WorldWideScience

Sample records for supramolecular polymer increased

  1. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  2. Reversible networks in supramolecular polymers

    NARCIS (Netherlands)

    Havermans - van Beek, D.J.M.

    2007-01-01

    Non–covalent interactions between low molecular weight polymers form the basis of supramolecular polymers. The material properties of such polymers are determined by the strength and lifetime of the non–covalent reversible interactions. Due to the reversibility of the interactions between the low

  3. Enhanced intermolecular forces in supramolecular polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Lin

    2017-09-01

    Full Text Available Ureido-pyrimidone (Upy can dimerize in a self-complementary array of quadruple hydrogen bonds. In this paper, supramolecular polymer composites were prepared by blending Upy functionalized nanosilica with Upy end-capped polycarbonatediol. Surface characteristics of Upy functionalized nanosilica and influences of supramolecular forces on interfacial binding were researched. Fourier transform infrared spectroscopy (FTIR, Nuclear magnetic resonance (NMR and Gel permeation chromatography (GPC were used to characterize the synthesized molecules. Grafting ratio of Upy segments on the surface of nanosilica was analysed by Thermogravimetic analysis (TGA. Hydrophobicity and morphology of Upy modified nanosilica were analysed by Contact angle tester and Scanning electron microscope (SEM. Furthermore, dynamic thermo mechanical properties, mechanical properties and distribution of nanosilica in supramolecular polymer composites were also researched. Compared with the matrix resin, tensile stress and young's modulus of supramolecular polymer composites containing 5 wt% modified nanosilica were increased by 292 and 198% respectively.

  4. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    Science.gov (United States)

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  6. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    Directory of Open Access Journals (Sweden)

    Guang-Wei Zhang

    2013-11-01

    Full Text Available Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR and dynamic light scattering (DLS. The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  7. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.

    Science.gov (United States)

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E

    2017-09-11

    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  8. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    Science.gov (United States)

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  9. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    Science.gov (United States)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  10. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymerizations and main-chain supramolecular polymers . Macromolecules. 2009;42:6823–6835. 17. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond...ARL-TR-7687 ● MAY 2016 US Army Research Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by...Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by Alice M Savage Oak Ridge Institute of Science and Education

  11. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)

    2016-10-15

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  12. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    International Nuclear Information System (INIS)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo

    2016-01-01

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification

  13. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  14. Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers

    NARCIS (Netherlands)

    Schaeffer, Gaël; Buhler, Eric; Candau, Sauveur Jean; Lehn, Jean-Marie

    2013-01-01

    Double-dynamic polymers, incorporating both molecular and supramolecular dynamic features (“double dynamers”) have been generated, where these functions are present in a nonstoichiometric ratio in the main chain of the polymer. It has been achieved by (1) the formation of covalent oligo-dynamers in

  15. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said ...... compounds are able to undergo Lewis acid-base reactions. The interpenetrating polymer network may be used as dielectric electroactive polymers (DEAPs) having a high dielectric permittivity....

  16. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  17. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural aspects, thermal behavior, and stability of a self-assembled supramolecular polymer derived from flunixin-meglumine supramolecular adducts

    Energy Technology Data Exchange (ETDEWEB)

    Cassimiro, Douglas L.; Kobelnik, Marcelo [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil); Ribeiro, Clovis A., E-mail: ribeiroc@iq.unesp.br [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil); Crespi, Marisa S.; Boralle, Nivaldo [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The thermal behavior of flunixin-meglumine, a potent NSAID, was investigated. Black-Right-Pointing-Pointer This supramolecular adduct self-assembled resulting in a polymer-like material. Black-Right-Pointing-Pointer The supramolecular polymer showed a high molecular weight around 290 {+-} 88 MDa. Black-Right-Pointing-Pointer NMR and FT-IR showed that hydrogen bonding can be responsible for the self-assembly. Black-Right-Pointing-Pointer The stability of the supramolecular polymer was also studied and presented here. - Abstract: Flunixin-meglumine, a potent non-steroidal anti-inflammatory drug (NSAID) and a cyclo-oxygenase inhibitor for Veterinary use, is a hydrogen-bonded supramolecular adduct. Two monotropically related crystalline modifications (Forms I and II) were observed for a flunixin-meglumine sample. During the melt of form I, flunixin-meglumine adducts self-assembled by hydrogen bonds involving the hydroxyl groups from meglumine, resulting in an amorphous rigid glassy supramolecular polymer, which showed a high molecular weight around 290 {+-} 88 MDa and a glass transition around 49.5 Degree-Sign C. Both the adduct and the resulting supramolecular polymer were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR), and weight-average molecular weight determination by light scattering. The chemical stability and morphological changes of the depolymerization process were also investigated for the supramolecular polymer, by DSC and scanning electron microscopy (SEM), respectively.

  19. Molecular and supramolecular orientation in conducting polymers

    International Nuclear Information System (INIS)

    Aldissi, M.

    1987-01-01

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  20. Coherent states field theory in supramolecular polymer physics

    Science.gov (United States)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  1. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  2. Supramolecular coordination polymer formed from artificial light-harvesting dendrimer.

    Science.gov (United States)

    Lee, Hosoowi; Jeong, Young-Hwan; Kim, Joo-Ho; Kim, Inhye; Lee, Eunji; Jang, Woo-Dong

    2015-09-30

    We report the formation of supramolecular coordination polymers formed from multiporphyrin dendrimers (PZnPM; M = FB or Cu), composed of the focal freebase porphyrin (PFB) or cupper porphyrin (PCu) with eight zinc porphyrin (PZn) wings, and multipyridyl porphyrins (PyPM; M = FB or Cu), PFB or PCu with eight pyridyl groups, through multiple axial coordination interactions of pyridyl groups to PZns. UV-vis absorption spectra were recorded upon titration of PyPFB to PZnPFB. Differential spectra, obtained by subtracting the absorption of PZnPFB without guest addition as well as the absorption of PyPFB, exhibited clear isosbestic points with saturation binding at 1 equiv addition of PyPFB to PZnPFB. Job's plot analysis also indicated 1:1 stoichiometry for the saturation binding. The apparent association constant between PZnPFB and PyPFB (2.91 × 10(6) M(-1)), estimated by isothermal titration calorimetry, was high enough for fibrous assemblies to form at micromolar concentrations. The formation of a fibrous assembly from PZnPFB and PyPFB was visualized by atomic force microscopy and transmission electron microscopy (TEM). When a 1:1 mixture solution of PZnPFB and PyPFB (20 μM) in toluene was cast onto mica, fibrous assemblies with regular height (ca. 2 nm) were observed. TEM images obtained from 1:1 mixture solution of PZnPFB and PyPFB (0.1 wt %) in toluene clearly showed the formation of nanofibers with a regular diameter of ca. 6 nm. Fluorescence emission measurement of PZnPM indicated efficient intramolecular energy transfer from PZn to the focal PFB or PCu. By the formation of supramolecular coordination polymers, the intramolecular energy transfer changed to intermolecular energy transfer from PZnPM to PyPM. When the nonfluorescent PyPCu was titrated to fluorescent PZnPFB, fluorescence emission from the focal PFB was gradually decreased. By the titration of fluorescent PyPFB to nonfluorescent PZnPCu, fluorescence emission from PFB in PyPFB was gradually increased

  3. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NARCIS (Netherlands)

    Baker, M.B.; Albertazzi, L.; Voets, Ilja K.; Leenders, C.M.A.; Palmans, A.R.A.; Pavan, G.M.; Meijer, E. W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers:

  4. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Uhlenheuer, D.A.; Spiering, A.J.H.; Vekemans, J.A.J.M.; Brunsveld, L.

    2013-01-01

    Dynamic protein assembly along supramolecular columnar polymers has been achieved through the site-specific covalent attachment of different SNAP-tag fusion proteins to self-assembled benzylguanine-decorated discotics. The self-assembly of monovalent discotics into supramolecular polymers creates a

  5. Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.

    Science.gov (United States)

    Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien

    2014-11-10

    We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.

  6. Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays

    OpenAIRE

    Gooch, Adam; Murphy, Natasha S.; Thomson, Neil H.; Wilson, Andrew J.

    2013-01-01

    Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor-donor-acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have ...

  7. Synthesis and characterization of metallo-supramolecular polymers from thiophene-based unimers bearing pybox ligands

    Czech Academy of Sciences Publication Activity Database

    Hladysh, S.; Václavková, D.; Vrbata, D.; Bondarev, D.; Havlíček, D.; Svoboda, Jan; Zedník, J.; Vohlídal, J.

    2017-01-01

    Roč. 7, č. 18 (2017), s. 10718-10728 ISSN 2046-2069 Institutional support: RVO:61389013 Keywords : metallo-supramolecular polymers * XPS Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.108, year: 2016

  8. Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels.

    Science.gov (United States)

    Mariani, Giacomo; Goujon, Antoine; Moulin, Emilie; Rawiso, Michel; Giuseppone, Nicolas; Buhler, Eric

    2017-11-30

    In this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution. The supramolecular polymers comprising contracted nanomachines were found to be equilibrium polymers with a mass that is concentration dependent in dilute and semidilute regimes. Surprisingly, the extended polymers form a gel network with a crystal-like internal structure that is independent of concentration and reminiscent of a pearl-necklace network.

  9. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    Science.gov (United States)

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  10. Amplification of chirality in helical supramolecular polymers: the majority-rules principle.

    NARCIS (Netherlands)

    Gestel, van J.A.M.

    2004-01-01

    Amplification of chirality, being a strongly nonlinear response of the optical activity of helical polymers to a small (net) amount of optically active material, has recently been discovered in supramolecular copolymers. Apart from the sergeants-and-soldiers type we discussed in earlier work,

  11. On the kinetics of body versus end evaporation and addition of supramolecular polymers

    NARCIS (Netherlands)

    Tiwari, Nitin S.; van der Schoot, Paul

    2017-01-01

    Abstract.: The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling

  12. On the kinetics of body versus end evaporation and addition of supramolecular polymers

    NARCIS (Netherlands)

    Tiwari, N.; van der Schoot, P.P.A.M.

    2017-01-01

    The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules,

  13. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  15. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    Science.gov (United States)

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  16. Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks

    Directory of Open Access Journals (Sweden)

    Jérémy Brassinne

    2015-01-01

    Full Text Available Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylaminoethyl methacrylate is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks.

  17. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  18. Hierarchically Ordered Supramolecular Protein-Polymer Composites with Thermoresponsive Properties

    Directory of Open Access Journals (Sweden)

    Salla Välimäki

    2015-05-01

    Full Text Available Synthetic macromolecules that can bind and co-assemble with proteins are important for the future development of biohybrid materials. Active systems are further required to create materials that can respond and change their behavior in response to external stimuli. Here we report that stimuli-responsive linear-branched diblock copolymers consisting of a cationic multivalent dendron with a linear thermoresponsive polymer tail at the focal point, can bind and complex Pyrococcus furiosus ferritin protein cages into crystalline arrays. The multivalent dendron structure utilizes cationic spermine units to bind electrostatically on the surface of the negatively charged ferritin cage and the in situ polymerized poly(di(ethylene glycol methyl ether methacrylate linear block enables control with temperature. Cloud point of the final product was determined with dynamic light scattering (DLS, and it was shown to be approximately 31 °C at a concentration of 150 mg/L. Complexation of the polymer binder and apoferritin was studied with DLS, small-angle X-ray scattering, and transmission electron microscopy, which showed the presence of crystalline arrays of ferritin cages with a face-centered cubic (fcc, \\( Fm\\overline{3}m \\ Bravais lattice where lattice parameter a = 18.6 nm. The complexation process was not temperature dependent but the final complexes had thermoresponsive characteristics with negative thermal expansion.

  19. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    Science.gov (United States)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  20. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices

    Science.gov (United States)

    Zhang, Shiyi; Bellinger, Andrew M.; Glettig, Dean L.; Barman, Ross; Lee, Young-Ah Lucy; Zhu, Jiahua; Cleveland, Cody; Montgomery, Veronica A.; Gu, Li; Nash, Landon D.; Maitland, Duncan J.; Langer, Robert; Traverso, Giovanni

    2015-10-01

    Devices resident in the stomach--used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery--typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.

  1. Protein-based polymers that bond to DNA : design of virus-like particles and supramolecular nanostructures

    NARCIS (Netherlands)

    Hernandez Garcia, A.

    2014-01-01

    In this thesis it is demonstrated that it is possible to use Protein-based Polymers (PbPs) as synthetic binders of DNA (or any other negatively charged polyelectrolyte). The PbPs co-assemble with their DNA templates to form highly organized virus-like particles and supramolecular structures. A

  2. Water-soluble building blocks for terpyridine-containing supramolecular polymers : synthesis, complexation, and pH stability studies of poly(ethylene oxide) moieties

    NARCIS (Netherlands)

    Lohmeijer, B.G.G.; Schubert, U.S.

    2003-01-01

    Poly(ethylene oxide) of various molecular weights ([bar M ]n = 3 000, 5 200, 10 000, 16 500 g · mol-1) has been modified with terpyridine end groups as building blocks for water-soluble metallo-supramolecular polymers. Metallo-supramolecular A-A homopolymers have been prepared and characterized by

  3. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the kinetics of body versus end evaporation and addition of supramolecular polymers.

    Science.gov (United States)

    Tiwari, Nitin S; van der Schoot, Paul

    2017-06-01

    The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules, including sulfur, linear micelles, living polymers and protein fibrils. Recent observations hint at the importance of a hitherto ignored molecular aggregation pathway that we refer to as "body evaporation and addition". In this pathway, monomers can enter at or dissociate from any point along the backbone of the polymer. In this paper, we compare predictions for the well-established end evaporation and addition pathway with those that we obtained for the newly proposed body evaporation and addition model. We quantify the lag time, characteristic of nucleated reversible polymerisation, in terms of the time it takes to obtain half of the steady-state polymerised fraction and the apparent growth rate at that point, and obtain power laws for both as a function of the total monomer concentration. We find, perhaps not entirely unexpectedly, that the body evaporation and addition pathway speeds up the relaxation of the polymerised monomeric mass relative to that of the end evaporation and addition. However, the presence of the body evaporation and addition pathway does not affect the dependence of the lag time on the total monomer concentration and it remains the same as that for the case of end evaporation and addition. The scaling of the lag time with the forward rate is different for the two models, suggesting that they may be distinguished experimentally.

  5. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    Science.gov (United States)

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  6. A two-dimensional Zn coordination polymer with a three-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Fuhong Liu

    2017-10-01

    Full Text Available The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-ylmethyl]biphenyl-κ2N4:N4′}bis(nitrato-κOzinc(II], [Zn(NO32(C18H16N62]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132 plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.

  7. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    Science.gov (United States)

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  9. Supramolecular ionics: electric charge partition within polymers and other non-conducting solids

    Directory of Open Access Journals (Sweden)

    FERNANDO GALEMBECK

    2001-12-01

    Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.A eletrificação de sólidos é conhecida há quatro séculos, mas há muitas questões importantes sobre este assunto, ainda não respondidas: por exemplo, quais são as espécies portadoras de cargas em um polímero isolante eletrificado, como estas cargas estão espacialmente distribuídas e qual é a contribuição destas cargas para as propriedades do polímero? Técnicas microscópicas introduzidas recentemente são apropriadas para o mapeamento de potenciais elétricos ao longo de uma superfície sólida, portanto podem responder a

  10. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs.

    Science.gov (United States)

    Salmaso, Stefano; Caliceti, Paolo

    2013-01-02

    Translation of therapeutic proteins to pharmaceutical products is often encumbered by their inadequate physicochemical and biopharmaceutical properties, namely low stability and poor bioavailability. Over the last decades, several academic and industrial research programs have been focused on development of biocompatible polymers to produce appropriate formulations that provide for enhanced therapeutic performance. According to their physicochemical properties, polymers have been exploited to obtain a variety of formulations including biodegradable microparticles, 3-dimensional hydrogels, bioconjugates and soluble nanocomposites. Several soluble polymers bearing charges or hydrophobic moieties along the macromolecular backbone have been found to physically associate with proteins to form soluble nanocomplexes. Physical complexation is deemed a valuable alternative tool to the chemical bioconjugation. Soluble protein/polymer nanocomplexes formed by physical specific or unspecific interactions have been found in fact to possess peculiar physicochemical, and biopharmaceutical properties. Accordingly, soluble polymeric systems have been developed to increase the protein stability, enhance the bioavailability, promote the absorption across the biological barriers, and prolong the protein residence in the bloodstream. Furthermore, a few polymers have been found to favour the protein internalisation into cells or boost their immunogenic potential by acting as immunoadjuvant in vaccination protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.

    Science.gov (United States)

    Sarkar, Aritra; Dhiman, Shikha; Chalishazar, Aditya; George, Subi J

    2017-10-23

    Chirality-driven self-sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core-substituted naphthalene-diimide-based donor and acceptor molecules with minimal structural mismatch and they comprise strong self-recognizing chiral motifs to determine the self-sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality-controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self-sorting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Time-resolved transient optical absorption study of bis(terpyridyl)oligothiophenes and their metallo-supramolecular polymers with Zn(II) ion couplers

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, P.; Svoboda, J.; Vohlídal, J.; Pfleger, Jiří

    2015-01-01

    Roč. 119, č. 24 (2015), s. 6203-6214 ISSN 1089-5639 R&D Projects: GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polymers * supramolecular structures * structure-property relations Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.883, year: 2015

  13. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallo-supramolecular polymers

    NARCIS (Netherlands)

    Schubert, U.S.; Eschbaumer, C.

    2002-01-01

    The ability of a broad range of N-heterocycles to act as very effective and stable complexation agents for several transition metal ions, such as cobalt(II), copper(II), nickel(II), and ruthenium(II), has long been known in analytical chemistry. This behavior was later utilized in supramolecular

  14. Self-assembling multivalency : supramolecular polymers assembled from monovalent mannose-labelled discotic molecules

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Brunsveld, L.

    2013-01-01

    Supramolecular synthesis, the "bottom-up" construction of higher-order structures from monomeric building blocks, represents a flexible approach for the generation of multivalent materials. Here, monovalent building blocks decorated with a single bioactive ligand were synthesized. In water, these

  15. Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets.

    Science.gov (United States)

    Kulkarni, Chidambar; Korevaar, Peter A; Bejagam, Karteek K; Palmans, Anja R A; Meijer, E W; George, Subi J

    2017-10-04

    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

  16. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery.

    Science.gov (United States)

    Huang, Hongye; Liu, Meiying; Jiang, Ruming; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Due to their excellent chemical stability and remarkable biocompatibility, nanodiamonds (NDs) have received widespread research attention by the biomedical field. The excellent water dispersibility of NDs has significant importance for biomedical applications. Therefore, surface modification of NDs with hydrophilic polymers has been extensively investigated over the past few decades. In this study, we synthesize β-CD containing hyperbranched polymer functionalized ND (ND-β-CD-HPG) composites with high water dispersibility via supramolecular chemistry based on the host-guest interactions between β-Cyclodextrin (β-CD) and adamantine (Ad). The hydroxyl groups of NDs first reacted with 1, 1-adamantanecarbonyl chloride to obtain ND-Ad, which was further functionalized with β-CD containing hyperbranched polymers to form the final ND-β-CD-HPG composites. The successful preparation of ND-β-CD-HPG composites was confirmed by several characterization techniques. Furthermore, the loading and release of the anticancer agent doxorubicin hydrochloride (DOX) on ND-β-CD-HPG composites was also examined to explore its potential in drug delivery. When compared with traditional methods of surface modification of NDs, this method was convenient, fast and efficient. We demonstrated that ND-β-CD-HPG composites have great water dispersibility, low toxicity, high drug-loading capacity and controlled drug-release behavior. Based on these characteristics, ND-β-CD-HPG composites are expected to have high potential for biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    Science.gov (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  19. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers contg. self-complementary quadruple H groups by copolymg. monomers contg. a quadruple H bonding group with ³1 monomers of choice. The resulting polymers show unique new characteristics due to the presence of addnl. phys. interactions between the

  20. Advances in supramolecular polymer chemistry : well-defined terpyridine-functionalized materials

    NARCIS (Netherlands)

    Ott, C.

    2008-01-01

    Controlled/"living" polymerization techniques have attracted enormous attention in the field of polymer science since they have opened an avenue to the preparation of well-defined materials with precisely designed molecular architectures like random, block, graft and comb copolymers. These

  1. Supramolecular fluorene based materials

    NARCIS (Netherlands)

    Abbel, R.J.

    2008-01-01

    This thesis describes the use of noncovalent interactions in order to manipulate and control the self-assembly and morphology of electroactive fluorene-based materials. The supramolecular arrangement of p-conjugated polymers and oligomers can strongly influence their electronic and photophysical

  2. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  3. Effect of H-bonding on order amplification in the growth of a supramolecular polymer in water

    NARCIS (Netherlands)

    Garzoni, M.; Baker, M.B.; Leenders, C.M.A.; Voets, I.K.; Albertazzi, Lorenzo; Palmans, A.R.A.; Meijer, E.W.; Pavan, G.M.

    2016-01-01

    While a great deal of knowledge on the roles of hydrogen bonding and hydrophobicity in proteins has resulted in the creation of rationally designed and functional peptidic structures, the roles of these forces on purely synthetic supramolecular architectures in water have proven difficult to

  4. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  5. Supramolecular fluorene based materials

    OpenAIRE

    Abbel, R.J.

    2008-01-01

    This thesis describes the use of noncovalent interactions in order to manipulate and control the self-assembly and morphology of electroactive fluorene-based materials. The supramolecular arrangement of p-conjugated polymers and oligomers can strongly influence their electronic and photophysical properties. Therefore, a detailed understanding of such organisation processes is essential for the optimisation of the performance of these materials as applied in optoelectronic devices. In order to...

  6. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    Science.gov (United States)

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  7. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  8. Hierarchical self-assembly, coassembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer.

    Science.gov (United States)

    Percec, Virgil; Bera, Tushar K; Glodde, Martin; Fu, Qiongying; Balagurusamy, Venkatachalapathy S K; Heiney, Paul A

    2003-02-17

    The synthesis and structural analysis of the twin-dendritic benzamide 10, based on the first-generation, self-assembling, tapered dendrons 3,4,5-tris(4'-dodecyloxybenzyloxy)benzoic acid and 3,4,5-tris(4'-dodecyloxybenzyloxy)-1-aminobenzene, and the polymethacrylate, 20, which contains 10 as side groups, are presented. Benzamide 10 self-assembles into a supramolecular cylindrical dendrimer that self-organizes into a columnar hexagonal (Phi(h)) liquid crystalline (LC) phase. Polymer 20 self-assembles into an imperfect four-cylinder-bundle supramolecular dendrimer, and creates a giant vesicular supercylinder that self-organizes into a columnar nematic (N(c)) LC phase which displays short-range hexagonal order. In mixtures of 20 and 10, 10 acts as a guest and 20 as a host to create a perfect four-cylinder-bundle host-guest supramolecular dendrimer that coorganizes with 10. A diversity of Phi(h), simple rectangular columnar (Phi(r-s)) and centered rectangular columnar (Phi(r-c)), superlattices are produced at different ratios between 20 and 10. This diversity of LC lattices and superlattices is facilitated by the architecture of the twin-dendritic building block, polymethacrylate, the host-guest supramolecular assembly, and by hydrogen bonding along the center of the supramolecular cylinders generated from 10 and 20.

  9. Black-to-Transmissive Electrochromism with Visible-to-Near-Infrared Switching of a Co(II)-Based Metallo-Supramolecular Polymer for Smart Window and Digital Signage Applications.

    Science.gov (United States)

    Hsu, Chih-Yu; Zhang, Jian; Sato, Takashi; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-08-26

    Black-to-transmissive electrochromism has been obtained with a Co(II)-based metallo-supramolecular polymer (polyCo). Thin films of polyCo, based on bisterpyridine ligand assembled with Co(II) metal ion, were constructed by spray casting the polymer onto ITO glass. With such simple fabricating means to form good-quality films, polyCo films show stable switching at the central metal ion of the Co(II)/Co(I) redox reaction when immersed in aqueous solution. With an increase in the pH of the aqueous electrolyte solution from neutral, the film exhibits a color response due to the interaction between the d-orbital electron and hydroxide ions affecting the d-d* transition. As a result, a nearly transparent-to-black electrochromic performance can be achieved with a transmittance difference at 550 nm of 74.3% (81.9-7.6%) in pH 13 solution. The light absorption of the film can be tuned over light regions from visible to near-infrared with a large attenuation.

  10. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    Science.gov (United States)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  11. Monomers capable of forming four hydrogen bridges and supramolecular polymers formed by copolymerization of these monomers with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  12. Solid-phase based synthesis of ureidopyrimidinone-peptide conjugates for supramolecular biomaterials

    NARCIS (Netherlands)

    Feijter, de I.; Goor, O.J.G.M.; Hendrikse, S.I.S.; Comellas Aragones, M.; Sontjens, S.H.M.; Zaccaria, S.; Fransen, P.P.K.H.; Peeters, J.W.; Milroy, L.G.; Dankers, P.Y.W.

    2015-01-01

    Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the

  13. Time-Resolved Transient Optical Absorption Study of Bis(terpyridyl)oligothiophenes and Their Metallo-Supramolecular Polymers with Zn(II) Ion Couplers.

    Science.gov (United States)

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, Pavla; Svoboda, Jan; Vohlídal, Jiří; Pfleger, Jiří

    2015-06-18

    α,ω-Bis(terpyridyl)oligothiophenes spontaneously assemble with Zn(II) ions giving conjugated constitutional dynamic polymers (dynamers) of the metallo-supramolecular class, which potentially might be utilized in optoelectronics. Their photophysical properties, which are of great importance in this field of application, are strongly influenced by the dynamic morphology. It was assessed in this study by using ultrafast pump-probe optical absorption spectroscopy. We identified and characterized relaxation processes running in photoexcited molecules of these oligomers and dynamers and show impacts of disturbed coplanarity of adjacent rings (twisting the thiophene-thiophene and thiophene-terpyridyl bonds by attached hexyl side groups) and Zn(II) ion couplers on these processes. Major effects are seen in the time constants of rotational relaxation, intersystem crossing, and de-excitation lifetimes. The photoexcited states formed on different repeating units within the same dynamer chain do not interact with each other even at very high excitation density. The method is presented that allows determining the equilibrium fraction of unbound oligothiophene species in a dynamer solution, from which otherwise hardly accessible values of the average degree of polymerization of constitutionally dynamic chains in solution can be estimated.

  14. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    Science.gov (United States)

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    Science.gov (United States)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  16. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Science.gov (United States)

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  17. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Newcomb, Christina J.; Sur, Shantanu; Lee, Sungsoo S.; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L.; Stupp, Samuel I. (NWU); (USC)

    2016-04-12

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  18. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide: Syntheses, Structural Characterizations and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2016-05-01

    Full Text Available Cyclodextrins (CDs have been extensively studied as drug delivery carriers through host–guest interactions. CD-based poly(pseudorotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers, have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide (PEO is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudorotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.

  19. Singlet fission in thin films of metallo-supramolecular polymers with ditopic thiophene-bridged terpyridine ligands

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Pfleger, Jiří; Menšík, Miroslav; Zhigunov, Alexander; Štenclová, P.; Svoboda, Jan; Vohlídal, J.

    2017-01-01

    Roč. 5, č. 32 (2017), s. 8041-8051 ISSN 2050-7526 R&D Projects: GA ČR(CZ) GAP108/12/1143; GA MŠk(CZ) LD14011; GA MŠk(CZ) LO1507 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : triplet exciton * excimer * zinc Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.256, year: 2016

  20. Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Helgesen, Martin; Carlé, Jon Eggert

    2013-01-01

    The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important nanostruct......The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important...... nanostructure. Chemical units can be introduced that impart an increased stability. Similarly, the morphological degradation of the optimal nanostructure can be reduced. Active polymers and blends with acceptor material are used to create nanoparticle links with controlled size. Most of these advanced polymers...

  1. Data Mining as a Guide for the Construction of Crosslinked Nanoparticles with Low Immunotoxicity via Controlling Polymer Chemistry and Supramolecular Assembly

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L.

    2015-01-01

    CONSPECTUS The potential immunotoxicity of nanoparticles that are currently being approved or in different phases of clinical trials or under rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger the various components of the immune system, unintentionally, and lead to serious adverse reactions. Cytokines are one of the useful biomarkers to predict the effect of biotherapeutics on modulating the immune system and for screening the immunotoxicity of nanoparticles, both in vitro and in vivo, and were found recently to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse and experiments are usually conducted using different assays and under specific conditions, making direct comparisons nearly impossible and, thus, tailoring properties of nanomaterials based on the available data is challenging. In this account, the effects of chemical structure, crosslinking, degradability, morphology, concentration and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with focus being given on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized, uniquely, to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple and easy way to compare the immunotoxicity of various nanomaterials, and the values were found to correlate-well with published data. Based on the investigated polymeric systems in this study, valuable information has been collected that aids in the

  2. Data Mining as a Guide for the Construction of Cross-Linked Nanoparticles with Low Immunotoxicity via Control of Polymer Chemistry and Supramolecular Assembly.

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L

    2015-06-16

    The potential immunotoxicity of nanoparticles that are currently being approved, in different phases of clinical trials, or undergoing rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger various components of the immune system unintentionally and lead to serious adverse reactions. Cytokines are one of the useful biomarkers for predicting the effect of biotherapeutics on modulation of the immune system and for screening the immunotoxicity of nanoparticles both in vitro and in vivo, and they were recently found to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for the construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse, and experiments are usually conducted using different assays under specific conditions. As a result, making direct comparisons nearly impossible, and thus, tailoring the properties of nanomaterials on the basis of the available data is challenging. In this Account, the effects of chemical structure, cross-linking, degradability, morphology, concentration, and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with a focus on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized uniquely to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple way to compare the immunotoxicities of various nanomaterials, and the values were found to correlate well with published data. On the basis of the polymeric systems investigated in this study, valuable information has been collected that

  3. Metallo-supramolecular block copolymer micelles

    NARCIS (Netherlands)

    Gohy, J.M.W.

    2009-01-01

    Supramolecular copolymers have become of increasing interest in recent years in the search for new materials with tunable properties. In particular, metallo-supramolecular block copolymers in which metal-ligand complexes are introduced in block copolymer architectures, have known important progress,

  4. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  5. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  6. [Supramolecular Agents for Theranostics].

    Science.gov (United States)

    Deyev, S M; Lebedenko, E N

    2015-01-01

    This mini-review summarizes recent data obtained in the process of creation of a versatile module platform suitable for construction of supramolecular theranostic agents. As an example, we consider multifunctional hybrid agents for imaging and elimination of cancer cells. The use of an adapter protein system barnase:barstar for producing targeted multifunctional hybrid structures on the basis of highly specific peptides and mini-antibodies as addressing modules and recombinant proteins and/or nanoparticles of different nature (quantum dots, nanogold, magnetic nanoparticles, nanodiamonds, upconverting nanophosphores, polymer nanoparticles) as agents visualizing and damaging cancer cells is described. New perspectives for creation of selective and highly effective compounds for theranostics and personified medicine are contemplated.

  7. Supramolecular biomaterials

    NARCIS (Netherlands)

    Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert

    2015-01-01

    Polymers, ceramics and metals have historically dominated the application of materials in medicine. Yet rationally designed materials that exploit specific, directional, tunable and reversible non-covalent interactions offer unprecedented advantages: they enable modular and generalizable platforms

  8. Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels%Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels

    Institute of Scientific and Technical Information of China (English)

    杜平; 孔军; 王贵涛; 赵新; 李光玉; 蒋锡夔; 黎占亭

    2011-01-01

    In a preliminary letter (Tetrahedron Lett. 2010, 51, 188), we reported two new hydrazide-based quadruple hydrogen-bonding motifs, this is, two monopodal (la and lb) and five dipodal (2a, 2b and 3a--3c) aromatic hydrazide derivatives, and the formation of supramolecular polymers and vesicles from the dipodal motifs in hydrocarbons. In this paper, we present a full picture on the properties of these hydrogen-bonding motifs with an emphasis on their self-assembling behaviors in aqueous media. SEM, AFM, TEM and fluorescent micrographs indicate that all the dipodal compounds also form vesicles in polar methanol and water-methanol (up to 50% of water) mixtures. Control experiments show that lb does not form vesicles in same media. Addition of lb to the solution of the dipodal compounds inhibits the latter's capacity of forming vesicles. At high concentrations, 3b and 3c also gelate discrete solvents, including hydrocarbons, esters, methanol, and methanol-water mixture. Concentration-dependent SEM investigations reveal that the vesicles of 3b and 3c fuse to form gels and the gel of 3c can de-aggregate to form the vesicles reversibly.

  9. A new one-dimensional NiII coordination polymer with a two-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2017-02-01

    Full Text Available A new one-dimensional NiII coordination polymer of 1,3,5-tris(imidazol-1-ylmethylbenzene, namely catena-poly[[aqua(sulfato-κOhemi(μ-ethane-1,2-diol-κ2O:O′[μ3-1,3,5-tris(1H-imidazol-1-ylmethylbenzene-κ3N3,N3′,N3′′]nickel(II] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4(C18H18N6(C2H6O20.5(H2O]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiII cation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethylbenzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3 coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethylbenzene ligands link the NiII cations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H...O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001 plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ions via O—H...O hydrogen bonds.

  10. Synergy in supramolecular chemistry

    CERN Document Server

    Nabeshima, Tatsuya

    2014-01-01

    Synergy and Cooperativity in Multi-metal Supramolecular Systems, T. NabeshimaHierarchically Assembled Titanium Helicates, Markus AlbrechtSupramolecular Hosts and Catalysts Formed by Self-assembly of Multinuclear Zinc Complexes in Aqueous Solution, Shin AokiSupramolecular Assemblies Based on Interionic Interactions, H. MaedaSupramolecular Synergy in the Formation and Function of Guanosine Quadruplexes, Jeffery T. DavisOn-Surface Chirality in Porous Self-Assembled Monolayers at Liquid-Solid Interface, Kazukuni Tahar

  11. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells.

    Science.gov (United States)

    Lee, Yeonju; Geckeler, Kurt E

    2012-08-01

    Water-soluble, PAX-loaded carbon nanotubes are fabricated by employing a synthetic polyampholyte, PDM. To investigate the suitability of the polyampholyte and the nanotubes as drug carriers, different cellular interactions such as the human epithelial Caco-2 cells viability, their effect on the cell growth, and the change in the transepithelial electrical resistance in Caco-2 cells are studied. The resulting complex is found to exhibit an effective anti-cancer effect against colon cancer cells and an increased the reduction of the electrical resistance in the Caco-2 cells when compared to the precursor PAX. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  13. A supramolecular ''Double-cable'' structure with a 129{sub 44} helix in a columnar porphyrin-C{sub 60} dyad and its application in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chien-Lung [College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH (United States); Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan (China); Zhang, Wen-Bin; Sun, Hao-Jan; Van Horn, Ryan M.; Kulkarni, Rahul R.; Tsai, Chi-Chun; Gong, Xiong; Cheng, Stephen Z.D. [College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH (United States); Hsu, Chain-Shu [Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan (China); Lotz, Bernard [Institut Charles Sadron, Strasbourg (France)

    2012-11-15

    A novel porphyrin-C{sub 60} dyad (PCD1) is designed and synthesized to investigate and manipulate the supramolecular structure where geometrically isotropic [such as [60]fullerene (C{sub 60})] and anisotropic [such as porphyrin (Por)] units coexist. It is observed that PCD1 possesses an enantiomeric phase behavior. The melting temperature of the stable PCD1 thermotropic phase is 160 C with a latent heat ({Delta}H) of 18.5 kJ mol{sup -1}. The phase formation is majorly driven by the cooperative intermolecular Por-Por and C{sub 60}-C{sub 60} interactions. Structural analysis reveals that this stable phase possesses a supramolecular ''double-cable'' structure with one p-type Por core columnar channel and three helical n-type C{sub 60} peripheral channels. These ''double-cable'' columns further pack into a hexagonal lattice with a = b = 4.65 nm, c = 41.3 nm, {alpha} = {beta} = 90 , and {gamma} = 120 . The column repeat unit is determined to possess a 129{sub 44} helix. With both donor (D; Pro) and acceptor (A; C{sub 60}) units having their own connecting channels as well as the large D/A interface within the supramolecular ''double-cable'' structure, PCD1 has photogenerated carriers with longer lifetimes compared to the conventional electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester. A phase-separated columnar morphology is observed in a bulk-heterojunction (BHJ) material made by the physical blend of a low band-gap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothia-diazole)] (PCPDTBT), and PCD1. With a specific phase structure in the solid state and in the blend, PCD1 is shown to be a promising candidate as a new electron acceptor in high performance BHJ polymer solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Aminosilane-Functionalized Cellulosic Polymer for Increased Carbon Dioxide Sorption

    KAUST Repository

    Pacheco, Diana M.

    2012-01-11

    Improvement in the efficiency of CO 2 separation from flue gases is a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO 2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating, and recovering CO 2 on a cost-effective basis. This paper describes the preparation of an aminosilane-functionalized cellulosic polymer sorbent with enhanced CO 2 sorption capacity and promising performance for use in postcombustion carbon capture via rapid temperature-swing adsorption systems. The introduction of aminosilane functionalities onto the backbone of cellulose acetate was achieved by the anhydrous grafting of N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane. The dry sorption capacity of the modified cellulosic polymer reached 27 cc (STP) CO 2/cc sorbent (1.01 mmol/g sorbent) at 1 atm and 39 cc (STP) CO 2/cc sorbent (1.46 mmol/g sorbent) at 5 atm and 308 K. The amine loading achieved was 5.18 mmol amine(nitrogen)/g sorbent. Exposure to water vapor after the first dry sorption cycle increased the dry sorption capacity of the sorbent by 12% at 1 atm, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. The CO 2 sorbent was characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology. © 2011 American Chemical Society.

  15. Aminosilane-Functionalized Cellulosic Polymer for Increased Carbon Dioxide Sorption

    KAUST Repository

    Pacheco, Diana M.; Johnson, J.R.; Koros, William J.

    2012-01-01

    Improvement in the efficiency of CO 2 separation from flue gases is a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO 2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating, and recovering CO 2 on a cost-effective basis. This paper describes the preparation of an aminosilane-functionalized cellulosic polymer sorbent with enhanced CO 2 sorption capacity and promising performance for use in postcombustion carbon capture via rapid temperature-swing adsorption systems. The introduction of aminosilane functionalities onto the backbone of cellulose acetate was achieved by the anhydrous grafting of N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane. The dry sorption capacity of the modified cellulosic polymer reached 27 cc (STP) CO 2/cc sorbent (1.01 mmol/g sorbent) at 1 atm and 39 cc (STP) CO 2/cc sorbent (1.46 mmol/g sorbent) at 5 atm and 308 K. The amine loading achieved was 5.18 mmol amine(nitrogen)/g sorbent. Exposure to water vapor after the first dry sorption cycle increased the dry sorption capacity of the sorbent by 12% at 1 atm, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. The CO 2 sorbent was characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology. © 2011 American Chemical Society.

  16. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  17. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  18. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  19. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    Science.gov (United States)

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  20. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  1. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira; Karunakaran, Madhavan; Neelakanda, Pradeep; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; He, Haoze; Peinemann, Klaus-Viktor

    2011-01-01

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  2. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  3. The role of supramolecular chemistry in stimuli responsive and hierarchically structured functional organic materials

    NARCIS (Netherlands)

    Schenning, A.P.H.J.; Bastiaansen, C.W.M.; Broer, D.J.; Debije, M.G.

    2014-01-01

    ABSTRACT: In this review, we show the important role of supramolecular chemistry in the fabrication of stimuli responsive and hierarchically structured liquid crystalline polymer networks. Supramolecular interactions can be used to create three dimensional order or as molecular triggers in materials

  4. Supramolecular Photodimerization of Coumarins

    Directory of Open Access Journals (Sweden)

    Koichi Tanaka

    2012-02-01

    Full Text Available Stereoselective photodimerization of coumarin and its derivatives in supra-molecular systems is reviewed. The enantioselective photodimerization of coumarin and thiocoumarin in inclusion crystals with optically active host compounds is also described.

  5. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    Science.gov (United States)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  6. Epoxy resin-inspired reconfigurable supramolecular networks

    OpenAIRE

    Balkenende Diederik; Olson Rebecca; Balog Sandor; Weder Christoph; Montero de Espinosa Lucas

    2016-01-01

    With the goal to push the mechanical properties of reconfigurable supramolecular polymers toward those of thermoset resins we prepared and investigated a new family of hydrogen bonded polymer networks that are assembled from isophthalic acid terminated oligo(bisphenol A co epichlorohydrin) and different bipyridines. These materials display high storage moduli of up to 3.9 GPa can be disassembled upon heating to form melts with a viscosity of as low as 2.1 Pa·s and fully reassemble upon coolin...

  7. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    Science.gov (United States)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  8. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng

    2008-01-01

    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  9. Combining supramolecular chemistry with biology

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Petkau - Milroy, K.; Brunsveld, L.

    2010-01-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic

  10. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren

    2014-01-01

    The dielectric properties of several supramolecular ionic polymers and networks, linked by the ammonium salts of hexamethylene diamine (HMDA), tris(2-aminoethyl)amine (TAEA), poly(propylene imine) (PPI) dendrimers and two short bis carboxymethyl ether-terminated poly(ethylene glycol)s (Di......COOH-PEG), are reported in this paper. All supramolecular ionic polymers and networks exhibit very high relative dielectric permittivities ( 3 0 )( 10 2 – 10 6 ) at low frequencies, and signi fi cantly lower values (from 1 up to 26) at high frequencies. Additionally, the dielectric properties of supramolecular ionic......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  11. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  12. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch

    NARCIS (Netherlands)

    Pijper, Dirk; Jongejan, Mahthild G. M.; Meetsma, Auke; Feringa, Ben L.

    2008-01-01

    Control over the preferred helical sense of a poly(n-hexyl isocyanate) (PHIC) by using a single light-driven molecular motor, covalently attached at the polymer's terminus, has been accomplished in solution via a combination of photochemical and thermal isomerizations. Here, we report that after

  13. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas; Mateker, William R.; Sachs-Quintana, I. T.; Vandewal, Koen; Bartelt, Jonathan A.; Burke, Timothy M.; Ameri, Tayebeh; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which

  14. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  15. Magnetism: a supramolecular function

    International Nuclear Information System (INIS)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W.

    1996-01-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T c = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs

  16. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  17. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S; Pellaux, R; Schmalle, H W [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  18. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

    Directory of Open Access Journals (Sweden)

    Satu Strandman

    2016-04-01

    Full Text Available Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of physical gels has long been a topic of interest in soft materials physics and various supramolecular interactions can induce this kind of recovery. This review highlights the non-covalent strategies of building self-repairing hydrogels and the characterization of their mechanical properties. Potential applications and future prospects of these materials are also discussed.

  19. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    International Nuclear Information System (INIS)

    Bhardwaj, Sumit; Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-01-01

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications

  20. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  1. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  2. Aromatic polymers of increased resistance to flow and molecular weight obtained by irradiation

    International Nuclear Information System (INIS)

    Staniland, P.A.; Jarrett, G.

    1976-01-01

    Aromatic polymers of increased resistance to flow and increased molecular weight are obtained by irradiation using β rays or gamma rays at temperatures up to 400 0 C of an aromatic polymer whose molecular chains comprise benzenoid groups and bivalent linking groups, and where irradiation is gamma rays by heating subsequent to irradiation at 200 0 C to 400 0 C. The polymeric materials having increased molecular weight are useful for coating non-cooking surfaces of cookware

  3. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    Science.gov (United States)

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  4. Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine

    International Nuclear Information System (INIS)

    Sousa Luz, Roberto A. de; Martins, Marccus Victor A.; Magalhaes, Janildo L.; Siqueira, Jose R.; Zucolotto, Valtencir; Oliveira, Osvaldo N.; Crespilho, Frank N.; Cantanhede da Silva, Welter

    2011-01-01

    Highlights: → Platforms were assembled from cobalt phthalocyanine, chitosan and carbon nanotubes. → Supramolecular organization of multilayer films was investigated. → Increase of the supramolecular charge transfer after carbon nanotube incorporation. → Functional modulation based on constitutional dynamic chemistry was achieved. - Abstract: The building of supramolecular structures in nanostructured films has been exploited for a number of applications, with the film properties being controlled at the molecular level. In this study, we report on the layer-by-layer (LbL) films combining cobalt (II) tetrasulfonated phthalocyanine (CoTsPc), chitosan (Chit) and single-walled carbon nanotubes (SWCNTs) in two architectures, {Chit/CoTsPc} n and {Chit-SWCNTs/CoTsPc} n (n = 1-10). The physicochemical properties of the films were evaluated and the multilayer formation was monitored with microgravimetry measurements using a quartz microbalance crystal and an electrochemical technique. According to atomic force microscopy (AFM) results, the incorporation of SWCNTs caused the films to be thicker, with a thickness ca. 3 fold that of a 2-bilayer LbL film with no SWCNTs. Cyclic voltammetry revealed a quasi-reversible, one electron process with E 1/2 at -0.65 V (vs SCE) and an irreversible oxidation process at 0.80 V in a physiological medium for both systems, which can be attributed to [CoTsPc(I)] 5- /[CoTsPc(II)] 4- and CoTsPc(II) to CoTsPc(III), respectively. The {Chit-SWCNTs/CoTsPc} 5 multilayer film exhibited an increased faradaic current, probably associated with the supramolecular charge transfer interaction between cobalt phthalocyanine and SWCNTs. The results demonstrate that an intimate contact at the supramolecular level between functional SWCNTs immobilized into biocompatible chitosan polymer and CoTsPc improves the electron flow from CoTsPc redox sites to the electrode surface.

  5. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  6. A new configurational bias scheme for sampling supramolecular structures

    Energy Technology Data Exchange (ETDEWEB)

    De Gernier, Robin; Mognetti, Bortolo M., E-mail: bmognett@ulb.ac.be [Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels (Belgium); Curk, Tine [Department of Chemistry, University of Cambridge, Cambridge CB2 1EW (United Kingdom); Dubacheva, Galina V. [Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian (Spain); Richter, Ralf P. [Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian (Spain); Université Grenoble Alpes, DCM, 38000 Grenoble (France); CNRS, DCM, 38000 Grenoble (France); Max Planck Institute for Intelligent Systems, 70569 Stuttgart (Germany)

    2014-12-28

    We present a new simulation scheme which allows an efficient sampling of reconfigurable supramolecular structures made of polymeric constructs functionalized by reactive binding sites. The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered by the possibility of changing the topology of the supramolecular network by a non-local Monte Carlo algorithm. Such a plan is accomplished by a multi-scale modelling that merges coarse-grained simulations, describing the typical polymer conformations, with experimental results accounting for free energy terms involved in the reactions of the active sites. We test the new algorithm for a system of DNA coated colloids for which we compute the hybridisation free energy cost associated to the binding of tethered single stranded DNAs terminated by short sequences of complementary nucleotides. In order to demonstrate the versatility of our method, we also consider polymers functionalized by receptors that bind a surface decorated by ligands. In particular, we compute the density of states of adsorbed polymers as a function of the number of ligand–receptor complexes formed. Such a quantity can be used to study the conformational properties of adsorbed polymers useful when engineering adsorption with tailored properties. We successfully compare the results with the predictions of a mean field theory. We believe that the proposed method will be a useful tool to investigate supramolecular structures resulting from direct interactions between functionalized polymers for which efficient numerical methodologies of investigation are still lacking.

  7. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    Science.gov (United States)

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  8. Application of secondary of polymers and surface active agents to increase heavy oil recovery

    Directory of Open Access Journals (Sweden)

    Karel Luner

    2006-10-01

    Full Text Available Basin on a comparison of laboratory results with results obtained by screening modelling, one of the most promising methods was selected – the method of oil displacement by means of the polymer injection.Water intended for the injection is thickened with high molecular weight polymers (e.g. Polyacrylamid or Xantan, which increase the water viscosity and, on the other hand, decrease the water mobility. The concentrations of polymers vary in the range from 250 to 2 000 mg l-1 of water and the required volumes of injected water thickened with polymers achieve values ranging from 25 to 60 % of the volume of total oil saturation of the deposit. The method is used as complementary to the process of water flooding. It is suitable even in cases where other tertiary methods are not expected to be successful.

  9. Linear Viscoelastic and Dielectric Relaxation Response of Unentangled UPy-Based Supramolecular Networks

    DEFF Research Database (Denmark)

    Shabbir, Aamir; Javakhishvili, Irakli; Cerveny, Silvina

    2016-01-01

    Supramolecular polymers possess versatile mechanical properties and a unique ability to respond to external stimuli. Understanding the rich dynamics of such associative polymers is essential for tailoring user-defined properties in many products. Linear copolymers of 2-methoxyethyl acrylate (MEA)...

  10. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  11. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  12. Programming supramolecular biohybrids as precision therapeutics.

    Science.gov (United States)

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja

    2014-12-16

    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side

  13. Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers

    Directory of Open Access Journals (Sweden)

    Olivier Christiaens

    2018-04-01

    Full Text Available Lepidoptera comprise some of the most devastating herbivorous pest insects worldwide. One of the most promising novel pest control strategies is exploiting the RNA interference (RNAi mechanism to target essential genes for knockdown and incite toxic effects in the target species without harming other organisms in the ecosystem. However, many insects are refractory to oral RNAi, often due to rapid degradation of ingested dsRNA in their digestive system. This is the case for many lepidopteran insects, including the beet armyworm Spodoptera exigua, which is characterized by a very alkaline gut environment (pH > 9.0 and a strong intestinal nucleolytic activity. In this research, guanidine-containing polymers were developed to protect dsRNA against nucleolytic degradation, specifically in high pH environments. First, their ability to protect dsRNA against nucleolytic degradation in gut juice of the beet armyworm S. exigua was investigated ex vivo. Polymers with high guanidine content provided a strong protection against nucleolytic degradation at pH 11, protecting the dsRNA for up to 30 h. Next, cellular uptake of the dsRNA and the polyplexes in lepidopteran CF203 midgut cells was investigated by confocal microscopy, showing that the polymer also enhanced cellular uptake of the dsRNA. Finally, in vivo feeding RNAi bioassays demonstrated that using these guanidine-containing polymer nanoparticles led to an increased RNAi efficiency in S. exigua. Targeting the essential gene chitin synthase B, we observed that the mortality increased to 53% in the polymer-protected dsRNA treatment compared to only 16% with the naked dsRNA and found that polymer-protected dsRNA completely halted the development of the caterpillars. These results show that using guanylated polymers as a formulation strategy can prevent degradation of dsRNA in the alkaline and strongly nucleolytic gut of lepidopteran insects. Furthermore, the polymer also enhances cellular uptake in

  14. Uses of neutron scattering in supramolecular chemistry

    International Nuclear Information System (INIS)

    Lindoy, L.F.

    1998-01-01

    Full text: A major thrust in recent chemical research has been the development of supramolecular chemistry 1 - broadly the chemistry of large multicomponent molecular assemblies in which the component structural units are held together by either covalent linkages or by a variety of weaker (non-covalent) interactions that include hydrogen bonding, dipole stacking, π-stacking, van der Waals q forces and favourable hydrophobic interactions. Much of the activity in the area has been motivated by the known behaviour of biological molecules (such as enzymes). Thus molecular assemblies are ubiquitous in natural systems but, with a limited number of exceptions, have only recently been the subject of increasing investigation by chemists. A feature of much of this recent work has been its focus on molecular design for achieving complementarity between single molecule hosts and guests. The use of single crystal neutron diffraction coupled with molecular modelling and a range of other techniques to investigate the nature of individual supramolecular systems will be discussed. By way of example, in one such study the supramolecular array formed by co-crystallisation of 1,2- diaminoethane and benzoic acid has been investigated; the system self-assembles into an unusual layered structure composed of two-dimensional hydrogen bonded networks sandwiched between layers of edge-to-face stacked aromatic systems. The number of hydrogen-bond donors and acceptors is balanced in this structure

  15. Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lubin [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Zhang, Wang [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742 (Korea, Republic of); Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742 (Korea, Republic of); Diao, Guowang, E-mail: gwdiao@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)

    2017-02-28

    Graphical abstract: Supramolecular assembled three-dimensdional graphene-based architectures were built by host-guest interactions of β-cyclodextrin polymers(β-CDPs) with adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD), exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. - Highlights: • Supramolecular assembled three-Dimensional (3D) graphene was first fabricated by host-guest interactions of β-CDPs with PEG-AD linkers. • The incorporation of PEG-AD linker into rGO sheets can provide efficient 3D electron transfer pathways and ion diffusion channels. • The 3D self-assembled graphene exhibits high specific capacitance, remarkable rate capability, and excellent cycling stability. • This study shed new lights to design 3D self-assembled graphene materials and their urgent applications in energy storage. - Abstract: Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms

  16. Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors

    International Nuclear Information System (INIS)

    Ni, Lubin; Zhang, Wang; Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming; Piao, Yuanzhe; Diao, Guowang

    2017-01-01

    Graphical abstract: Supramolecular assembled three-dimensdional graphene-based architectures were built by host-guest interactions of β-cyclodextrin polymers(β-CDPs) with adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD), exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. - Highlights: • Supramolecular assembled three-Dimensional (3D) graphene was first fabricated by host-guest interactions of β-CDPs with PEG-AD linkers. • The incorporation of PEG-AD linker into rGO sheets can provide efficient 3D electron transfer pathways and ion diffusion channels. • The 3D self-assembled graphene exhibits high specific capacitance, remarkable rate capability, and excellent cycling stability. • This study shed new lights to design 3D self-assembled graphene materials and their urgent applications in energy storage. - Abstract: Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms

  17. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    Science.gov (United States)

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  18. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    Science.gov (United States)

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug

  19. Encoding complexity within supramolecular analogues of frustrated magnets

    Science.gov (United States)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  20. Efficient protein-repelling thin films regulated by chain mobility of low-Tg polymers with increased stability via crosslinking

    Science.gov (United States)

    Zhang, Jinghui; Huang, Zhiwei; Liu, Dan

    2017-12-01

    Polymer thin films are generally employed as coatings on implants to prevent protein adsorption. Polymer chain mobility and surface softness have been found to contribute to the protein resistance, but also bring film instability in a liquid protein medium. We investigated the protein resistance ability of three low-Tg polymers, including hydrophobic polymers polyisoprene (PI), poly(n-butyl methacrylate) (PnBMA) and hydrophilic polyethylene oxide (PEO), by overcoming the instability issue with crosslinking. We found that the Tgs of PI and PEO can be increased to around 0 °C after crosslinking. The remained strong chain mobility of both films can still resist protein adsorption regardless the hydrophobicity, yet greatly increases the film stability under an aqueous circumstance. The PnBMA film increased its Tg to around room temperature after crosslinking, which deteriorated the protein-resistance ability having the surface covered by BSA molecules. Our results support that the chain mobility of a polymer film plays an important role in resisting protein adsorption due to the increased entropy associated with more mobile polymer chains. By tune the degree of crosslinking, the stability of polymer in aqueous environment can be increased while the protein resistant ability can be remained. Our results provide a new strategy to design polymer materials for effective antifouling.

  1. Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.

    Science.gov (United States)

    Ciesielski, Artur; Samorì, Paolo

    2011-04-01

    Among the many significant advances within the field of supramolecular chemistry over the past decades, the development of the so-called "dynamers" features a direct relevance to materials science. Defined as "combinatorial dynamic polymers", dynamers are constitutional dynamic systems and materials resulting from the application of the principles of supramolecular chemistry to polymer science. Like supramolecular materials in general, dynamers are reversible dynamic multifunctional architectures, capable of modifying their constitution by exchanging, recombining, incorporating components. They may exhibit a variety of novel properties and behave as adaptive materials. In this review we focus on the design of responsive switchable monolayers, i.e. monolayers capable to undergo significant changes in their physical or chemical properties as a result of external stimuli. Scanning tunneling microscopy studies provide direct evidence with a sub-nanometre resolution, on the formation and dynamic response of these self-assembled systems featuring controlled geometries and properties.

  2. Terpyridine modified poly(vinyl chloride) : possibilities for supramolecular grafting and crosslinking

    NARCIS (Netherlands)

    Meier, M.A.R.; Schubert, U.S.

    2003-01-01

    Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two-step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an

  3. Photoluminescence Spectra of Self-Assembling Helical Supramolecular Assemblies: A Theoretical Study

    NARCIS (Netherlands)

    van Dijk, Leon; Kersten, Sander P.; Jonkheijm, Pascal; van der Schoot, Paul; Bobbert, Peter A.

    2008-01-01

    The reversible assembly of helical supramolecular polymers of chiral molecular building blocks is known to be governed by the interplay between mass action and the competition between weakly and strongly bound states of these building blocks. The highly co-operative transition from free monomers at

  4. INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS

    Energy Technology Data Exchange (ETDEWEB)

    G.P. Willhite; D.W. Green; C.S. McCool

    2003-05-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in

  5. Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Luz, Roberto A. de; Martins, Marccus Victor A.; Magalhaes, Janildo L. [Departamento de Quimica, Centro de Ciencias da Natureza, Universidade Federal do Piaui, Teresina - PI, CEP 64049-550 (Brazil); Siqueira, Jose R. [Instituto de Ciencias Exatas, Naturais e Educacao, Universidade Federal do Triangulo Mineiro, Uberaba - MG, CEP 38025-180, Brazil (Brazil); Zucolotto, Valtencir; Oliveira, Osvaldo N. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos - SP, CEP 13560-970 (Brazil); Crespilho, Frank N. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre - SP, CEP 09210-170 (Brazil); Cantanhede da Silva, Welter, E-mail: welter@ufpi.edu.br [Departamento de Quimica, Centro de Ciencias da Natureza, Universidade Federal do Piaui, Teresina - PI, CEP 64049-550 (Brazil)

    2011-11-01

    Highlights: {yields} Platforms were assembled from cobalt phthalocyanine, chitosan and carbon nanotubes. {yields} Supramolecular organization of multilayer films was investigated. {yields} Increase of the supramolecular charge transfer after carbon nanotube incorporation. {yields} Functional modulation based on constitutional dynamic chemistry was achieved. - Abstract: The building of supramolecular structures in nanostructured films has been exploited for a number of applications, with the film properties being controlled at the molecular level. In this study, we report on the layer-by-layer (LbL) films combining cobalt (II) tetrasulfonated phthalocyanine (CoTsPc), chitosan (Chit) and single-walled carbon nanotubes (SWCNTs) in two architectures, {l_brace}Chit/CoTsPc{r_brace}{sub n} and {l_brace}Chit-SWCNTs/CoTsPc{r_brace}{sub n} (n = 1-10). The physicochemical properties of the films were evaluated and the multilayer formation was monitored with microgravimetry measurements using a quartz microbalance crystal and an electrochemical technique. According to atomic force microscopy (AFM) results, the incorporation of SWCNTs caused the films to be thicker, with a thickness ca. 3 fold that of a 2-bilayer LbL film with no SWCNTs. Cyclic voltammetry revealed a quasi-reversible, one electron process with E{sub 1/2} at -0.65 V (vs SCE) and an irreversible oxidation process at 0.80 V in a physiological medium for both systems, which can be attributed to [CoTsPc(I)]{sup 5-}/[CoTsPc(II)]{sup 4-} and CoTsPc(II) to CoTsPc(III), respectively. The {l_brace}Chit-SWCNTs/CoTsPc{r_brace}{sub 5} multilayer film exhibited an increased faradaic current, probably associated with the supramolecular charge transfer interaction between cobalt phthalocyanine and SWCNTs. The results demonstrate that an intimate contact at the supramolecular level between functional SWCNTs immobilized into biocompatible chitosan polymer and CoTsPc improves the electron flow from CoTsPc redox sites to the

  6. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Willhite, G.P.; Green, D.W.; McCool, S.

    2001-03-28

    Gelled polymer treatments were applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. Procedures were developed to determine the weight-average molecular weight and average size of polyacrylamide samples in aqueous solutions. Sample preparation techniques were key to achieving reproducible results.

  7. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    International Nuclear Information System (INIS)

    Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P.

    2007-01-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  8. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    Science.gov (United States)

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  9. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black

    Science.gov (United States)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-01

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8 mM GSH. The UV-Vis difference spectra show a positive peak at 383 nm and a negative peak at 458 nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  10. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    supramolecular architectures, network structures, multi-component host–guest systems, cocrys- tals, and ... structures is illustrated by two important prototypes – the large unit cell of elusive saccharin hydrate ..... N––– H ··· π interaction is not seen in this view. (d) Infinite .... to atmospheric water vapor without color loss or.

  11. Progress in the Supramolecular Architecture-directed Synthesis of Perfect Ladder Polysiloxanes

    Institute of Scientific and Technical Information of China (English)

    C; C; Han

    2007-01-01

    1 Introduction Ladder polysiloxanes (LPSs) including organo-bridged ladder polyorganosiloxanes (R-OLPSs, R is side group) and ladder polyorganosilsesquioxanes (R-LPSQs) have intrigued polymer chemists for about 50 years due to their excellent resistance to all kinds of degradations. However, their synthesis has been a great challenge to polymer chemists. Here, we describe a new approach based on supramolecular concerted interactions as follows.2 Results2.1 Synthesis of Perfect R-OLPSsA series of real ...

  12. Assessment of potential increased oil production by polymer-waterflood in northern and southern mid-continent oil fields. Progress report for the quarter ending December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Six tasks are reported on: geological and engineering study of the DOE-Kewanee polymer-augmented waterflood, review of polymer injection program in this field, evaluation of results of polymer-augmented waterflood in this field, review of geological and engineering characteristics of oil fields now in waterflood as candidates for polymer augmentation, review of fields currently under primary production, and determination of ranges of future increased oil production from the polymer-water process in the project area.

  13. Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazolines Composition and Supramolecular Host–Guest Interactions

    Directory of Open Access Journals (Sweden)

    Victor R. de la Rosa

    2015-04-01

    Full Text Available A series of water insoluble poly[(2-ethyl-2-oxazoline-ran-(2-nonyl-2-oxazoline] amphiphilic copolymers was synthesized and their solubility properties in the presence of different supramolecular host molecules were investigated. The resulting polymer-cavitand assemblies exhibited a thermoresponsive behavior that could be modulated by variation of the copolymer composition and length. Interestingly, the large number of hydrophobic nonyl units across the polymer chain induced the formation of kinetically-trapped nanoparticles in solution. These nanoparticles further agglomerate into larger aggregates at a temperature that is dependent on the polymer composition and the cavitand type and concentration. The present research expands the understanding on the supramolecular interactions between water insoluble copolymers and supramolecular host molecules.

  14. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization.

    Science.gov (United States)

    Liu, Ji; Soo Yun Tan, Cindy; Lan, Yang; Scherman, Oren A

    2017-09-15

    The success of exploiting cucurbit[ n ]uril (CB[ n ])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3105-3109.

  15. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  16. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  17. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  18. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter

  19. A two-dimensional bilayered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1,2-bis(pyridin-4-yl)ethene and 2,2'-(diazenediyl)dibenzoic acid.

    Science.gov (United States)

    Liu, Lei-Lei; Zhou, Yan; Li, Ping; Tian, Jiang-Ya

    2014-02-01

    In poly[[μ2-1,2-bis(pyridin-4-yl)ethene-κ(2)N:N'][μ2-2,2'-(diazenediyl)dibenzoato-κ(3)O,O':O'']cadmium(II)], [Cd(C14H8N2O4)(C12H10N2)]n, the asymmetric unit contains one Cd(II) cation, one 2,2'-(diazenediyl)dibenzoate anion (denoted L(2-)) and one 1,2-bis(pyridin-4-yl)ethene ligand (denoted bpe). Each Cd(II) centre is six-coordinated by four O atoms of bridging/chelating carboxylate groups from three L(2-) ligands and by two N atoms from two bpe ligands, forming a distorted octahedron. The Cd(II) cations are bridged by L(2-) and bpe ligands to give a two-dimensional (4,4) layer. The layers are interlinked through bridging carboxylate O atoms from L(2-) ligands, generating a two-dimensional bilayered structure with a 3(6)4(13)6(2) topology. The bilayered structures are further extended to form a three-dimensional supramolecular architecture via a combination of hydrogen-bonding and aromatic stacking interactions.

  20. Different Supramolecular Coordination Polymers of [N,N'-di(pyrazin-2-yl-pyridine-2,6-diamine]Ni(II with Anions and Solvent Molecules as a Result of Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2007-04-01

    Full Text Available Ni(II complexes of N,N'–di(pyrazin–2–ylpyridine–2,6–diamine (H2dpzpda with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm-1 for [Ni(H2dpzpda2](ClO42 (1 and g = 2.18 and D = 2.19 cm-1 for [Ni(H2dpzpda2](NO32 (2, respectively.

  1. Dual responsive supramolecular hydrogel with electrochemical activity.

    Science.gov (United States)

    Du, Ping; Liu, Jianghua; Chen, Guosong; Jiang, Ming

    2011-08-02

    Supramolecular materials with reversible responsiveness to environmental changes are of particular research interest in recent years. Inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) is well-known and extensively studied because of its reversible association-dissociation controlled by the redox state of Fc. Although there are quite a few reported nanoscale materials incorporating this host-guest pair, polymeric hydrogels with electrochemical activity based on this interactive pair are still rare. Taking advantage of our previous reported hybrid inclusion complex (HIC) hydrogel structure, a new Fc-HIC was designed and obtained with β-CD-modified quantum dots as the core and Fc-ended diblock co-polymer p(DMA-b-NIPAM) as the shell, to achieve an electrochemically active hydrogel at elevated temperatures. Considering the two independent cross-linking strategies in the network structure, i.e., the interchain aggregation of pNIPAM and inclusion complexation between CD and Fc on the surface of the quantum dots, the hydrogel was fully thermo-reversible and its gel-sol transition was achieved after the addition of either an oxidizing agent or a competitive guest to Fc.

  2. Multivalency in supramolecular chemistry and nanofabrication

    NARCIS (Netherlands)

    Mulder, A.; Huskens, Jurriaan; Reinhoudt, David

    2004-01-01

    Multivalency is a powerful and versatile self-assembly pathway that confers unique thermodynamic and kinetic behavior onto supramolecular complexes. The diversity of the examples of supramolecular multivalent systems discussed in this perspective shows that the concept of multivalency is a general

  3. Construction of diverse supramolecular assemblies of dimetal ...

    Indian Academy of Sciences (India)

    presence or absence of the lattice water molecules are the keys to forming the diverse supramolecular assem- blies. In 1 and 3, ... Supramolecular; hydrogen bonding; flexible ligand; dicarboxylates. 1. ... The reaction mixture was stirred for another 3 to 4 hours at room ..... Funding for this work was provided by IISER, Mohali.

  4. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    Science.gov (United States)

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  5. Supramolecular Structure and Function 9

    CERN Document Server

    Pifat-Mrzljak, Greta

    2007-01-01

    The book is based on International Summer Schools on Biophysics held in Croatia which, contrary to other workshops centered mainly on one topic or technique, has very broad scope providing advanced training in areas related to biophysics. This volume is presenting papers in the field of biophysics for studying biological phenomena by using physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.) and/or concepts (predictions of protein-protein interactions, virtual ligand screening etc.). The interrelationship of supramolecular structures and there functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.

  6. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Science.gov (United States)

    Govindarajan, Tina; Shandas, Robin

    2018-01-01

    Shape Memory Polymers (SMPs) are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA) and Poly(ethylene glycol) dimethacrylate (PEGDMA) were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA), contact angle studies, and atomic force microscopy (AFM) were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC) attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices. PMID:29707382

  7. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Tina Govindarajan

    2017-11-01

    Full Text Available Shape Memory Polymers (SMPs are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA and Poly(ethylene glycol dimethacrylate (PEGDMA were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA, contact angle studies, and atomic force microscopy (AFM were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices.

  8. Increasing sodium pantoprazole photostability by microencapsulation: effect of the polymer and the preparation technique.

    Science.gov (United States)

    Raffin, R P; Colomé, L M; Schapoval, E E S; Pohlmann, A R; Guterres, S S

    2008-08-01

    Pantoprazole sodium is a proton pump inhibitor, used in acid-related disorders, like peptic ulcers and gastroesophageal reflux. This drug is unstable in acid solution and in the presence of salts. The aim of this work was to study the photostability under UVC radiation of pantoprazole and to determine its kinetics. A methanol solution and the solid pantoprazole were evaluated by HPLC within 120 min and 10 days, respectively. The work was also dedicated to evaluate and compare the ability of microencapsulation in stabilizing pantoprazole after UVC radiation. Pantoprazole-loaded microparticles prepared by emulsification/solvent evaporation or spray drying were compared. Pantoprazole was encapsulated using Eudragit S100 or its blend with poly(epsilon-caprolactone) or HPMC. In methanol solution, pantoprazole was completely degraded after 120 min and presented zero-order kinetics with t1/2 of 6.48 min. In the solid form, after 10 days, pantoprazole concentration was reduced to 27% following zero-order kinetic. The microparticles prepared only with Eudragit S100 demonstrated an increase of the drug photostability. After 10 days of irradiation, 56 and 44% of the drug was stable when encapsulated by emulsification/solvent evaporation and spray drying, respectively. The use of polymer blends did not improve the pantoprazole photostability.

  9. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  10. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Joaquín Calbo

    2018-01-01

    Full Text Available Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.

  11. Effect of elasticity during viscoelastic polymer flooding : a possible mechanism of increasing the sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Urbissinova, T.S.; Trivedi, J.J.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-12-15

    This paper discussed a laboratory experiment undertaken to study how the elasticity of polymer-based fluids affects microscopic sweep efficiency, which has implications for enhanced oil recovery processes. In a series of experiments, polymer solutions with the same shear viscosity but notably different elastic characteristics were injected through a mineral-oil-saturated sandpack. The experiments involved a special core holder that was designed to simulate radial flow. The solution was injected via a perforated injection line located in the centre of the cell, and fluids were produced by way of 2 production lines located at the periphery. The shear rate used in the experiments was within the range of field applications. Using polymer solutions with similar shear viscosity behaviour and different elasticity allowed the effect of elasticity on sweep efficiency to be singled out. It was concluded that adjusting the molecular weight distribution of the solution at a constant shear viscosity and polymer concentration could improve the sweep efficiency of a polymeric fluid. The higher-elasticity polymer solution had a higher resistance to flow through porous media, resulting in better sweep efficiency and lower residual oil saturation. The objective of the study was to isolate elasticity from the other parameters that affect displacement efficiency to show the individual effect of elasticity on oil recovery. 20 refs., 5 tabs., 14 figs.

  12. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  13. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black.

    Science.gov (United States)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-05

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8mM GSH. The UV-Vis difference spectra show a positive peak at 383nm and a negative peak at 458nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  14. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    Science.gov (United States)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  15. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  16. Dynamic Time Multiplexing Fabrication of Holographic Polymer Dispersed Liquid Crystals for Increased Wavelength Sensitivity

    Science.gov (United States)

    Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)

    2017-01-01

    Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.

  17. Increasing dwell time of mitomycin C in the upper tract with a reverse thermosensitive polymer.

    Science.gov (United States)

    Wang, Agnes J; Goldsmith, Zachariah G; Neisius, Andreas; Astroza, Gaston M; Oredein-McCoy, Olugbemisola; Iqbal, Muhammad W; Simmons, W Neal; Madden, John F; Preminger, Glenn M; Inman, Brant A; Lipkin, Michael E; Ferrandino, Michael N

    2013-03-01

    Abstract Background and Purpose: Topical chemotherapy for urothelial cancer is dependent on adequate contact time of the chemotherapeutic agent with the urothelium. To date, there has not been a reliable method of maintaining this contact for renal or ureteral urothelial carcinoma. We evaluated the safety and feasibility of using a reverse thermosensitive polymer to improve dwell times of mitomycin C (MMC) in the upper tract. Using a porcine model, four animals were treated ureteroscopically with both upper urinary tracts receiving MMC mixed with iodinated contrast. One additional animal received MMC percutaneously. The treatment side had ureteral outflow blocked with a reverse thermosensitive polymer plug. MMC dwell time was monitored fluoroscopically and intrarenal pressures measured. Two animals were euthanized immediately, and three animals were euthanized 5 days afterward. In control kidneys, drainage occurred at a mean of 5.3±0.58 minutes. Intrarenal pressures stayed fairly stable: 9.7±14.0 cm H20. In treatment kidneys, dwell time was extended to 60 minutes, when the polymer was washed out. Intrarenal pressures in the treatment kidneys peaked at 75.0±14.7 cm H20 and reached steady state at 60 cm H20. Pressures normalized after washout of the polymer with cool saline. Average washout time was 11.8±9.6 minutes. No histopathologic differences were seen between the control and treatment kidneys, or with immediate compared with delayed euthanasia. A reverse thermosensitive polymer can retain MMC in the upper urinary tract and appears to be safe from our examination of intrarenal pressures and histopathology. This technique may improve the efficacy of topical chemotherapy in the management of upper tract urothelial carcinoma.

  18. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  19. Supramolecular chemistry - interdisciplinary branch of science

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.

    1997-01-01

    The scientific problems connected with supramolecular chemistry have been reviewed. The basic concepts have been defined as well as rules governed of macromolecules formation. The special emphasize has been put on present and possible in future application of such systems

  20. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  1. Supramolecular Architectures and Mimics of Complex Natural Folds Derived from Rationally Designed alpha-Helical Protein Structures

    Science.gov (United States)

    Tavenor, Nathan Albert

    Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta

  2. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.

    Science.gov (United States)

    Makam, Pandeeswar; Gazit, Ehud

    2018-05-21

    Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.

  3. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  4. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Willhite, G.P.; Green, D.W.; McCool, C.S.

    2001-01-22

    This report describes the progress of the first year of a three-year research program. This program is aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production.

  5. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  6. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

    Science.gov (United States)

    Moore, Charles James

    2008-10-01

    Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified

  7. Dynamic peptide libraries for the discovery of supramolecular nanomaterials

    Science.gov (United States)

    Pappas, Charalampos G.; Shafi, Ramim; Sasselli, Ivan R.; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V.

    2016-11-01

    Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.

  8. Supramolecular polymeric materials via cyclodextrin-guest interactions.

    Science.gov (United States)

    Harada, Akira; Takashima, Yoshinori; Nakahata, Masaki

    2014-07-15

    CONSPECTUS: Cyclodextrins (CDs) have many attractive functions, including molecular recognition, hydrolysis, catalysis, and polymerization. One of the most important uses of CDs is for the molecular recognition of hydrophobic organic guest molecules in aqueous solutions. CDs are desirable host molecules because they are environmentally benign and offer diverse functions. This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years. In 1990, we developed topological supramolecular complexes with CDs, polyrotaxane, and CD tubes, and these preparation methods take advantage of self-organization between the CDs and the polymers. The combination of polyrotaxane with αCD forms a hydrogel through the interaction of αCDs with the OH groups on poly(ethylene glycol). We categorized these polyrotaxane chemistries within main chain type complexes. At the same time, we studied the interactions of side chain type supramolecular complexes with CDs. In these systems the guest molecules modified the polymers and selectively formed inclusion complexes with CDs. The systems that used low molecular weight compounds did not show such selectivity with CDs. The multivalency available within the complex cooperatively enhances the selective binding of CD with guest molecules via the polymer side chains, a phenomenon that is analogous to binding patterns observed in antigen-antibody complexes. To incorporate the molecular recognition properties of CDs within the polymer side chains, we first prepared stimuli-responsive sol-gel switching materials through host-guest interactions. We chose azobenzene derivatives for their response to light and ferrocene derivatives for their response to redox conditions. The supramolecular materials were both redox-responsive and self-healing, and these properties resulted from host-guest interactions. These sol-gels with built in switches gave us insight for

  9. Supramolecular polyaniline hydrogel as a support for urease

    International Nuclear Information System (INIS)

    Słoniewska, Anna; Pałys, Barbara

    2014-01-01

    Supramolecular hydrogels of conducting polymers are successfully used in bioelectrochemistry because of their mechanical and swelling properties of gels added to the specific electron transport properties of conducting polymers. We have studied polyaniline-poly(styrene sulfonate) (PANI–PSS) hydrogel as a substrate for the urease. The hydrogels were synthesized at pH = 0 and pH = 5. PANI–PSS hydrogel is a supramolecular self-assembly material consisting of positively-charged PANI chains and negatively-charged PSS chains. The hydrogel was studied by cyclic voltammetry, infrared and Raman spectroscopy and Scanning Electron Microscopy (SEM). Raman spectra revealed presence of phenazine rings in the hydrogel structure. Phenazine rings form covalent cross-linkers contributing to the hydrogel mechanical stability. The covalent cross-linkers influence the cyclic voltammetry responses of the hydrogel in acidic media. We tested the activity of urease immobilized in the PANI–PSS hydrogel by the physical adsorption or by the covalent bonding with the carbodiimide reaction. The enzyme immobilized in hydrogels prepared at higher pH value reveals significantly higher sensitivity. The method of the enzyme immobilization has smaller impact on the sensitivity. All hydrogel sensors reveal largely higher sensitivity to urea comparing to urease immobilized in the typical electrochemically deposited PANI films. The sensitivity of urease covalently bond to the hydrogel obtained at pH = 5 was as high as 1693 μA/(mol dm 3 ). The sensor response was linear in the urea concentration range from 10 −4 to 7 × 10 −2 mol/dm 3

  10. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    Science.gov (United States)

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  11. Fabrication of CO2 Facilitated Transport Channels in Block Copolymer through Supramolecular Assembly

    Directory of Open Access Journals (Sweden)

    Yao Wang

    2014-05-01

    Full Text Available In this paper, the molecule 12-amidine dodecanoic acid (M with ending groups of carboxyl and amidine groups respectively was designed and synthesized as CO2-responsive guest molecules. The block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO was chosen as the host polymer to fabricate a composite membrane through H-bonding assembly with guest molecule M. We attempted to tune the phase separation structure of the annealed film by varying the amount of M added, and investigated the nanostructures via transmission electron microscope (TEM, fourier transform infrared (FT-IR etc. As a result, a reverse worm-like morphology in TEM image of bright PS phase in dark PEO/M matrix was observed for PS-b-PEO/M1 membrane in which the molar ratio of EO unit to M was 1:1. The following gas permeation measurement indicated that the gas flux of the annealed membranes dramatically increased due to the forming of ordered phase separation structure. As we expected, the obtained composite membrane PS-b-PEO/M1 with EO:M mole ratio of 1:1 presented an evident selectivity for moist CO2 permeance, which is identical with our initial proposal that the guest molecule M in the membranes will play the key role for CO2 facilitated transportation since the amidine groups of M could react reversibly with CO2 molecules in membranes. This work provides a supramolecular approach to fabricating CO2 facilitated transport membranes.

  12. Supramolecular Allosteric Cofacial Porphyrin Complexes

    International Nuclear Information System (INIS)

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-01-01

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh I or Cu I sites) and two cofacially aligned porphyrins (Zn II sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh I or Cu I transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  13. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  14. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters with cosolvents and increased crosslinker levels

    International Nuclear Information System (INIS)

    Koeva, V I; McAuley, K B; Jirasek, A; Schreiner, L J

    2009-01-01

    Three co-solvents (glycerol, N-propanol and isopropanol) have been investigated for increasing the solubility of N,N'-methylene-bisacrylamide (Bis) crosslinker in polymer gel dosimeter recipes. Using isopropanol, the crosslinker solubility increased from approximately from 3 to 10% by weight, enabling the manufacture of polymer gel dosimeters with higher levels of crosslinking than was previously possible. The new dosimeter recipes can be imaged effectively using Nuclear Magnetic Resonance (NMR), optical and x-ray Computed Tomography (CT) techniques.

  15. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters with cosolvents and increased crosslinker levels

    Energy Technology Data Exchange (ETDEWEB)

    Koeva, V I; McAuley, K B [Chemical Engineering Department, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 6V5 (Canada); Schreiner, L J [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)], E-mail: Kim.McAuley@chee.queensu.ca

    2009-05-01

    Three co-solvents (glycerol, N-propanol and isopropanol) have been investigated for increasing the solubility of N,N'-methylene-bisacrylamide (Bis) crosslinker in polymer gel dosimeter recipes. Using isopropanol, the crosslinker solubility increased from approximately from 3 to 10% by weight, enabling the manufacture of polymer gel dosimeters with higher levels of crosslinking than was previously possible. The new dosimeter recipes can be imaged effectively using Nuclear Magnetic Resonance (NMR), optical and x-ray Computed Tomography (CT) techniques.

  16. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    Science.gov (United States)

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  17. Scaling features of the tribology of polymer brushes of increasing grafting density around the mushroom-to-brush transition.

    Science.gov (United States)

    Mayoral, E; Klapp, J; Gama Goicochea, A

    2017-01-01

    Nonequilibrium coarse-grained, dissipative particle dynamics simulations of complex fluids, made up of polymer brushes tethered to planar surfaces immersed in a solvent yield nonmonotonic behavior of the friction coefficient as a function of the polymer grating density on the substrates, Γ, while the viscosity shows a monotonically increasing dependence on Γ. This effect is shown to be independent of the degree of polymerization, N, and the size of the system. It arises from the composition and the structure of the first particle layer adjacent to each surface that results from the confinement of the fluid. Whenever such layers are made up of as close a proportion of polymer beads to solvent particles as there are in the fluid, the friction coefficient shows a minimum, while for disparate proportions the friction coefficient grows. At the mushroom-to-brush transition (MBT) the viscosity scales with an exponent that depends on the characteristic exponent of the MBT (6/5) and the solvent quality exponent (ν=0.5, for θsolvent), but it is independent of the polymerization degree (N). On the other hand, the friction coefficient at the MBT scales as μ∼N^{6/5}, while the grafting density at the MBT scales as Γ∼N^{-6/5} when friction is minimal, in agreement with previous scaling theories. We argue these aspects are the result of cooperative phenomena that have important implications for the understanding of biological brushes and the design of microfluidics devices, among other applications of current academic and industrial interest.

  18. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation.

    Science.gov (United States)

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua

    2018-01-09

    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  19. Design of Molecular Materials: Supramolecular Engineering

    Science.gov (United States)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  20. Strong and Reversible Monovalent Supramolecular Protein Immobilization

    NARCIS (Netherlands)

    Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc

    2010-01-01

    Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The

  1. Supramolecular Liquid Crystal Displays Construction and Applications

    OpenAIRE

    Hoogboom, J.T.V.

    2004-01-01

    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and post-LCD construction. In addition, the thesis describes the application of LCD technology in biosensors.

  2. Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks.

    Science.gov (United States)

    Herzer, Nicole; Guneysu, Hilal; Davies, Dylan J D; Yildirim, Derya; Vaccaro, Antonio R; Broer, Dirk J; Bastiaansen, Cees W M; Schenning, Albertus P H J

    2012-05-09

    A printable H-bonded cholesteric liquid crystal (CLC) polymer film has been fabricated that, after conversion to a hygroscopic polymer salt film, responds to temperature and humidity by changing its reflection color. Fast-responding humidity sensors have been made in which the reflection color changes between green and yellow depending on the relative humidity. The change in reflection band is a result of a change in helix pitch in the film due to absorption and desorption of water, resulting in swelling/deswelling of the film material. When the polymer salt was saturated with water, a red-reflecting film was obtained that can potentially act as a time/temperature integrator. Finally, the films were printed on a foil, showing the potential application of supramolecular CLC materials as low-cost, printable, battery-free optical sensors.

  3. Neutral coordination polymers based on a metal-mono(dithiolene) complex: synthesis, crystal structure and supramolecular chemistry of [Zn(dmit)(4,4'-bpy)]n, [Zn(dmit)(4,4'-bpe)]n and [Zn(dmit)(bix)]n (4,4'-bpy = 4,4'-bipyridine, 4,4'-bpe = trans-1,2-bis(4-pyridyl)ethene, bix = 1,4-bis(imidazole-1-ylmethyl)-benzene.

    Science.gov (United States)

    Madhu, Vedichi; Das, Samar K

    2011-12-28

    This article describes a unique synthetic route that enables a neutral mono(dithiolene)metal unit, {Zn(dmit)}, to link with three different organic molecules, resulting in the isolation of a new class of neutral coordination polymers. The species {Zn(dmit)} coordinates with 4,4'-bipyridine (4,4'-bpy), trans-1,2-bis(4-pyridyl)ethene (4,4'-bpe) and 1,4-bis(imidazole-1-ylmethyl)-benzene (bix) as linkers giving rise to the formation of coordination polymers [Zn(dmit)(4,4'-bpy)](n) (1), [Zn(dmit)(4,4'-bpe)](n) (2) and [Zn(dmit)(bix)](n) (3) respectively. Compounds 1-3 were characterized by elemental analyses, IR, diffuse reflectance and single crystal X-ray diffraction studies. Compounds 1 and 3 crystallize in the monoclinic space group P2(1)/n, whereby compound 2 crystallizes in triclinic space group P1[combining macron]. In the present study, we chose three linkers 4,4'-bpy, 4,4'-bpe and bix (see , respectively, for their structural drawings), that differ in terms of their molecular dimensions. The crystal structures of compounds 1-3 are described here in terms of their supramolecular diversities that include π-π interactions, not only among aromatic stacking (compounds 1 and 3), but also between an aromatic ring and an ethylenic double bond (compound 2). The electronic absorption spectroscopy of compounds 1-3 support these intermolecular π-π interactions. This journal is © The Royal Society of Chemistry 2011

  4. Natural polymers: an overview

    CSIR Research Space (South Africa)

    John, MJ

    2012-08-01

    Full Text Available The scarcity of natural polymers during the world war years led to the development of synthetic polymers like nylon, acrylic, neoprene, styrene-butadiene rubber (SBR) and polyethylene. The increasing popularity of synthetic polymers is partly due...

  5. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  6. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  7. Supramolecular structures and self-association processes in polymer systems

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Martin; Filippov, Sergey K.; Štěpánek, Petr

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S165-S178 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : copolymers * nanoparticles * phase separation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S165.pdf

  8. From supramolecular polymers to multi-component biomaterials

    NARCIS (Netherlands)

    Goor, O.J.G.M.; Hendrikse, S.I.S.; Dankers, P.Y.W.; Meijer, E.W.

    2017-01-01

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The

  9. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  10. Time-dependent efficiency measurements of polymer solar cells with dye additives: unexpected initial increase of efficiency

    Science.gov (United States)

    Bandaccari, Kyle J.; Chesmore, Grace E.; Bugaj, Mitchel; Valverde, Parisa Tajalli-Tehrani; Barber, Richard P.; McNelis, Brian J.

    2018-04-01

    We report the effects of the addition of two azo-dye additives on the time-dependent efficiency of polymer solar cells. Although the maximum efficiencies of devices containing different amounts of dye do not vary greatly over the selected concentration range, the time dependence results reveal a surprising initial increase in efficiency in some samples. We observe this effect to be correlated with a leakage current, although a specific mechanism is not yet identified. We also present the measured lifetimes of these solar cells, and find that variations in dye concentrations produce a small effect at most. Characterization of the bulk heterojunction layer (active layer) morphology using atomic-force microscope (AFM) imaging reveals reordering patterns which suggest that the primary effects of the dyes arise via structural, not absorptive, characteristics.

  11. A new supramolecular route for using Rod-Coil block copolymers in photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sary, Nicolas [Department of Physics and FRIMAT Center for Nanomaterials, University of Fribourg (Switzerland); Richard, Fanny; Brochon, Cyril; Leclerc, Nicolas; Hadziioannou, Georges [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies Universite de Strasbourg, Ecole Europeenne de Chimie Polymeres et Materiaux (France); Leveque, Patrick; Heiser, Thomas [Institut d' Electronique du Solide et des Systemes Centre National de la Recherche Scientifique, Universite de Strasbourg (France); Audinot, Jean-Nicolas [Science and Analysis of Materials Department Public Research Centre Gabriel Lippmann, Belvaux (Luxembourg); Berson, Solenn [Laboratoire des Composants Solaires, Institut de l' Energie Solaire Commissariat a l' energie atomique, Le Bourget Du Lac (France); Mezzenga, Raffaele [Department of Physics and FRIMAT Center for Nanomaterials, University of Fribourg (Switzerland); Nestle Research Center, Lausanne (Switzerland)

    2010-02-09

    A new polymer blend formed by poly(3-hexylthiophene)-poly(4-vinylpyridine) (P3HT- P4VP) block copolymers and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. The P4VP and PCBM are mixed together by weak supramolecular interactions, and the resulting materials exhibit microphase separated morphologies of electron-donor and electron-acceptor rich domains. The properties of the blend, used in photovoltaic devices as active layers, are also discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Science.gov (United States)

    Jorgensen, Gary; Gee, Randall C.; White, David

    2017-05-02

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  13. Proteins evolve on the edge of supramolecular self-assembly

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  14. Design of supramolecular ordered systems for mesoscopic colloids and molecular composites. Progress report, November 10, 1993--June 10, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    During this reporting period, the authors group has been active in five areas of research: (1) improvements on their x-ray instrumentation at the SUNY Beamline, National Synchrotron Light Source (NSLS) so that they can perform new experiments which are not accessible otherwise; (2) characterization of functionalized hairy rod polymers designed for studying the macromolecular structures in molecular composites; (3) investigation of supramolecular ordered systems composed mainly of block copolymers from dilute to concentrated solutions, including the gel state; (4) evolution of crystalline structures in polymer blends and melts; and (5) multiphase structure of segment polyurethanes.

  15. Estratégia supramolecular para a nanotecnologia Supramolecular approach to nanotechnology

    Directory of Open Access Journals (Sweden)

    Koiti Araki

    2007-12-01

    Full Text Available Brazilian science is evolving rapidly and steadly in the last 10 years, reaching the 15º place in the international ranking. Research in nanotechnology is following a similar way generating new scientific and technological knowledge in several frontiers but specially in the interfaces of two or more areas, where Chemistry is consolidating itself as a central science. In this context, the supramolecular approach is a very promissing one because it allows the build-up of a chemical inteligence using all the sistematized knowledge for the design and development of new nanomaterials and products. The great challenge of Chemistry is not decrease the dimensionality of the materials but instead find ways to increase the dimensionality and structural complexity keeping strict control on the interactions between the components, in order to generate materials with new properties and functionalities. Unfortunately, the current vigorous advancement of scientific research has not been followed by the transformation of such know-how into patents and produts. Therefore much efforts should be devoted to build a national science and technology program, joining all the segments of the society involved in the technological development (university, institutes of technological research, industry and government in order to promote the furtherance of the Brazilian technological base. Only in this way it is possible to evolve to a technological society capable to transform the scientific knowledge into wealthy, thus sustaining the socioeconomic development of the country.

  16. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  18. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  19. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    Science.gov (United States)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  20. Temperature-Induced, Selective Assembly of Supramolecular Colloids in Water

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G.P.; Vilanova, Neus; De Feijter, Isja; Kegel, Willem K.; Voets, Ilja K.

    2017-01-01

    In this article, we report the synthesis and physical characterization of colloidal polystyrene particles that carry water-soluble supramolecular N,N′,N″,-trialkyl-benzene-1,3,5-tricarboxamides (BTAs) on their surface. These molecules are known to assemble into one-dimensional supramolecular

  1. Directed supramolecular surface assembly of SNAP-tag fusion proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, H.; Schenkel, J.H.; Huskens, J.; Ravoo, B.J.; Jonkheijm, P.; Brunsveld, L.

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  2. Supramolecular biomaterials : a modular approach towards tissue engineering

    NARCIS (Netherlands)

    Dankers, P.Y.W.; Meijer, E.W.

    2007-01-01

    Supramolecular chemistry is an exciting area of science that plays a central role in bringing different disciplines together, ranging from molecular medicine to nanotechnology. Materials science based on supramolecular interactions is an emerging field, which has made important steps forward in the

  3. Dynamic reciprocity in bio-inspired supramolecular materials

    NARCIS (Netherlands)

    Bastings, M.M.C.

    2012-01-01

    Dynamic reciprocity, the spatio-temporal bidirectional process between evolving partners in a functional system is not only found in nature, but also applies to supramolecularly assembling architectures. In this thesis, the focus was on the understanding of nature-inspired supramolecular

  4. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, Hoang D.; Schenkel, J.H.; Huskens, Jurriaan; Ravoo, B.J.; Jonkheijm, Pascal; Brunsveld, Luc

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  5. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  6. Friction mediated by redox-active supramolecular connector molecules.

    Science.gov (United States)

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-06

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.

  7. Improving the in vivo therapeutic index of siRNA polymer conjugates through increasing pH responsiveness.

    Science.gov (United States)

    Guidry, Erin N; Farand, Julie; Soheili, Arash; Parish, Craig A; Kevin, Nancy J; Pipik, Brenda; Calati, Kathleen B; Ikemoto, Nori; Waldman, Jacob H; Latham, Andrew H; Howell, Bonnie J; Leone, Anthony; Garbaccio, Robert M; Barrett, Stephanie E; Parmar, Rubina Giare; Truong, Quang T; Mao, Bing; Davies, Ian W; Colletti, Steven L; Sepp-Lorenzino, Laura

    2014-02-19

    Polymer based carriers that aid in endosomal escape have proven to be efficacious siRNA delivery agents in vitro and in vivo; however, most suffer from cytotoxicity due in part to a lack of selectivity for endosomal versus cell membrane lysis. For polymer based carriers to move beyond the laboratory and into the clinic, it is critical to find carriers that are not only efficacious, but also have margins that are clinically relevant. In this paper we report three distinct categories of polymer conjugates that improve the selectivity of endosomal membrane lysis by relying on the change in pH associated with endosomal trafficking, including incorporation of low pKa heterocycles, acid cleavable amino side chains, or carboxylic acid pH sensitive charge switches. Additionally, we determine the therapeutic index of our polymer conjugates in vivo and demonstrate that the incorporation of pH responsive elements dramatically expands the therapeutic index to 10-15, beyond that of the therapeutic index (less than 3), for polymer conjugates previously reported.

  8. Synthesis, spectroscopy, thermal studies and supramolecular ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, spectroscopy, thermal studies and supramolecular structures of two .... J = 9 Hz), 8∙13 (d, 2H, J = 9 Hz), 7∙69 (s, 1H), 7∙04. (s, 2H). ... 1H NMR (D2O): δ (in ppm); 8∙05 (d, 2H, ..... 86∙33 (2). 86∙92(1). 87∙08(2). V (Ε3). 553∙1(6). 573∙71(5). 561∙56(14). 557∙5(3) .... Mn, Co and Ni complexes.28–30 The observed inter-.

  9. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  10. Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Sivák, Ladislav; Sedláček, Ondřej; Konefal, Rafal; Horková, Veronika; Etrych, Tomáš; Kovář, Marek; Říhová, Blanka; Šírová, Milada

    2018-01-01

    Roč. 269, 10 January (2018), s. 214-224 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA14-12742S; GA MZd(CZ) NV16-28600A; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : enhanced permeability and retention effect * nitric oxide donor * polymer-based cytotoxic drugs Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 7.786, year: 2016

  11. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2015-10-27

    In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.

  12. Information processing in the CNS: a supramolecular chemistry?

    Science.gov (United States)

    Tozzi, Arturo

    2015-10-01

    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of

  13. Supramolecular assembly of organic bicapped Keggin polyoxometalate

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Ma Huiyuan; Liu Qun; Wang Enbo; Hu Ninghai

    2004-01-01

    Two novel supramolecular assemblies of organic bicapped Keggin polyoxometalates (pbpy) 8 H 3 [PW 12 O 40 ]·2H 2 O (1) and (pbpy) 4 H[PMo 12 O 40 (VO)] (2) (pbpy=5-phenyl-2-(4-pyridinyl)pyridine) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Crystallographic data for compound (1), C 128 H 103 N 16 O 42 PW 12 , triclinic, space group P1-bar: a=13.4759(8) A, b=14.6395(11) A, c=16.5743(10) A, α=95.764(2) deg., β=102.166(2) deg., γ=92.9870(10) deg., Z=1, V=3171.1(4) A 3 ; for compound (2), C 64 H 49 N 8 O 41 PMo 12 V, triclinic, space group P1-bar: a=11.5377(11) A, b=12.7552(8) A, c=14.9599(10) A, α=72.270(4) deg., β=88.916(2) deg., γ=67.865(4) deg., Z=1, V=1931.0(3) A 3 . X-ray analyses show that both 1 and 2 represent rare organic bicapped Keggin structures and are supported by supramolecular interactions to extend into a 3D framework. In particular, the unusual structure feature of compound 2 contains a simultaneously organic and inorganic capped structure

  14. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  15. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments, Annual Report, June 16,2000-June 15, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Willhite, G.P.; Green, D.W.; McCool, C.S.

    2002-05-22

    This program was aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production.

  16. Recyclable Cu(II)-Coordination Crosslinked Poly(benzimidazolyl pyridine)s as High-Performance Polymers.

    Science.gov (United States)

    Wang, Cheng; Yang, Li; Chang, Guanjun

    2018-03-01

    Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times.

    Science.gov (United States)

    Choi, Jin-Sil; Zhu, Yazhen; Li, Hongsheng; Peyda, Parham; Nguyen, Thuy Tien; Shen, Mo Yuan; Yang, Yang Michael; Zhu, Jingyi; Liu, Mei; Lee, Mandy M; Sun, Shih-Sheng; Yang, Yang; Yu, Hsiao-Hua; Chen, Kai; Chuang, Gary S; Tseng, Hsian-Rong

    2017-01-24

    Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks. This practice is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval (i.e., up to 3 months) between the initial diagnostic biopsy and surgical treatment. Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses. The ideal tattoo pigment for labeling of skin biopsy sites for NMSC requires (i) invisibility under ambient light, (ii) fluorescence under a selective light source, (iii) a finite intradermal retention time (ca. 3 months), and (iv) biocompatibility. Herein, we introduce cross-linked fluorescent supramolecular nanoparticles (c-FSNPs) as a "finite tattoo" pigment, with optimized photophysical properties and intradermal retention time to achieve successful in vivo finite tattooing. Fluorescent supramolecular nanoparticles encapsulate a fluorescent conjugated polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (MPS-PPV), into a core via a supramolecular synthetic approach. FSNPs which possess fluorescent properties superior to those of the free MPS-PPV are obtained through a combinatorial screening process. Covalent cross-linking of FSNPs results in micrometer-sized c-FSNPs, which exhibit a size-dependent intradermal retention. The 1456 nm sized c-FSNPs display an ideal intradermal retention time (ca. 3 months) for NMSC lesion labeling, as observed in an in vivo tattoo study. In addition, the c-FSNPs induce undetectable inflammatory responses after tattooing. We believe that the c-FSNPs can serve as a "finite tattoo" pigment to label potential malignant NMSC lesions.

  18. Zwitterionic supramolecular nanoparticles: self-assembly and responsive properties

    NARCIS (Netherlands)

    Stoffelen, C.; Huskens, Jurriaan

    2015-01-01

    Supramolecular nanoparticles (SNPs) are of high interest in both nanoscience and molecular diagnostics and therapeutics, because of their reversible and designable properties. To ensure colloidal stabilization and biocompatibility, most reported strategies require the use of hydrophilic long-chain

  19. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  20. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    Science.gov (United States)

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors.

    Science.gov (United States)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C A; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  2. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    Science.gov (United States)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  3. Supramolecular photochemistry of drugs in biomolecular environments.

    Science.gov (United States)

    Monti, Sandra; Manet, Ilse

    2014-06-21

    In this tutorial review we illustrate how the interaction of photoactive drugs/potential drugs with proteins or DNA in supramolecular complexes can determine the course of the reactions initiated by the drug absorbed photons, evidencing the mechanistic differences with respect to the solution conditions. We focus on photoprocesses, independent of oxygen, that lead to chemical modification of the biomolecules, with formation of new covalent bonds or cleavage of existing bonds. Representative systems are mainly selected from the literature of the last decade. The photoreactivity of some aryl propionic acids, (fluoro)quinolones, furocoumarins, metal coordination complexes, quinine-like compounds, naphthaleneimides and pyrenyl-peptides with proteins or DNA is discussed. The use of light for biomolecule photomodification, historically relevant to biological photosensitization processes and some forms of photochemotherapy, is nowadays becoming more and more important in the development of innovative methods in nanomedicine and biotechnology.

  4. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of beta-sitosterol

    Czech Academy of Sciences Publication Activity Database

    Wimmerová, Martina; Siglerová, Věra; Šaman, David; Šlouf, Miroslav; Kaletová, Eva; Wimmer, Zdeněk

    2017-01-01

    Roč. 117, JAN (2017), s. 38-43 ISSN 0039-128X R&D Projects: GA MŠk LD15012; GA MŠk(CZ) LO1507 Institutional support: RVO:61389030 ; RVO:61388963 ; RVO:61389013 Keywords : glycosides * esterification * resolution * sterols * esters * foods * l. * beta-Sitosterol * Acylated steryl glycoside * Lipase * Ionic liquid * Supramolecular self-assembly * Pharmacological activity Subject RIV: CC - Organic Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Organic chemistry; Polymer science (UMCH-V); Organic chemistry (UOCHB-X) Impact factor: 2.282, year: 2016

  5. Chemistry of supramolecular systems containing porphyrins and metal complexes

    OpenAIRE

    Araki, Koiti; Toma, Henrique Eisi

    2002-01-01

    Supramolecular chemistry is expected to keep a high developing pace in the next years, giving support to the advancement of molecular devices and nanotechnology. In this sense, porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. In this review we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supramolecular structure...

  6. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    Science.gov (United States)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  7. DNA-inspired hierarchical polymer design: electrostatics and hydrogen bonding in concert.

    Science.gov (United States)

    Hemp, Sean T; Long, Timothy E

    2012-01-01

    Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4- b ]thiophene Polymer Donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan [Department; Chao, Pengjie [Department; Chen, Hui [Department; Mu, Zhao [Department; Chen, Wei [Materials; Institute; He, Feng [Department

    2017-08-09

    The chlorinated polymer, PBTCl, has been found to be an efficient donor in nonfullerene polymer solar cells (PSCs), which showed a blue-shifted absorbance compared to that of its fluorine analogue (PTB7-th) and resulted in more complementary light absorption with a nonfullerene acceptor, such as ITIC. Meanwhile, chlorine substitution lowered the HOMO level of PBTCl, which increased the open-circuit voltage of the corresponding polymer-based devices. The 2D GIWAXS analysis illustrated that the PBTCl/ITIC blend film exhibited a “face-on” orientation and scattering features of both PBTCl and ITIC, suggesting that the blend of PBTCl and ITIC was phase-separated and formed individual crystalline domains of the donor and acceptor, which promoted charge transfer in the bicontinuous film and eventually elevated the solar energy conversion efficiency. The PBTCl-based nonfullerene PSC exhibited a maximum PCE of 7.57% with a Voc of 0.91 V, which was an approximately 13% increasing in the PCE compared to that of the fluorine-analogue-based device.

  9. Synthesis, Crystal Structure and Water Vapor Adsorption Properties of a Porous Supramolecular Architecture

    Directory of Open Access Journals (Sweden)

    Rui Qiao

    2017-10-01

    Full Text Available A new complex, [Cu4(HL4(H2O14] (1, H3L·HCl = 5-((4-carboxypiperidin-1-ylmethylisophthalic acid hydrochloride, has been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and powder X-ray diffraction (PXRD. The result of the X-ray diffraction analysis reveals that the complex crystallizes in monoclinic, space group C2/c and three unique Cu(II atoms that are connected by partially deprotonated HL2− anion to form a cyclic structure. The rich hydrogen bonding and π-π non-covalent packing interactions extend cyclic units into a three-dimensional (3D supramolecular polymer. Moreover, the thermogravimetric (TG analysis and water vapor adsorption property of 1 were also discussed.

  10. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  11. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  12. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chunlin; Xiao, Hanxi [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Cai, Qing [Chemistry Department, City University of New York, New York, NY 10016 (United States); Tang, Jianting; Cai, Tiejun [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Deng, Qian, E-mail: dengqian10502@163.com [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2016-11-15

    Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds. While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules

  13. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  14. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr2(μ2-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr2(µ2-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr2(µ2-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  15. Multifunctional, supramolecular, continuous artificial nacre fibres

    Science.gov (United States)

    Hu, Xiaozhen; Xu, Zhen; Gao, Chao

    2012-10-01

    Nature has created amazing materials during the process of evolution, inspiring scientists to studiously mimic them. Nacre is of particular interest, and it has been studied for more than half-century for its strong, stiff, and tough attributes resulting from the recognized ``brick-and-mortar'' (B&M) layered structure comprised of inorganic aragonite platelets and biomacromolecules. The past two decades have witnessed great advances in nacre-mimetic composites, but they are solely limited in films with finite size (centimetre-scale). To realize the adream target of continuous nacre-mimics with perfect structures is still a great challenge unresolved. Here, we present a simple and scalable strategy to produce bio-mimic continuous fibres with B&M structures of alternating graphene sheets and hyperbranched polyglycerol (HPG) binders via wet-spinning assembly technology. The resulting macroscopic supramolecular fibres exhibit excellent mechanical properties comparable or even superior to nacre and bone, and possess fine electrical conductivity and outstanding corrosion-resistance.

  16. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  17. Electropolymerized supramolecular tetraruthenated porphyrins applied as a voltammetric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Monize M. da; Ribeiro, Gabriel H.; Faria, Anizio M. de; Bogado, Andre L.; Dinelli, Luis R., E-mail: dinelli@pontal.ufu.br [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Batista, Alzir A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-11-15

    Porphyrin 5,10,15,20-Tetra(4-pyridyl)manganese(III), [Mn-TPyP(H{sub 2}O){sub 2}]PF{sub 6}, and electropolymerized supramolecular porphyrins (ESP), {l_brace}Mn-TPyP(H{sub 2}O){sub 2}[RuCl{sub 3}(dppb)]{sub 4}{r_brace}PF{sub 6} (dppb = 1,4-bis(diphenylphosphine)butane), were synthesized and characterized. A thin solid film of ESP was obtained on a glass carbon electrode surface by a cyclic voltammetry method. The peak current increased with the number of voltammetric cycles, which shows a typical behavior of the species being adsorbed on the surface of the electrode. Cyclic voltammetry was also employed for acetaminophen quantification using an ESP modified electrode. The modified electrode shows a linear relationship between the anodic peak current and the concentration of acetaminophen (in the rage 0.05 to 0.7 mmol L{sup -1}. The performance of the modified electrode was verified by the determination of acetaminophen in a commercial pharmaceutical product and the results were in good agreement with those obtained by a control HPLC method. (author)

  18. Reversible Guest Exchange Mechanisms in Supramolecular Host-GuestAssemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.

    2006-09-01

    Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characterizing guest exchange such as NMR, UV-VIS, mass spectroscopy, electrochemistry, and calorimetry and also presents representative examples of guest exchange mechanisms. The guest exchange mechanisms of hemicarcerands, cucurbiturils, hydrogen-bonded assemblies, and metal-ligand assemblies are discussed. Special attention is given to systems which exhibit constrictive binding, a motif common in supramolecular guest exchange systems.

  19. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  20. Weak cooperativity in selected iron(II) 1D coordination polymers

    International Nuclear Information System (INIS)

    Dîrtu, Marinela M.; Gillard, Damien; Naik, Anil D.; Rotaru, Aurelian; Garcia, Yann

    2012-01-01

    The spin crossover behaviour of a new class of Fe II coordination polymers [Fe(phtptrz) 3 ]I 2 (1), [Fe(phtptrz) 3 ](ReO 4 ) 2 •CH 3 OH (2) and [Fe(phtptrz) 3 ]TaF 7 •6H 2 O (3) based on a novel ligand 4-(3 ′ -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent 57 Fe Mössbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T 1/2 ∼ 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  1. Two new supramolecular compounds induced by novel ...

    Indian Academy of Sciences (India)

    Min Xiao

    2017-09-19

    Sep 19, 2017 ... N2 adsorption-desorption isotherms were studied by employ- ing NOVA 2000e .... in which the Cu centers are separated by a distance of 5.171(3) Å. Each inorganic .... and C is the concentration of the dye at any given time). As shown in Figures 5 .... new Ni(II) coordination polymers derived from two dif-.

  2. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    Barnett, Sarah Ann

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO 3 ) 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO 3 ) 2 and Zn(NO 3 ) 2 . Whereas Zn(NO 3 ) 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO 3 ) 2 , including the first example of a doubly parallel interpenetrated 4.8 2 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  3. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers.

    Science.gov (United States)

    Mozdzen, Laura C; Rodgers, Ryan; Banks, Jessica M; Bailey, Ryan C; Harley, Brendan A C

    2016-03-01

    substrates have significant potential for addressing these defects. However, the high porosity required to facilitate cell infiltration and nutrient transport often dictates that the resultant biomaterials has insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to generate customizable fiber arrays from ABS polymer that can be incorporated into a collagen scaffold under development for tendon repair applications. Notably, the mechanical performance of the fiber-scaffold composite can be defined by the fiber array independent of the bioactivity of the collagen scaffold design. Further, the fiber array provides a substrate for growth factor delivery to aid healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Understanding interpenetrating-polymer-network-like porous nitrile butadiene rubber hybrids by their long-period miscibility

    International Nuclear Information System (INIS)

    Zhang, Jihua; Wang, Lifeng; Zhao, Yunfeng

    2013-01-01

    Highlights: • Hydrogen bonds are introduced into NBR to develop its IPN-like porous hybrids. • NBR is partly miscible with AO-60. • AO-60 possesses the viscoelastic behavior resembling that of polymers. • Phase separation aggravates and AO-60 crystallizes in the durations. • The porous hybrids may have potential damping applications. - Abstract: In this article, tetrakis [methylene-3-(3, 5-di-tert-butyl-4-hydroxy phenyl) propionyloxy] methane (AO-60) with hydrogen bonds was designed to interpenetrate into the chemical crosslinking bonds of nitrile butadiene rubber (NBR) and then porous materials were prepared. Scanning electron microscopy (SEM), atomic force microscopy (AFM) images and dynamic mechanical analyses (DMA) demonstrate that NBR is partly miscible with AO-60 which induces the micro-pores and interpenetrating-polymer-network (IPN)-like phase morphology in the hybrids. The wide double tan δ peak in DMA curve displays that AO-60 possesses similar viscoelastic behaviors to polymers which come from supramolecular interactions between polar groups of NBR chains and hydroxyl (OH) groups of AO-60. To further understand the supramolecular abilities of AO-60 in the rubber, the long-period observations for their miscibility are conducted. With the increase of durations, the hydrogen bond network from AO-60 is weakened. The phase separation between AO-60 and NBR is aggravated and even extremely few AO-60 crystallizes which develops multi-scale porous morphology in the hybrids. It is believed that these findings can serve as a guide for the designs of the IPN-like hybrids with small molecule substances and their applications of damping materials

  5. Supramolecular structures constructed from three novel rare earth ...

    Indian Academy of Sciences (India)

    Supramolecular structures constructed from three novel rare earth metal complexes. HUAZE DONGa,∗, XIAOJUN FENGb,∗, XIA LIUc, BIN ZHENGa, JIANHONG BIa, YAN XUEa,. SHAOHUA GOUd and YANPING WANGa. aDepartment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China.

  6. From steroids to aqueous supramolecular chemistry: an autobiographical career review.

    Science.gov (United States)

    Gibb, Bruce C

    2016-01-01

    The focus of my group's research is aqueous supramolecular chemistry; we try to understand how chemical entities interact with water and consequently how they interact with each other. This personal history recounts my career experiences that led to his involvement with this fascinating area of science.

  7. Fabrication of supramolecular frameworks by tuning the binding site ...

    Indian Academy of Sciences (India)

    Administrator

    Fabrication of supramolecular frameworks by tuning the binding site of a tripodal ligand with d. 10 metal ions 803. Table 1. Crystal data and structure refinement parameters for 1 and 2. 1 .... e-mail: deposit@ccdc.cam.ac.uk web: http://www. ccdc. cam.ac.uk/deposit]. Supplementary figures and tables can be found in website ...

  8. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  9. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  10. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  11. Size-controlled and redox-responsive supramolecular nanoparticles

    NARCIS (Netherlands)

    Weinhart-Mejia, R.; Kronig, G.A.; Huskens, Jurriaan

    2015-01-01

    Control over the assembly and disassembly of nanoparticles is pivotal for their use as drug delivery vehicles. Here, we aim to form supramolecular nanoparticles (SNPs) by combining advantages of the reversible assembly properties of SNPs using host–guest interactions and of a stimulus-responsive

  12. Switchable charge injection barrier in an organic supramolecular semiconductor

    NARCIS (Netherlands)

    Gorbunov, A.V.; Haedler, A.T.; Putzeys, T.; Zha, R.H.; Schmidt, H.W.; Kivala, M.; Urbanavičiutec, I.; Wübbenhorst, M.; Meijer, E.W.; Kemerink, M.

    2016-01-01

    We disclose a supramolecular material that combines semiconducting and dipolar functionalities. The material consists of a discotic semiconducting carbonyl-bridged triarylamine core, which is surrounded by three dipolar amide groups. In thin films, the material self-organizes in a hexagonal columnar

  13. Evaporation rate-based selection of supramolecular chirality.

    Science.gov (United States)

    Hattori, Shingo; Vandendriessche, Stefaan; Koeckelberghs, Guy; Verbiest, Thierry; Ishii, Kazuyuki

    2017-03-09

    We demonstrate the evaporation rate-based selection of supramolecular chirality for the first time. P-type aggregates prepared by fast evaporation, and M-type aggregates prepared by slow evaporation are kinetic and thermodynamic products under dynamic reaction conditions, respectively. These findings provide a novel solution reaction chemistry under the dynamic reaction conditions.

  14. A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule

    Science.gov (United States)

    Smith, David K.

    2005-03-01

    This article focuses on the essential roles played by intermolecular forces in mediating the interactions between chemical molecules and biological systems. Intermolecular forces constitute a key topic in chemistry programs, yet can sometimes seem disconnected from real-life applications. However, by taking a "supramolecular" view of medicinal chemistry and focusing on interactions between molecules, it is possible to come to a deeper understanding of recent developments in medicine. This allows us to gain a real insight into the interface between biology and chemistry—an interdisciplinary area that is crucial for the development of modern medicinal products. This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and Creutzfield Jacob. The article also indicates how taking a supramolecular approach will enable the development of new nanoscale medicines.

  15. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    41-218/2012 (SR)), India for financial support. DG and BS thank the Council of Scientific and Indus- trial Research (CSIR) for Senior Research Fellowship. We are grateful to Perkin-Elmer for ESI-Mass analysis. References. 1. (a) Lehn J M 1995 In Supramolecular Chem- istry, Concepts and Perspectives (Weinheim: VCH);.

  16. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  17. Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Singh, Vinamrita; Arora, Swati; Arora, Manoj; Sharma, Vishal; Tandon, R.P.

    2014-01-01

    The effect of multi-walled carbon nanotubes on the properties of P3HT:PCBM based solar cells has been studied. The concentration of MWCNT was optimized at 0.2% and the concentration of P3HT:PCBM was increased from 20mg/ml to 30mg/ml to obtain highest efficiency. An increase in charge carrier mobility was also observed, which is attributed to high charge transport properties of MWCNT. The active layer was optically stable with respect to absorption, whereas the emission spectra revealed an increase in charge recombination with time. The solar cells doped with MWCNT exhibited increased stability as compared to undoped cells. - Highlights: • MWCNT doped P3HT:PCBM based solar cells are optimized for increased efficiency. • Degradation studies showed that MWCNT stabilizes the cell performance. • Mobility and basic device characteristics decreased with time. • Photoluminescence studies with time showed an increase in charge recombination. • Degradation for devices kept in air is faster as compared to the samples in vacuum

  18. Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain Delhi College, University of Delhi, Delhi 110002 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Sharma, Vishal; Tandon, R.P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-08-22

    The effect of multi-walled carbon nanotubes on the properties of P3HT:PCBM based solar cells has been studied. The concentration of MWCNT was optimized at 0.2% and the concentration of P3HT:PCBM was increased from 20mg/ml to 30mg/ml to obtain highest efficiency. An increase in charge carrier mobility was also observed, which is attributed to high charge transport properties of MWCNT. The active layer was optically stable with respect to absorption, whereas the emission spectra revealed an increase in charge recombination with time. The solar cells doped with MWCNT exhibited increased stability as compared to undoped cells. - Highlights: • MWCNT doped P3HT:PCBM based solar cells are optimized for increased efficiency. • Degradation studies showed that MWCNT stabilizes the cell performance. • Mobility and basic device characteristics decreased with time. • Photoluminescence studies with time showed an increase in charge recombination. • Degradation for devices kept in air is faster as compared to the samples in vacuum.

  19. [Special impact of supramolecular chemistry on Chinese medicine theories].

    Science.gov (United States)

    He, Fu-Yuan; Zhou, Yi-Qun; Deng, Kai-Wen; Deng, Jun-Lin; Shi, Ji-Lian; Liu, Wen-Long; Yang, Yan-Tao; Tang, Yu; Liu, Zhi-Gang

    2014-04-01

    The paper aimed to elucidate the specific impact of supramolecular chemistry on the Chinese medicine theories (CMT) in their modernization, after had summarized up the research status of supramolecular chemistry and analyzed the possible supramolecular forms of Chinese medicine (CM), as well as considered the problems in modernization of CM theories. On comparison of the classical chemistry that delt with chemical bonds among atoms, the supramolecular chemistry was rather concerned with varietes of weak noncovalent bonds intermolecules, and reflected the macro-apparent chemical properties of each molecules, and was the most appropriate chemical theories to explain the CMT and microcosmic materials. The molecules in the human body and Chinese material medica (CMM) formed supramolecules by way of self-assembly, self-organization, self-recognition and self-replication, with themselves or with complexation, composition, chelation, inclusion, neutralization etc. Meridian and Zang-fu viscera in CMT might be a space channel structure continuously consisted of unique molecules cavity that was imprinted with the supramolecularly template inside and outside of cells, through which the molecules in CMM interacted with the meridian and Zang-fu viscera. When small molecules in human body imprinted with macromolecules in meridian and Zang-fu viscera, in other words, they migrated along within imprinting channels of meridian and Zang-fu viscera on behavior of "Qi chromatography" impulsed by the heart beat, finally showed up on macroscopic the anisotropy of tissue and organ, as described namely as visceral manifestation in Chinese medical science. When small molecules in CMM interacted with imprinting channel on meridian and Zang-fu viscera, the natural properties and efficacy regularities of CMM was reflected on macroscopic. Therefore, the special representation forms of basic CMT is based on the macroscopic expression of "Qi chromatography" abided by imprinting effect

  20. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  1. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  2. Induced helical backbone conformations of self-organizable dendronized polymers.

    Science.gov (United States)

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  3. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  4. Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvalene electron donor to a zinc/gold bisporphyrin.

    Science.gov (United States)

    Boixel, Julien; Fortage, Jérôme; Blart, Errol; Pellegrin, Yann; Hammarström, Leif; Becker, Hans-Christian; Odobel, Fabrice

    2010-02-14

    Supramolecular triads were prepared by self-assembly of 4'-pyridyl-2-tetrathiafulvalene axially bound on ZnP-spacer-AuP(+) dyads; the lifetime of the charge separated state ((+)TTF-ZnP-Spacer-AuP ) formed upon light excitation of the triad is greatly increased with respect to that found in the parent dyad.

  5. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery against cestode infection of animals.

    Science.gov (United States)

    Arkhipov, Ivan A; Sadov, Konstantin M; Limova, Yulia V; Sadova, Alexandra K; Varlamova, Anastasiya I; Khalikov, Salavat S; Dushkin, Alexandr V; Chistyachenko, Yulia S

    2017-11-15

    Niclosamide is an anthelmintic that is widely used to treat cestode infection of animals. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery was studied in hymenolepiosis of mice and monieziosis of sheep. The efficacy of new substances of niclosamide with polyvinylpyrrolidone polymer in different ratios (1:10; 1:5; 1:2) was determined by the results of helminthological necropsy of the small intestine of sheep and mice. Pre-treatment eggs per gram (EPG) were not significantly different (P>0.1) among groups. The controlled test was used to evaluate the efficacy. A high efficacy (>95% efficacy) of the supramolecular complexes of niclosamide with PVP (SCoNwPVP) was shown in different ratios (1:10; 1:5 and 1:2) at a dose of 20mg/kg of body weight at oral administration against Hymenolepis nana in mice and Moniezia expansa in sheep. Whereas the basic drug - substance of niclosamide was effective at a dose of 100mg/kg of b/w. No adverse effects of the drugs on animal health were detected during the study. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  7. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  8. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications

    Directory of Open Access Journals (Sweden)

    Robert M. Strongin

    2007-08-01

    Full Text Available Changes in the chemical environment can trigger large motions in chemomechanical polymers. The unique feature of such intelligent materials, mostly in the form of hydrogels, is therefore, that they serve as sensors and actuators at the same time, and do not require any measuring devices, transducers or power supplies. Until recently the most often used of these materials responded to changes in pH. Chemists are now increasingly using supramolecular recognition sites in materials, which are covalently bound to the polymer backbone. This allows one to use a nearly unlimited variety of guest (or effector compounds in the environment for a selective response by automatically triggered size changes. This is illustrated with non-covalent interactions of effectors comprising of metal ions, isomeric organic compounds, including enantiomers, nucleotides, aminoacids, and peptides. Two different effector molecules can induce motions as functions of their concentration, thus representing a logical AND gate. This concept is particularly fruitful with effector compounds such as peptides, which only trigger size changes if, e.g. copper ions are present in the surroundings. Another principle relies on the fast formation of covalent bonds between an effector and the chemomechanical polymer. The most promising application is the selective interaction of covalently fixed boronic acid residues with glucose, which renders itself not only for sensing, but eventually also for delivery of drugs such as insulin. The speed of the responses can significantly increase by increasing the surface to volume ratio of the polymer particles. Of particular interest is the sensitivity increase which can be reached by downsizing the particle volume.

  9. Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection.

    Science.gov (United States)

    Qi, Zhenhui; Bharate, Priya; Lai, Chian-Hui; Ziem, Benjamin; Böttcher, Christoph; Schulz, Andrea; Beckert, Fabian; Hatting, Benjamin; Mülhaupt, Rolf; Seeberger, Peter H; Haag, Rainer

    2015-09-09

    A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.

  10. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.

    Science.gov (United States)

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-02-01

    Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification

    International Nuclear Information System (INIS)

    Shen, Bo; Yan, Yurong; Tang, Renkuan; Li, Yongguo; Li, Jianbo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2015-01-01

    We report on a novel strategy for the electrochemical detection of cocaine. It is based on the use of a supramolecular aptamer, rolling circle amplification (RCA), and multiplex binding of a biotin-strepavidin system. The aptamer fragments were assembled to a supramolecular aptamer which, in the presence of cocaine, conjugates to streptavidin for anchoring of biotinylated circular DNA. This initiates RCA and enables sensitive electrochemical-enzymatic readout. A significant signal amplification was obtained by using streptavidin linked to alkaline phosphatase that binds to the remaining biotinylated detection probes and catalyzes the hydrolysis of the synthetic enzyme substrate α-naphthylphosphate. This dual amplification strategy tremendously increases the detection limit of the aptasensor. Under optimal conditions and using differential pulse voltammetry, cocaine can be detected in the concentration range between 2 and 500 nM with a detection limit as low as 1.3 nM (at S/N = 3). The method is specific and acceptably reproducible. It was successfully applied to the detection of cocaine in (spiked) urine samples. The data were in good agreement with those obtained by the GC-MS reference method. (author)

  12. Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles.

    Science.gov (United States)

    Song, Fei; Zhang, Li-Ming; Shi, Jun-Feng; Li, Nan-Nan

    2010-12-01

    The supramolecular hydrogels derived from low-molecular-mass gelators represent a unique class of soft matters and have important potential applications in biomedical fields, separation technology and cosmetic science. However, they suffer usually from weak mechanical and viscoelastic properties. In this work, we carry out the in situ hybridization of clay nanoparticles (Laponite RD) into the supramolecular hydrogel formed from a low-molecular-mass hydrogelator, 2,6-di[N-(carboxyethyl carbonyl)amino]pyridine (DAP), and investigate the viscoelastic and structural characteristics of resultant hybrid hydrogel. It was found that a small concentration of Laponite RD could lead to a significant increase in the storage modulus, loss modulus or complex viscosity. Compared with neat DAP hydrogel, the hybrid hydrogel has a greater hydrogel strength and a lower relaxation exponent. In particular, the enhancement of the clay nanoparticles to the viscoelastic properties of the DAP hydrogel is more effective in the case of higher DAP concentration. By relating its macroscopic elastic properties to a scaling fractal model, such a hybrid hydrogel was confirmed to be in the strong-link regime and to have a more complex network structure with a higher fractal dimension when compared with neat DAP hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  14. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development.

    Science.gov (United States)

    Soda, N; Arotiba, O A

    2017-12-01

    A novel polyamidoamine dendrimer-streptavidin supramolecular architecture suitable as a versatile platform for biosensor development is reported. The dendrimer was electrodeposited on a glassy carbon electrode via cyclic voltammetry. The dendrimer electrode was further modified with streptavidin by electrostatic attraction upon drop coating. The platform i.e. the dendrimer-streptavidin modified electrode was electrochemically interrogated in phosphate buffer, ferrocyanide and H 2 O 2 . The dendrimer-streptavidin platform was used in the preparation of a simple DNA biosensor as a proof of concept. The supramolecular architecture of dendrimer-streptavidin was stable, electroactive and thus lends itself as a versatile immobilisation layer for any biotinylated bioreceptors in biosensor development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Supramolecular Derivation of Graphene Nanomaterials for Chemical Sensors

    DEFF Research Database (Denmark)

    Olsen, Gunnar

    With properties such as high surface area, high conductivity, and low production cost with easy up-scaling, graphene-like materials provide a promising support for many applications, one of which is for chemical sensors. By functionalization with molecular receptors such as supramolecular moieties...... of 10−5 M. In the second approach Azido-RGO was prepared as a general platform for post reduction modification. GO was here functionalized with a short linker terminated in an alcohol. The intermediate material was then reduced effectively with NaBH4, followed by chemical transformation of the alcohol...... atoms or slightly more than one azide per nm2 of RGO-sheet. This Azido-RGO was used in successful functionalization with the large supramolecular receptor molecules TTF-calix[4]pyrrole which function as a sensor for Cl− and potentially for TNB. The coverage achieved was one molecule per 50 – 60 carbon...

  16. Drug delivery's quest for polymers: Where are the frontiers?

    Science.gov (United States)

    Merkle, Hans P

    2015-11-01

    Since the legendary 1964 article of Folkman and Long entitled "The use of silicone rubber as a carrier for prolonged drug therapy" the role of polymers in controlled drug delivery has come a long way. Today it is evident that polymers play a crucial if not the prime role in this field. The latest boost owes to the interest in drug delivery for the purpose of tissue engineering in regenerative medicine. The focus of this commentary is on a selection of general and personal observations that are characteristic for the current state of polymer therapeutics and carriers. It briefly highlights selected examples for the long march of synthetic polymer-drug conjugates from bench to bedside, comments on the ambivalence of selected polymers as inert excipients versus biological response modifiers, and on the yet unsolved dilemma of cationic polymers for the delivery of nucleic acid therapeutics. Further subjects are the complex design of multifunctional polymeric carriers including recent concepts towards functional supramolecular polymers, as well as observations on stimuli-sensitive polymers and the currently ongoing trend towards natural and naturally-derived biopolymers. The final topic is the discovery and early development of a novel type of biodegradable polyesters for parenteral use. Altogether, it is not the basic and applied research in polymer therapeutics and carriers, but the translational process that is the key hurdle to proceed towards an authoritative approval of new polymer therapeutics and carriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution

    Science.gov (United States)

    2011-01-01

    All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285

  18. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  19. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’ an; Mukhopadhyay, Sukrit; Jang, Sei-Hum; Bredas, Jean-Luc; Jen, Alex K.-Y.

    2015-01-01

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  20. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’an

    2015-09-09

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  1. Supramolecular photocatalyst of RGO-cyclodextrin-TiO2

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Li, Na; Ye, Mingxin

    2013-01-01

    Graphical abstract: Supramolecular photocatalyst of RGO-cyclodextrin-TiO 2 was achieved, which showed high photocatalytic activity and adsorption capacity. Highlights: •Supramolecular photocatalyst of RGO-cyclodextrin-TiO 2 was achieved. •β-CD molecules acted as linkers between RGO and monodisperse TiO 2 nanoparticles. •Reduction of GO and preparation of RGO-cyclodextrin-TiO 2 was simultaneous. •The prepared RGO-cyclodextrin-TiO 2 shows high photocatalytic activity and adsorption capacity. -- Abstract: Reduced graphene oxide (RGO)/β-cyclodextrin (β-CD)/titanium oxide (TiO 2 ) supramolecular photocatalyst was synthesized with a one-pot hydrothermal method. The reducing process was accomplished with the attaching of β-CD and generation of TiO 2 . β-CD acted as a linker between RGO and monodisperse TiO 2 nanoparticles. The structure and composition of the hybrid had been characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermal gravimetric analysis, X-ray diffraction and Transmission electron microscopy. The as-prepared RGO-CD-TiO 2 showed significant enhanced performance for phenol and Cr (VI) removal, due to the effective transfer of photo-generated electron from TiO2 to RGO and improved absorbance performance of the hybrid

  2. The use of supramolecular chemistry in dye delivery systems

    International Nuclear Information System (INIS)

    Merckel, Daniel Andrew Sturton

    2002-01-01

    This thesis reports an investigation into supramolecular recognition of the sulfate/ sulfonate oxoanionic group, a moiety present in the majority of reactive dyes. In the first section the problems associated with the use of reactive dyes in dyeing cotton fabrics together with a literature review of supramolecular approaches to anion recognition are discussed. Drawing on the current literature concerning anion recognition (in particular the recognition of phosphates), the main body of the thesis concerns the design and synthesis of several series ofC-shaped (tweezer) and tripodal potential sulfate/ sulfonate receptors. These receptors incorporate the H-bond donor groups guanidine and thiourea and to a lesser extent urea and amide functionalities. In addition the behaviour of potential tweezer-like receptor molecules based on s-triazine (derived from cyanuric chloride) has also been investigated. The sulfate/ sulfonate and related phosphonate association properties of these potential receptors have been studied. Particular emphasis has been placed on the solid-state supramolecular structures formed by these complexes as determined by single crystal X-ray structural studies, and several novel and revealing examples have been analysed in detail. NMR titration binding studies have also been undertaken in order to investigate the complexation behaviour of several receptors with ''model dye'' phosphonates and sulfonates in solution. In addition a number of single crystal X-ray crystallographic studies were undertaken for other members of the Grossel research group during the course of this work, and the results of these structural studies are also reported. (author)

  3. Glucosamine-Based Supramolecular Nanotubes for Human Mesenchymal Cell Therapy.

    Science.gov (United States)

    Talloj, Satish Kumar; Cheng, Bill; Weng, Jen-Po; Lin, Hsin-Chieh

    2018-04-23

    Herein, we demonstrate an example of glucosamine-based supramolecular hydrogels that can be used for human mesenchymal cell therapy. We designed and synthesized a series of amino acid derivatives based on a strategy of capping d-glucosamine moiety at the C-terminus and fluorinated benzyl group at the N-terminus. From a systematic study on chemical structures, we discovered that the glucosamine-based supramolecular hydrogel [pentafluorobenzyl (PFB)-F-Glu] self-assembled with one-dimensional nanotubular structures at physiological pH. The self-assembly of a newly discovered PFB-F-Glu motif is attributed to the synergistic effect of π-π stacking and extensive intermolecular hydrogen bonding network in aqueous medium. Notably, PFB-F-Glu nanotubes are proven to be nontoxic to human mesenchymal stem cells (hMSCs) and have been shown to enhance hMSC proliferation while maintaining their pluripotency. Retaining of pluripotency capabilities provides potentially unlimited source of undifferentiated cells for the treatment of future cell therapies. Furthermore, hMSCs cultured on PFB-F-Glu are able to secrete paracrine factors that downregulate profibrotic gene expression in lipopolysaccharide-treated human skin fibroblasts, which demonstrates that PFB-F-Glu nanotubes have the potential to be used for wound healing applications. Overall, this article addresses the importance of chemical design to generate supramolecular biomaterials for stem cell therapy.

  4. From supramolecular electrochemistry to molecular-level devices

    Energy Technology Data Exchange (ETDEWEB)

    Credi, Alberto; Ferrer Ribera, Belen; Venturi, Margherita

    2004-09-15

    Supramolecular (multi-component) systems can perform complex functions which result from the cooperation of actions performed by suitably selected molecular components. Looking at supramolecular systems, from the viewpoint of the functions, shows that the concept of macroscopic device can be extended to molecular level. Nature exploits very complex molecular-level devices to substain life, and, in the last twenty years, the development of supramolecular chemistry has allowed the construction of simple molecular-level devices, that are of interest not only for basic research, but also for the growth of nanoscience and nanotechnology. Molecular-level devices operate via electronic and/or nuclear rearrangements, and like macroscopic devices, they need energy to operate and signals to communicate with the operator. Electrochemistry can provide the answer to this dual requirement, since electrons/holes, besides supplying the energy needed to make a devices work, can also be useful to 'read' the state of the system and thus to control and monitor the operation of the device. In this article, some examples of molecular-level devices investigated in our laboratory will be reviewed.

  5. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  6. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  7. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Directory of Open Access Journals (Sweden)

    Kohei Koyanagi

    2016-11-01

    Full Text Available Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA that has α-cyclodextrin (α-CD as a host molecule (α-CD-CTA. Prior to the polymerization of N,N-dimethylacrylamide (DMA, we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-ylpropane dihydrochloride (VA-044 as an initiator in an aqueous solution, poly(DMA was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.

  8. Building inorganic supramolecular architectures using principles adopted from the organic solid state

    Directory of Open Access Journals (Sweden)

    Marijana Đaković

    2018-01-01

    Full Text Available In order to develop transferable and practical avenues for the assembly of coordination complexes into architectures with specific dimensionality, a strategy utilizing ligands capable of simultaneous metal coordination and self-complementary hydrogen bonding is presented. The three ligands used, 2(1H-pyrazinone, 4(3H-pyrimidinone and 4(3H-quinazolinone, consistently deliver the required synthetic vectors in a series of CdII coordination polymers, allowing for reproducible supramolecular synthesis that is insensitive to the different steric and geometric demands from potentially disruptive counterions. In all nine crystallographically characterized compounds presented here, directional intermolecular N—H...O hydrogen bonds between ligands on adjacent complex building blocks drive the assembly and orientation of discrete building blocks into largely predictable topologies. Furthermore, whether the solids are prepared from solution or through liquid-assisted grinding, the structural outcome is the same, thus emphasizing the robustness of the synthetic protocol. The details of the molecular recognition events that take place in this series of compounds have been clearly delineated and rationalized in the context of calculated molecular electrostatic potential surfaces.

  9. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  10. Photorefractive polymers

    NARCIS (Netherlands)

    Bolink, Hendrik Jan; Hadziioannou, G

    1997-01-01

    This thesis describes the synthesis and properties of photorefractive polymers. Photorefractive polymers are materials in which the refractive index can be varied by the interaction with light. Unlike in numerous other photosensitive materials, in photorefractive materials this occurs via

  11. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    Science.gov (United States)

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.

  12. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport

    International Nuclear Information System (INIS)

    Watson, N.J.; Johal, R.K.; Glover, Z.; Reinwald, Y.; White, L.J.; Ghaemmaghami, A.M.; Morgan, S.P.; Rose, F.R.A.J.; Povey, M.J.W.; Parker, N.G.

    2013-01-01

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm −2 and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. - Highlights: • We expose thick PLA foam tissue scaffolds to high power ultrasound. • This treatment both accelerates and enhances the uptake of fluid into the scaffold. • It leads to significant increases in the mean pore size, pore interconnectivity and porosity. • The ultrasonic treatment is most effective when the scaffold is pre-wet with ethanol. • We demonstrate the use of acoustic microscopy to characterize the scaffold microstructure

  13. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego

    2015-01-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  14. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  15. Water linked 3D coordination polymers: Syntheses, structures and applications

    Science.gov (United States)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  16. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  17. Self-Assembly of Supramolecular Aggregates Based on Sector- and Cone-Shaped Dendrons and Bolaamphiphiles

    Science.gov (United States)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).

  18. Assessment of potential increased oil production by polymer-waterflood in northern and southern mid-continent oil fields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pease, R.W.; Durham, E.N.; Watson, J.A.

    1979-09-01

    A conventional waterflood in the North Stanley Field, Osage County, Oklahoma, nearing the economic limit, was modified by substituting an aqueous solution of polyacrylamides for brine as the intected fluid. Remedial operations on existing facilities were performed before polymer injection began. Positive oil production response was achieved from this 1000-acre project, a maximum EOR production rate of about 200 barrels per day being achieved within 1-1/2 years after the start of polymer injection. Based on performance to January 1979, ultimate EOR recovery is estimated at 500,000 barrels.

  19. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    Science.gov (United States)

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  20. Assessment of potential increased oil production by polymer-waterflood in northern and southern mid-continent oil fields. Progress report for the quarter ending September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-15

    Activities in programs to conduct polymer-waterflood studies are reported. During the period a study was conducted of the Burbank-Bartlesville sand reservoir, located in the north half of the Stanley Stringer Field, Osage County, Oklahoma. Progress in the overall program is summarized in a chart. (JRD)

  1. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    Science.gov (United States)

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  2. Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy

    Science.gov (United States)

    Li, Xingyi; Wang, Yuqin; Yang, Chengbiao; Shi, Shuai; Jin, Ling; Luo, Zichao; Yu, Jing; Zhang, Zhaoliang; Yang, Zhimou; Chen, Hao

    2014-11-01

    Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular compatibility in rats, as indicated by the optical coherence tomography (OCT) images, HE observation, and glial fibrillary acidic protein (GFAP) and vimentin immuno-staining assays of the retinas. Our TA hydrogel showed a decreased efficacy to inhibit ocular inflammation in the rat's experiment autoimmune uveitis (EAU) model compared to the commercial TA suspension (Transton®), but without causing complications such as high intraocular pressure and cataracts. These promising properties of the hydrogel indicated its great potential for the treatment of eye diseases.Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular

  3. Predicting supramolecular self-assembly on reconstructed metal surfaces

    Science.gov (United States)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  4. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  5. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Science.gov (United States)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  6. Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells.

    Science.gov (United States)

    Barbarella, Giovanna; Di Maria, Francesca

    2015-08-18

    During the last few decades, multifunctional nano- and microfibers made of semiconducting π-conjugated oligomers and polymers have generated much interest because of a broad range of applications extending from sensing to bioelectronic devices and (opto)electronics. The simplest technique for the fabrication of these anisotropic supramolecular structures is to let the molecules do the work by spontaneous organization driven by the information encoded in their molecular structure. Oligothiophenes-semiconducting and fluorescent compounds that have been extensively investigated for applications in thin-film field-effect transistors and solar cells and to a lesser extent as dyes for fluorescent labeling of proteins, DNA, and live cells-are particularly suited as building blocks for supramolecular architectures because of the peculiar properties of the thiophene ring. Because of the great polarizability of sulfur outer-shell electrons and the consequent facile geometric deformability and adaptability of the ring to the environment, thiophene can generate multiple nonbonding interactions to promote non-covalent connections between blocks. Furthermore, sulfur can be hypervalent, i.e., it can accommodate more than the eight electrons normally associated with s and p shells. Hypervalent oligothiophene-S,S-dioxides whose oxygen atoms can be involved in hydrogen bonding have been synthesized. These compounds are amphiphilic, and some of them are able to spontaneously cross the membrane of live cells. Hypervalent nonbonding interactions of divalent sulfur, defined as weak coordination to a proximate nitrogen or oxygen, have also been invoked in the solid-state packing of many organic molecules and in the architecture of proteins. In this Account, we describe two different types of thiophene-based building blocks that can induce the spontaneous formation of nanostructured microfibers in very different environments. The first, based on the synthesis of "sulfur

  7. 2,2 ':6 ',2 ''-terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Schöller, K.; Toncelli, C.; Experton, J.; Widmer, S.; Rentsch, D.; Vetushka, Aliaksi; Martin, C.J.; Heuberger, M.; Housecroft, C.E.; Constable, E.C.; Boesel, L.F.; Scherer, L.J.

    2016-01-01

    Roč. 6, č. 100 (2016), s. 97921-97930 ISSN 2046-2069 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : metallo-supramolecular polymers * drug-delivery * biomedical applications Subject RIV: JJ - Other Materials Impact factor: 3.108, year: 2016

  8. Development of Silicate Polymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob

      The development of inorganic polymers is a new promising technology that may be used in many applications. The syntheses of inorganic polymers are normally carried out either by mixing an amorphous material for example silicium dioxide with a mineral base or dissolving metal oxids or metal...... hydroxide in acid and increase pH to saturation of the metal hydroxide. It is assumed that the syntheses of the inorganic polymer are carried out through polymerisation of oligomers (dimer, trimer) which provide the actual unit structures of the three dimensional macromolecular structure. In this work...

  9. Rational design of single-molecule magnets: a supramolecular approach.

    Science.gov (United States)

    Glaser, Thorsten

    2011-01-07

    Since the discovery that Mn(12)OAc acts as a single-molecule magnet (SMM), an increasing number of transition metal complexes have been demonstrated to behave as SMMs. The signature of a SMM is a slow relaxation of the magnetization at low temperatures accompanied by a magnetic hysteresis. The origin of SMM behaviour is the existence of an appreciable thermal barrier U for spin-reversal called magnetic anisotropy barrier which is related to the combination of a large total spin ground state (S(t)) and an easy-axis magnetic anisotropy. The extensive research on Mn(12)OAc and other SMMs has established more prerequisites for a rational development of new SMMs besides the high-spin ground state and the magnetic anisotropy: the symmetry should be at least C(3) to minimize the quantum tunneling of the magnetization through the anisotropy barrier but lower than cubic to avoid the cancellation of the local anisotropies upon projection onto the spin ground state. Based on these prerequisites, we have designed the ligand triplesalen which combines the phloroglucinol bridging unit for high spin ground states by the spin-polarization mechanism with a salen-like ligand environment for single-site magnetic anisotropies by a strong tetragonal ligand field. The C(3) symmetric, trinuclear complexes of the triplesalen ligand (talen(t-Bu(2)))(6-) exhibit a strong ligand folding resulting in an overall bowl-shaped molecular structure. This ligand folding preorganizes the axial coordination sites of the metal salen subunits for the complementary binding of three facial nitrogen atoms of a hexacyanometallate unit. This leads to a high driving force for the formation of heptanuclear complexes [M(t)(6)M(c)](n+) by the assembly of three molecular building blocks. Attractive van der Waals interactions of the tert-butyl phenyl units of two triplesalen trinuclear building blocks increase the driving force. In this respect, we have been able to synthesize the isostructural series [Mn(III)(6

  10. Evolution of heterogeneity accompanying sol-gel transitions in a supramolecular hydrogel.

    Science.gov (United States)

    Matsumoto, Yuji; Shundo, Atsuomi; Ohno, Masashi; Tsuruzoe, Nobutomo; Goto, Masahiro; Tanaka, Keiji

    2017-10-18

    When a peptide amphiphile is dispersed in water, it self-assembles into a fibrous network, leading to a supramolecular hydrogel. When the gel is physically disrupted by shaking, it transforms into a sol state. After aging at room temperature for a while, it spontaneously returns to the gel state, called sol-gel transition. However, repeating the sol-gel transition often causes a change in the rheological properties of the gel. To gain a better understanding of the sol-gel transition and its reversibility, we herein examined the thermal motion of probe particles at different locations in a supramolecular hydrogel. The sol obtained by shaking the gel was heterogeneous in terms of the rheological properties and the extent decreased with increasing aging time. This time course of heterogeneity, or homogeneity, which corresponded to the sol-to-gel transition, was observed for the 1st cycle. However, this was not the case for the 2nd and 3rd cycles; the heterogeneity was preserved even after aging. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and atomic force and confocal laser scanning microscopies revealed that, although the molecular aggregation states of amphiphiles both in the gel and sol remained unchanged with the cycles, the fibril density diversified to high and low density regions even after aging. The tracking of particles with different sizes indicated that the partial mesh size in the high density region and the characteristic length scale of the density fluctuation were smaller than 50 nm and 6 μm, respectively.

  11. Spectrofluorimetric study of the β-cyclodextrin-dapsone-linear alcohol supramolecular system and determination of dapsone

    International Nuclear Information System (INIS)

    Ma Li; Tang Bo; Chu Chun

    2002-01-01

    Dapsone (DDS) forms a 1:1 supramolecular complex with β-cyclodextrin (β-CD) both in the absence and presence of linear alcohols. The apparent association constants (K app ) were measured using a steady-state fluorescence method. K app decreases linearly with an increasing number of carbon atoms in the chain of the alcohol. We attribute this to a competition between dapsone and linear alcohol for the β-CD hydrophobic cavity as detailed analysis of K app as a function of the concentration of alcohol suggests that the interactions in the β-CD-dapsone-linear alcohol system do not result in the formation of ternary supramolecular complex. Quenching the fluorescence of dapsone with NaI shows that the β-CD cavity acts as a shield against contact between dapsone and this aqueous phase quencher, while addition of alcohols inhibits this protective effect. This again suggests that alcohols occupy the space within the β-CD cavity with the result that dapsone molecules are forced to reside in the aqueous environment. Based on the significant enhancement of the fluorescence intensity of dapsone produced through complex formation, a spectrofluorimetric method for the determination of dapsone in bulk aqueous solution in the presence of β-CD is developed. The linear relationship between the fluorescence intensity and dapsone concentration was obtained in the range of 3.39 to 1.50x10 3 ng ml -1 , with a correlation coefficient (r) of 0.9998. The detection limit was 1.02 ng ml -1 . There was no interference from the excipients normally used in tablet formulations. The application of the present method to the determination of dapsone in tablets and human plasma gave satisfactory results and was compared with the pharmacopoeia method

  12. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  13. Supramolecular Cocrystals of Gliclazide: Synthesis, Characterization and Evaluation.

    Science.gov (United States)

    Chadha, Renu; Rani, Dimpy; Goyal, Parnika

    2017-03-01

    To prepare the supramolecular cocrystals of gliclazide (GL, a BCS class II drug molecule) via mechanochemical route, with the goal of improving physicochemical and biopharmaceutical properties. Two cocrystals of GL with GRAS status coformers, sebacic acid (GL-SB; 1:1) and α-hydroxyacetic acid (GL-HA; 1:1) were screened out using liquid assisted grinding. The prepared cocrystals were characterized using thermal and analytical techniques followed by evaluation of antidiabetic activity and pharmacokinetic parameters. The generation of new, single and pure crystal forms was characterized by DSC and PXRD. The crystal structure determination from PXRD revealed the existence of both cocrystals in triclinic (P-1) crystal system. The hydrogen bonded network, determined by material studio was well supported by shifts in FTIR and SSNMR. Both the new solid forms displayed improved solubility, IDR, antidiabetic activity and pharmacokinetic parameters as compared to GL. The improvement in these physicochemical and biopharmaceutical properties corroborated the fact that the supramolecular cocrystallization may be useful in the development of pharmaceutical crystalline materials with interesting network and properties.

  14. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2018-02-15

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhancing SERS by Means of Supramolecular Charge Transfer

    Science.gov (United States)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  16. A Supramolecular Approach toward Bioinspired PAMAM-Dendronized Fusion Toxins.

    Science.gov (United States)

    Kuan, Seah Ling; Förtsch, Christina; Ng, David Yuen Wah; Fischer, Stephan; Tokura, Yu; Liu, Weina; Wu, Yuzhou; Koynov, Kaloian; Barth, Holger; Weil, Tanja

    2016-06-01

    Nature has provided a highly optimized toolbox in bacterial endotoxins with precise functions dictated by their clear structural division. Inspired by this streamlined design, a supramolecular approach capitalizing on the strong biomolecular (streptavidin (SA))-biotin interactions is reported herein to prepare two multipartite fusion constructs, which involves the generation 2.0 (D2) or generation 3.0 (D3) polyamidoamine-dendronized transporter proteins (dendronized streptavidin (D3SA) and dendronized human serum albumin (D2HSA)) non-covalently fused to the C3bot1 enzyme from Clostridium botulinum, a potent and specific Rho-inhibitor. The fusion constructs, D3SA-C3 and D2HSA-C3, represent the first examples of dendronized protein transporters that are fused to the C3 enzyme, and it is successfully demonstrated that the C3 Rho-inhibitor is delivered into the cytosol of mammalian cells as determined from the characteristic C3-mediated changes in cell morphology and confocal microscopy. The design circumvents the low uptake of the C3 enzyme by eukaryotic cells and holds great promise for reprogramming the properties of toxin enzymes using a supramolecular approach to broaden their therapeutic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  18. Dimensional Control and Morphological Transformations of Supramolecular Polymeric Nanofibers Based on Cofacially-Stacked Planar Amphiphilic Platinum(II) Complexes.

    Science.gov (United States)

    Robinson, Matthew E; Nazemi, Ali; Lunn, David J; Hayward, Dominic W; Boott, Charlotte E; Hsiao, Ming-Siao; Harniman, Robert L; Davis, Sean A; Whittell, George R; Richardson, Robert M; De Cola, Luisa; Manners, Ian

    2017-09-26

    Square-planar platinum(II) complexes often stack cofacially to yield supramolecular fiber-like structures with interesting photophysical properties. However, control over fiber dimensions and the resulting colloidal stability is limited. We report the self-assembly of amphiphilic Pt(II) complexes with solubilizing ancillary ligands based on polyethylene glycol [PEG n , where n = 16, 12, 7]. The complex with the longest solubilizing PEG ligand, Pt-PEG 16 , self-assembled to form polydisperse one-dimensional (1D) nanofibers (diameters fibers of length up to ca. 400 nm. The fiber lengths were dependent on the Pt-PEG 16 complex to seed mass ratio in a manner analogous to a living covalent polymerization of molecular monomers. Moreover, the fiber lengths were unchanged in solution after 1 week and were therefore "static" with respect to interfiber exchange processes on this time scale. In contrast, similarly formed near-uniform fibers of Pt-PEG 12 exhibited dynamic behavior that led to broadening of the length distribution within 48 h. After aging for 4 weeks in solution, Pt-PEG 12 fibers partially evolved into 2D platelets. Furthermore, self-assembly of Pt-PEG 7 yielded only transient fibers which rapidly evolved into 2D platelets. On addition of further fiber-forming Pt complex (Pt-PEG 16 ), the platelets formed assemblies via the growth of fibers selectively from their short edges. Our studies demonstrate that when interfiber dynamic exchange is suppressed, dimensional control and hierarchical structure formation are possible for supramolecular polymers through the use of kinetically controlled seeded growth methods.

  19. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  20. Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers.

    Science.gov (United States)

    Hasanovic, Amra; Hollick, Caroline; Fischinger, Kerstin; Valenta, Claudia

    2010-06-01

    1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes were prepared by high-pressure homogeniser and coated with two cationic polymers, chitosan (CS) and for the first time Eudragit EPO (EU), respectively. Compared to the control liposomes, the polymeric liposomes showed greater physicochemical stability in terms of mean particle size and zeta potential at room temperature. In the present study, aciclovir and minoxidil have been used as hydrophilic and hydrophobic candidates. In the presence of the drugs, the polymeric liposomes still showed constant particle size and zeta potential. Influences of polymers and model drugs on thermotropic phase transition of DPPC liposomes were studied by micro-differential scanning calorimetry (microDSC). The influences on configuration of DPPC liposomes were investigated by Fourier transform infrared spectroscopy (FTIR). According to DSC results, cationic polymers had a stabilising effect, whereas aciclovir and minoxidil changed the physical properties of the DPPC bilayers by influencing the main phase transition temperature and erasing the pre-transition. The investigation of CO stretching bands of DPPC at 1736 cm(-1) in FTIR spectra showed that aciclovir has strong hydrogen bonding with CO groups of DPPC, whereas carbonyl groups were free in minoxidil presence. Moreover, the coating of liposomes with CS or EU led to higher skin diffusion for both drugs. This could be explained as an effect of positively charged liposomes to interact stronger with skin negatively charged surface and their possible interactions with structures below the stratum corneum. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    Science.gov (United States)

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. BEAM applications to polymer materials

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1994-01-01

    Recently papers about beam applications to polymers have been increasing rapidly both in the fundamental and applied fields. Fairly large number of papers have been published in the fundamental aspects of radiation effects of beam applications to polymers such as pulse radiolysis and high density electronic excitation effects. A number of papers have been published in the more applied aspects of beam applications to polymers such as radiation processing and curing. The present paper describes recent beam applications to polymers. 1. Radiation Effects on Polymers; Radiation effects on polymers have been studied for more than 40 years. Most of work on radiation effects on polymers has been carried out by using high energy photon (gamma-ray) and electron beams, since polymers are sensitive to any kinds of ionizing radiation. Even non-ionizing radiation such as ultraviolet and visible light excites electronic excited states of polymers and then photo-chemical reactions of polymers are induced from the electronic excited states. Studies on radiation effects of other ionizing radiation on polymers have not been so popular for a long time. Recently application of new radiation such as ion beams to polymers have been worthy of remark in fields of advanced science and technology, since new radiation beams induce different radiation effects from those induced by high energy gamma-rays and electrons. 2. Beam Applications of Polymers; Recent progress in beam applications to polymers such as radiation processing and curing, x-ray and electron beam microlithography, and applications of new beams such as ion beams to polymers has been reviewed. (author)

  3. The formation of dissipative structures in polymers as a model of synergy

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg A.

    2016-01-01

    Full Text Available Synergetic is an interdisciplinary area and describes the emergence of various kinds of structures, using the representation of the natural sciences. In this paper we studied the conditions for the appearance of thermodynamically stable amorphous-crystalline supramolecular structures on the basis of practical importance for the production of heat-resistant high-strength polymer fibers semi-rigid systems. It is found that in the process of structure formation in the coagulation of the polymer from solutions having supramolecular structures area a definite geometric shape and dimensions. Pattern formation in such systems can simulate the processes studied synergy. This is occurring in the process of self-organization of dissipative structures, transitions from one structure to another. This most discussed matter of self-organization on the “optical” scale level, are observed spherulites have a “correct” form and certain geometric dimensions comparable to the wavelength of visible light. Previously, this polymer does not crystallize at all considered. It is shown that for the study of supramolecular structures are the most convenient and informative experimental approaches are polarization-optical methods, which are directly “tuned” to the optical anisotropy of the structure and morphology. The great advantage of these methods is also possible to study the kinetics of structure formation processes without interfering the system under study.

  4. Small molecule-guided thermoresponsive supramolecular assemblies

    KAUST Repository

    Rancatore, Benjamin J.; Mauldin, Clayton E.; Frechet, Jean; Xu, Ting

    2012-01-01

    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.

  5. Supramolecular Structures for Photochemical Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2003-08-26

    OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

  6. Small molecule-guided thermoresponsive supramolecular assemblies

    KAUST Repository

    Rancatore, Benjamin J.

    2012-10-23

    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.

  7. A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) in shotcrete

    Energy Technology Data Exchange (ETDEWEB)

    Pickelmann, J.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    In shotcrete, a combination of polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) is commonly applied to reduce rebound. Here, the mechanism for the synergistic viscosity increase resulting from this admixture combination was investigated via x-ray diffraction (XRD), infrared and nuclear magnetic resonance (NMR) spectroscopy. It was found that the electron-rich aromatic rings present in BNS donate electrons to the alkyl protons of PEO and thus increase the electron density there. This rare interaction is known as CH-{pi} interaction and leads to the formation of a supramolecular structure whereby PEO chains bind weakly to BNS molecules. Through this mechanism a polymer network exhibiting exceptionally high molecular weight and thus viscosity is formed. Among polycondensates, sulfanilic acid-phenol-formaldehyde (SPF) provides even higher synergy with PEO than BNS while melamine (PMS), acetone (AFS) or polycarboxylate (PCE) based superplasticizers do not work at all. Effectiveness of lignosulfonates is dependent on their degree of sulfonation.

  8. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  9. Supramolecular Drug Delivery Systems Based on Water-Soluble Pillar[n]arenes.

    Science.gov (United States)

    Wu, Xuan; Gao, Lei; Hu, Xiao-Yu; Wang, Leyong

    2016-06-01

    Supramolecular drug delivery systems (SDDSs), including various kinds of nanostructures that are assembled by reversible noncovalent interactions, have attracted considerable attention as ideal drug carriers owing to their fascinating ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, which provides a flexible and robust platform for designing and developing functional and smart supramolecular nano-drug carriers. Pillar[n]arenes represent a new generation of macrocyclic hosts, which have unique structures and excellent properties in host-guest chemistry. This account describes recent progress in our group to develop pillararene-based stimuli-responsive supramolecular nanostructures constructed by reversible host-guest interactions for controllable anticancer drug delivery. The potential applications of these supramolecular drug carriers in cancer treatment and the fundamental questions facing SDDSs are also discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Insight into the chiral induction in supramolecular stacks through preferential chiral salvation

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.

    2011-01-01

    Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation

  11. From metal-organic squares to porous zeolite-like supramolecular assemblies

    KAUST Repository

    Wang, Shuang; Zhao, Tingting; Li, Guanghua; Wojtas, Łukasz; Huo, Qisheng; Eddaoudi, Mohamed; Liu, Yunling

    2010-01-01

    We report the synthesis, structure, and characterization of two novel porous zeolite-like supramolecular assemblies, ZSA-1 and ZSA-2, having zeolite gis and rho topologies, respectively. The two compounds were assembled from functional metal

  12. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly.

    Science.gov (United States)

    Iyoda, Masahiko; Hasegawa, Masashi

    2015-01-01

    The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed.

  13. Molecular printboards as a general platform for protein immobilization: A supramolecular solution to nonspecific adsorption

    NARCIS (Netherlands)

    Ludden, M.J.W.; Mulder, A.; Tampe, Robert; Reinhoudt, David; Huskens, Jurriaan

    2007-01-01

    Be specific: A supramolecular adsorbate consisting of an adamantyl group (red) and an oligo(ethylene glycol) chain has been designed to prevent nonspecific protein adsorption at cyclodextrin molecular printboards. The adamantyl group allows specific and reversible interactions. Specific

  14. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    Science.gov (United States)

    2015-07-10

    razor blade. The damaged area was subsequently exposed to UV irradiation (320 – 390 nm, 500 mW·cm-2), which led to complete disappearance of the...subsequently exposed for 12 s to the light of a UV lamp , which caused complete healing (bottom). (d) Unloading curves of AFM nano indentation of an as...UPy motif. By contrast, UV -Vis spectroscopic titration experiments revealed that equimolar mixtures of [Fe(BKB)](ClO4)2 and (UPy-PEB-UPy) show

  15. Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers

    Science.gov (United States)

    Cheng, Chih-Chia; Chang, Feng-Chih; Wang, Jui-Hsu; Chen, Jem-Kun; Yen, Ying-Chieh; Lee, Duu-Jong

    2015-12-01

    A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles).A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07076g

  16. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  17. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  18. Narrowing the diversification of supramolecular assemblies by preorganization.

    Science.gov (United States)

    Wang, Zhongyan; Liang, Chunhui; Shang, Yuna; He, Shuangshuang; Wang, Ling; Yang, Zhimou

    2018-03-13

    We designed and synthesized three phosphorylated peptides as precursors of the same peptide Nap-YYY. We found that different precursors led to different materials with almost identical chemical compositions at the final stages. Only Nap-YpYY could form very uniform nanofibers in a stable supramolecular hydrogel by enzyme-instructed self-assembly (EISA) at the physiological temperature (37 °C). In contrast, de-phosphorylation of the other two precursors (Nap-pYYY and Nap-YYpY) resulted in diverse nanostructures in metastable hydrogels with precipitates. The formation of uniform nanomaterials in the stable hydrogels was due to the preorganization property of the precursor Nap-YpYY, which facilitated rapid folding and accelerated the kinetics of hydrogelation of the resulting peptide Nap-YYY generated by the EISA process. Our study demonstrated the importance of the precursor for the self-assembly of nanomaterials and provided a useful strategy to manipulate them.

  19. Study of optical shuttering action in supramolecular hydrogen bonded nematogens

    Science.gov (United States)

    Kavitha, C.; Pongali Sathya Prabu, N.; Madhu Mohan, M. L. N.

    2012-11-01

    Supramolecular hydrogen bonded mesogens are formed between p-n-undecyloxy benzoic acid (11BAO) and p-n-alkyl benzoic acids (nBA, where n = 2-8). The isolated mesogens are characterized by distinct techniques in order to appreciate the optical, thermal, electrical, and dielectric properties. The optical tilt angle measurement is studied for all the members of this homologous series and is found to concur with the mean field theory predicted value. An interesting factor to notice is the observation of optical shuttering action in nematic phase of the entire series which privilege these materials to be used as light modulators. Dielectric measurements were carried out and the dispersion curves were discussed in terms of relaxation frequency and activation energies.

  20. Chiroptical studies on supramolecular chirality of molecular aggregates.

    Science.gov (United States)

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. © 2015 Wiley Periodicals, Inc.

  1. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  2. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  3. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  4. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  5. Electrochemical supramolecular recognition of hemin-carbon composites

    Science.gov (United States)

    Le, Hien Thi Ngoc; Jeong, Hae Kyung

    2018-04-01

    Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.

  6. Supramolecular Gold Metallogelators: The Key Role of Metallophilic Interactions

    Directory of Open Access Journals (Sweden)

    João Carlos Lima

    2014-12-01

    Full Text Available Gold metallogelators is an emerging area of research. The number of results published in the literature is still scarce. The majority of these gels is observed in organic solvents, and the potential applications are still to be explored. In this work, we present an overview about gold metallogelators divided in two different groups depending on the type of solvent used in the gelation process (organogelators and hydrogelators. A careful analysis of the data shows that aurophilic interactions are a common motif directly involved in gelation involving Au(I complexes. There are also some Au(III derivatives able to produce gels but in this case the organic ligands determine the aggregation process. A last section is included about the potential applications that have been reported until now with this new and amazing class of supramolecular assemblies.

  7. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher; Strutt, Nathan; Srinivasan, Sampath; Katsiev, Khabiboulakh; Hartlieb, Karel J.; Bakr, Osman; Stoddart, J. Fraser

    2015-01-01

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  8. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher

    2015-05-18

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  9. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    Science.gov (United States)

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  10. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  11. Molecular and supramolecular speciation of monoamide extractant systems

    International Nuclear Information System (INIS)

    Ferru, G.

    2012-01-01

    DEHiBA (N,N-di-(ethyl-2-hexyl)isobutyramide, a monoamide, was chosen as selective extractant for the recovery of uranium in the first cycle of the GANEX process, which aims to realize the grouped extraction of actinides in the second step of the process. The aim of this work is an improved description of monoamide organic solutions in alkane diluent after solutes extraction: water, nitric acid and uranyl nitrate. A parametric study was undertaken to characterize species at molecular scale (by IR spectroscopy, UV-visible spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and electro-spray ionisation mass spectrometry) and at supramolecular scale (by vapor pressure osmometry and small angle X-ray scattering coupled to molecular dynamic simulations). Extraction isotherms were modelled taking into account the molecular and supramolecular speciation. These works showed that the organization of the organic solution depends on the amide concentration, the nature and the concentration of the extracted solute. Three regimes can be distinguished. 1/For extractant concentration less than 0.5 mol/L, monomers are predominate species. 2/ For extractant concentrations between 0.5 and 1 mol/L, small aggregates are formed containing 2 to 4 molecules of monoamide. 3/ For more concentrated solutions (greater than 1 mol/L), slightly larger species can be formed after water or nitric acid extraction. Concerning uranyl nitrate extraction, an important and strong organization of the organic phase is observed, which no longer allows the formation of well spherical defined aggregates. At molecular scale, complexes are not sensitive to the organization of the solution: the same species are observed, regardless of the solute and extractant concentrations in organic phase. (author) [fr

  12. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Margherita De Rosa

    2018-04-01

    Full Text Available In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs, we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under “on-water” conditions with a significant selectivity toward the reactants. Under “on-water conditions” the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of

  13. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Science.gov (United States)

    De Rosa, Margherita; La Manna, Pellegrino; Talotta, Carmen; Soriente, Annunziata; Gaeta, Carmine; Neri, Placido

    2018-04-01

    In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs), we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under "on-water" conditions with a significant selectivity toward the reactants. Under "on-water conditions" the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of common organic reactions.

  14. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  15. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals

    Science.gov (United States)

    Orlova, Tetiana; Lancia, Federico; Loussert, Charles; Iamsaard, Supitchaya; Katsonis, Nathalie; Brasselet, Etienne

    2018-04-01

    Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions—either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.

  16. Supramolecular Properties of Triazole-containing Two Armed Peptidomimetics: From Organogelators to Nucleotide-binding Tweezers

    Science.gov (United States)

    Chui, Tin Ki

    This thesis described the development of a new type of branched peptidomimetics using a class of previously reported triazole-containing peptidomimetics as the structural motif. The propensity of these new branched peptiomimetics in being an organogelator, forming supramolecular assemblies and recognizing anions and biomolecules was investigated. The quest began with the preparation of two different series of branched peptidomimetics, namely 69-K-aa3 (aa = V or L) and 70-B-aa3. The former series made use of the flexible L-lysine (K) as the branching unit while the latter series was composed of the relatively rigid 3,5-diminobenzoate (B). In each series, the peptidomimetic arms were composed of solely valine (V) or leucine (L). The effects of the identity of the amino acids and the branching units on the gelation and self-assembling properties of these branched bis(tripeptidomimetic)s were investigated. The 69-K-aa3 series was found to exhibit poor solubility in common organic solvents yet it was able to form strong and stable gels in aromatic solvents. The 70-B-aa3 series, on the other hand, was a poor organogelator despite its excellent solubility. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the ability of the former to form a hyperbranched 3D network whereas the latter was only capable of forming isolated spherical lumps. Nevertheless, the latter displayed the ability in forming supramolecular polymers as shown from viscometric studies. Solution-to-gel transition temperature measurement of the gels formed by the 69-K-aa3 series and association constants determination by 1H NMR titration experiments for the supramolecular polymerization of the 70-B-aa3 series both suggested that peptidomimetic arms comprised of valine performed better than those made up of leucine in terms of association strength, and such a difference was attributed to the bulkier nature of the leucine side chain. In order to

  17. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  18. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

    Science.gov (United States)

    Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus

    2018-05-15

    Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis

  19. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  20. Supramolecular "Big Bang" in a Single-Ionic Surfactant/Water System Driven by Electrostatic Repulsion: From Vesicles to Micelles.

    Science.gov (United States)

    Leclercq, Loïc; Bauduin, Pierre; Nardello-Rataj, Véronique

    2017-04-11

    In aqueous solution, dimethyldi-n-octylammonium chloride, [DiC 8 ][Cl], spontaneously forms dimers at low concentrations (1-10 mM) to decrease the strength of the hydrophobic-water contact. Dimers represent ideal building blocks for the abrupt edification of vesicles at 10 mM. These vesicles are fully characterized by dynamic and static light scattering, self-diffusion nuclear magnetic resonance, and freeze-fracture transmission electron microscopy. An increase in concentration leads to electrostatic repulsion between vesicles that explode into small micelles at 30 mM. These transitions are detected by means of surface tension, conductivity, and solubility of hydrophobic solutes as well as by isothermal titration microcalorimetry. These unusual supramolecular transitions emerge from the surfactant chemical structure that combines two contradictory features: (i) the double-chain structure tending to form low planar aggregates with low water solubility and (ii) the relatively short chains giving high hydrophilicity. The well-balanced hydrophilic-hydrophobic character of [DiC 8 ][Cl] is then believed to be at the origin of the unusual supramolecular sequence offering new opportunities for drug delivery systems.

  1. Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass

    International Nuclear Information System (INIS)

    Foston, Marcus; Ragauskas, Art J.

    2010-01-01

    Dilute acid pretreatment (DAP) is commonly employed prior to enzymatic deconstruction of cellulose to increase overall sugar and subsequent ethanol yields from downstream bioconversion processes. Typically optimization of pretreatment is evaluated by determining hemicellulose removal, subsequent reactivity towards enzymatic deconstruction, and recoverable polysaccharide yields. In this study, the affect of DAP on the supramolecular and ultrastructure of lignocellulosic biomass was evaluated. A series of dilute acidic pretreatments, employing ∼0.10-0.20 mol/m 3 H 2 SO 4 at ∼160-180 o C, for varying residence times were conducted on both Populus and switchgrass samples. The untreated and pretreated biomass samples were characterized by carbohydrate and lignin analysis, gel permeation chromatography (GPC) and 13 C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. GPC analysis shows a reduction in the molecular weight of cellulose and change in its polydispersity index (PDI) with increasing residence time, indicating that pretreatment is actually degrading the cellulose chains. 13 C CPMAS and non-linear line-fitting of the C 4 region in the carbon spectrum of the isolated cellulose not only showed that the crystallinity index increases with residence time, but that the lateral fibril dimension (LFD) and lateral fibril aggregate dimension (LFAD) increase as well.

  2. Sustainable polymers from renewable resources.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  3. Supramolecular structure of methyl cellulose and lambda- and kappa-carrageenan in water: SAXS study using the string-of-beads model.

    Science.gov (United States)

    Dogsa, Iztok; Cerar, Jure; Jamnik, Andrej; Tomšič, Matija

    2017-09-15

    A detailed data analysis utilizing the string-of-beads model was performed on experimental small-angle X-ray scattering (SAXS) curves in a targeted structural study of three, very important, industrial polysaccharides. The results demonstrate the quality of performance for this model on three polymers with quite different thermal structural behavior. Furthermore, they show the advantages of the model used by way of excellent fits in the ranges where the classic approach to the small-angle scattering data interpretation fails and an additional 3D visualization of the model's molecular conformations and anticipated polysaccharide supramolecular structure. The importance of this study is twofold: firstly, the methodology used and, secondly, the structural details of important biopolymers that are widely applicable in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  5. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.O. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Nolan, K. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Smyth, M.R. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Mizaikoff, B. [Georgia Institute of Technology, School of Chemistry and Biochemistry, 770 State Street, Boggs Building, Atlanta, GA 30332-0400 (United States)]. E-mail: boris.mizaikoff@chemistry.gatech.edu

    2005-04-04

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  6. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    International Nuclear Information System (INIS)

    Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B.

    2005-01-01

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  7. Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-27

    Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability to catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes to activate otherwise unreactive molecules in the confines of an active site. Although much less complex than the evolved active sites of enzymes, synthetic host molecules have been developed that can carry out complex reactions with their cavities. While progress has been made toward highly efficient and selective reactivity inside of synthetic hosts, the lofty goal of duplicating enzymes specificity remains.[7-9] Pioneered by Lehn, Cram, Pedersen, and Breslow, supramolecular chemistry has evolved well beyond the crown ethers and cryptands originally studied.[10-12] Despite the

  8. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  9. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    International Nuclear Information System (INIS)

    Lim, Wei Kang; Denton, Alan R.

    2014-01-01

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments

  10. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  11. Vacuum ultraviolet photochemistry of polymers

    International Nuclear Information System (INIS)

    Skurat, Vladimir

    2003-01-01

    The interaction of vacuum UV radiation (wavelength range from 1 to 200 nm) with polymers is interesting for fundamental and applied sciences. This interest is stimulated by various reasons: - Wide applications of polymeric materials in semiconductor technology, where they are used as photoresist materials in combination with VUV light sources (lasers, excimer lamps, synchrotron radiation and others). - Polymers are widely used as spacecraft materials in the last 20 years. On near-Earth orbits, the polymeric materials of spacecraft surfaces are destroyed by solar radiation. - VUV radiation is one of the components of gas discharge plasmas, which are used for treatment of polymer, with the aim of modifying their surface properties. The main features of interaction of VUV radiation with polymers are discussed. The spectra of intrinsic absorption of saturated polymers (polyethylene, polypropylene, polytetrafluoroethylene and others) are situated mainly in the VUV region. The photochemistry of polymers in the VUV region is very different from their photochemistry at wavelengths longer than 200 nm, where the absorption spectra belong to impurities and polymer defects. The polymer photochemistry in the VUV region is wavelength-dependent. At wavelengths longer than about 140 nm, the main role is played by transformations of primary-formed singlet excited molecules. At shorter wavelengths the role of photoionization increases progressively and the main features of VUV photolysis become similar to the picture of radiolysis, with significant contributions of charge pairs and triplet excited molecules. Very important features of VUV light absorption in polymers are high absorption coefficients. Because of this, the surface layers absorb large doses of energy. This leads to very profound transformation of material on the polymer surface. In particular for polymers which are considered destroyed by radiation (for example, perfluoropolymers), this leads to VUV-induced erosion

  12. Radiation synthesis of polymer polyol

    International Nuclear Information System (INIS)

    Guo Jianmei; Zeng Xinmiao; Zhou Chengfei; Cao Wei; Zhai Tong; Wu Dezhen

    2010-01-01

    The polymer polyol was synthesized by γ irradiation. The properties of polymer polyol synthesized with different radiation dose were studied. The experiment result showed the radiation dose hadn't significant influence on the hydroxyl value of polymer polyol. The sample with different solid content had different hydroxyl value. When the radiation dose is between 1 to 12 kGy, the viscosity and hydroxyl value of polymer polyol were increased with the increment of radiation dose. When radiation dose is between 1 to 12 kGy, with the increment of radiation dose, viscosity of polymer polyol was rapidly increased, and the content solid of sample has few change. When radiation dose is higher than 20 kGy, the viscosity and hydroxyl value of polymer polyol have gradually increase with the increment of radiation dose. The size of polymer particles is 0.1-0.6 μm. The value of 150 mesh filter was 100%. The polymer polyol may be used as PU foam and elastomer. (authors)

  13. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: yjyang@mail.hust.edu.c [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  14. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  15. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    Science.gov (United States)

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  16. Antimocrobial Polymer

    Science.gov (United States)

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  17. Irradiation sterilization of semi-crystalline polymers

    International Nuclear Information System (INIS)

    Williams, J.; Dunn, T.; Stannett, V.

    1978-01-01

    A semi-crystalline polymer such as polypropylene, is sterilized by high energy irradiation, with the polymer containing a non-crystalline mobilizing additive which increases the free volume of the polymer, to prevent embrittlement of the polymer during and subsequent to the irradiation. The additive has a density of from 0.6 to 1.9 g/cm 3 and a molecular weight from 100 to 10,000 g/mole

  18. From precision polymers to complex materials and systems

    Science.gov (United States)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  19. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system.

    Science.gov (United States)

    Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth

    2007-01-01

    A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters.

  20. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  1. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, M. A., E-mail: shcherbina@ispm.ru; Bakirov, A. V. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation); Yakunin, A. N. [Karpov Institute of Physical Chemistry (Russian Federation); Percec, V. [University of Pennsylvania (United States); Beginn, U. [Universitaet Osnabrueck, Institut fuer Chemie (Germany); Moeller, M. [Institute for Technical and Macromolecular Chemistry (Germany); Chvalun, S. N. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation)

    2012-03-15

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  2. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    International Nuclear Information System (INIS)

    Shcherbina, M. A.; Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Möller, M.; Chvalun, S. N.

    2012-01-01

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  3. [Study on meridian tropism of medicinal property theory for Chines medicines by supramolecular chemistry (I)].

    Science.gov (United States)

    He, Fu-yuan; Deng, Kai-wen; Yang, Yan-tao; Zhou, Yi-qun; Shi, Ji-lian; Liu, Wen-long; Tang, Yu

    2015-04-01

    In this paper, based on the special influence of supramolecular chemistry on the basic theory of Chinese medicines ( CM) , the authors further analyzed the history of meridian tropism and natural origins of CM organisms and explained CM ingredients and the universal regularity of the automatic action of the supramolecular "imprinting templates" hole channel structure. After entering human bodies, CMs, as the aggregation of supramolecular "imprinting templates" , automatically seek supramolecular subjects that are matched with their "imprinting templates" in human meridians and organs for the purpose of self-recognition, self-organization, self-assembly and self-replication, so as to generate specific efficacy in meridians and organs, which is reflected as the meridian tropism phenomena at macro level. This regularity can be studied by in vitro and in vivo experimental studies. In vitro methods are mostly supra molecular structure analysis and kinetic and thermodynamic parameter calculation; Whereas in vivo methods are dominated by the analysis on object component distribution, chromatopharmacodynamic parameters and network chromatopharmacodynamic parameters; Particularly, the acupoint-medicine method can simplify to study the supramolecular subject-object relations. Consequently, CM's'meridian tropism reveals the universal regularity for interactions of macromolecular and micromolecular "imprinting templates" of subjects and objects in natural organisms. As the first barrier for the material base of the CM theory and breakthrough in the modernization of the basic CM theory, meridian tropism plays an important role in studies on basic theories of the basic CM theory.

  4. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    Science.gov (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  5. Conductive Supramolecular Architecture Constructed from Polyoxovanadate Cluster and Heterocyclic Surfactant

    Directory of Open Access Journals (Sweden)

    Toshiyuki Misawa

    2018-01-01

    Full Text Available Proton-conductive solid electrolytes are significant for fuel-cell battery technology. Especially for use in motor vehicles, proton conductors which work at intermediate temperatures (373–673 K under an anhydrous atmosphere are desired to improve the fuel cell stability and efficiency. Inorganic–organic hybrid supramolecular architectures are a promising option for the realization of highly conductive proton conductors. Here, a hybrid layered crystal was synthesized for the first time by using an proton-containing decavanadate (V10 anion and a heterocyclic surfactant cation. A simple ion-exchange reaction led to the formation of an inorganic–organic hybrid of V10 by using dodecylpyridazinium (C12pda as the heterocyclic surfactant. Single crystal X-ray analyses revealed that four C12pda cations were associated with one V10 anion, which was a diprotonated species forming a one-dimensional infinite chain structure through hydrogen bonds. Anhydrous proton conductivity was investigated by alternating current (AC impedance spectroscopy in the range of 313–393 K, exhibiting a maximum value of 1.7 × 10−5 S cm−1 at 373 K.

  6. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry.

    Science.gov (United States)

    Kurihara, Kensuke; Matsuo, Muneyuki; Yamaguchi, Takumi; Sato, Sota

    2018-02-01

    To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  8. Artificial Nacre from Supramolecular Assembly of Graphene Oxide.

    Science.gov (United States)

    Wang, Yang; Li, Ting; Ma, Piming; Zhang, Shengwen; Zhang, Hongji; Du, Mingliang; Xie, Yi; Chen, Mingqing; Dong, Weifu; Ming, Weihua

    2018-06-14

    Inspired by the "brick-and-mortar" structure and remarkable mechanical performance of nacre, many efforts have been devoted to fabricating nacre-mimicking materials. Herein, a class of graphene oxide (GO) based artificial nacre material with quadruple hydrogen-bonding interactions was fabricated by functionalization of polydopamine-capped graphene oxide (PDG) with 2-ureido-4[1 H]-pyrimidinone (UPy) self-complementary quadruple hydrogen-bonding units followed by supramolecular assembly process. The artificial nacre displays a strict "brick-and-mortar" structure, with PDG nanosheets as the brick and UPy units as the mortar. The resultant nanocomposite shows an excellent balance of strength and toughness. Because of the strong strengthening via quadruple hydrogen bonding, the tensile strength and toughness can reach 325.6 ± 17.8 MPa and 11.1 ± 1.3 MJ m -3 , respectively, thus exceeding natural nacre, and reaching 3.6 and 10 times that of a pure GO artificial nacre. Furthermore, after further H 2 O treatment, the resulting H 2 O-treated PDG-UPy actuator displays significant bending actuations when driven by heat. This work provides a pathway for the development of artificial nacre for their potential applications in energy conversion, temperature sensor, and thermo-driven actuator.

  9. Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra

    Science.gov (United States)

    Russell, Emily R.; Menon, Govind

    2016-06-01

    We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.

  10. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    Science.gov (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  11. Supra-molecular networks for CO2 capture

    Science.gov (United States)

    Sadowski, Jerzy; Kestell, John

    Utilizing capabilities of low-energy electron microscopy (LEEM) for non-destructive interrogation of the real-time molecular self-assembly, we have investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks can act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc). The electrostatic interactions of CO2 molecules with transition metal ions can be tuned by controlling the type of TM ion and the size of the pore in the host network. We further applied infrared reflection-absorption spectroscopy (IRRAS) to determine of the molecular orientation of the functional groups and the whole molecule in the 2D monolayers of carboxylic acid. The kinetics and mechanism of the CO2 adsorption/desorption on the 2D molecular network, with and without the TM ion doping, have been also investigated. This research used resources of the Center for Functional Nanomaterials, which is the U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  12. Spectro-microscopic study of the formation of supramolecular networks

    Science.gov (United States)

    Sadowski, Jerzy T.

    2015-03-01

    Metal-organic frameworks (MOFs) are emerging as a new class of materials for CO2 capture. There are many fundamental questions, including the optimum pore size and arrangement of the molecules in the structure to achieve highest CO2 uptake. As only the surface is of interest for potential applications such as heterogeneous catalysis, nano-templating, and sensing, 2D analogs of MOFs can serve as good model systems. Utilizing capabilities of LEEM/PEEM for non-destructive interrogation of the real-time molecular self-assembly, we investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc) and the electrostatic interactions of CO2 molecules with transition metal ions, can be tuned by controlling the type of TM ion and the size of the pore in the host network. The understanding of directed self-assembly by controlling the molecule-substrate interaction can enable us to engineer the pore size and density, and thus tune the host's chemical activity. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10.

  13. Strong supramolecular control over protein self-assembly using a polyamine decorated β-cyclodextrin as synthetic recognition element

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Milroy, L.G.; Neirynck, P.; Brunsveld, L.

    2011-01-01

    The supramolecular host molecule heptakis-[6-deoxy-6-(2-aminoethylsulfanyl)]-ß-cyclodextrin provides strong control over protein self-assembly in synthetic supramolecular protein constructs. Mono-functionalization of this modified ß-cyclodextrin with a cysteine residue allows for site-selective

  14. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers.

    Science.gov (United States)

    Dikecoglu, F Begum; Topal, Ahmet E; Ozkan, Alper D; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu

    2018-07-13

    Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.

  15. Supramolecular assembly of a series of chiral dendrimers in interfacial films

    International Nuclear Information System (INIS)

    Yuan Jing; Deng Guojun; Fan Qinghua; Liu Minghua

    2004-01-01

    Supramolecular assembly and interfacial properties of a series of novel binaphthyl containing dendrimers from generation 1 through generation 4 have been investigated at the air/water interface and in solid substrates. Due to the lack of either long alkyl chains or strong hydrophilic groups, the dendrimer molecules tend to aggregate together to form stable two-dimensional ultrathin films, as verified by π-A and A-t measurements. Atomic force microscope (AFM) measurements of the transferred one-layer ultrathin films indicate that all the dendrimers show disk-like morphologies, which could be varied in particle size upon changing the surface pressure. The height profiles reveal that the height of the disks is between that of a monolayer and a bilayer, indicating that they are formed due to the aggregation of dendrimers with a distortion and/or partial overlapping. Circular dichroism (CD) spectra of the transferred multilayer films show Cotton effects due to the exciton couplet of the aromatic moieties adjacent to the bis(diphenylphosphino)-binaphthyl moiety, which is an active catalytic site for the dendrimer. With the increment of the generation, the intensity of the Cotton effects increased, suggesting that the optical active site of the dendrimer can be controlled by the outside wedge

  16. Adaptive resolution simulation of polarizable supramolecular coarse-grained water models

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Praprotnik, Matej; Melo, Manuel N.; Marrink, Siewert J.

    2015-01-01

    Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties

  17. Weak cooperativity in selected iron(II) 1D coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dirtu, Marinela M.; Gillard, Damien; Naik, Anil D. [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium); Rotaru, Aurelian [' Stefan cel Mare' University, Department of Electrical Engineering and Computer Science (Romania); Garcia, Yann, E-mail: ann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium)

    2012-03-15

    The spin crossover behaviour of a new class of Fe{sup II} coordination polymers [Fe(phtptrz){sub 3}]I{sub 2} (1), [Fe(phtptrz){sub 3}](ReO{sub 4}){sub 2} Bullet CH{sub 3}OH (2) and [Fe(phtptrz){sub 3}]TaF{sub 7} Bullet 6H{sub 2}O (3) based on a novel ligand 4-(3{sup Prime} -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent {sup 57}Fe Moessbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T{sub 1/2} {approx} 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  18. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  19. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform. Polym. 11 (1999) pp 281-296 by IOP Publishing Ltd

    DEFF Research Database (Denmark)

    Henk, Peter O; Kortsen, T.W.; Kvarts, T.

    1999-01-01

    combinations were used: (a) fumed nanoparticle silicon dioxide referred to as Aerosil, (b) equal volumes of Aerosil and nanoparticle anatase, and (c) Aerosil plus anatase in combination with coarse-particle filler grade calcium-magnesium carbonate dolomite. A test for endurance using the CIGRE method II...... electrode arrangement was applied, the test comprising the establishment of partial discharges running perpendicularly onto one face of a plate specimen for a period measured until breakdown.Our results show that the endurance of the pure polymer is low. Increased loading with Aerosil increases...... the endurance by a factor of up to 20 as the Aerosil content goes from zero to 5.4 vol%. Aerosil mixed with anatase has a similar effect. The high level of endurance is maintained with an additional high-volume (35 vol.%) filling of coarse-particle dolomite to an epoxy system already containing Aerosil...

  1. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.

    Science.gov (United States)

    Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing

    2015-05-01

    Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.

  2. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry.

    Science.gov (United States)

    Cremer, Paul S; Flood, Amar H; Gibb, Bruce C; Mobley, David L

    2017-12-19

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists - with their expertise in macrocyclic synthesis and measuring supramolecular interactions - have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  3. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry

    Science.gov (United States)

    Cremer, Paul S.; Flood, Amar H.; Gibb, Bruce C.; Mobley, David L.

    2018-01-01

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists -- with their expertise in macrocyclic synthesis and measuring supramolecular interactions -- have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  4. Supra-molecular Association and Polymorphic Behaviour In Systems Containing Bile Acid Salts

    Directory of Open Access Journals (Sweden)

    Camillo La Mesa

    2007-08-01

    Full Text Available A wide number of supra-molecular association modes are observed in mixtures containing water and bile salts, BS, (with, eventually, other components. Molecular or micellar solutions transform into hydrated solids, fibres, lyotropic liquid crystals and/or gels by raising the concentration, the temperature, adding electrolytes, surfactants, lipids and proteins. Amorphous or ordered phases may be formed accordingly. The forces responsible for this very rich polymorphism presumably arise from the unusual combination of electrostatic, hydrophobic and hydrogen-bond contributions to the system stability, with subsequent control of the supra-molecular organisation modes. The stabilising effect due to hydrogen bonds does not occur in almost all surfactants or lipids and is peculiar to bile acids and salts. Some supra-molecular organisation modes, supposed to be related to malfunctions and dis-metabolic diseases in vivo, are briefly reported and discussed.

  5. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines.

    Science.gov (United States)

    Wang, Fang; Feng, Chuan-Liang

    2018-02-01

    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.

    Science.gov (United States)

    Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio

    2015-08-25

    A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

  7. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels

    KAUST Repository

    Shi, Junfeng; Yuan, Dan; Haburcak, Richard; Zhang, Qiang; Zhao, Chao; Zhang, Xixiang; Xu, Bing

    2015-01-01

    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.

  8. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels

    KAUST Repository

    Shi, Junfeng

    2015-10-14

    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.

  9. A supramolecular strategy for self-mobile adsorption sites in affinity membrane.

    Science.gov (United States)

    Lin, Ligang; Dong, Meimei; Liu, Chunyu; Wei, Chenjie; Wang, Yuanyuan; Sun, Hui; Ye, Hui

    2014-09-01

    Disclosed here is the design of a novel supramolecular membrane with self-mobile adsorption sites for biomolecules purification. In the 3D micropore channels of membrane matrix, the ligands are conjugated onto the cyclic compounds in polyrotaxanes for protein adsorption. During membrane filtration, the adsorption sites can rotate and/or slide along the axial chain, which results in the enhanced adsorption capacity. The excellent performance of supra-molecular membrane is related with the dynamic working manner of adsorption sites, which plays a crucial role on avoiding spatial mismatching and short-circuit effect. The supra-molecular strategy described here has general suggestions for the "sites" involved technologies such as catalysis, adsorption, and sensors, which is of broad interest. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ion beam modification of polymers

    International Nuclear Information System (INIS)

    Sofield, C.J.; Sugden, S.; Ing, J.; Bridwell, L.B.; Wang, Y.Q.

    1993-01-01

    The implantation of polymers has received considerable attention in recent years, primarily to examine doping of conducting polymers and to increase the surface conductivity (by many orders of magnitude) of highly insulating polymers. The interest in these studies was partly motivated by possible applications to microelectronic device fabrication. More recently it has been observed that ion implantation can under some conditions lead to the formation of a hard (e.g. as hard as steel, ca. 3 MPa) and conducting surface layer. This paper will review the ion beam modification of polymers resulting from ion implantation with reference to fundamental ion-solid interactions. This leads us to examine whether or not implantation of polymers is a contradiction in terms. (Author)

  11. Self-healing of polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Abd_Elmoaty M. Abd_Elmoaty

    2011-06-01

    Full Text Available Self healing phenomenon of concrete has been observed in traditional, fibrous, self compacting concrete. This phenomenon occurred mainly due to the presence of unhydrated cement particles in the presence of water. Mechanism of polymer in concrete depends on creating a layer and net of polymer around cement particles which enhances the properties of polymer modified concrete. This mechanism may affect the self healing of this type of concrete. This work aims to study the presence of the self healing phenomenon in polymer modified concrete and the related parameters. An experimental investigation on self healing of polymer modified concrete was undertaken. In this research work, effect of polymer type, polymer dose, cement content, cement type, w/cm ratio and age of damage were studied. The healing process extended up to 60 days. Ultrasonic pulse velocity measurements were used to evaluate the healing process. Results indicated that, the self healing phenomenon existed in polymer modified concrete as in traditional concrete. The increase of polymer dose increases the healing degree at the same healing time. This increase depends on polymer type. Also, the decrease of w/cm ratio reduces the self healing degree while the use of Type V Portland cement improves the self healing process compared with Type I Portland cement. Cement content has an insignificant effect on healing process for both concrete with and without polymer. In addition, the increase of damage age decreases the efficiency of self healing process.

  12. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    Energy Technology Data Exchange (ETDEWEB)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min [Research Institute of Natural Science and Dept. of Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Moon, Suk Hee [Dept. of Food and Nutrition, Kyungnam College of Information and Technology, Busan (Korea, Republic of)

    2017-01-15

    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported.

  13. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    International Nuclear Information System (INIS)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min; Moon, Suk Hee

    2017-01-01

    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported

  14. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    polymerize in-situ around the fillers or even graft to them [71], thus it overcomes the problem of dramatically increased viscosity of the polymer...filler dispersion, increased polymer viscosity during processing and filler damage due to thermal degradation or strong shear forces [3, 82]. At...123, 124]. Figure 1.12 (a) SEM image of the fracture surface of GO/PVA nanocomposite film [85]. (b) TEM image of a clay reinforced Nylon-6

  15. Surface-Assisted Self-Assembly Strategies Leading to Supramolecular Hydrogels.

    Science.gov (United States)

    Vigier-Carrière, Cécile; Boulmedais, Fouzia; Schaaf, Pierre; Jierry, Loïc

    2018-02-05

    Localized molecular self-assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self-assembly of low-molecular-weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Self-assemblage and post-radiation recovery of cell supramolecular structures

    International Nuclear Information System (INIS)

    Grodzinskij, D.M.; Kolomiets, K.D.

    1979-01-01

    The role of the molecular equation and self-assemblage in post-radiation chromatin recovery of meristematic cells of pea rootlets is shown. Found are the two repair types at the chromatin level by fractionating of the radiation dose. The first type comprises transient processes including DNA repair, the second type comprises processes including biosynthesis of the chromatin components and proteins, in the first place. The role of protein biosynthesis in the process of recovery of the chromatin supramolecular structure is shown. The improved radiostability of chromatin self-assemblage is characteristic for the level of its subunits. The supramolecular chromatin structure of the other levels has less radiostability

  17. TOPICAL REVIEW: Metallo-supramolecular modules as a paradigm for materials science

    Directory of Open Access Journals (Sweden)

    Dirk G Kurth

    2008-01-01

    Full Text Available Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science.

  18. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.

    Science.gov (United States)

    Sambrook, M R; Notman, S

    2013-12-21

    Supramolecular chemistry presents many possible avenues for the mitigation of the effects of chemical warfare agents (CWAs), including sensing, catalysis and sequestration. To-date, efforts in this field both to study fundamental interactions between CWAs and to design and exploit host systems remain sporadic. In this tutorial review the non-covalent recognition of CWAs is considered from first principles, including taking inspiration from enzymatic systems, and gaps in fundamental knowledge are indicated. Examples of synthetic systems developed for the recognition of CWAs are discussed with a focus on the supramolecular complexation behaviour and non-covalent approaches rather than on the proposed applications.

  19. J-like supramolecular assemblies of polyaniline in water

    Czech Academy of Sciences Publication Activity Database

    Omelchenko, Olga; Tomšík, Elena; Zhigunov, Alexander; Guskova, O.; Gribkova, O.; Gospodinova, Natalia

    2013-01-01

    Roč. 214, č. 23 (2013), s. 2739-2743 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conjugated polymers * J-aggregates * molecular dynamics Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.451, year: 2013

  20. Engineering with macromolecules : from supramolecular chemistry to defined nanomaterials

    NARCIS (Netherlands)

    Lohmeijer, B.G.G.; Gohy, J.M.W.; Schubert, U.S.

    2003-01-01

    By uniting concepts from polymer chem. and supramol. chem. we present a new approach for the prepn. of functional nano-materials. Amphiphilic diblock and triblock copolymers were constructed in such a way that a bisterpyridine ruthenium complex acts as the linker between the two constituting blocks.

  1. Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Surbella, Robert G. [Department; Ducati, Lucas C. [Department; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Autschbach, Jochen [Department; Schwantes, Jon M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Cahill, Christopher L. [Department

    2017-07-26

    A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

  2. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  3. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield

    Science.gov (United States)

    Chen, Rong; Qi, Mei; Zhang, Guohui; Yi, Chenggao

    2018-02-01

    The application of polymer flooding technology in oilfields can result in polymer content increased in produced water. This increasing made produced water quality become poor. The efficiency of produced water processing decreased significantly. Processed water quality seriously exceeded criterion’s stipulation. The presence of the polymer in produced water is the main reason for more difficulties in processing of produced water, therefore the polymer degradation technology is a key coefficient in produced water processing for polymer flooding oilfields. We evaluated several physical and chemical polymer degradation methods with the solution of separated water from polymer flooding oilfields and hydrolyzed polyacrylamide. The experiment results can provide a basis for produced water processing technologies application in polymer flooding oilfields.

  4. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    Science.gov (United States)

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene.

  5. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    NARCIS (Netherlands)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C A; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large

  6. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  7. Supramolecular Control of Oligothienylenevinylene-Fullerene Interactions: Evidence for a Ground-State EDA Complex

    NARCIS (Netherlands)

    McClenaghan, N.D.; Grote, Z.; Darriet, K.; Zimine, M.Y.; Williams, R.M.; De Cola, L.; Bassani, D.M.

    2005-01-01

    Complementary hydrogen-bonding interactions between a barbituric acid-substituted fullerene derivative (1) and corresponding receptor (2) bearing thienylenevinylene units are used to assemble a 1:1 supramolecular complex ( K ) 5500 M-1). Due to the close proximity of the redox-active moieties within

  8. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    Science.gov (United States)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  9. Analysis of supramolecular surface nanostructures using secondary ion mass spectrometry (poster)

    International Nuclear Information System (INIS)

    Halaszova, S.; Velic, D.

    2013-01-01

    Our system consists of host molecules β-cyclodextrin (C 42 H 70 O 35 ), of implemented Iron nanoparticles (guest). Whole supramolecular complex is placed on a gold substrate. In our project we work with monotiolated β-cyclodextrin (C 42 H 70 O 34 S), consisting of seven α-D-1-4 glucopyranose units. Cyclodextrins have been selected deliberately because of their ability to form inclusion complexes .They are also capable of forming structures similar to self-assembly monolayers. To study the formation of these supramolecular surface nanostructures mass secondary ion spectrometry is used. With this technique fragmentation of monotiolated β-cyclodextrin and the presence of the supramolecular complex on a gold surface can be examined. The observed fragments of monotiolated cyclodextrines films can be divided into three groups: Au X H Y S Z , fragments originating from cyclodextrin molecules associated with Au. Fragments as (C 42 H 70 O 34 S)Na + , (C 42 H 70 O 35 )Na + and (AuC 42 H 69 O 34 S)Na + were identified as well as fragments thereof in cationized form with K + . The main objective of the project is a detailed study and preparation of supramolecular nanostructures consisting of complex guest-host monotiolated β-cyclodextrin host-iron), and a gold substrate. (Authors)

  10. Photoresponsive Molecular Recognition and Adhesion of Vesicles in a Competitive Ternary Supramolecular System

    NARCIS (Netherlands)

    Nalluri, Siva Krishna Mohan; Bultema, Jelle B.; Boekema, Egbert J.; Ravoo, Bart Jan

    A competitive photoresponsive supramolecular system is formed in a dilute aqueous solution of three components: vesicles of amphiphilic alpha-cyclodextrin host 1a, divalent p-methylphenyl guest 2 or divalent p-methylbenzamide guest 3, and photoresponsive azobenzene monovalent guest 5. Guests 2 and 3

  11. Understanding Periodic Dislocations in 2D Supramolecular Crystals: The PFP/Ag(111) Interface

    DEFF Research Database (Denmark)

    Goiri, E.; García Lastra, Juan Maria; Corso, M.

    2012-01-01

    In-plane dislocation networks arise in both inorganic and organic films as a way of relieving the elastic strain that builds up at the substrate interface. In molecule/surface systems, supramolecular interactions are weak and more complex (compared to the atomic bonds in inorganic films), and the...

  12. Growth anomalies in supramolecular networks: 4,4'-biphenyldicarboxylic acid on Cu(001)

    NARCIS (Netherlands)

    Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Henricus J.W.; Poelsema, Bene

    2013-01-01

    We have used low energy electron microscopy to demonstrate how the interaction of 4,4 ′ -biphenyldicarboxylic acid (BDA) molecules with (steps on) the Cu(001) surface determines the structure of supramolecular BDA networks on a mesoscopic length scale. Our in situ real time observations reveal that

  13. Chiral Induction and amplification in supramolecular systems at the liquid-solid interface

    NARCIS (Netherlands)

    Xu, Hong; Ghijsens, E.; George, S.J.; Wolffs, M.; Tomovic, Z.; Schenning, A.P.H.J.; Feyter, de S.

    2013-01-01

    Chiral induction and amplification in surface-confined supramolecular monolayers are investigated at the liquid–solid interface. Scanning tunneling microscopy (STM) proves that achiral molecules can self-assemble into globally chiral patterns through a variety of approaches, including induction by

  14. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems

    NARCIS (Netherlands)

    Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.; Schenning, A.P.H.J.

    2012-01-01

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of

  15. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  16. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes

    NARCIS (Netherlands)

    Eisele, D. M.; Cone, C. W.; Bloemsma, E. A.; Vlaming, S. M.; van der Kwaak, C. G. F.; Silbey, R. J.; Bawendi, M. G.; Knoester, J.; Rabe, J. P.; Vanden Bout, D. A.

    Supramolecular assemblies that interact with light have recently garnered much interest as well-defined nanoscale materials for electronic excitation energy collection and transport. However, to control such complex systems it is essential to understand how their various parts interact and whether

  17. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces

    NARCIS (Netherlands)

    Haq, S.; Liu, N.; Humblot, V.; Jansen, A.P.J.; Raval, R.

    2009-01-01

    There is considerable interest in skewing the transmission of chirality, or 'handedness', from the molecular to the supramolecular level so that single-handed superstructures are created from mixed enantiomer systems. One approach is to flip the chirality of all the molecular building blocks to the

  18. Bio-inspired supramolecular materials by orthogonal self-assembly of hydrogelators and phospholipids

    NARCIS (Netherlands)

    Boekhoven, J.; Brizard, AMA; Stuart, M. C A; Florusse, L.J.; Raffy, G.; Del Guerzo, A.; van Esch, J.H.

    2016-01-01

    The orthogonal self-assembly of multiple components is a powerful strategy towards the formation of complex biomimetic architectures, but so far the rules for designing such systems are unclear. Here we show how to identify orthogonal self-assembly at the supramolecular level and describe

  19. Cucurbit[8]uril templated supramolecular ring structure formation and protein assembly modulation

    NARCIS (Netherlands)

    Ramaekers, M.; Wijnands, S.P.W.; van Dongen, J.L.J.; Brunsveld, L.; Dankers, P.Y.W.

    2015-01-01

    The interplay of Phe-Gly-Gly (FGG)-tagged proteins and bivalent FGG-tagged penta(ethylene glycol) as guest molecules with cucurbit[8]uril (Q8) hosts is studied to modulate the supramolecular assembly process. Ring structure formation of the bivalent guest molecule with Q8 leads to enhanced binding

  20. The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Visscher, Koen M.; Rodrigues, João P.G.L.M.; De Vries, Renko; Hennink, Wim E.; Baldus, Marc; Bonvin, Alexandre M.J.J.; Mastrobattista, Enrico; Weingarth, Markus

    2015-01-01

    Nanovesicles self-assembled from amphiphilic peptides are promising candidates for applications in drug delivery. However, complete high-resolution data on the local and supramolecular organization of such materials has been elusive thus far, which is a substantial obstacle to their rational design.

  1. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career.

    Science.gov (United States)

    Anslyn, Eric V

    2016-01-01

    While the strict definition of supramolecular chemistry is "chemistry beyond the molecule", meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics.

  2. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career

    Directory of Open Access Journals (Sweden)

    Eric V. Anslyn

    2016-02-01

    Full Text Available While the strict definition of supramolecular chemistry is “chemistry beyond the molecule”, meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics.

  3. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman

    2016-02-15

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  4. From metal-organic squares to porous zeolite-like supramolecular assemblies

    KAUST Repository

    Wang, Shuang

    2010-12-29

    We report the synthesis, structure, and characterization of two novel porous zeolite-like supramolecular assemblies, ZSA-1 and ZSA-2, having zeolite gis and rho topologies, respectively. The two compounds were assembled from functional metal-organic squares (MOSs) via directional hydrogen-bonding interactions and exhibited permanent microporosity and thermal stability up to 300 °C. © 2010 American Chemical Society.

  5. Supramolecular Layer-by-Layer Assembly of 3D Multicomponent Nanostructures via Multivalent Molecular Recognition

    NARCIS (Netherlands)

    Ling, X.Y.; Phang, In Yee; Reinhoudt, David; Vancso, Gyula J.; Huskens, Jurriaan

    2008-01-01

    The supramolecular layer-by-layer assembly of 3D multicomponent nanostructures of nanoparticles is demonstrated. Nanoimprint lithography (NIL) was used as the patterning tool for making patterned β-cyclodextrin (CD) self-assembled monolayers (SAMs) and for the confinement of nanoparticles on the

  6. Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface.

    Science.gov (United States)

    Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V

    2010-05-17

    The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.

  7. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman; Sapsanis, Christos; Patil, Sachin; Ezzeddine, Alaa; Moosa, Basem; Omran, Hesham; Emwas, Abdul-Hamid M.; Salama, Khaled N.; Khashab, Niveen M.

    2016-01-01

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  8. Research in the Laboratory of Supramolecular Chemistry: functional nanostructures, sensors, and catalysts.

    Science.gov (United States)

    Severin, Kay

    2011-01-01

    This article summarizes research activities in the Laboratory of Supramolecular Chemistry (LCS) at the EPFL. Three topics will be discussed: a) the construction of functional nanostructures by multicomponent self-assembly processes, b) the development of chemosensors using specific receptors or ensembles of crossreactive sensors, and c) the investigation of novel synthetic procedures with organometallic catalysts.

  9. Supramolecular binding and release of sulfide and hydrosulfide anions in water.

    Science.gov (United States)

    Vázquez, J; Sindelar, V

    2018-06-05

    Hydrogen sulfide (H2S) has become an important target for research due to its physiological properties as well as its potential applications in medicine. In this work, supramolecular binding of sulfide (S2-) and hydrosulfide (HS-) anions in water is presented for the first time. Bambusurils were used to slow down the release of these anions in water.

  10. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    Science.gov (United States)

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  11. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  12. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity.

    Science.gov (United States)

    Wahid, Fazli; Zhou, Ya-Ning; Wang, Hai-Song; Wan, Tong; Zhong, Cheng; Chu, Li-Qiang

    2018-04-07

    Injectable and self-healing hydrogels have found numerous applications in drug delivery, tissue engineering and 3D cell culture. Herein, we report an injectable self-healing carboxymethyl chitosan (CMCh) supramolecular hydrogels cross-linked by zinc ions (Zn 2+ ). Supramolecular hydrogels were obtained by simple addition of metal ions solution to CMCh solution at an appropriate pH value. The mechanical properties of these hydrogels were adjustable by the concentration of Zn 2+ . For example, the hydrogel with the highest concentration of Zn 2+ (CMCh-Zn4) showed strongest mechanical properties (storage modulus~11,000Pa) while hydrogel with the lowest concentration of Zn 2+ (CMCh-Zn1) showed weakest mechanical properties (storage modulus~220Pa). As observed visually and confirmed rheologically, the CMCh-Zn1 hydrogel with the lowest Zn 2+ concentration showed thixotropic property. CMCh-Zn1 hydrogel also presented injectable property. Moreover, the antibacterial properties of the prepared supramolecular hydrogels were studied against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by agar well diffusion method. The results revealed Zn 2+ dependent antibacterial properties against both kinds of strains. The inhibition zones were ranging from ~11-24mm and ~10-22mm against S. aureus and E. coli, respectively. We believe that the prepared supramolecular hydrogels could be used as a potential candidate in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Influence of the preparation route on the supramolecular organization of lipids in a vesicular system

    DEFF Research Database (Denmark)

    Elizondo, Elisa; Larsen, Jannik; Hatzakis, Nikos

    2012-01-01

    A confocal fluorescence microscopy-based assay was used for studying the influence of the preparation route on the supramolecular organization of lipids in a vesicular system. In this work, vesicles composed of cholesterol and CTAB (1/1 mol %) or cholesterol and DOPC (2/8 mol %) and incorporating...

  14. Interactions and Supramolecular Organization of Sulfonated Indigo and Thioindigo Dyes in Layered Hydroxide Hosts.

    Science.gov (United States)

    Costa, Ana L; Gomes, Ana C; Pereira, Ricardo C; Pillinger, Martyn; Gonçalves, Isabel S; Pineiro, Marta; Seixas de Melo, J Sérgio

    2018-01-09

    Supramolecularly organized host-guest systems have been synthesized by intercalating water-soluble forms of indigo (indigo carmine, IC) and thioindigo (thioindigo-5,5'-disulfonate, TIS) in zinc-aluminum-layered double hydroxides (LDHs) and zinc-layered hydroxide salts (LHSs) by coprecipitation routes. The colors of the isolated powders were dark blue for hybrids containing only IC, purplish blue or dark lilac for cointercalated samples containing both dyes, and ruby/wine for hybrids containing only TIS. The as-synthesized and thermally treated materials were characterized by Fourier transform infrared, Fourier transform Raman, and nuclear magnetic resonance spectroscopies, powder X-ray diffraction, scanning electron microscopy, and elemental and thermogravimetric analyses. The basal spacings found for IC-LDH, TIS-LDH, IC-LHS, and TIS-LHS materials were 21.9, 21.05, 18.95, and 21.00 Å, respectively, with intermediate spacings being observed for the cointercalated samples that either decreased (LDHs) or increased (LHSs) with increasing TIS content. UV-visible and fluorescence spectroscopies (steady-state and time-resolved) were used to probe the molecular distribution of the immobilized dyes. The presence of aggregates together with the monomer units is suggested for IC-LDH, whereas for TIS-LDH, IC-LHS, and TIS-LHS, the dyes are closer to the isolated situation. Accordingly, while emission from the powder H 2 TIS is strongly quenched, an increment in the emission of about 1 order of magnitude was observed for the TIS-LDH/LHS hybrids. Double-exponential fluorescence decays were obtained and associated with two monomer species interacting differently with cointercalated water molecules. The incorporation of both TIS and IC in the LDH and LHS hosts leads to an almost complete quenching of the fluorescence, pointing to a very efficient energy transfer process from (fluorescent) TIS to (nonfluorescent) IC.

  15. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites.

    Science.gov (United States)

    Benítez, Alejandro J; Lossada, Francisco; Zhu, Baolei; Rudolph, Tobias; Walther, Andreas

    2016-07-11

    Cellulose nanofibrils (CNFs) are considered next generation, renewable reinforcements for sustainable, high-performance bioinspired nanocomposites uniting high stiffness, strength and toughness. However, the challenges associated with making well-defined CNF/polymer nanopaper hybrid structures with well-controlled polymer properties have so far hampered to deduce a quantitative picture of the mechanical properties space and deformation mechanisms, and limits the ability to tune and control the mechanical properties by rational design criteria. Here, we discuss detailed insights on how the thermo-mechanical properties of tailor-made copolymers govern the tensile properties in bioinspired CNF/polymer settings, hence at high fractions of reinforcements and under nanoconfinement conditions for the polymers. To this end, we synthesize a series of fully water-soluble and nonionic copolymers, whose glass transition temperatures (Tg) are varied from -60 to 130 °C. We demonstrate that well-defined polymer-coated core/shell nanofibrils form at intermediate stages and that well-defined nanopaper structures with tunable nanostructure arise. The systematic correlation between the thermal transitions in the (co)polymers, as well as its fraction, on the mechanical properties and deformation mechanisms of the nanocomposites is underscored by tensile tests, SEM imaging of fracture surfaces and dynamic mechanical analysis. An optimum toughness is obtained for copolymers with a Tg close to the testing temperature, where the soft phase possesses the best combination of high molecular mobility and cohesive strength. New deformation modes are activated for the toughest compositions. Our study establishes quantitative structure/property relationships in CNF/(co)polymer nanopapers and opens the design space for future, rational molecular engineering using reversible supramolecular bonds or covalent cross-linking.

  16. β-Cyclodextrin polymer functionalized reduced-graphene oxide: Application for electrochemical determination imidacloprid

    International Nuclear Information System (INIS)

    Chen, Ming; Meng, Yang; Zhang, Wang; Zhou, Jun; Xie, Ju; Diao, Guowang

    2013-01-01

    Highlights: • β-CDP/rGO nanocomposites were prepared by a facile strategy. • β-CDP/rGO nanocomposites displayed the excellent water-dispersity and stability. • β-CDP/rGO exhibited high supramolecular recognition and enrichment capability. • β-CDP/rGO electrode showed excellent electrochemical performance for IDP. -- Abstract: Reduced-graphene oxide (rGO) modified with water-soluble β-cyclodextrin polymer (β-CDP) were successfully prepared by using a simple wet chemical strategy. The obtained β-CDP/rGO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), static contact angle measurement, thermogravimetric analysis (TGA), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS), which confirmed that β-CDP molecules had been effectively loaded onto the surface of rGO. β-CDP/rGO nanocomposites displayed the excellent water-dispersity and stability. More significantly, cyclic voltammetry and differential pulse voltammetry measurement showed that the β-CDP/rGO could exhibit high supramolecular recognition and enrichment capability, and consequently display excellent electrochemical response toward a pesticide-imidacloprid (IDP). As compared with various modified electrodes, β-CDP/rGO modified glassy carbon electrode exhibited an excellent electrochemical performance for IDP. Based on the cyclic voltammograms (CV) of different concentration of IDP at pH 6.8, the detection line range of IDP is 1 × 10 −6 to 1.5 × 10 −4 mol L −1 IDP and the detection limit is 1 × 10 −7 mol L −1 . Differential pulse voltammetry (DPV) measurement at β-CDP/rGO/GCE modified electrode revealed that the reduction peak current increased linearly with the concentration of IDP in linear range of 5 × 10 −8 to 1.5 × 10 −5 mol L −1 and 2 × 10 −5 to 1.5 × 10 −4 mol L −1 with detection limit of 2 × 10 −8 mol L −1 at a signal-to-noise ratio of 3

  17. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir

    2007-01-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  18. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  19. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  20. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    Directory of Open Access Journals (Sweden)

    Daniel I. Hădărugă

    2014-11-01

    Full Text Available Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  1. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system.

    Science.gov (United States)

    Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  2. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  3. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  4. Phthalocyanine-nanocarbon ensembles: from discrete molecular and supramolecular systems to hybrid nanomaterials.

    Science.gov (United States)

    Bottari, Giovanni; de la Torre, Gema; Torres, Tomas

    2015-04-21

    solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene with the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or few-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform. In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, with a particular emphasis on their photoinduced behavior. We believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together with the increasing knowledge of the factors governing their photophysics, will allow for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materials.

  5. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  6. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers.

    Science.gov (United States)

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2015-07-07

    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  7. Chiral Binaphthylbis(4,4'-Bipyridin-1-Ium)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence.

    Science.gov (United States)

    Chen, Xu-Man; Chen, Yong; Liang, Lu; Liu, Qiu-Jun; Liu, Yu

    2018-05-01

    Circularly polarized luminescence (CPL) induced by host-guest complexation remains a challenge in supramolecular chemistry. Herein, a couple of CPL-silent enantiomeric guest binaphthylbis(4,4'-bipyridinium) salts can emit obvious CPL in the presence of cucurbit[8]uril in aqueous media, due to the restriction of molecular rotation limitation effect. Such CPL can be reversibly adjusted by the addition of acid and base. Furthermore, the resultant supramolecular systems can interact with DNA, accompanied by the morphological conversion from branched supramolecular nanowires to exfoliated nanowires, which can enable to the exploration of such supramolecular systems as DNA markers by CPL signals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  9. Water linked 3D coordination polymers: Syntheses, structures and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suryabhan, E-mail: sbs.bhu@gmail.com; Bhim, Anupam

    2016-12-15

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H{sub 2}O)(H{sub 2}O)]{sub n}1, [Pb(OBA)(μ-H{sub 2}O)]{sub n}2 [where OBA=4,4’-Oxybis(benzoate)] and [Pb(SDBA)(H{sub 2}O)]{sub n}.1/4DMF 3 (SDBA=4,4’-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]{sub n}4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH{sub 4} at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives. - Graphical abstract: Three new CPs based on Cd and Pb, have been synthesized and characterized. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol. Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives. - Highlights: • Three new CPs based on Cd and Pb, have been synthesized and characterized. • A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. • One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. • Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives.

  10. Enhanced Performance of Recycled Aggregate Concrete with Atomic Polymer Technology

    Science.gov (United States)

    2012-06-01

    The atomic polymer technology in form of mesoporous inorganic polymer (MIP) can effectively improve material durability and performance of concrete by dramatically increase inter/intragranular bond strength of concrete at nano-scale. The strategy of ...

  11. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  12. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  13. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  14. Osmotic load from glucose polymers.

    Science.gov (United States)

    Koo, W W; Poh, D; Leong, M; Tam, Y K; Succop, P; Checkland, E G

    1991-01-01

    Glucose polymer is a carbohydrate source with variable chain lengths of glucose units which may result in variable osmolality. The osmolality of two commercial glucose polymers was measured in reconstituted powder infant formulas, and the change in osmolality of infant milk formulas at the same increases in energy density (67 kcal/dL to 81 and 97 kcal/dL) from the use of additional milk powder or glucose polymers was compared. All samples were prepared from powders (to nearest 0.1 mg), and osmolality was measured by freezing point depression. For both glucose polymers the within-batch variability of the measured osmolality was less than 3.5%, and between-batch variability of the measured osmolality was less than 9.6%. The measured osmolality varies linearly with energy density (p less than 0.001) and was highest in infant formula reconstituted from milk powder alone. However, there exist significant differences in the measured osmolality between different glucose polymer preparations. At high energy densities (greater than or equal to 97 kcal/dL), infant milk formulas prepared with milk powder alone or with the addition of certain glucose polymer preparation may have high osmolality (greater than or equal to 450 mosm/kg) and theoretically predispose the infant to complications of hyperosmotic feeds.

  15. Catch bonding in the forced dissociation of a polymer endpoint

    Science.gov (United States)

    Vrusch, Cyril; Storm, Cornelis

    2018-04-01

    Applying a force to certain supramolecular bonds may initially stabilize them, manifested by a lower dissociation rate. We show that this behavior, known as catch bonding and by now broadly reported in numerous biophysics bonds, is generically expected when either or both the trapping potential and the force applied to the bond possess some degree of nonlinearity. We enumerate possible scenarios and for each identify the possibility and, if applicable, the criterion for catch bonding to occur. The effect is robustly predicted by Kramers theory and Mean First Passage Time theory and confirmed in direct molecular dynamics simulation. Among the catch scenarios, one plays out essentially any time the force on the bond originates in a polymeric object, implying that some degree of catch bond behavior is to be expected in many settings relevant to polymer network mechanics or optical tweezer experiments.

  16. The Effect of Polymer Backbone Chemistry on the Induction of the Accelerated Blood Clearance in Polymer Modified Liposomes

    KAUST Repository

    Kierstead, Paul H.; Okochi, Hideaki; Venditto, Vincent J.; Chuong, Tracy C.; Kivimae, Saul; Frechet, Jean; Szoka, Francis C.

    2015-01-01

    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG

  17. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  18. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions.

    Science.gov (United States)

    Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang

    2018-05-29

    Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.

  19. Supramolecular effects as driving force of dipyrrin based functional materials engineering

    Science.gov (United States)

    Banakova, E.; Bobrov, A.; Kazak, A.; Marfin, Yu; Merkushev, D.; Molchanov, E.; Rumyantsev, E.; Shipalova, M.; Usoltsev, S.; Vodyanova, O.

    2018-01-01

    Dipyrrin based luminophores are of major interest in different areas of chemistry, material science and molecular biology. Vast variety of the structures with dipyrrin motif were synthesized and investigated up to date. Modern trend in the dipyrrin chemistry is the aimed functionalization of the ligand or complex structure allowing to gain the mechanism based on supramolecular interactions for controlling spectral and photophysical characteristics of compounds for tuning practically valuable properties for specific tasks. Presented paper summarize the results of our research group, working in the field of dipyrrin complexes with p-elements: synthesis, spectral characteristics evaluation and possibilities of practical application investigation. Discussion is focused on the opportunities of molecules preorganization for achieving the supramolecular interactions causing the tuning of fluorescence of the compounds in solutions, polymeric matrices and thin films.

  20. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.