The results constitute another argument in favour of the Cushing response in supratentorial expansion being caused by ischemia in the brain stem. The critical ischemic region seems to be located rostrally to the oblongate medulla, probably in the pons. (author)

  17. Local recurrence and distant metastasis of supratentorial primitive neuro-ectodermal tumor in an adult patient successfully treated with intensive induction chemotherapy and maintenance temozolomide

    NARCIS (Netherlands)

    Terheggen, F.; Troost, D.; Majoie, C. B.; Leenstra, S.; Richel, D. J.

    2007-01-01

    Supratentorial primitive neuro-ectodermal tumors (PNET) in adults are very rare. Extraneural metastasis are unusual and the optimal palliative chemotherapy regimen is not established. We present a 26-year-old patient with local recurrence and distant metastasis of supratentorial PNET successfully

  18. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  19. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    International Nuclear Information System (INIS)

    Server, Andres; Nakstad, Per H.; Orheim, Tone E.D.; Graff, Bjoern A.; Josefsen, Roger; Kumar, Theresa

    2011-01-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  20. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Orheim, Tone E.D. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway); Kumar, Theresa [Oslo University Hospital-Ullevaal, Department of Pathology, Oslo (Norway)

    2011-05-15

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  1. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    Full Text Available The Repressor Element 1 Silencing Transcription factor (REST/NRSF is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  2. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuming Jiao

    2015-06-01

    Full Text Available Invasion and metastasis of glioblastoma-initiating cells (GICs are thought to be responsible for the progression and recurrence of glioblastoma multiforme (GBM. A safe drug that can be applied during the rest period of temozolomide (TMZ maintenance cycles would greatly improve the prognosis of GBM patients by inhibiting GIC invasion. Resveratrol (RES is a natural compound that exhibits anti-invasion properties in multiple tumor cell lines. The current study aimed to evaluate whether RES can inhibit GIC invasion in vitro and in vivo. GICs were identified using CD133 and Nestin immunofluorescence staining and tumorigenesis in non-obese diabetic severe combined immunodeficient (NOD/SCID mice. Invasive behaviors, including the adhesion, invasion and migration of GICs, were determined by tumor invasive assays in vitro and in vivo. The activity of matrix metalloproteinases (MMPs was measured by the gelatin zymography assay. Western blotting analysis and immunofluorescence staining were used to determine the expression of signaling effectors in GICs. We demonstrated that RES suppressed the adhesion, invasion and migration of GICs in vitro and in vivo. Moreover, we proved that RES inhibited the invasion of GICs via the inhibition of PI3K/Akt/NF-κB signal transduction and the subsequent suppression of MMP-2 expression.

  3. Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma Subtypes

    Directory of Open Access Journals (Sweden)

    Carlo Cusulin

    2015-07-01

    Full Text Available In glioblastoma multiforme (GBM, brain-tumor-initiating cells (BTICs with cancer stem cell characteristics have been identified and proposed as primordial cells responsible for disease initiation, recurrence, and therapeutic resistance. However, the extent to which individual, patient-derived BTIC lines reflect the heterogeneity of GBM remains poorly understood. Here we applied a stem cell biology approach and compared self-renewal, marker expression, label retention, and asymmetric cell division in 20 BTIC lines. Through cluster analysis, we identified two subgroups of BTIC lines with distinct precursor states, stem- or progenitor-like, predictive of survival after xenograft. Moreover, stem and progenitor transcriptomic signatures were identified, which showed a strong association with the proneural and mesenchymal subtypes, respectively, in the TCGA cohort. This study proposes a different framework for the study and use of BTIC lines and provides precursor biology insights into GBM.

  4. Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors

    Science.gov (United States)

    2017-09-27

    Childhood Choroid Plexus Tumor; Childhood Ependymoblastoma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  5. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    Science.gov (United States)

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  6. Lagrangian multiforms and multidimensional consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-10-30

    We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.

  7. Surgical Outcome in Patients with Spontaneous Supratentorial Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Rendevski Vladimir

    2017-12-01

    Full Text Available The aim of the paper was to evaluate the surgical outcome in patients with spontaneous supratentorial intracerebral hemorrhage (ICH after surgical intervention, in respect to the initial clinical conditions, age, sex, hemispheric side and anatomic localization of ICH. Thirty-eight surgically treated patients with spontaneous supratentorial intracerebral hemorrhage were included in the study. The surgical outcome was evaluated three months after the initial admission, according to the Glasgow Outcome Scale (GOS. The surgical treatment was successful in 14 patients (37%, whereas it was unsuccessful in 24 patients (63%. We have detected a significant negative correlation between the Glasgow Coma Scale (GCS scores on admission and the GOS scores after three months, suggesting worse neurological outcome in patients with initially lower GCS scores. The surgical outcome in patients with ICH was not affected by the sex, the hemispheric side and the anatomic localization of ICH, but the age of the patients was estimated as a significant factor for their functional outcome, with younger patients being more likely to be treated successfully. The surgical outcome is affected from the initial clinical state of the patients and their age. The treatment of ICH is still an unsolved clinical problem and the development of new surgical techniques with larger efficiency in the evacuation of the hematoma is necessary, thus making a minimal damage to the normal brain tissue, as well as decreasing the possibility of postoperative bleeding.

  8. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    Science.gov (United States)

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  9. Nanotechnology applications for glioblastoma.

    Science.gov (United States)

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Basic Principles of Creation of Topometrical Cards of Beam Therapy in the Cases of High-grade Malignant Supratentorial Gliomas

    International Nuclear Information System (INIS)

    Liepa, Z.; Platkajis, A.; Apskalne, D.

    2007-01-01

    Background. High-grade malignant supratentorial gliomas: anaplastic astrocytomas (AA), anaplastic oligodendrogliomas (AO), anaplastic oligoatrocitomas (AOA), anaplastic ependimomas (AE), glioblastomas (GB) and other less occasional forms of gliomas are approximately 1,82% of all cases of malignant tumors. Life expectancy for such patients still is very low, for several forms of tumors -12-18 months. High-grade malignant gliomas need for combined approach, and one part of such approach is beam therapy. For reaching qualitative results of beam therapy, method of topometrical planning of beam therapy is crucial, because it allow planning therapy due to anatomic features of every patient. The aim of work was comparison of basic principles of creation of 2-dimensional (2D) and 3-dimensional (3D) topometrical cards of beam therapy. Material and methods. In the process of research, analyse of creation of 2D and 3D cards for patients in period 2000-2005 were made. For creation of 2D cards pelviometer, conturometer of head (Picture 1), pictures of tests of brains in the biggest cross - section of tumor (Picture 2) were used. For creation 3D cards computertomography LightSpeed Rt, which is suitable for topometry (Picture 3), planning system of 3D reconstruction ECLIPSE (Picture 4), 3D reconstruction by data from pre - surgery and/or after - surgery tests of brain (Picture 5), and matching in format of DICOM (Picture 6) were used. In this research 214 patients with supratentorial malign gliomas were covered (Table 1,2). Results. In 98 cases 2D topometrical cards were made, which allows creating only two contrary areas of entry of beams or two areas of entry under angle (Picture 7, 8). In 55 cases in 2D topographic cards two contrary areas of entry were made and in 43 cases plan of beam therapy with areas of entry under angle were made. 3D cards anatomic features of patient as well as location of critical organs were taken into account (picture 10). In case of 3D the number of

  11. Nucleic Acid-Based Nanoconstructs

    Science.gov (United States)

    Focuses on the design, synthesis, characterization, and development of spherical nucleic acid constructs as effective nanotherapeutic, single-entity agents for the treatment of glioblastoma multiforme and prostate cancers.

  12. Genetically heterogeneous glioblastoma recurring with disappearance of 1p/19q losses: case report.

    Science.gov (United States)

    Ito, Motokazu; Wakabayashi, Toshihiko; Natsume, Atsushi; Hatano, Hisashi; Fujii, Masazumi; Yoshida, Jun

    2007-07-01

    Intratumor heterogeneity is of great importance in many clinical aspects of glioma biology, including tumor grading, therapeutic response, and recurrence. Modifications in the genetic features of a specific primary tumor recurring after chemo- and radiotherapy are poorly understood. We report a recurrent glioblastoma case exhibiting loss of heterozygosity (LOH) on chromosome 10q, while the primary tumor exhibited heterogeneity in the LOH status of 1p, 19q, and 10q. To determine the relationship between such modifications and heterogeneous chemosensitivity, primary cultured cells heterogeneously showing 1p/19q/10q losses were established from a surgical specimen of oligoastrocytoma and were treated with chemotherapeutic agents. A 46-year-old woman with a 1-month history of headache and visual disturbances presented to our institution. A right temporoparietal craniotomy and gross total resection were performed. The pathological diagnosis was glioblastoma multiforme with oligodendroglial components. Whereas LOH on 10q was identified at all tumor sites, only the oligodendroglial components exhibited LOH on 1p and 19q. The tumor recurred 6 months after postoperative chemotherapy using interferon-beta and ranimustine, as well as a course of fractionated external-beam radiotherapy (total dose, 60 Gy). Gene analysis revealed no 1p/19q allelic losses but only 10q LOH. Intratumor heterogeneity might be explained by the presence of more than one subclone in the primary tumor. Here, the tumor cells exhibiting 1p/19q LOH with high chemosensitivity might have been killed by the adjuvant therapy and those exhibiting 10q LOH with chemoresistance recurred. This study and our preliminary laboratory findings might suggest an approach to brain tumor physiology, diagnosis, and therapy.

  13. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hatano, Kazuo [Division of Radiation Oncology, Tokyo Bay Advanced Imaging and Radiation Oncology Clinic, Makuhari, Chiba (Japan); Uchino, Yoshio [Division of Nuclear Medicine, Chiba Ryogo Center, Chiba (Japan); Itami, Makiko [Division of Surgical Pathology, Chiba Cancer Center, Chiba (Japan); Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hara, Ryusuke [Division of Radiation Oncology, Chiba Cancer Center, Chiba (Japan)

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  14. Establishing a model of supratentorial hemorrhage in the piglet

    International Nuclear Information System (INIS)

    Shi Yuanhong; Li Zaiwang; Zhang Suming; Xie Minjie; Meng Xiangwu; Xu Jinzhi; Liu Na; Tang Zhouping

    2010-01-01

    The most common site of hemorrhage is the basal ganglia, which exhibits the obvious neurological deficits. In the present study, we aimed to develop a model of supratentorial intracerebral hemorrhage (ICH) with neurological deficits in piglets (6.0 to 8.8 kg). A pediatric urinary catheter with two passages and one balloon was introduced through a burr hole into the right striatum. All the animals received balloon inflation, which was performed by injecting 2.5 ml saline into the balloon through one passage. Then each piglet in experimental group (n=18) received an injection of 1.0-ml autologous arterial blood through the other passage over 2 min and maintained for 5 min. Then, additional 1.5-ml blood was injected over 15 min. Piglets in control group (n=6) received only balloon inflation without blood injection. CT scanning was performed immediately after surgery. A deep hematoma was successfully induced in 16 out of 18 piglets and the hematoma volume was 1.74±0.22 ml (n=5) at 24 hours after surgery. All the piglets with hematoma had behavioral deficits (lame or could not walk) at 24 hours. Tissue damages, such as cell swelling, necrosis and demyelination, appeared at 24 hours in the brain tissues, adjacent to the hematoma, and was aggravated at 48 hours and ameliorated at 7 days after hematoma induction. In conclusion, we have established a simple model of supratentorial ICH in piglets with marked neurological deficits, which is suitable for study of the pathophysiology and treatment of ICH. (author)

  15. Evaluating vacquinol-1 in rats carrying glioblastoma models RG2 and NS1.

    Science.gov (United States)

    Ahlstedt, Jonatan; Förnvik, Karolina; Zolfaghari, Shaian; Kwak, Dongoh; Hammarström, Lars G J; Ernfors, Patrik; Salford, Leif G; Redebrandt, Henrietta Nittby

    2018-02-02

    Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, and available experimental and routine therapies result in limited survival benefits. A vulnerability of GBM cells to catastrophic vacuolization and cell death, a process termed methuosis, induced by Vacquinol-1 (VQ-1) has been described earlier. In the present study, we investigate the efficacy of VQ-1 treatment in two syngeneic rat GBM models, RG2 and NS1. VQ-1 treatment affected growth of both RG2 and NS1 cells in vitro . Intracranially, significant reduction in RG2 tumor size was observed, although no effect was seen on overall survival. No survival advantage or effect on tumor size was seen in animals carrying the NS1 models compared to untreated controls. Furthermore, immunological staining of FOXP3, CD4 and CD8 showed no marked difference in immune cell infiltrate in tumor environment following treatment. Taken together, a survival advantage of VQ-1 treatment alone could not be demonstrated here, even though some effect upon tumor size was seen. Staining for immune cell markers did not indicate that VQ-1 either reduced or increased host anti-tumor immune response.

  16. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.

    Science.gov (United States)

    Kouri, Fotini M; Hurley, Lisa A; Daniel, Weston L; Day, Emily S; Hua, Youjia; Hao, Liangliang; Peng, Chian-Yu; Merkel, Timothy J; Queisser, Markus A; Ritner, Carissa; Zhang, Hailei; James, C David; Sznajder, Jacob I; Chin, Lynda; Giljohann, David A; Kessler, John A; Peter, Marcus E; Mirkin, Chad A; Stegh, Alexander H

    2015-04-01

    Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM. © 2015 Kouri et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics

    Directory of Open Access Journals (Sweden)

    Krakstad Camilla

    2010-06-01

    Full Text Available Abstract Glioblastoma multiforme (GBM is the most common primary brain tumour in adults and one of the most aggressive cancers in man. Despite technological advances in surgical management, combined regimens of radiotherapy with new generation chemotherapy, the median survival for these patients is 14.6 months. This is largely due to a highly deregulated tumour genome with opportunistic deletion of tumour suppressor genes, amplification and/or mutational hyper-activation of receptor tyrosine kinase receptors. The net result of these genetic changes is augmented survival pathways and systematic defects in the apoptosis signalling machinery. The only randomised, controlled phase II trial conducted targeting the epidermal growth factor receptor (EGFR signalling with the small molecule inhibitor, erlotinib, has showed no therapeutic benefit. Survival signalling and apoptosis resistance in GBMs can be viewed as two sides of the same coin. Targeting increased survival is unlikely to be efficacious without at the same time targeting apoptosis resistance. We have critically reviewed the literature regarding survival and apoptosis signalling in GBM, and highlighted experimental, preclinical and recent clinical trials attempting to target these pathways. Combined therapies simultaneously targeting apoptosis and survival signalling defects might shift the balance from tumour growth stasis to cytotoxic therapeutic responses that might be associated with greater therapeutic benefits.

  18. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  19. Development and in vitro testing of liposomal gadolinium-formulations for neutron capture therapy of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Peters, Tanja

    2013-01-01

    For the improvement of current neutron capture therapy, several liposomal formulations of neutron capture agent gadolinium were developed and tested in a glioma cell model. Formulations were analyzed regarding physicochemical and biological parameters, such as size, zeta potential, uptake into cancer cells and performance under neutron irradiation. The neutron and photon dose derived from intracellular as well as extracellular Gd was calculated via Monte Carlo simulations and set in correlation with the reduction of cell survival after irradiation. To investigate the suitability of Gd as a radiosensitizer for photon radiation, cells were also irradiated with synchrotron radiation in addition to clinically used photons generated by linear accelerator. Irradiation with neutrons led to significantly lower survival for Gd-liposome-treated F98 and LN229 cells, compared to irradiated control cells and cells treated with non-liposomal Gd-DTPA. Correlation between Gd-content and -dose and respective cell survival displayed proportional relationship for most of the applied formulations. Photon irradiation experiments showed the proof-of-principle for the radiosensitizer approach, although the photon spectra currently used have to be optimized for higher efficiency of the radiosensitizer. In conclusion, the newly developed Gd-liposomes show great potential for the improvement of radiation treatment options for highly malignant glioblastoma.

  20. Supratentorial juvenile pilocytic astrocytoma in a young adult with Silver-Russell syndrome.

    LENUS (Irish Health Repository)

    Fenton, E

    2008-12-01

    Silver-Russell syndrome is a rare genetically heterogeneous disorder in which patients demonstrate intrauterine and postnatal growth retardation, triangular facies, excessive sweating during early childhood, late closure of the anterior fontanelle and skeletal asymmetry. An association with malignancy exists and only one previous intracranial tumour has been reported, a craniopharyngioma. We report the first case of Silver-Russell syndrome associated with a supratentorial juvenile pilocytic astrocytoma.

  1. An individual patient data meta-analysis on characteristics, treatments and outcomes of the glioblastoma/gliosarcoma patients with central nervous system metastases reported in literature until 2013

    DEFF Research Database (Denmark)

    Pietschmann, Sophie; von Bueren, André O; Henke, Guido

    2014-01-01

    Dissemination of high-grade gliomas (WHO IV) has been investigated poorly so far. We conducted an extensive analysis of the characteristics, treatments and outcomes of the glioblastoma multiforme (GBM)/gliosarcoma (GS) patients with central nervous system (CNS) metastases reported in literature...... until April 2013. PubMed and Web of Science searches for peer-reviewed articles pertaining to GBM/GS patients with metastatic disease were conducted using predefined keywords. Additionally, we performed hand search following the references from the selected papers. Cases in which the metastases...... exclusively occurred outside the CNS were excluded. 110 publications reporting on 189 patients were eligible. There was a significant increase in the number of reported cases over the last decades. We calculated a median overall survival from diagnosis of metastasis (from initial diagnosis of GBM/GS) of 3...

  2. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  3. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  4. Molecular and cellular heterogeneity: the hallmark of glioblastoma.

    Science.gov (United States)

    Aum, Diane J; Kim, David H; Beaumont, Thomas L; Leuthardt, Eric C; Dunn, Gavin P; Kim, Albert H

    2014-12-01

    There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

  5. Postoperative radiotherapy of supratentorial anaplastic gliomas

    International Nuclear Information System (INIS)

    Wendt, T.G.; Bacherler, B.; Baumer, K.; Rohloff, R.; Willich, N.

    1986-01-01

    Between 1970 and 1983, 149 patients with high grade anaplastic supratentorial gliomas received a postoperative irradiation during primary treatment. 118 out of these patients had an anaplastic astrocytoma, 18 an anaplastic oligodendroglioma, and 13 an anaplastic ependymoma. Most of these patients were treated by irradiation of a great volume with 50 Gy within five weeks, the others by irradiation of the total brain with 50 Gy within five weeks and saturation with 10 Gy within one week. The one-year survival of the total group was 35.5% and the two-year survival 10.6%. Patients at an age of less than 40 years show a significantly longer survival than older patients (one-year survival rates 40% and 30.7%, respectively). Patients suffering from anaplastic tumors with astrocytic and oligodendrocytic differentiation have a comparable prognosis. Patients suffering from anaplastic tumors with ependymal differentiation, however, have prolonged survival times. The therapy results of different treatment methods are discussed using the communications of literature. (orig.) [de

  6. Endoscopic hematoma evacuation in patients with spontaneous supratentorial intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei-Hsin Wang

    2015-02-01

    Conclusion: With the introduction of the minimally invasive techniques and the evolution of the neuroendoscope and hemostatic agents, the median operative time and blood loss have been significantly decreased. Although the hematoma evacuation rates were similar between the endoscope (90% and craniotomy (85% groups, the median intensive care unit stay was decreased from 11 days to 6 days due to reduced surgical invasiveness. This represents an important advancement in treating spontaneous supratentorial ICH, and provides a measured preview of the promising results that can be expected in the future.

  7. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes

    Directory of Open Access Journals (Sweden)

    Fan Xing

    2017-01-01

    Full Text Available Summary: Glioblastoma multiforme (GBM is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells. : Xing et al. show that the metabolic shift from glycolysis to oxidative phosphorylation drives differentiation of GBM cells into astrocytes by cAMP activation. Mechanistically, the cAMP-CREB-PGC1α signal mediates mitochondrial biogenesis, which leads to metabolic reprogramming, induced differentiation, and tumor growth inhibition. Keywords: glioblastoma, induced differentiation, Warburg effect, metabolic reprogramming, oxidative phosphorylation, glycolysis, mitochondrial biogenesis, cyclic adenosine monophosphate, cAMP, PPARγ coactivator-1α, PGC1α

  8. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    Directory of Open Access Journals (Sweden)

    Grazia eMaugeri

    2016-05-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP through the binding of vasoactive intestinal peptide receptors (VIPRs, perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM. This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs. HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX. The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. In conclusion, the modulation of hypoxic event and the anti-invasive effect exerted by some VIP family members might open new insights in the therapeutic approach to GBM.

  9. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    Science.gov (United States)

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  10. Prodominant hypertensive brainstem encephalopathy with supratentorial involvement: Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hee; Park, Sung Tae; Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae; Cha, Ji Hoon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Hypertensive encephalopathy typically presents with bilateral parietooccipital vasogenic edema. Brainstem and cerebellar edema are uncommon in association with typical supratentorial changes. We experienced three cases of atypical hypertensive encephalopathy involving brainstem and cerebellum as well as cerebral white matter, which showed characteristic alternating linear bright and low signals in the pons, the so-called 'stripe sign'. We report these cases here with a brief literature review.

  11. Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Gentile

    Full Text Available Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138 widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1 obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.

  12. Erythema multiforme like allergic contact dermatitis associated with laurel oil: a rare presentation.

    Science.gov (United States)

    Uzuncakmak, Tugba Kevser; Karadag, Ayse Serap; Izol, Belcin; Akdeniz, Necmettin; Cobanoglu, Bengu; Taskin, Secil

    2015-04-16

    Allergic contact dermatitis is a common skin disease, which affects approximately 20% of the population. This reaction may present with several clinical manifestations. Erythema multiforme-like allergic contact dermatitis is a rare type of non-eczematous contact dermatitis, which may lead to difficulty in diagnosis.Essential oil of Laurus nobilis is widely used in massage therapy for antiinflammatory and analgesic effects. Laurus nobilis induced contact dermatitis has been reported in the literature but an erythema multiforme-like presentation is rare.

  13. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fabliha Ahmed Chowdhury

    2018-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ, the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.

  14. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xingqiang Wang, Shanshi Wang, Xiaolong Li, Shigang Jin, Feng Xiong, Xin Wang Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical University, Rizhao, China Abstract: To date, β-catenin has been reported to be implicated in mediating the epithelial-mesenchymal transition (EMT in a variety of human cancers, which can be triggered by EGF. However, the mechanisms underlying EGF-β-catenin pathway-induced EMT of glioblastoma multiforme (GBM have not been reported previously. In the present study, immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot were applied to investigate the effect of EGF-β-catenin pathway on EMT of GBM. Here, we identified that β-catenin mRNA and protein levels were up-regulated in GBM tissues and four kinds of glioblastoma cell lines, including T98G, A172, U87, and U251 cells, compared with normal brain tissue and astrocytes. In U87 cell line, inhibition of β-catenin by siRNA suppressed EGF-induced proliferation, migration, invasiveness, and the expression of EMT activators (Snail and Slug. In addition, the expression of epithelial markers (E-cadherin was up-regulated and the expression of mesenchymal markers (N-cadherin and MMP9 was down-regulated. Finally, inhibitor of PI3K/Akt signaling pathways inactivated the EGF-β-catenin-induced EMT. In conclusion, β-catenin-EMT pathway induced by EGF is important for GBM progression by the PI3K/Akt pathways. Inhibition of β-catenin leads to suppression of EGF pathway-induced EMT, which provides a new way to treat GBM patients. Keywords: EGF, β-catenin, EMT, GBM

  15. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    Science.gov (United States)

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to

  16. Impact of concurrent chemotherapy with radiation therapy for elderly patients with newly diagnosed glioblastoma: a review of the National Cancer Data Base.

    Science.gov (United States)

    Huang, Jiayi; Samson, Pamela; Perkins, Stephanie M; Ansstas, George; Chheda, Milan G; DeWees, Todd A; Tsien, Christina I; Robinson, Clifford G; Campian, Jian L

    2017-02-01

    To investigate the utilization and overall survival (OS) impact of concurrent chemotherapy in combination with radiation therapy (RT) for elderly glioblastoma (GBM) patients. Elderly patients (age >70) with supratentorial and nonmetastatic GBM who received RT of 20-75 Gy with concurrent single-agent chemotherapy (ChemoRT) or without (RT alone) during 2004-2012 were identified from the National Cancer Data Base (NCDB). The Cochran-Armitage test was used for trend analysis. Hazard ratios (HR) and 95% confidence intervals (CIs) were determined using Cox proportional hazards. Propensity score analysis was performed to reduce selection bias in treatment allocation. A total of 5252 patients were identified (RT alone: n = 1389; ChemoRT: n = 3863). There was increasing utilization of chemotherapy during this period (45-80%, P 80 (25-68%, P benefit was demonstrated with 1202 pairs of propensity-matched patients (HR 0.79, 95% CI 0.73-0.86, P chemotherapy has been administered with RT for the majority of elderly GBM patients. Addition of chemotherapy to RT for elderly GBM patients is associated with significantly improve OS in routine clinical practice.

  17. Dural venous sinuses distortion and compression with supratentorial mass lesions: a mechanism for refractory intracranial hypertension?

    Science.gov (United States)

    Qureshi, Adnan I.; Qureshi, Mushtaq H.; Majidi, Shahram; Gilani, Waqas I.; Siddiq, Farhan

    2014-01-01

    Objective To determine the effect of supratentorial intraparenchymal mass lesions of various volumes on dural venous sinuses structure and transluminal pressures. Methods Three set of preparations were made using adult isolated head derived from fresh human cadaver. A supratentorial intraparenchymal balloon was introduced and inflated at various volumes and effect on dural venous sinuses was assessed by serial intravascular ultrasound, computed tomographic (CT), and magnetic resonance (MR) venograms. Contrast was injected through a catheter placed in sigmoid sinus for both CT and MR venograms. Serial trasluminal pressures were measured from middle part of superior sagittal sinus in another set of experiments. Results At intraparenchymal balloon inflation of 90 cm3, there was attenuation of contrast enhancement of superior sagittal sinus with compression visualized in posterior part of the sinus without any evidence of compression in the remaining sinus. At intraparenchymal balloon inflation of 180 and 210 cm3, there was compression and obliteration of superior sagittal sinus throughout the length of the sinus. In the coronal sections, at intraparenchymal balloon inflations of 90 and 120 cm3, compression and obliteration of the posterior part of superior sagittal sinus were visualized. In the axial images, basal veins were not visualized with intraparenchymal balloon inflation of 90 cm3 or greater although straight sinus was visualized at all levels of inflation. Trasluminal pressure in the middle part of superior sagittal sinus demonstrated a mild increase from 0 cm H2O to 0.4 cm H2O and 0.5 cm H2O with inflation of balloon to volume of 150 and 180 cm3, respectively. There was a rapid increase in transluminal pressure from 6.8 cm H2O to 25.6 cm H2O as the supratentorial mass lesion increased from 180 to 200 cm3. Conclusions Our experiments identified distortion and segmental and global obliteration of dural venous sinuses secondary to supratentorial mass lesion and

  18. K-3 vitamininin sıçan glioma (C6) ve insan glioblastomamultiforme hücre çoğalmasına invitro etkileri

    OpenAIRE

    Öztopçu, Pınar; Kabadere, Selda; Uyar, Ruhi

    2005-01-01

    Amaç: Glioblastoma multiforme beyin dokusu içerisine hızla yayılan ve onu yıkıma ugratan, sinir sisteminde görülme sıklıgı yüksek oldukça tehlikeli bir tümör çesididir. K-3 vitamininin çesitli kanser hücre dizileri üzerinde hücre çogalmasını baskılayıcı etkisi oldugu bildirilmektedir. Çalısmamızda K-3 vitamininin, sıçan glioma (C6) ve insan glioblastoma multiforme hücrelerinin çogalması üzerindeki baskılayıcı etkilerini karsılastırarak belirlemeyi amaçladık. Yöntem: K-3 vitamin...

  19. Eritema multiforme mayor desencadenado por antimicrobianos

    Directory of Open Access Journals (Sweden)

    Ronaldo de Carvalho Raimundo

    2010-03-01

    Full Text Available El eritema multiforme, aparece como una enfermedad sistémica con la participación de la piel y las membranas mucosas en relación con varios factores como las infecciones bacterianas o virales, y en particular la administración de drogas, analgésicos y antibióticos en general. Se presenta un paciente masculino de 29 años de edad con eritema multiforme mayor desencadenado por antimicrobianos con la aparición de lesiones vesiculares-bulloso-ulcerosas en las regiones de los labios, encías, la lengua y la mucosa genital en tratamiento de una infección del tracto urinario con norfloxacino 400 mg por una semana. Fue realizado un tratamiento de soporte con el uso de colutorios para la higienización bucal y pomada a base de corticoide para protección de las úlceras, antihistamínicos y orientación nutricional de dieta líquida hipercalórica e hiperproteica. Este síndrome está caracterizado como un proceso eruptivo buloso agudo que compromete la calidad de vida del paciente y no hay pruebas de laboratorio específicas por lo que su diagnóstico debe estar basado en la revisión minuciosa de la anamnesis y en los hallazgos clínicos.

  20. Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation

    Directory of Open Access Journals (Sweden)

    Jennifer R. Molina

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent and most aggressive brain tumor in adults. The dismal prognosis is due to postsurgery recurrences arising from escaped invasive tumor cells. The signaling pathways activated in invasive cells are under investigation, and models are currently designed in search for therapeutic targets. We developed here an in vivo model of human invasive GBM in mouse brain from a GBM cell line with moderate tumorigenicity that allowed simultaneous primary tumor growth and dispersal of tumor cells in the brain parenchyma. This strategy allowed for the first time the isolation and characterization of matched sets of tumor mass (Core and invasive (Inv cells. Both cell populations, but more markedly Inv cells, acquired stem cell markers, neurosphere renewal ability, and resistance to rapamycin-induced apoptosis relative to parental cells. The comparative phenotypic analysis between Inv and Core cells showed significantly increased tumorigenicity in vivo and increased invasion with decreased proliferation in vitro for Inv cells. Examination of a large array of signaling pathways revealed extracellular signal-regulated kinase (Erk down-modulation and Akt activation in Inv cells and an opposite profile in Core cells. Akt activation correlated with the increased tumorigenicity, stemness, and invasiveness, whereas Erk activation correlated with the proliferation of the cells. These results underscore complementary roles of the Erk and Akt pathways for GBM proliferation and dispersal and raise important implications for a concurrent inhibitory therapy.

  1. Adenoid glioblastoma

    Directory of Open Access Journals (Sweden)

    Cui-yun SUN

    2018-04-01

    Full Text Available Objective To report the diagnosis and treatment of one case of adenoid glioblastoma and investigate the clinicopathological features, diagnosis and differential diagnosis. Methods and Results A 63-year-old male patient suffered from left-skewed corner of the mouth for more than 10 d. Brain enhanced MRI revealed a cystic mass in left frontotemporal lobe and metastatic tumor was considered. 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET did not detected any sign of malignant neoplasm in the whole body. Under the guide of neuronavigation and ultrasound, the tumor was totally removed under microscope. Histologically, the tumor was located in brain parenchyma and presented a growing pattern of multicentric sheets or nests. Mucus scattered in some regions. Tumor cells were arranged in strip, cribriform, adenoid or papillary patterns. Tumor cells contained few cytoplasm with round or oval uniform hyperchromatic nuclei and occasionally obvious nucleoli. Proliferation of glomeruloid vascular endothelial cells could be seen. Immunohistochemical staining showed the cytoplasm of tumor cells was diffusively positive for glial fibrillary acidic protein (GFAP, vimentin (Vim and phosphatase and tensin homologue (PTEN; nuclei was positive for oligodendrocytes transcription factor-2 (Olig-2 and P53; cytoplasm and nuclei were positive for S-100 protein (S-100; membrane was positive for epidermal growth factor receptor (EGFR. The tumor cells showed a negative reaction for cytokeratin (CK, epithelial membrane antigen (EMA, carcinoembryonic antigen (CEA, thyroid transcription factor-1 (TTF-1, CD31, CD34, CAM5.2 and isocitrate dehydrogenase 1 (IDH1. Ki-67 labeling index was 76.80%. The final pathological diagnosis was adenoid glioblastoma. The patient died of respiratroy failure and circulation function failure 12 d after operation. Conclusions Adenoid glioblastoma was a rare glioblastoma subtype. A clear diagnosis depends on histological findings and immunohistochemical

  2. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Clinical features and CT scan findings of supratentorial ependymomas and ependymoblastomas

    International Nuclear Information System (INIS)

    Hanakita, Junya; Handa, Hajime

    1984-01-01

    The clinical courses and CT scan findings of 12 cases of supratentorial ependymoma and ependymoblastoma were reviewed. The age of the patient of ependymoma ranged from 3 years to 34 years, with an average age of 16 years. The follow-up time ranged from 2 months to 9 years and 10 months. All of the six patients are still alive. The age of the patients of ependymoblastoma ranged from 7 months to 34 years, with an average age of 17 years. During the follow-up period from 2 weeks to 6 years and 4 months, four patients died. Supratentorial ependymomas and ependymoblastomas show the following characteristic features of CT scans: 1. Calcification: The incidence of calcification was 50% in ependymoma-group, and 100% in ependymoblastoma-group. 2. Cyst formation, ring-enhancement: The cyst formation was noticed in both groups. In ependymoma-group a smooth ring-enhancement pattern and the strongly enhanced mural nodule-like contour were found, but in ependymoblastoma-group, the cyst wall was enhanced in irregular shape. 3. Perifocal edema and mass effect: Considerable mass effect was noticed in both groups. Perifocal edema was slight in many cases of ependymoma-group, but mostly prominent in ependymoblastoma-group. 4. CT scan findings of recurrent tumor: In ependymoma-group, recurrent tumor showed the same characteristics of CT scan as the initial ones. In ependymoblastoma-group, cystic portion decreased in size and irregular shaped solid portion increased in recurrence. (author)

  4. Study of interaction of GNR with glioblastoma cells

    Science.gov (United States)

    Hole, Arti; Cardoso-Avila, P. E.; Sridharan, Sangita; Sahu, Aditi; Nair, Jyothi; Dongre, Harsh; Goda, Jayant S.; Sawant, Sharada; Dutt, Shilpee; Pichardo-Molina, J. L.; Murali Krishna, C.

    2018-01-01

    Radiation resistance is one of the major causes of recurrence and failure of radiotherapy. Different methods have been used to increase the efficacy of radiation therapy and at the same time restrict the radiation resistivity. From last few years nanoparticles have played a key role in the enhancement of radiosensitization. The densely packed nanoparticles can selectively scatter or absorb the high radiations, which allow better targeting of cellular components within the tumor hence resulting in increased radiation damage to the cancer cells. Glioblastoma multiforme (GBM) is one of the highly radioresistant brain cancer. Current treatment methods are surgical resection followed by concurrent chemo and radiation therapy. In this study we have used in-house engineered gold nano rodes (GNR) and analyzed their effect on U-87MG cell lines. MTT assay was employed to determine the cytotoxic concentration of the nanoparticles. Raman spectroscopy was used to analyze the effect of gold nanoparticles on glioma cells, which was followed by transmission electron microscopic examinations to visualize their cellular penetration. Our data shows that GNR were able to penetrate the cells and induce cytotoxicity at the concentration of 198 μM as determined by MTT assay at 24 post GNP treatment. Additionally, we show that Raman spectroscopy, could classify spectra between untreated and cells treated with nanoparticles. Taken together, this study shows GNR penetration and cytotoxicity in glioma cells thereby providing a rationale to use them in cancer therapeutics. Future studies will be carried out to study the biological activity of the formulation as a radiosensitizer in GBM.

  5. Glioblastoma cells labeled by robust Raman tags for enhancing imaging contrast.

    Science.gov (United States)

    Huang, Li-Ching; Chang, Yung-Ching; Wu, Yi-Syuan; Sun, Wei-Lun; Liu, Chan-Chuan; Sze, Chun-I; Chen, Shiuan-Yeh

    2018-05-01

    Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

  6. Glioblastoma: Análisis molecular y sus implicancias clínicas

    Directory of Open Access Journals (Sweden)

    Carlos A Castañeda

    Full Text Available El glioblastoma multiforme (GB es el tumor cerebral primario del sistema nervioso central (SNC más frecuente y más letal en la edad adulta. La evidencia epidemiológica indica que su incidencia es menor en la raza hispana. El tratamiento quirúrgico es la opción terapéutica preferente. Recientemente se han introducido nuevas estrategias que incrementan el volumen de resección. El uso de quimioterapia y radioterapia concurrentes mejora la supervivencia de los pacientes, aunque se asocia a toxicidad. La mejora en la comprensión de la biología molecular del GB ha permitido la identificación de biomarcadores predictivos de respuesta terapéutica y pronóstico, así como la identificación de dianas terapéuticas que han permitido el desarrollo de nuevas estrategias en el tratamiento de estos tumores. Entre los biomarcadores actualmente disponibles se encuentran la codelección 1p/19q, la mutación de IDH y la metilación del promotor O6- metilguanina DNA-metiltransferasa. La identificación de dianas terapéuticas permite el desarrollo de nuevas drogas y su evaluación posterior en ensayos clínicos, aunque ninguna de ellas ha sido validada prospectivamente en ensayos clínicos de fase III

  7. A comprehensive profile of recurrent glioblastoma

    DEFF Research Database (Denmark)

    Campos, B.; Olsen, Lars Rønn; Urup, T.

    2016-01-01

    In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkab...... 2016; doi:10.1038/onc.2016.85....

  8. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  9. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta [Humanitas Clinical and Research Hospital, Nuclear Medicine, Humanitas Cancer Center, Rozzano, MI (Italy); Riva, Marco; Raneri, Fabio; Pessina, Federico [Humanitas Clinical and Research Hospital, Neurosurgery, Rozzano, Milan (Italy); Olivari, Laura; Rossi, Marco; Alfieri, Tommaso [Universita degli Studi di Milano, Milan (Italy); Soffietti, Riccardo; Ruda, Roberta [University and City of Health and Science Hospital, Neuro-Oncology, Turin (Italy); Piccardo, Arnoldo [Galliera Hospital, Nuclear Medicine, Genova (Italy); Bizzi, Alberto [Fondazione IRCCS Istituto Neurologico Carlo Besta, Neuroradiology, Milan (Italy); Navarria, Pierina; Ascolese, Anna Maria [Humanitas Clinical and Research Hospital, Radiosurgery and Radiotherapy, Rozzano, Milan (Italy); Fernandes, Bethania [Humanitas Clinical and Research Hospital, Pathology, Rozzano, Milan (Italy); Grimaldi, Marco [Humanitas Clinical and Research Hospital, Medical Oncology, Rozzano, Milan (Italy); Simonelli, Matteo; Zucali, Paolo Andrea [Humanitas Clinical and Research Hospital, Radiology Department, Rozzano, Milan (Italy); Scorsetti, Marta [Humanitas Clinical and Research Hospital, Pathology, Rozzano, Milan (Italy); Humanitas University, Rozzano, Milan (Italy); Bello, Lorenzo [Humanitas Clinical and Research Hospital, Neurosurgery, Rozzano, Milan (Italy); Universita degli Studi di Milano, Milan (Italy); Chiti, Arturo [Humanitas Clinical and Research Hospital, Nuclear Medicine, Humanitas Cancer Center, Rozzano, MI (Italy); Humanitas University, Rozzano, Milan (Italy)

    2017-07-15

    We evaluated the relationship between {sup 11}C-methionine PET ({sup 11}C-METH PET) findings and molecular biomarkers in patients with supratentorial glioma who underwent surgery. A consecutive series of 109 patients with pathologically proven glioma (64 men, 45 women; median age 43 years) referred to our Institution from March 2012 to January 2015 for tumour resection and who underwent preoperative {sup 11}C-METH PET were analysed. Semiquantitative evaluation of the {sup 11}C-METH PET images included SUVmax, region of interest-to-normal brain SUV ratio (SUVratio) and metabolic tumour volume (MTV). Imaging findings were correlated with disease outcome in terms of progression-free survival (PFS), and compared with other clinical biological data, including IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation. The patients were monitored for a mean period of 16.7 months (median 13 months). In all patients, the tumour was identified on {sup 11}C-METH PET. Significant differences in SUVmax, SUVratio and MTV were observed in relation to tumour grade (p < 0.001). IDH1 mutation was found in 49 patients, 1p/19q codeletion in 58 patients and MGMT promoter methylation in 74 patients. SUVmax and SUVratio were significantly inversely correlated with the presence of IDH1 mutation (p < 0.001). Using the 2016 WHO classification, SUVmax and SUVratio were significantly higher in patients with primary glioblastoma (IDH1-negative) than in those with other diffuse gliomas (p < 0.001). Relapse or progression was documented in 48 patients (median PFS 8.7 months). Cox regression analysis showed that SUVmax and SUVratio, tumour grade, tumour type on 2016 WHO classification, IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation were significantly associated with PFS. None of these factors was found to be an independent prognostic factor in multivariate analysis. {sup 11}C-METH PET parameters are significantly correlated with histological grade and IDH1

  10. Remote Supratentorial Hemorrhage After Posterior Fossa Surgery: A Brief Case Report

    Directory of Open Access Journals (Sweden)

    Moscote-Salazar Luis Rafael

    2014-10-01

    Full Text Available The supratentorial hemorrhage after posterior fossa surgery is an unusual but delicate complication that carries high mortality and morbidity. A 50 year old woman presented vertigo 6 months of evolution, which worsened in the last 2 months accompanied by ataxia. She showed left cerebellar signs, had no focal motor or sensory deficits. A brain MRI identified cerebellopontine angle lesion with mass effect. The patient was treated on suboccipital craniectomy and resection of right posterior fossa tumor, the histopathological diagnosis was consistent with typical meningioma. (WHO Class I.

  11. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-01

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  12. Putting TCGA Data to Work - TCGA

    Science.gov (United States)

    Neurosurgeon Cameron Brennan of Memorial Sloan-Kettering Cancer Center used TCGA data to define subgroups of patients with a deadly brain cancer called glioblastoma multiforme. Learn more about his research in this TCGA in Action case study.

  13. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  14. PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD.

    Science.gov (United States)

    Pareja, Fresia; Macleod, David; Shu, Chang; Crary, John F; Canoll, Peter D; Ross, Alonzo H; Siegelin, Markus D

    2014-07-01

    Glioblastoma multiforme (GBM) is a highly malignant human brain neoplasm with limited therapeutic options. GBMs display a deregulated apoptotic pathway with high levels of the antiapoptotic Bcl-2 family of proteins and overt activity of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Therefore, combined interference of the PI3K pathway and the Bcl-2 family of proteins is a reasonable therapeutic strategy. ABT-263 (Navitoclax), an orally available small-molecule Bcl-2 inhibitor, and GDC-0941, a PI3K inhibitor, were used to treat established glioblastoma and glioblastoma neurosphere cells, alone or in combination. Although GDC-0941 alone had a modest effect on cell viability, treatment with ABT-263 displayed a marked reduction of cell viability and induction of apoptotic cell death. Moreover, combinatorial therapy using ABT-263 and GDC-0941 showed an enhanced effect, with a further decrease in cellular viability. Furthermore, combination treatment abrogated the ability of stem cell-like glioma cells to form neurospheres. ABT-263 and GDC-0941, in combination, resulted in a consistent and significant increase of Annexin V positive cells and loss of mitochondrial membrane potential compared with either monotherapy. The combination treatment led to enhanced cleavage of both initiator and effector caspases. Mechanistically, GDC-0941 depleted pAKT (Serine 473) levels and suppressed Mcl-1 protein levels, lowering the threshold for the cytotoxic actions of ABT-263. GDC-0941 decreased Mcl-1 in a posttranslational manner and significantly decreased the half-life of Mcl-1 protein. Ectopic expression of human Mcl-1 mitigated apoptotic cell death induced by the drug combination. Furthermore, GDC-0941 modulated the phosphorylation status of BAD, thereby further enhancing ABT-263-mediated cell death. Combination therapy with ABT-263 and GDC-0941 has novel therapeutic potential by specifically targeting aberrantly active, deregulated pathways in GBM, overcoming

  15. Genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumours of the central nervous system.

    Science.gov (United States)

    Inda, M M; Perot, C; Guillaud-Bataille, M; Danglot, G; Rey, J A; Bello, M J; Fan, X; Eberhart, C; Zazpe, I; Portillo, E; Tuñón, T; Martínez-Peñuela, J M; Bernheim, A; Castresana, J S

    2005-12-01

    Medulloblastoma (MB), a kind of infratentorial primitive neuroectodermal tumour (PNET), is the most frequent malignant brain tumour in childhood. In contrast, supratentorial PNET (sPNET) are very infrequent tumours, but they are histologically similar to MB, although they present a worse clinical outcome. We investigated the differences in genetic abnormalities between sPNET and MB. We analysed 20 central PNET (14 MB and six sPNET) by conventional comparative genomic hybridization (CGH) in order to determine whether a different genetic profile for each tumour exists. Isochromosome 17q was detected in four of the 14 MB cases, but not in any sPNET. Gains at 17q and 7 happened more frequently in MB, and those at 1q in sPNET. Losses at chromosome 10 were detected only in MB, while losses at 16p and 19p happened more frequently in sPNET. A new amplification site, on 4q12, was detected in two MB. Central PNET are a heterogeneous group of tumours from the genetic point of view. The present and previous data, together with further results from larger series, might contribute to the establishment of specific treatments for supratentorial and infratentorial PNET.

  16. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz

    2016-11-01

    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  17. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients

    International Nuclear Information System (INIS)

    Poulsen, Hans Skovgaard; Urup, Thomas; Michaelsen, Signe Regner; Staberg, Mikkel; Villingshøj, Mette; Lassen, Ulrik

    2014-01-01

    Glioblastoma multiforme (GBM) remains one of the most devastating tumors, and patients have a median survival of 15 months despite aggressive local and systemic therapy, including maximal surgical resection, radiation therapy, and concomitant and adjuvant temozolomide. The purpose of antineoplastic treatment is therefore to prolong life, with a maintenance or improvement of quality of life. GBM is a highly vascular tumor and overexpresses the vascular endothelial growth factor A, which promotes angiogenesis. Preclinical data have suggested that anti-angiogenic treatment efficiently inhibits tumor growth. Bevacizumab is a humanized monoclonal antibody against vascular endothelial growth factor A, and treatment has shown impressive response rates in recurrent GBM. In addition, it has been shown that response is correlated to prolonged survival and improved quality of life. Several investigations in newly diagnosed GBM patients have been performed during recent years to test the hypothesis that newly diagnosed GBM patients should be treated with standard multimodality treatment, in combination with bevacizumab, in order to prolong life and maintain or improve quality of life. The results of these studies along with relevant preclinical data will be described, and pitfalls in clinical and paraclinical endpoints will be discussed

  18. Intraoperative radiation therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Matsutani, Masao; Tanaka, Yoshiaki; Matsuda, Tadayoshi

    1986-01-01

    Intraoperative radiation therapy (IOR) is quite applicable for radioresistant malignant gliomas, because of precise demarcations of the treatment volume under direct vision, minimum damage to surrounding normal tissues, and a high target absorbed dose of 1500 to 2000 rad. Fifteen patients with glioblatoma were treated with IOR, and the 2-year survival rate was 61.1 %. The result apparently indicate that areas adjacent to the margin of almost complete removal should be irradated with a sufficient dose to sterilize the remaining malignant remnants, and IOR is one of the logical treatment modalities for local control of malignant gliomas. (author)

  19. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice.

    Directory of Open Access Journals (Sweden)

    Alexei Shir

    2006-01-01

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12-14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC], a strong activator of apoptosis, selectively to cancer cells. METHODS AND FINDINGS: Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI25-PEG-EGF. EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and "bystander killing" of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors. CONCLUSION: The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR.

  20. Tumor-Treating Fields: Nursing Implications for an Emerging Technology
.

    Science.gov (United States)

    Chang, Alice

    2017-06-01

    Tumor-treating fields (TTFields) are a new technology used for cancer treatment consisting of battery-powered, insulated electromagnetic transducers that are placed on the scalp. This wearable, adhesive device is a certified physician-prescribed therapy for patients with glioblastoma multiforme, a type of primary brain cancer. TTFields are being used concomitantly with temozolomide (Temodar®) in patients with newly diagnosed glioblastoma and as a monotherapy in patients with recurrent glioblastoma after radiation therapy and chemotherapy. Nursing professionals caring for patients using this emerging technology should be able to educate patients regarding proper use of TTFields and monitor for side effects.
.

  1. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  2. Differentiation of Glioblastoma and Lymphoma Using Feature Extraction and Support Vector Machine.

    Science.gov (United States)

    Yang, Zhangjing; Feng, Piaopiao; Wen, Tian; Wan, Minghua; Hong, Xunning

    2017-01-01

    Differentiation of glioblastoma multiformes (GBMs) and lymphomas using multi-sequence magnetic resonance imaging (MRI) is an important task that is valuable for treatment planning. However, this task is a challenge because GBMs and lymphomas may have a similar appearance in MRI images. This similarity may lead to misclassification and could affect the treatment results. In this paper, we propose a semi-automatic method based on multi-sequence MRI to differentiate these two types of brain tumors. Our method consists of three steps: 1) the key slice is selected from 3D MRIs and region of interests (ROIs) are drawn around the tumor region; 2) different features are extracted based on prior clinical knowledge and validated using a t-test; and 3) features that are helpful for classification are used to build an original feature vector and a support vector machine is applied to perform classification. In total, 58 GBM cases and 37 lymphoma cases are used to validate our method. A leave-one-out crossvalidation strategy is adopted in our experiments. The global accuracy of our method was determined as 96.84%, which indicates that our method is effective for the differentiation of GBM and lymphoma and can be applied in clinical diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. NovoTTF™-100A System (Tumor Treating Fields) transducer array layout planning for glioblastoma: a NovoTAL™ system user study.

    Science.gov (United States)

    Chaudhry, Aafia; Benson, Laura; Varshaver, Michael; Farber, Ori; Weinberg, Uri; Kirson, Eilon; Palti, Yoram

    2015-11-11

    Optune™, previously known as the NovoTTF-100A System™, generates Tumor Treating Fields (TTFields), an effective anti-mitotic therapy for glioblastoma. The system delivers intermediate frequency, alternating electric fields to the supratentorial brain. Patient therapy is personalized by configuring transducer array layout placement on the scalp to the tumor site using MRI measurements and the NovoTAL System. Transducer array layout mapping optimizes therapy by maximizing electric field intensity to the tumor site. This study evaluated physician performance in conducting transducer array layout mapping using the NovoTAL System compared with mapping performed by the Novocure in-house clinical team. Fourteen physicians (7 neuro-oncologists, 4 medical oncologists, and 3 neurosurgeons) evaluated five blinded cases of recurrent glioblastoma and performed head size and tumor location measurements using a standard Digital Imaging and Communications in Medicine reader. Concordance with Novocure measurement and intra- and inter-rater reliability were assessed using relevant correlation coefficients. The study criterion for success was a concordance correlation coefficient (CCC) >0.80. CCC for each physician versus Novocure on 20 MRI measurements was 0.96 (standard deviation, SD ± 0.03, range 0.90-1.00), indicating very high agreement between the two groups. Intra- and inter-rater reliability correlation coefficients were similarly high: 0.83 (SD ±0.15, range 0.54-1.00) and 0.80 (SD ±0.18, range 0.48-1.00), respectively. This user study demonstrated an excellent level of concordance between prescribing physicians and Novocure in-house clinical teams in performing transducer array layout planning. Intra-rater reliability was very high, indicating reproducible performance. Physicians prescribing TTFields, when trained on the NovoTAL System, can independently perform transducer array layout mapping required for the initiation and maintenance of patients on TTFields

  4. ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells

    NARCIS (Netherlands)

    R.K. Balvers (Rutger); M.L.M. Lamfers (Martine); J.J. Kloezeman (Jenneke); A. Kleijn (Anne); L.M.E. Berghauser Pont (Lotte); C.M.F. Dirven (Clemens); S. Leenstra (Sieger)

    2015-01-01

    textabstractBackground: The current standard of care for Glioblastoma Multiforme (GBM) consists of fractionated focal irradiation with concomitant temozolomide (TMZ) chemotherapy. A promising strategy to increase the efficacy of TMZ is through interference with the DNA damage repair machinery, by

  5. A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1.

    Directory of Open Access Journals (Sweden)

    Davide Danovi

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS cells and genetically normal neural stem (NS cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101 as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1 (phospho T210, with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364 phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-, or p53(-/-, as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.

  6. Benefit and outcome of using temozolomide-based chemoradiotherapy followed by temozolomide alone for glioblastoma in clinical practice.

    Science.gov (United States)

    Salma, Svetlana; Djan, Igor; Bjelan, Mladen; Vulekovic, Petar; Novakovic, Mico; Vidovic, Vladimir; Lucic, Milos

    2017-01-01

    Temozolomide (TEM), an oral alkylating agent, has shown promising activity in the last 10 years in the treatment of glioblastoma multiforme (GBM). Our goal was to show the benefit of concomitant therapy involving 3D conformal radiotherapy and temozolomide in clinical practice. This was a retrospective/prospective study and included a total of 113 patients with GBM diagnosis. Forty- seven patients received postoperative radiotherapy and 66 received concomitant temozolomide plus 3D conformal radiotherapy. The mean overall survival of patients who received postoperative radiotherapy alone was 9.93±6.475 months, compared to statistically longer overall survival in the group of patients who received radiotherapy plus temozolomide (13.89±8.049 months) (p=0.006). The latter group was divided into two subgroups, one consisting of patients who received 6 complete cycles of temozolomide, and a second with patients who received incomplete treatment. Statistically significant longer overall survival was registered in the first subgroup compared to the second (p=0.006). The concomitant usage of temozolomide and radiotherapy was beneficial, and statistically significant difference among groups and subgroups was observed regarding overall survival.

  7. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol

    International Nuclear Information System (INIS)

    Geletneky, Karsten; Hajda, Jacek; Huesing, Johannes; Rommelaere, Jean; Schlehofer, Joerg R; Leuchs, Barbara; Dahm, Michael; Krebs, Ottheinz; Knebel Doeberitz, Magnus von; Huber, Bernard

    2012-01-01

    The treatment of patients with malignant brain tumors remains a major oncological problem. The median survival of patients with glioblastoma multiforme (GBM), the most malignant type, is only 15 months after initial diagnosis and even less after tumor recurrence. Improvements of standard treatment including surgery and radio-chemotherapy have not lead to major improvements. Therefore, alternative therapeutics such as oncolytic viruses that specifically target and destroy cancer cells are under investigation. Preclinical data of oncolytic parvovirus H-1 (H-1PV) infection of glioma cells demonstrated strong cytotoxic and oncosuppressing effects, leading to a phase I/IIa trial of H-1PV in patients with recurrent GBM (ParvOryx01). ParvOryx01 is the first trial with a replication competent oncolytic virus in Germany. ParvOryx01 is an open, non-controlled, two groups, intra-group dose escalation, single center, phase I/IIa trial. 18 patients with recurrent GBM will be treated in 2 groups of 9 patients each. Treatment group 1 will first receive H-1PV by intratumoral injection and second by administration into the walls of the tumor cavity during tumor resection. In treatment group 2 the virus will initially be injected intravenously and afterwards, identical to group 1, into the surrounding brain tissue during tumor removal. Main eligibility criteria are: age of 18 years, unifocal recurrent GBM, amenable to complete or subtotal resection. Dose escalation will be based on the Continual Reassessment Method. The primary objective of the trial is local and systemic safety and tolerability and to determine the maximum tolerated dose (MTD). Secondary objectives are proof of concept (PoC) and Progression-free Survival (PFS) up to 6 months. This is the first trial with H-1PV in patients with recurrent GBM. The risks for the participants appear well predictable and justified. Furthermore, ParvOryx01 will be the first assessment of combined intratumoral and intravenous application

  8. Cytoplasmic TRADD Confers a Worse Prognosis in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sharmistha Chakraborty

    2013-08-01

    Full Text Available Tumor necrosis factor receptor 1 (TNFR1-associated death domain protein (TRADD is an important adaptor in TNFR1 signaling and has an essential role in nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation and survival signaling. Increased expression of TRADD is sufficient to activate NF-κB. Recent studies have highlighted the importance of NF-κB activation as a key pathogenic mechanism in glioblastoma multiforme (GBM, the most common primary malignant brain tumor in adults.We examined the expression of TRADD by immunohistochemistry (IHC and find that TRADD is commonly expressed at high levels in GBM and is detected in both cytoplasmic and nuclear distribution. Cytoplasmic IHC TRADD scoring is significantly associated with worse progression-free survival (PFS both in univariate and multivariate analysis but is not associated with overall survival (n = 43 GBMs. PFS is a marker for responsiveness to treatment. We propose that TRADD-mediated NF-κB activation confers chemoresistance and thus a worse PFS in GBM. Consistent with the effect on PFS, silencing TRADD in glioma cells results in decreased NF-κB activity, decreased proliferation of cells, and increased sensitivity to temozolomide. TRADD expression is common in glioma-initiating cells. Importantly, silencing TRADD in GBM-initiating stem cell cultures results in decreased viability of stem cells, suggesting that TRADD may be required for maintenance of GBM stem cell populations. Thus, our study suggests that increased expression of cytoplasmic TRADD is both an important biomarker and a key driver of NF-κB activation in GBM and supports an oncogenic role for TRADD in GBM.

  9. A case of supratentorial intra-axial ependymoma showing exophytic growth

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Woo; Kim, Eung Yeop [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-11-15

    A 17-year-old female had headache for several weeks and she developed an episode of seizure one day prior to admission. She underwent both CT and MRI, which both revealed a large tumor with cystic and solid portions at the right frontoparietal convexity. During operation, a well-defined tumor was found to have a stalk connecting the tumor itself with the brain parenchyma, proving that it was growing exophytically and expanding into the subarachnoid space. Histopathological examination revealed an anaplastic ependymoma with high cellularity. We report here on this case of an unusual supratentorial ependymoma with exophytic growth, and this can be mistaken as another exophytic growing intra-axial tumor or even as an extra-axial tumor.

  10. Concurrent bevacizumab and temozolomide alter the patterns of failure in radiation treatment of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Shields, Lisa BE; Kadner, Robert; Vitaz, Todd W; Spalding, Aaron C

    2013-01-01

    We investigated the pattern of failure in glioblastoma multiforma (GBM) patients treated with concurrent radiation, bevacizumab (BEV), and temozolomide (TMZ). Previous studies demonstrated a predominantly in-field pattern of failure for GBM patients not treated with concurrent BEV. We reviewed the treatment of 23 patients with GBM who received 30 fractions of simultaneous integrated boost IMRT. PTV60 received 2 Gy daily to the tumor bed or residual tumor while PTV54 received 1.8 Gy daily to the surrounding edema. Concurrent TMZ (75 mg/m 2 ) daily and BEV (10 mg/kg every 2 weeks) were given during radiation therapy. One month after RT completion, adjuvant TMZ (150 mg/m 2 × 5 days) and BEV were delivered monthly until progression or 12 months total. With a median follow-up of 12 months, the median disease-free and overall survival were not reached. Four patients discontinued therapy due to toxicity for the following reasons: bone marrow suppression (2), craniotomy wound infection (1), and pulmonary embolus (1). Five patients had grade 2 or 3 hypertension managed by oral medications. Of the 12 patients with tumor recurrence, 7 suffered distant failure with either subependymal (5/12; 41%) or deep white matter (2/12; 17%) spread detected on T2 FLAIR sequences. Five of 12 patients (41%) with a recurrence demonstrated evidence of GAD enhancement. The patterns of failure did not correlate with extent of resection or number of adjuvant cycles. Treatment of GBM patients with concurrent radiation, BEV, and TMZ was well tolerated in the current study. The majority of patients experienced an out-of-field pattern of failure with radiation, BEV, and TMZ which has not been previously reported. Further investigation is warranted to determine whether BEV alters the underlying tumor biology to improve survival. These data may indicate that the currently used clinical target volume thought to represent microscopic disease for radiation may not be appropriate in combination with TMZ

  11. Awake craniotomy for supratentorial gliomas: why, when and how?

    Science.gov (United States)

    Ibrahim, George M; Bernstein, Mark

    2012-09-01

    Awake craniotomy has become an increasingly utilized procedure in the treatment of supratentorial intra-axial tumors. The popularity of this procedure is partially attributable to improvements in intraoperative technology and anesthetic techniques. The application of awake craniotomy to the field of neuro-oncology has decreased iatrogenic postoperative neurological deficits, allowed for safe maximal tumor resection and improved healthcare resource stewardship by permitting early patient discharge. In this article, we review recent evidence for the utility of awake craniotomy in the resection of gliomas and describe the senior author's experience in performing this procedure. Furthermore, we explore innovative applications of awake craniotomy to outpatient tumor resections and the conduct of neurosurgery in resource-poor settings. We conclude that awake craniotomy is an effective and versatile neurosurgical procedure with expanding applications in neuro-oncology.

  12. A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy

    DEFF Research Database (Denmark)

    Møller, Søren; Grunnet, Kirsten; Hansen, Steinbjørn

    2012-01-01

    The combination of irinotecan and bevacizumab has shown efficacy in the treatment of recurrent glioblastoma multiforme (GBM). A prospective, phase II study of 85 patients with various recurrent brain tumors was carried out. Primary endpoints were progression free survival (PFS) and response rate....

  13. Circulating gamma delta T cells are activated and depleted during progression of high-grade gliomas: Implications for gamma delta T cell therapy of GBM

    Science.gov (United States)

    Glioblastoma multiforme (GBM) remains frustratingly impervious to any existing therapy. We have previously shown that GBM is sensitive to recognition and lysis by ex vivo activated gamma delta T cells, a minor subset of lymphocytes that innately recognize autologous stress-associated target antigens...

  14. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  15. The potential of polymeric micelles in the context of glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Ramin eMorshed

    2013-12-01

    Full Text Available Glioblastoma multiforme (GBM, a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. Despite these advantages however, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations.

  16. Isolated Richter's syndrome in central nervous system: case report Sindrome de Richter isolada em sistema nervoso central: relato de caso

    Directory of Open Access Journals (Sweden)

    Lucilene S.R. Resende

    2005-06-01

    Full Text Available Diffuse large cell non Hodgkin's lymphoma associated with chronic lymphoid leukemia (CLL, or Richter's syndrome, is a rare and serious complication. Isolated Richter's syndrome in the central nervous system is very rare; only 12 cases have been reported. We describe a 74-year-old patient with diffuse large cell non Hodgkin's lymphoma in the right frontal region with the appearance of multiform glioblastoma.Linfoma não Hodgkin difuso de grandes células em paciente portador de leucemia linfóide crônica (LLC, ou síndrome de Richter, é complicação rara e grave nesta leucemia. Síndrome de Richter isolada no sistema nervoso central é muito rara, tendo sido encontrados apenas 12 casos descritos. Descrevemos paciente de 74 anos, que apresentou linfoma não Hodgkin difuso de grandes células em região frontal direita, simulando glioblastoma multiforme.

  17. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells.

    Science.gov (United States)

    Kim, Jung Seok; Shin, Dae Hwan; Kim, Jin-Seok

    2018-01-10

    Glioblastoma stem cells (GSCs), which are identified as subpopulation of CD133 + /ALDH1 + , are known to show resistance to the most of chemotherapy and radiation therapy, leading to the recurrence of tumor in glioblastoma multiforme (GBM) patients. Also, delivery of temozolomide (TMZ), a mainline treatment of GBM, to the GBM site is hampered by various barriers including the blood-brain barrier (BBB). A dual-targeting immunoliposome encapsulating TMZ (Dual-LP-TMZ) was developed by using angiopep-2 (An2) and anti-CD133 monoclonal antibody (CD133 mAb) for BBB transcytosis and specific delivery to GSCs, respectively. The size, zeta potential and drug encapsulation efficiency of Dual-LP-TMZ were 203.4nm in diameter, -1.6mV and 99.2%, respectively. The in vitro cytotoxicity of Dual-LP-TMZ against U87MG GSCs was increased by 425- and 181-folds when compared with that of free TMZ and non-targeted TMZ liposome (LP-TMZ) (10.3μM vs. 4380μM and 1869μM in IC 50 , respectively). Apoptosis and anti-migration ability of Dual-LP-TMZ in U87MG GSCs were also significantly enhanced comparing with those of free TMZ or LP-TMZ. In vivo study clearly showed a significant reduction in tumor size after intravenous administrations of Dual-LP-TMZ to the orthotopically-implanted brain tumor mice when compared with free TMZ or LP-TMZ. Increased life span (ILS) and median survival time (MST) of tumor-bearing mice were also increased when treated with Dual-LP-TMZ (211.2% in ILS and 49.2days in MST) than with free TMZ (0% in ILS and 23.3day in MST). These data indicate that conjugation of both An2 peptide and CD133 mAb to TMZ-encapsulating liposome is very effective in delivering the TMZ to GSCs via BBB, suggesting a potential use of Dual-LP-TMZ as a therapeutic modality for GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantitative Analysis of Signaling Networks across Differentially Embedded Tumors Highlights Interpatient Heterogeneity in Human Glioblastoma

    Science.gov (United States)

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor, with a dismal mean survival even with the current standard of care. Although in vitro cell systems can provide mechanistic insight into the regulatory networks governing GBM cell proliferation and migration, clinical samples provide a more physiologically relevant view of oncogenic signaling networks. However, clinical samples are not widely available and may be embedded for histopathologic analysis. With the goal of accurately identifying activated signaling networks in GBM tumor samples, we investigated the impact of embedding in optimal cutting temperature (OCT) compound followed by flash freezing in LN2 vs immediate flash freezing (iFF) in LN2 on protein expression and phosphorylation-mediated signaling networks. Quantitative proteomic and phosphoproteomic analysis of 8 pairs of tumor specimens revealed minimal impact of the different sample processing strategies and highlighted the large interpatient heterogeneity present in these tumors. Correlation analyses of the differentially processed tumor sections identified activated signaling networks present in selected tumors and revealed the differential expression of transcription, translation, and degradation associated proteins. This study demonstrates the capability of quantitative mass spectrometry for identification of in vivo oncogenic signaling networks from human tumor specimens that were either OCT-embedded or immediately flash-frozen. PMID:24927040

  19. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells.

    Science.gov (United States)

    Sun, Xin; Johnson, Jacqueline; St John, Justin C

    2018-05-02

    Replication of mitochondrial DNA is strictly regulated during differentiation and development allowing each cell type to acquire its required mtDNA copy number to meet its specific needs for energy. Undifferentiated cells establish the mtDNA set point, which provides low numbers of mtDNA copy but sufficient template for replication once cells commit to specific lineages. However, cancer cells, such as those from the human glioblastoma multiforme cell line, HSR-GBM1, cannot complete differentiation as they fail to enforce the mtDNA set point and are trapped in a 'pseudo-differentiated' state. Global DNA methylation is likely to be a major contributing factor, as DNA demethylation treatments promote differentiation of HSR-GBM1 cells. To determine the relationship between DNA methylation and mtDNA copy number in cancer cells, we applied whole genome MeDIP-Seq and RNA-Seq to HSR-GBM1 cells and following their treatment with the DNA demethylation agents 5-azacytidine and vitamin C. We identified key methylated regions modulated by the DNA demethylation agents that also induced synchronous changes to mtDNA copy number and nuclear gene expression. Our findings highlight the control exerted by DNA methylation on the expression of key genes, the regulation of mtDNA copy number and establishment of the mtDNA set point, which collectively contribute to tumorigenesis.

  20. A PROSPECTIVE HISTOPATHOLOGICAL-BASED STUDY OF BRAIN TUMOURS IN A REFERRAL CENTRE

    Directory of Open Access Journals (Sweden)

    Prathima Gujjaru

    2016-07-01

    Full Text Available BACKGROUND Brain neoplasms occur at all ages and account for around 2-3 percent of all deaths in adults. In children, the frequency increases to more than twenty percent. In children, it forms the second most common type of malignancy. Most of the tumours encountered are not related to any identifiable risk factors except for irradiation and some hereditary syndromes like subependymal giant cell astrocytoma, glioblastoma multiforme, cerebellar haemangioblastoma, meningioma, Schwannoma of 7 th cranial nerve. Gliomas constitute fifty percent of the brain tumours and sixty percent of all gliomas are glioblastoma multiforme. Meningiomas constitute twenty percent and cerebral metastasis is seen in fifteen percent of the cases. Seventy percent of supratentorial tumours are found in adults and seventy percent of brain tumours in children are infratentorial. The three common tumours of cerebellum are medulloblastoma, haemangioblastoma and juvenile pilocytic astrocytoma. Brain tumours are space occupying lesions and cause compression and destruction of adjacent structures, brain oedema (Peritumoural tissue, infarction and ischaemia of brain by compressing/infiltrating cerebral blood vessels, obstruction of CSF flow causing hydrocephalus, and rise in intracranial pressure with herniations. Tumours can undergo ischaemic necrosis and necrotic tumours tend to bleed. Brain tumours generally do not metastasise. Schwannoma and meningioma are benign tumours. Medulloblastoma of childhood may have drop metastasis via CSF. A sincere effort has been put in this study to identify the incidence of each variety of brain tumour among the fifty confirmed and identified cases of brain tumours. METHODS The age range of the cases in present study was 5-72 years with a mean age of occurrence of 44.11 years and the peak age group affected were in the 3 rd and 4 th decades. Cerebral hemisphere was the commonest site for intracranial tumours. RESULT In the present study, fifty