Sample records for supramolecular enzyme complex

  1. Supramolecular modeling of mono-copper enzyme active sites with calix[6]arene-based funnel complexes. (United States)

    Le Poul, Nicolas; Le Mest, Yves; Jabin, Ivan; Reinaud, Olivia


    Supramolecular bioinorganic chemistry is a natural evolution in biomimetic metallic systems since it constitutes a further degree of complexity in modeling. The traditional approach consisting of mimicking the first coordination sphere of metal sites proved to be very efficient, because valuable data are extracted from these examples to gain insight in natural systems mechanisms. But it does not reproduce several specific aspects of enzymes that can be mimicked by the implementation of a cavity embedding the labile active site and thus controlling the properties of the metal ion by noncovalent interactions. This Account reports on a strategy aimed at reproducing some supramolecular aspects encountered in the natural systems. The cavity complexes described herein display a coordination site constructed on a macrocycle. Thanks to a careful design of the cavity-based ligands, complexes orienting their labile site specifically toward the inside of the macrocycle were obtained. The supramolecular systems are based on the flexible calix[6]arene core that surrounds the metal ion labile site, thereby constraining exogenous molecules to pass through the conic funnel to reach the metal center. Such an architecture confers to the metal ion very unusual properties and behaviors, which in many aspects are biologically relevant. Three generations of calix[6]-based ligands are presented and discussed in the context of modeling the monocopper sites encountered in some enzymes. A wide range of phenomena are highlighted such as the impact that the size and shape of the access channel to the metal center have on the selectivity and rate of the binding process, the possible remote control of the electronics through small modifications operated on the cavity edges, induced-fit behavior associated with host-guest association (shoe-tree effect) that affects the redox properties of the metal ion and the electron exchange pathway, consequences of forbidden associative ligand exchange

  2. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl-dextran-MMA graft copolymer and paclitaxel used as an artificial enzyme. (United States)

    Onishi, Yasuhiko; Eshita, Yuki; Ji, Rui-Cheng; Onishi, Masayasu; Kobayashi, Takashi; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji


    The anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl-dextran-methacrylic acid methylester copolymer (DDMC)/paclitaxel (PTX), obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50-300 nm in size. This complex is considered to be useful as a drug delivery system (DDS) for anticancer compounds since it formed a stable polymeric micelle in water. The resistance of B16F10 melanoma cells to PTX was shown clearly through a maximum survival curve. Conversely, the DDMC/PTX complex showed a superior anticancer efficacy and cell killing rate, as determined through a Michaelis-Menten-type equation, which may promote an allosteric supramolecular reaction to tubulin, in the same manner as an enzymatic reaction. The DDMC/PTX complex showed significantly higher anticancer activity compared to PTX alone in mouse skin in vivo. The median survival times of the saline, PTX, DDMC/PTX4 (particle size 50 nm), and DDMC/PTX5 (particle size 290 nm) groups were 120 h (treatment (T)/control (C), 1.0), 176 h (T/C, 1.46), 328 h (T/C, 2.73), and 280 h (T/C, 2.33), respectively. The supramolecular DDMC/PTX complex showed twice the effectiveness of PTX alone (p < 0.036). Above all, the DDMC/PTX complex is not degraded in cells and acts as an intact supramolecular assembly, which adds a new species to the range of DDS.

  3. A chiral Mn (IV) complex and its supramolecular assembly ...

    Indian Academy of Sciences (India)

    Singlecrystal X-ray analysis revealed that compound 1 crystallises in the monoclinic 21 space group with six mononuclear [MnIVL2] units in the asymmetric unit along with three solvent DMF molecules. In the crystal structure, each Mn(IV) complex, acting as the building unit, undergoes supramolecular linking through C-H ...

  4. Linear sweep voltammetric studies on the supramolecular complex ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 2. Linear sweep voltammetric studies on the supramolecular complex of alizarin red S with lysozyme and determination of lysozyme. Wei Sun Na Zhao Xueliang Niu Yan Wang Kui Jiao. Full Papers Volume 121 Issue 2 March 2009 pp 217-223 ...

  5. Linear sweep voltammetric studies on the supramolecular complex ...

    Indian Academy of Sciences (India)


    Linear sweep voltammetric studies on the supramolecular complex of alizarin red S with lysozyme and determination of lysozyme. WEI SUN*, NA ZHAO, XUELIANG NIU, YAN WANG and KUI JIAO. Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and. Molecular Engineering ...

  6. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth


    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  7. Probing supramolecular complexation of cetylpyridinium chloride with crown ethers (United States)

    Saha, Subhadeep; Roy, Mahendra Nath


    Supramolecular complexations of cetylpyridinium chloride with three comparable cavity dimension based crown ethers, namely, dibenzo-18-crown-6, 18-crown-6 and dicyclohexano-18-crown-6 have been explored and adequately compared in acetonitrile with the help of conductivity in a series of temperatures to reveal the stoichiometry of the three host-guest complexes. Programme based mathematical treatment of the conductivity data affords association constants for complexations from which the thermodynamic parameters were derived for better comprehension about the process. The interactions at molecular level have been explained and decisively discussed by means of FT-IR and 1H NMR spectroscopic studies that demonstrate H-bond type interactions as the primarily force of attraction for the investigated supramolecular complexations.

  8. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie


    Molecular chemistry has developed a wide range of very powerful procedures for constructing ever more sophisticated molecules from atoms linked by covalent bonds. Beyond molecular chemistry lies supramolecular chemistry, which aims at developing highly complex chemical systems from components interacting via non-covalent intermolecular forces. By the appropriate manipulation of these interactions, supramolecular chemistry became progressively the chemistry of molecular information, involving the storage of information at the molecular level, in the structural features, and its retrieval, transfer, and processing at the supramolecular level, through molecular recognition processes operating via specific interactional algorithms. This has paved the way towards apprehending chemistry also as an information science. Numerous receptors capable of recognizing, i.e. selectively binding, specific substrates have been developed, based on the molecular information stored in the interacting species. Suitably functionalized receptors may perform supramolecular catalysis and selective transport processes. In combination with polymolecular organization, recognition opens ways towards the design of molecular and supramolecular devices based on functional (photoactive, electroactive, ionoactive, etc) components. A step beyond preorganization consists in the design of systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined supramolecular architectures by self-assembly from their components. Self-organization processes, directed by the molecular information stored in the components and read out at the supramolecular level through specific interactions, represent the operation of programmed chemical systems. They have been implemented for the generation of a variety of discrete functional architectures of either organic or inorganic nature. Self-organization processes also give access to advanced supramolecular materials, such as

  9. Enhancing bio-availability of β-naphthoflavone by supramolecular complexation with 6,6'-thiobis(methylene)-β-cyclodextrin dimer. (United States)

    Choi, Jae Min; Cho, Eunae; Lee, Benel; Jeong, Daham; Choi, Youngjin; Yu, Jae-Hyuk; Jung, Seunho


    The aryl hydrocarbon receptor (AhR) is a ligand activated transcriptional regulator, which governs key biological processes including detoxification of carcinogens. β-Naphthoflavone (β-NF) is a non-toxic flavonoid, and a potent AhR agonist. Thus, β-NF can induce the representative detoxifying enzyme cytochrome P4501A1, thereby enhancing the detoxification potential. However, its low water solubility hampers the use. We found that supramolecular complexation of β-NF with the synthetic 6,6'-thiobis(methylene)-β-cyclodextrin (β-CD-S) dimer significantly enhanced β-NF's role as an AhR agonist. The water solubility of β-NF was increased to 469 fold by effective supramolecular complexation with the β-CD-S dimer, and caused significant induction of cytochrome P4501A1. Stable formation of the supramolecular complex of β-NF with β-CD-S-dimer was verified by various analyses. In summary, supramolecular complexation of β-NF with β-CD-S dimer greatly enhanced bio-availability of β-NF as an AhR agonist. Our findings provide an easy, non-destructive, and alternative approach to enhance the bio-availability of therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Supramolecular Control of Oligothienylenevinylene-Fullerene Interactions: Evidence for a Ground-State EDA Complex

    NARCIS (Netherlands)

    McClenaghan, N.D.; Grote, Z.; Darriet, K.; Zimine, M.Y.; Williams, R.M.; De Cola, L.; Bassani, D.M.


    Complementary hydrogen-bonding interactions between a barbituric acid-substituted fullerene derivative (1) and corresponding receptor (2) bearing thienylenevinylene units are used to assemble a 1:1 supramolecular complex ( K ) 5500 M-1). Due to the close proximity of the redox-active moieties within

  11. Efficient Energy Transfer in Supramolecular, Hydrogen-Bonded Polypyridylruthenium-Osmium Complexes

    NARCIS (Netherlands)

    Rau, Sven; Schäfer, Bernhard; Schebesta, Sebastian; Grüßing, André; Poppitz, Wolfgang; Walther, Dirk; Duati, Marco; Browne, Wesley R.; Vos, Johannes G.

    Hydrogen bond association between ruthenium bibenzimidazole and carboxylated polypyridylosmium complexes results in stable supramolecular aggregates. The determined stability constant of logK approximate to 6 +/- 0.3 allows efficient energy transfer from the ruthenium to the osmium moiety. (C)

  12. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, Eduard A; Maksimov, Anton L; Runova, Elena A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)


    The state-of-the-art in investigations into the supramolecular catalysis by metal complexes using macrocyclic receptor molecules is surveyed. The emphasis is placed on issues related to the design of novel metal complex catalysts capable of molecular recognition and to their applications in organic synthesis, in particular, in such reactions as hydrogenation, hydroformylation, carbonylation, hydroxylation, Wacker oxidation, biomimetic oxidation, and some others. The factors affecting the activity, stability and selectivity of such catalytic systems are discussed.

  13. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs. (United States)

    Cho, Eunae; Jung, Seunho


    In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.

  14. Synergy in supramolecular chemistry

    CERN Document Server

    Nabeshima, Tatsuya


    Synergy and Cooperativity in Multi-metal Supramolecular Systems, T. NabeshimaHierarchically Assembled Titanium Helicates, Markus AlbrechtSupramolecular Hosts and Catalysts Formed by Self-assembly of Multinuclear Zinc Complexes in Aqueous Solution, Shin AokiSupramolecular Assemblies Based on Interionic Interactions, H. MaedaSupramolecular Synergy in the Formation and Function of Guanosine Quadruplexes, Jeffery T. DavisOn-Surface Chirality in Porous Self-Assembled Monolayers at Liquid-Solid Interface, Kazukuni Tahar

  15. Optical Sensing of Anions via Supramolecular Recognition with Biimidazole Complexes. (United States)

    Rommel, Sebastian A; Sorsche, Dieter; Fleischmann, Maximilian; Rau, Sven


    Phosphorescent metal complexes with peripheral N-H donor functionalities have attracted great attention as potential molecular sensing units for anionic species lately. In this contribution we discuss the development and potential of anion recognition and sensing features of recent examples of luminescent 2,2'-biimidazole complexes of ruthenium(II), iridium(III), osmium(II) and cobalt(III). The general dependency of photophysical features in these complexes regarding the acid-base chemistry of the peripheral N-H functionalities will be outlined as a basic requirement for optical ion recognition. Systematic strategies for the tuning and specific improvement by synthetic means will be discussed regarding recent reports. With respect to their distinct photophysical features, different transition metals are considered individually to demonstrate particular trends regarding ligand modification within the respective groups. In summary, this review elucidates the current state-of-the-art and future potential of the versatile class of 2,2'-biimidazole based sensor chromophores. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Supramolecular coordination and antimicrobial activities of constructed mixed ligand complexes (United States)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A.


    A novel series of copper(II) and palladium(II) with 4-derivatives benzaldehyde pyrazolone (Ln) were synthesized. The mixed ligand complexes were prepared by using 1,10-phenanthroline (Phen) as second ligand. The structure of these complexes was identified and confirm by elemental analysis, molar conductivity, UV-Vis, IR and 1H NMR spectroscopy and magnetic moment measurements as well as thermal analysis. The ligand behaves as a neutral bidentate ligand through ON donor sites. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(Ln)2]Cl2ṡ2H2O. Schiff bases (Ln) were tested against bacterial species; namely two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Klebsiella pneumoniae) and fungal species (Aspergillus niger, Fusarium oxysporium, Penicillium italicum and Alternaria alternata). The tested compounds have antibacterial activity against S. aureus, B. cereus and K. pneumoniae.

  17. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence

    International Nuclear Information System (INIS)

    Yin Xia; Fan Jun; Wang Zhihong; Zheng Shengrun; Tan Jingbo; Zhang Weiguang


    Four new luminescent complexes, namely, [Eu(aba) 2 (NO 3 )(C 2 H 5 OH) 2 ] (1), [Eu(aba) 3 (H 2 O) 2 ].0.5 (4, 4'-bpy).2H 2 O (2), [Eu 2 (aba) 4 (2, 2'-bpy) 2 (NO 3 ) 2 ].4H 2 O (3) and [Tb 2 (aba) 4 (phen) 2 (NO 3 ) 2 ].2C 2 H 5 OH (4) were obtained by treating Ln(NO 3 ) 3 .6H 2 O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed. - Graphical abstract: Structure variation of four complexes is attributed to the change of coligands and various coordination modes of aba molecules. Moreover, they show characteristic emissions in the visible region. Highlights: → Auxiliary ligands have played the crucial roles on the structures of the resulting complexes. → Isolated structure units are further assembled via H-bonds to form supramolecular networks. → These solid-state complexes exhibit strong, characteristic emissions in the visible region.

  18. Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications. (United States)

    Semeraro, Paola; Chimienti, Guglielmina; Altamura, Emiliano; Fini, Paola; Rizzi, Vito; Cosma, Pinalysa


    Chlorophyll a (Chl a), an amphipathic porphyrin, was employed as natural photosensitizer for photodynamic therapy applications. Due to its lacking solubility in water and high tendency to aggregate, Chl a was included into different modified cyclodextrins (CDs) to form stable water-soluble supramolecular complexes. To achieve this aim, 2-Hydroxypropyl-β-cyclodextrin (2-HP-β-CD), 2-Hydroxypropyl-γ-cyclodextrin (2-HP-γ-CD), Heptakis(2,6-di-o-methyl)-β-cyclodextrin (DIMEB) and Heptakis(2,3,6-tri-o-methyl)-β-cyclodextrin (TRIMEB) were used. The chemical physical properties of Chl a/CD complexes in cellular medium were studied by means of UV-Vis absorption spectroscopy. Results demonstrated the good aptitude of 2-HP-γ-CD, and more particularly of 2-HP-β-CD, to solubilize the Chl a in cell culture medium in monomeric and photoactive form. Then, Chl a/2-HP-β-CD and Chl a/2-HP-γ-CD complexes were evaluated in vitro on human colorectal adenocarcinoma HT-29 cell line, and cytotoxicity and intracellular localization were respectively assessed. Further tests, such as phototoxicity, ROS generation, intracellular localization and mechanism of cell death were then focused exclusively on Chl a/2-HP-β-CD system. This complex exhibited no dark toxicity and a high phototoxicity toward HT-29 cells inducing cell death via necrotic mechanism. Therefore, it is possible to affirm that Chl a/2-HP-β-CD supramolecular complex could be a promising and potential formulation for applications in photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol. (United States)

    Wimmerová, Martina; Siglerová, Věra; Šaman, David; Šlouf, Miroslav; Kaletová, Eva; Wimmer, Zdeněk


    Naturally occurring acylated β-sitosteryl glucosides have been investigated for their novel properties. The synthetic protocol based on the literature data was improved and optimized. The main improvement consists in employing systems of ionic liquids combined with organic solvents in lipase-mediated esterification of (3β)-stigmast-5-en-3-yl β-d-glucopyranoside to get (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides. Maximum yields of these products were achieved with Candida antarctica lipase B immobilized on Immobead 150, recombinant from yeast, in absolute THF and in the presence of either ionic liquid [1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM]BF 4 ) or 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM]PF 6 )] employed. Pharmacological activity of (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides was studied in tests on MCF7 tumor cell lines; the compounds displayed moderate activity which was higher than the activity of β-sitosterol. Supramolecular characteristics were discovered at (3β)-stigmast-5-en-3-yl 6-O-dodecanoyl-β-d-glucopyranoside that formed supramolecular polymer through multiple H-bonds in a methanol/water system (60/40). Its formation was confirmed by the independent UV-vis measurements during certain time period, by variable temperature DOSY-NMR measurement in deuteriochloroform, and visualized by transmission electron microscopy (TEM) and atomic force microscopy (AFM) showing chiral helical structures and complex superassembly systems based on fibrous supramolecular polymer. In contrary, no such properties have been observed for the other two (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides under the given experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers. (United States)

    Zhang, Kaka; Yeung, Margaret Ching-Lam; Leung, Sammual Yu-Lut; Yam, Vivian Wing-Wah


    An important feature of biological systems to achieve complexity and precision is the involvement of multiple components where each component plays its own role and collaborates with other components. Mimicking this, we report living supramolecular polymerization achieved by collaborative assembly of two structurally dissimilar components, that is, platinum(II) complexes and poly(ethylene glycol)- b -poly(acrylic acid) (PEG- b -PAA). The PAA blocks neutralize the charges of the platinum(II) complexes, with the noncovalent metal-metal and π-π interactions directing the longitudinal growth of the platinum(II) complexes into 1D crystalline nanostructures, and the PEG blocks inhibiting the transverse growth of the platinum(II) complexes and providing the whole system with excellent solubility. The ends of the 1D crystalline nanostructures have been found to be active during the assembly and remain active after the assembly. One-dimensional segmented nanostructures with heterojunctions have been produced by sequential growth of two types of platinum(II) complexes. The PAA blocks act as adapters at the heterojunctions for lattice matching between chemically and crystallographically different platinum(II) complexes, achieving heterojunctions with a lattice mismatch as large as 21%. Published under the PNAS license.

  1. A new supramolecular chromium(III) complex: Synthesis, structural determination, optical study, magnetic and antibacterial activity (United States)

    Dridi, Rihab; Dhieb, Cyrine; Cherni, Saoussen Namouchi; Boudjada, Nassira Chniba; Sadfi Zouaoui, Najla; Zid, Mohamed Faouzi


    A new chromium (III) complex 1,5-Naphthyridine Trans-diaquadioxalatochromate (III) dihydrate, had been synthesized by self-assembly of chromium (III) nitrate with oxalic acid and 1,5-Naphthyridine. The complex was characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, thermogravimetric analysis and UV-Visible spectroscopy. The crystal morphology was carried out using Bravais-Friedel-Donnay-Harker (BFDH) model. Single crystal X-Ray structure determination revealed that the complex posses two crystallographically independent Cr(III) centers. Each Cr(III) has a distorted octahedron geometry involving two axial O atoms from two water molecules and four equatorial O atoms from two oxalate dianions forming trans-[Cr(C2O4)2(H2O)2]- complex anions. The charge compensation is accomplished by the incorporation of 1,5-Naphthyridine cations. Connection between these entities is ensured by means of strong hydrogen bonds giving rise to 3D supramolecular architecture. Hirshfeld surface analysis and the related 2D fingerprint plots were used for decoding plausible intermolecular interactions in the crystal packing. The magnetic properties of the complex had been investigated and discussed in the context of its structure. The antimicrobial activity was evaluated by disc diffusion method highlighting an antagonistic effect of the synthesized complex against Gram-positive and Gram-negative species.

  2. Supramolecular Phosphorescent Trinuclear Copper(I Pyrazolate Complexes for Vapochromic Chemosensors of Ethanol

    Directory of Open Access Journals (Sweden)

    Hendrik Oktendy Lintang


    Full Text Available We highlight that by using supramolecular single crystals of phosphorescent trinuclear copper(I pyrazolate complexes with different molecular structures (2A-E, vapochromic chemosensors were successfully designed for sensing ethanol with high sensing capability. These complexes 2A-E were synthesized from non-side chain, 3,5-dimethyl, 3,5-bis(trifluoromethyl, 3,5-diphenyl and 4-(3,5-dimethoxybenzyl-3,5-dimethyl pyrazole ligands (1A-E in 83, 97, 99, 88 and 85% yields, respectively. All complexes showed emission bands centered at 553, 584, 570 and 616 nm upon an excitation at 280 nm for complexes 2A-C,E, respectively and 642 nm upon an excitation at 321 nm for complex 2D with lifetime in microseconds, indicating a large Stoke shift for phosphorescent compounds. These emission spectra were in good agreement with their colors from green to red upon exposure to a UV lamp with an excitation at 254 nm in dark room. Upon exposure to ethanol in 5 min, quenching, photoinduced energy transfer and shifting of emission intensities were observed for chemosensors 2A-C, 2D and 2E, respectively. Interestingly, chemosensor 2E only showed completely and autonomously recovery of its original emission intensity. Such novel finding in sensing capability might be caused by a weak intermolecular hydrogen bonding interaction of ethanol to oxygen atoms at dimethoxybenzyl side-chains of the pyrazole ring.

  3. Triptycene based organometallic complexes: a new class of acceptor synthons for supramolecular ensembles. (United States)

    Chakraborty, Sourav; Mondal, Snehasish; Bhowmick, Sourav; Ma, Jianqiu; Tan, Hongwei; Neogi, Subhadip; Das, Neeladri


    Preparation and characterization of two new triptycene based polytopic Pt(II) organometallic complexes are being reported. These complexes have three trans-bromobis(trialkylphosphine)platinum(II) units directly attached to the central triptycene unit. These organoplatinum complexes were converted to the corresponding nitrate salts for subsequent use in self-assembly reactions. Characterization of these organometallic triptycene complexes by multinuclear NMR, FTIR, mass spectrometry and elemental analyses is described. The molecular structure of one of the organoplatinum triptycene tripods was determined by single-crystal X-ray crystallography. The potential utility of these organometallic tritopic acceptors as building blocks in the construction of metallasupramolecular cages containing the triptycene motif is explored. Additionally, for the first time, 3,3'-bipyridine has been used as a flexible donor tecton for self-assembly of discrete and finite metallacages using triptycene based tritopic organometallic acceptor units. Triptycene motif containing supramolecules were characterized by multinuclear NMR (including (1)H DOSY), mass spectrometry and elemental analyses. Geometry of each supramolecular framework was optimized by employing the PM6 semiempirical molecular orbital method to predict its shape and size.

  4. Dinuclear ru-aqua complexes for selective epoxidation catalysis based on supramolecular substrate orientation effects

    KAUST Repository

    Di Giovanni, Carlo


    Ru-aqua complex {[RuII(trpy)(H2O)] 2(μ-pyr-dc)}+ is a powerful epoxidation catalyst for a wide range of linear and cyclic alkenes. High turnover numbers (TNs), up to 17000, and turnover frequencies (TOF), up to 24120 h-1 (6.7 s -1), have been obtained using PhIO as oxidant. This species presents an outstanding stereospecificity for both cis and trans olefins towards the formation of their corresponding cis and trans epoxides. In addition, it shows different reactivity to cis and trans olefins due to a substrate orientation supramolecular effect transmitted by its ligand scaffold. This effect together with the impressive reaction rates are rationalized using electrochemical techniques and DFT calculations. A new Ru-aqua complex that behaves as a powerful epoxidation catalyst for a wide range of linear and cyclic alkenes is reported. High turnover numbers and frequencies are obtained by using PhIO as oxidant. The complex shows an outstanding stereospecificity for both cis and trans olefins towards the formation of their corresponding cis and trans epoxides (see figure). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Supramolecular architecture of metal-organic frameworks involving dinuclear copper paddle-wheel complexes. (United States)

    Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas


    The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.

  6. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence (United States)

    Yin, Xia; Fan, Jun; Wang, Zhi Hong; Zheng, Sheng Run; Tan, Jing Bo; Zhang, Wei Guang


    Four new luminescent complexes, namely, [Eu(aba) 2(NO 3)(C 2H 5OH) 2] ( 1), [Eu(aba) 3(H 2O) 2]·0.5 (4, 4'-bpy)·2H 2O ( 2), [Eu 2(aba) 4(2, 2'-bpy) 2(NO 3) 2]·4H 2O ( 3) and [Tb 2(aba) 4(phen) 2(NO 3) 2]·2C 2H 5OH ( 4) were obtained by treating Ln(NO 3) 3·6H 2O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains ( 1- 2) and dimeric structures ( 3- 4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed.

  7. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor (United States)

    Zhang, Yi-Qi; Paszkiewicz, Mateusz; Du, Ping; Zhang, Liding; Lin, Tao; Chen, Zhi; Klyatskaya, Svetlana; Ruben, Mario; Seitsonen, Ari P.; Barth, Johannes V.; Klappenberger, Florian


    Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular ( Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl-Ag-alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

  8. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)


    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  9. Dispersion of single-wall carbon nanotubes with supramolecular Congo red - properties of the complexes and mechanism of the interaction. (United States)

    Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek


    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.

  10. Syntheses, Crystal Structures and Thermal Behaviors of Two Supramolecular Salamo-Type Cobalt(II and Zinc(II Complexes

    Directory of Open Access Journals (Sweden)

    Gang Li


    Full Text Available This paper reports the syntheses of two new complexes, [Co(L1(H2O2] (1 and [{Zn(L2(μ-OAcZn(n-PrOH}2] (2, from asymmetric halogen-substituted Salamo-type ligands H2L1 and H3L2, respectively. Investigation of the crystal structure of complex 1 reveals that the complex includes one Co(II ion, one (L12− unit and two coordinated water molecules. Complex 1 shows slightly distorted octahedral coordination geometry, forming an infinite 2D supramolecular structure by intermolecular hydrogen bond and π–π stacking interactions. Complex 2 contains four Zn(IIions, two completely deprotonated (L23− moieties, two coordinated μ-OAc− ions and n-propanol molecules. The Zn(II ions in complex 2 display slightly distorted trigonal bipyramidal or square pyramidal geometries.

  11. Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces

    NARCIS (Netherlands)

    Neirynck, Pauline; Neirynck, P.; Schimer, J.; Jonkheijm, Pascal; Milroy, L.G.; Cigler, P.; Brunsveld, Luc


    Supramolecular chemistry provides an attractive entry to generate dynamic and well-controlled bioactive surfaces. Novel host–guest systems are urgently needed to provide a broader affinity and applicability portfolio. A synthetic strategy to carborane–peptide bioconjugates was therefore developed to

  12. Carborane-beta-cyclodextrin complexes as a supramolecular connector for bioactive surfaces

    Czech Academy of Sciences Publication Activity Database

    Neirynck, P.; Schimer, Jiří; Jonkheijm, P.; Milroy, L. G.; Cígler, Petr; Brunsveld, L.


    Roč. 3, č. 4 (2015), s. 539-545 ISSN 2050-750X R&D Projects: GA MŠk(CZ) LH11027 Institutional support: RVO:61388963 Keywords : beta-cyclodextrine/carborane host-guest system * supramolecular chemistry * bioactive surfaces Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.872, year: 2015

  13. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery against cestode infection of animals. (United States)

    Arkhipov, Ivan A; Sadov, Konstantin M; Limova, Yulia V; Sadova, Alexandra K; Varlamova, Anastasiya I; Khalikov, Salavat S; Dushkin, Alexandr V; Chistyachenko, Yulia S


    Niclosamide is an anthelmintic that is widely used to treat cestode infection of animals. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery was studied in hymenolepiosis of mice and monieziosis of sheep. The efficacy of new substances of niclosamide with polyvinylpyrrolidone polymer in different ratios (1:10; 1:5; 1:2) was determined by the results of helminthological necropsy of the small intestine of sheep and mice. Pre-treatment eggs per gram (EPG) were not significantly different (P>0.1) among groups. The controlled test was used to evaluate the efficacy. A high efficacy (>95% efficacy) of the supramolecular complexes of niclosamide with PVP (SCoNwPVP) was shown in different ratios (1:10; 1:5 and 1:2) at a dose of 20mg/kg of body weight at oral administration against Hymenolepis nana in mice and Moniezia expansa in sheep. Whereas the basic drug - substance of niclosamide was effective at a dose of 100mg/kg of b/w. No adverse effects of the drugs on animal health were detected during the study. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dimensional Control and Morphological Transformations of Supramolecular Polymeric Nanofibers Based on Cofacially-Stacked Planar Amphiphilic Platinum(II) Complexes. (United States)

    Robinson, Matthew E; Nazemi, Ali; Lunn, David J; Hayward, Dominic W; Boott, Charlotte E; Hsiao, Ming-Siao; Harniman, Robert L; Davis, Sean A; Whittell, George R; Richardson, Robert M; De Cola, Luisa; Manners, Ian


    Square-planar platinum(II) complexes often stack cofacially to yield supramolecular fiber-like structures with interesting photophysical properties. However, control over fiber dimensions and the resulting colloidal stability is limited. We report the self-assembly of amphiphilic Pt(II) complexes with solubilizing ancillary ligands based on polyethylene glycol [PEG n , where n = 16, 12, 7]. The complex with the longest solubilizing PEG ligand, Pt-PEG 16 , self-assembled to form polydisperse one-dimensional (1D) nanofibers (diameters fibers of length up to ca. 400 nm. The fiber lengths were dependent on the Pt-PEG 16 complex to seed mass ratio in a manner analogous to a living covalent polymerization of molecular monomers. Moreover, the fiber lengths were unchanged in solution after 1 week and were therefore "static" with respect to interfiber exchange processes on this time scale. In contrast, similarly formed near-uniform fibers of Pt-PEG 12 exhibited dynamic behavior that led to broadening of the length distribution within 48 h. After aging for 4 weeks in solution, Pt-PEG 12 fibers partially evolved into 2D platelets. Furthermore, self-assembly of Pt-PEG 7 yielded only transient fibers which rapidly evolved into 2D platelets. On addition of further fiber-forming Pt complex (Pt-PEG 16 ), the platelets formed assemblies via the growth of fibers selectively from their short edges. Our studies demonstrate that when interfiber dynamic exchange is suppressed, dimensional control and hierarchical structure formation are possible for supramolecular polymers through the use of kinetically controlled seeded growth methods.

  15. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. (United States)

    Kobayashi, Naoya; Arai, Ryoichi


    The central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein. These state-of-the-art nanobiotechnologies for designing supramolecular protein complexes will facilitate the development of novel functional nanobiomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes (United States)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan


    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  17. Enzyme (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  18. Carbohydrates in Supramolecular Chemistry. (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H


    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  19. The influence of substituents and the environment on the NMR shielding constants of supramolecular complexes based on A-T and A-U base pairs

    NARCIS (Netherlands)

    Castro, Abril C.; Swart, Marcel; Guerra, Célia Fonseca


    In the present study, we have theoretically analyzed supramolecular complexes based on the Watson-Crick A-T and A-U base pairs using dispersion-corrected density functional theory (DFT). Hydrogen atoms H8 and/or H6 in the natural adenine and thymine/uracil bases were replaced, respectively, by

  20. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of beta-sitosterol

    Czech Academy of Sciences Publication Activity Database

    Wimmerová, Martina; Siglerová, Věra; Šaman, David; Šlouf, Miroslav; Kaletová, Eva; Wimmer, Zdeněk


    Roč. 117, JAN (2017), s. 38-43 ISSN 0039-128X R&D Projects: GA MŠk LD15012; GA MŠk(CZ) LO1507 Institutional support: RVO:61389030 ; RVO:61388963 ; RVO:61389013 Keywords : glycosides * esterification * resolution * sterols * esters * foods * l. * beta-Sitosterol * Acylated steryl glycoside * Lipase * Ionic liquid * Supramolecular self-assembly * Pharmacological activity Subject RIV: CC - Organic Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Organic chemistry; Polymer science (UMCH-V); Organic chemistry (UOCHB-X) Impact factor: 2.282, year: 2016

  1. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    antigen interactions. working in different areas such as chemical science, biological science, physical science, material science and so on. On the whole, supramolecular chemistry focuses on two over- lapping areas, 'supramolecules' and ...

  2. Cytosine-Cytosine Base-Pair Mismatch and Chirality in Nucleotide Supramolecular Coordination Complexes. (United States)

    Qiu, Qi-Ming; Zhou, Pei; Gu, Leilei; Hao, Liang; Liu, Minghua; Li, Hui


    The base-pair sequences are the foundation for the biological processes of DNA or RNA, and base-pair mismatch is very important to reveal genetic diseases and DNA rearrangements. However, the lack of well-defined structural information about base-pair mismatch is obstructing the investigation of this issue. The challenge is to crystallize the materials containing the base-pair mismatch. Engineering the small-molecule mimics or model is an effective strategy to solve this issue. Here, six cytidine-5'-monophosphate (CMP) and 2'-deoxycytidine-5'-monophosphate (dCMP) coordination polymers were reported containing cytosine-cytosine base-pair mismatch (i-motif), and their single-crystal structures and chiralities were studied. The precise control over the formation of the i-motif was demonstrated, in which the regulating of supramolecular interactions was achieved based on molecular design. In addition, the chiralities of these coordination polymers were investigated according to their crystal structures and solution- and solid-state circular dichroism spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic Control of Macromolecular Conformations in Supramolecular Anionic Polysaccharide-Iron Complexes. (United States)

    Schefer, Larissa; Bulant, Ariane; Zeder, Christophe; Saha, Abhijit; Mezzenga, Raffaele


    The anionic iota carrageenan polysaccharide is enriched with Fe(II) and Fe(III) by ion exchange against FeSO4 and FeCl3 . With divalent iron, portions of polymer chains undergo a secondary structure transition from random coils to single helices. The single-chain macromolecular conformations can be manipulated by an external magnetic field: upon exposure to 1.1 T, the helical portions exhibit 1.5-fold stiffening and 1.1-fold stretching, whereas the coil conformations respond much less as a result of lower contents of condensed iron ions. Along with the coil-helix transition, the trivalent iron triggers the formation of superstructures. The applicability of iron-enriched iota carrageenan as functional ingredient for food fortification is tested by free Fe(2+) and Fe(3+) contents, respectively, with the most promising iota-Fe(III) yielding 53% of bound iron, which is due to the superstructures, where the ferric ions are chelated by the supramolecularly self-assembled polymer host. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thiosemicarbazone Dynamic Combinatorial Chemistry: Equilibrator-Induced Dynamic State, Formation of Complex Libraries, and a Supramolecular On/Off Switch. (United States)

    Larsen, Dennis; Jeppesen, Anne; Kleinlein, Claudia; Pittelkow, Michael


    Dynamic combinatorial libraries that equilibrate under thermodynamic control and can be trapped kinetically when desired are key to creating complex systems that can mimic dynamic biological systems, such as the biochemical system of life. A much-sought-after feature is the ability to turn off the dynamic exchange of the system, in order to investigate a transient state away from thermodynamic equilibrium, and then turn on the dynamic exchange again. We describe here the first use of thiosemicarbazone exchange to form dynamic combinatorial libraries. The libraries were found to require a nucleophilic catalyst, or equilibrator, in order to reach thermodynamic equilibrium. This equilibrator approach adds a supramolecular level of control over the dynamic system and allows the dynamic exchange to be turned off by addition of 18-crown-6, which binds the equilibrator in a nonnucleophilic complex. The dynamic exchange can be restarted by addition of potassium ions that competitively bind 18-crown-6, thus liberating the equilibrator. The highly complex thiosemicarbazone-based macrocyclic libraries contain both [2]catenanes and sequence isomers, which can be distinguished by HPLC-MS/MS.

  5. Ligninolytic enzyme complex of Armillaria spp

    Czech Academy of Sciences Publication Activity Database

    Stoychev, I.; Nerud, František


    Roč. 45, č. 3 (2000), s. 248-250 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin olytic enzyme * lignin peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 0.752, year: 2000

  6. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer


    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  7. Supramolecular Self-Assembly and Dual-Switch Vapochromic, Vapoluminescent, and Resistive Memory Behaviors of Amphiphilic Platinum(II) Complexes. (United States)

    Li, Yongguang; Chen, Ling; Ai, Yeye; Hong, Eugene Yau-Hin; Chan, Alan Kwun-Wa; Yam, Vivian Wing-Wah


    A series of amphiphilic platinum(II) complexes with tridentate N-donor ligands has been synthesized and characterized. Different supramolecular architectures are constructed using the amphiphilic molecules as the building blocks through the formation of Pt···Pt and π-π stacking interactions in aqueous media. The aggregation-deaggregation-aggregation self-assembly behavior together with obvious spectroscopic changes could be fine-tuned by the addition of THF in aqueous media. More interestingly, one of the complexes is found to show fast response and high selectivity toward alcohol and water vapors with good reversibility, leading to drastic color and luminescence changes, and hence unique dual switching behavior, with the water molecules readily displaced by the alcohol vapor. Rapid writing and erasure have been realized via the control of a jet or a stream of alcohol vapor flow. In addition, it has been employed as active materials in the fabrication of small-molecule solution-processable resistive memory devices, exhibiting stable and promising binary memory performance with threshold voltages of ca. 3.4 V, high ON/OFF ratios of up to 10 5 and long retention times of over 10 4 s. The vapochromic and vapoluminescent materials are demonstrated to have potential applications in chemosensing, logic gates, VOC monitoring, and memory functions.

  8. Induction and Rationalization of Supramolecular Chirality in the Tweezer-Diamine Complexes: Insights from Experimental and DFT Studies. (United States)

    Dhamija, Avinash; Ikbal, Sk Asif; Rath, Sankar Prasad


    A series of supramolecular chiral 1:1 sandwich complexes (1 M ·L and 2 M ·L) consisting of diphenylether/ethane bridged metallobisporphyrin host (1 M and 2 M ; M: Zn/Mg) and chiral diamine guest (L) have been presented. The host-guest complexes are compared just upon changing the metal ion (Mg vs Zn) or the bridge (highly flexible ethane vs rigid diphenylether) keeping other factors similar. The factors that would influence the chirality induction process along with their contributions toward the sign and intensity of the CD couplet of the overall complex have been analyzed. Larger CD amplitude was observed in the host-guest complex with the more flexible ethane bridge as compared to the rigid diphenylether bridged one, irrespective of the metal ion used. Also, Zn complexes have displayed larger CD amplitude because of their stronger binding with the chiral diamines. A fairly linear dependence between the binding constant (K) and CD amplitude has been observed. Moreover, the amplitude of the CD couplet has been correlated with the relative steric bulk of the substituent at the stereogenic center: with increasing the bulk, CD intensity gradually increases. However, large increase of steric hindrance, after a threshold value, has diminished the intensity. The observation of a weak positive CD couplet between (1R,2R)-DPEA guest and Zn-bisporphyrin hosts indicates that the clockwise-twisted (steric-controlled) conformer is more populated as compared to the anticlockwise (chirality-controlled) one. In contrast, amplitude of the positive CD couplets is larger with Mg-bisporphyrin hosts, suggesting almost exclusive contribution of the clockwise-twisted conformer guided solely by sterics. DFT calculations support the experimental observations and have displayed the possible interconversion between clockwise and anticlockwise twisted conformers just upon changing the bulk of the substituent irrespective of the nature of chirality at the stereogenic center.

  9. Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for Hydrogen Production. Final Report of Progress August 2017

    Energy Technology Data Exchange (ETDEWEB)

    Tanko, James M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry


    Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H2 fuel from H2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.

  10. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses (United States)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco


    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  11. Regions involved in fengycin synthetases enzyme complex formation

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Cheng


    Full Text Available Background: Fengycin is a lipopeptide antibiotic synthesized nonribosomally by five fengycin synthetases. These enzymes are linked in a specific order to form the complex. This study investigates how these enzymes interact in the complex and analyzes the regions in the enzymes that are critical to the interactions. Methods: Deletions were generated in the fengycin synthetases. The interaction of these mutant proteins with their partner enzymes in the complex was analyzed in vitro by a glutathione S-transferase (GST or nickel pulldown assay. Results: The communication-mediating donor (COM-D domains of the fengycin synthetases, when fused to GST, specifically pulled down their downstream partner enzymes in the GST-pulldown assays. The communication-mediating acceptor (COM-A domains were required for binding between two partner enzymes, although the domains alone did not confer specificity of the binding to their upstream partner enzymes. This study found that the COM-A domain, the condensation domain, and a portion of the adenylation domain in fengycin synthetase B (FenB were required for specific binding to fengycin synthetase A (FenA. Conclusion: The interaction between the COM-D and COM-A domains in two partner enzymes is critical for nonribosomal peptide synthesis. The COM-A domain alone is insufficient for interacting with its upstream partner enzyme in the enzyme complex with specificity; a region that contains COM-A, condensation, and a portion of adenylation domains in the downstream partner enzyme is required. Keywords: communication-mediating donor and acceptor domain, fengycin synthetase, protein-protein interaction

  12. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure (United States)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.


    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  13. Molecular Modeling and Physicochemical Properties of Supramolecular Complexes of Limonene with α- and β-Cyclodextrins. (United States)

    Dos Passos Menezes, Paula; Dos Santos, Polliana Barbosa Pereira; Dória, Grace Anne Azevedo; de Sousa, Bruna Maria Hipólito; Serafini, Mairim Russo; Nunes, Paula Santos; Quintans-Júnior, Lucindo José; de Matos, Iara Lisboa; Alves, Péricles Barreto; Bezerra, Daniel Pereira; Mendonça Júnior, Francisco Jaime Bezerra; da Silva, Gabriel Francisco; de Aquino, Thiago Mendonça; de Souza Bento, Edson; Scotti, Marcus Tullius; Scotti, Luciana; de Souza Araujo, Adriano Antunes


    This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and β-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with β-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by β-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.

  14. Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. (United States)

    Eshita, Yuki; Ji, Rui-Cheng; Onishi, Masayasu; Kobayashi, Takashi; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji; Onishi, Yasuhiko


    The resistance of cancer cells to chemotherapeutic drugs (MDR) is a major problem to be solved. A supramolecular DEAE-dextran-MMA copolymer (DDMC)/paclitaxel (PTX) complex was obtained by using PTX as the guest and DDMC as the host having 50-300 nm in diameter. The drug resistance of B16F10 melanoma cells to paclitaxel was observed, but there is no drug resistance of melanoma cells to the DDMC/PTX complex in vitro. The cell death rate was determined using Michaelis-Menten kinetics, as the DDMC/PTX complex promoted allosteric supramolecular reaction to tubulin. The DDMC/PTX complex showed a very superior anti-cancer activity to paclitaxel alone in vivo. The median survival time (MST) of the saline, PTX, DDMC/PTX4 (particle size, 50 nm), and DDMC/PTX5 (particle size, 290 nm) groups were 120 h (T/C, 1.0), 176 h (T/C, 1.46), 328 h (T/C, 2.73), and 280 h (T/C, 2.33), respectively. The supramolecular DDMC/PTX complex showed the twofold effectiveness of PTX alone (p < 0.036). Histochemical analysis indicated that the administration of DDMC/PTX complex decreased distant metastasis and increased the survival of mice. A mouse of DDMC/PTX4 group in vivo was almost curing after small dermatorrhagia owing to its anti-angiogenesis, and it will be the hemorrhagic necrotic symptom of tumor by the release of "tumor necrosis factor alpha (TNF-α)" cytokine. As the result, the medicinal action of the DDMC/PTX complex will suppress the tumor-associated action of M2 macrophages and will control the metastasis of cancer cells.

  15. Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes (United States)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Eldesoky, A. M.; Morgan, Sh. M.


    An interesting azodye heterocyclic ligand of copper(II), cobalt(II), nickel(II) and uranyl(II) complexes have been synthesized by the reaction of metal salts with 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, magnetic moments, spectral (UV-Vis, IR, 1H and 13C NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structures of the ligand tautomers are optimized theoretically and the quantum chemical parameters are calculated. The IR spectra showed that the ligand (HL) act as monobasic tridentate/neutral bidentate through the (sbnd Ndbnd N), enolic (Csbnd O)- and/or oxygen keto moiety groups forming a five/six-membered structures. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The molar conductivities show that all the complexes are non-electrolytes. The ESR spectra indicate that the free electron is in dxy orbital. The calculated bonding parameter indicates that in-plane σ-bonding is more covalent than in-plane π-bonding. The coordination geometry is five/six-coordinated trigonal bipyramidal for complex (1) and octahedral for complexes (2-6). The value of covalency factor β12 and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The synthesized ligand (HL) and its Cu(II) complexes (1, 2 and 4) are screened for their biological activity against bacterial and fungal species. The ligand (HL) showed antimicrobial activities against Escherichia coli. The ligand (HL) and its Cu(II) complexes (2 and 4) have very high antifungal activity against Penicillium italicum. The inhibitive action of ligand (HL), against the corrosion of C-steel in 2 M HCl solution has been investigated using potentiodynamic polarization and electrochemical

  16. Modified gum Arabic hydrogels as matrices for controlled release of curcumin supramolecular complexes

    International Nuclear Information System (INIS)

    Gerola, Adriana P.; Silva, Danielle C.; Rubira, Adley F.; Muniz, Edvani C.


    Modified gum Arabic (GA) hydrogels show a pH-responsive behavior making them excellent matrices to be used for oral administration of drugs. Our goal is to study the behavior of those matrices in simulated gastric and intestinal fluids. In this work we will present how the methacrylation degree of GA, by using glycidyl methacrylate, can affect the properties of these hydrogels for controlled release. The drug used in this work is the curcumin (Cur). Cur is associated with numerous pharmacological activities, but their application is limited by the low water solubility. We will present some studies involving the formation of host-guest complexes between Cur and natural cyclodextrins. Both modified GA and hydrogels were characterized by different techniques. The kinetics release of Cur complex-containing modified GA hydrogels was studied to have an insight on the release mechanism and rate constants. Toxicity studies on undifferentiated and differentiated Caco-2 were also carried out. (author)

  17. Transfer of chirality in new supramolecular complexes as design principle for future asymmetric catalysts


    Degenbeck, Helmut


    During the course of the thesis libraries of chiral (1,2)-diamines and prochiral 2,2’-biphenol derivatives were synthesised. The transfer of chirality from the diamine to the biphenol moiety mediated either by hydrogen bonding or coordination to a metal centre (ZnII, CuII) was demonstrated by CD (circular dicroism). The behaviour in solution of the hydrogen bonded complexes was investigated by NMR spectroscopy, UV-vis and ITC titrations (determination of association constants. The determinati...

  18. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  19. Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions. (United States)

    Suárez, Diego F; Consuegra, Jessika; Trajano, Vivianne C; Gontijo, Sávio M L; Guimarães, Pedro P G; Cortés, Maria E; Denadai, Ângelo L; Sinisterra, Rubén D


    Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/βCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and βCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/βCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of βCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/βCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/βCD compared with free DOX. These promising findings demonstrate the potential for DOX/βCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations. Copyright © 2014. Published by Elsevier B.V.

  20. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices. (United States)

    Munteanu, Cristian Robert; González-Díaz, Humberto; Magalhães, Alexandre L


    The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model.

  1. Multivalency in supramolecular chemistry and nanofabrication

    NARCIS (Netherlands)

    Mulder, A.; Huskens, Jurriaan; Reinhoudt, David


    Multivalency is a powerful and versatile self-assembly pathway that confers unique thermodynamic and kinetic behavior onto supramolecular complexes. The diversity of the examples of supramolecular multivalent systems discussed in this perspective shows that the concept of multivalency is a general

  2. Tunable N-substitution in zwitterionic benzoquinonemonoimine derivatives: metal coordination, tandemlike synthesis of zwitterionic metal complexes, and supramolecular structures. (United States)

    Yang, Qing-Zheng; Siri, Olivier; Braunstein, Pierre


    Full details on a very efficient transamination reaction for the synthesis of zwitterionic N,N-dialkyl-2-amino-5-alcoholate-1,4-benzoquinonemonoiminium derivatives [C6H2(=NHR)2(=O)2] 5-16 are reported. The molecular structures of zwitterions 5 (R=CH3) in 5.H2O, 13 (R=CH2CH2OMe), 15 (R=CH2CH2NMe2), and of the parent, unsubstituted system [C6H2(=NH2)2(=O)2] 4 in 4.H2O have been established by single-crystal X-ray diffraction. This one-pot preparation can be carried out in water, MeOH, or EtOH and allows access to new zwitterions with N-substituents bearing functionalities such as -OMe (13), -OH (9-12), NR1R2 with R1 = or not equal R2 (14-16) or an alkene (8), leading to a rich coordination chemistry and allowing fine-tuning of the supramolecular arrangements in the solid state. As previously described for 15, which reacted with Zn(acac)2 to afford the octahedral Zn(II) complex [Zn[C6H2(NCH2CH2NMe2)O(O)(NHCH2CH2NMe2)]2] (20), ligands 13 and 16 with coordinating "arms" afforded with Zn(acac)2 the 2:1 adducts [Zn[C6H2(NCH2CH2X)O(=O)(NHCH2CH2NX)]2] 19 (X=OMe) and 21 (X=NHEt), with N2O4 and N4O2 donor sets around the octahedral Zn(II) center, respectively. Furthermore, zwitterions 15 and 16 reacted with ZnCl2 to give the stable, crystallographically characterized Zn(II) zwitterionic complexes [ZnCl2[C6H2(NCH2CH2NR1R2)O(=O)(NHCH2CH2NHR1R2)

  3. Thermally bisignate supramolecular polymerization (United States)

    Venkata Rao, Kotagiri; Miyajima, Daigo; Nihonyanagi, Atsuko; Aida, Takuzo


    One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to 'upper and lower critical solution temperature phenomena' for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

  4. An asymmetric A-B-A' metallo-supramolecular triblock copolymer linked by Ni(2+)-bis-terpyridine complexes at one junction. (United States)

    Li, Haixia; Wei, Wei; Xiong, Huiming


    A metallo-supramolecular triblock copolymer polystyrene-b-polyisoprene-[Ni(2+)]-polystyrene (SI-[Ni(2+)]-S') has been efficiently prepared using a one-pot, two-step procedure, where the blocks are held by bis-terpyridine complexes at the junction of SI-S'. This specific metallo-supramolecular chemistry is demonstrated to be a robust approach to potentially broaden the diversity of block copolymers. The location of the metal-ligand complexes has a profound influence on the phase separation of the triblock copolymer in the bulk, which results in a distinctive phase segregation between the end blocks and leads to an unexpected asymmetry of the triblock copolymer. The metal-ligand complexes are found to be preferentially located on the adjacent spherical domain and form a core-shell structure. The resulting multiphase material exhibits distinct elastomeric properties with significant toughness and creep recovery behavior. This type of triblock copolymer is anticipated to be a novel class of hybrid thermo-plastic elastomeric material with wide tunability and functionality.

  5. Different conjugated system Zn(ii) Schiff base complexes: supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials. (United States)

    Dong, Yu-Wei; Fan, Rui-Qing; Chen, Wei; Zhang, Hui-Jie; Song, Yang; Du, Xi; Wang, Ping; Wei, Li-Guo; Yang, Yu-Lin


    A series of Zn(ii) complexes with different conjugated systems, [ZnL1Cl 2 ] 2 (Zn1), [ZnL2Cl 2 ] (Zn2), [Zn(L3) 2 ]·(ClO 4 ) 2 (Zn3), [Zn 2 L4Cl 4 ] (Zn4), and [ZnL5Cl 2 ] (Zn5), were synthesized and subsequently characterized via single crystal X-ray diffraction, 1 H and 13 C NMR, FT-IR, elemental analyses, melting point, and PXRD. The X-ray diffraction analyses revealed that the supramolecular frameworks of complexes Zn1-Zn5 are constructed by C-HO/Cl hydrogen bonds and ππ interactions. Complexes Zn1-Zn3 feature 3D 6-connected {4 12 ·6 3 } topological structures, whereas complex Zn4 exhibits a 3D 7-connected supramolecular framework with a {4 17 ·6 4 } topological structure. However, complex Zn5 shows one-dimensional "wave-like" chains. Based on these varied structures, the emission maximum wavelengths of complexes Zn1-Zn5 can be tuned in a wide range of 461-592 nm due to the red shift direction of λ em caused by different conjugated systems and their electron donating abilities. Complex Zn3 shows a strong luminescence in the solid state and in the acetonitrile solution. Therefore, a series of Zn3-poly(methylmethacrylate) (Zn3-PMMA) hybrid materials were obtained by controlling the concentration of complex Zn3 in poly(methylmethacrylate) (PMMA). At an optimal concentration of 4%, the doped polymer film of Zn3-PMMA displays strong green luminescence emissions that are 19-fold in the luminescence intensities and 98 °C higher in the thermal stability temperature compared to the Zn3 film.

  6. Modified gum Arabic hydrogels as matrices for controlled release of curcumin supramolecular complexes; Hidrogeis de goma arabica modificada como matrizes para libertacao controlada de complexos supramoleculares de curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gerola, Adriana P.; Silva, Danielle C., E-mail: [Department of Chemistry, University of Coimbra, Coimbra (Portugal); Rubira, Adley F.; Muniz, Edvani C. [Universidade Estadual de Maringa (GMPC/UEM), PR (Brazil). Grupo de Materiais Polimericos e Compositos; Jesus, Sandra; Borges, Olga [Faculty of Pharmacy, University of Coimbra, Coimbra (Portugal)


    Modified gum Arabic (GA) hydrogels show a pH-responsive behavior making them excellent matrices to be used for oral administration of drugs. Our goal is to study the behavior of those matrices in simulated gastric and intestinal fluids. In this work we will present how the methacrylation degree of GA, by using glycidyl methacrylate, can affect the properties of these hydrogels for controlled release. The drug used in this work is the curcumin (Cur). Cur is associated with numerous pharmacological activities, but their application is limited by the low water solubility. We will present some studies involving the formation of host-guest complexes between Cur and natural cyclodextrins. Both modified GA and hydrogels were characterized by different techniques. The kinetics release of Cur complex-containing modified GA hydrogels was studied to have an insight on the release mechanism and rate constants. Toxicity studies on undifferentiated and differentiated Caco-2 were also carried out. (author)

  7. Supramolecular Complexes of DNA (United States)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the underlying principle of genetic correction. Yet other strategies aim to reintroduce the deficient DNA fragments into the cells in the form of genes. Indeed, in certain diseases, the only solution is to bring genetic information back into the cells by transferring exogeneous DNA into the cell nucleus. This approach goes by the name of gene therapy.

  8. Surface energy-driven growth of crystalline PbS octahedra and dendrites in the presence of cyclodextrin–surfactant supramolecular complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradip, E-mail:; Kim, Whi Dong; Lee, Seokwon; Lee, Dennis T. [Korea Advanced Institute of Science and Technology (KAIST), Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Lee, Doh C., E-mail: [Korea Advanced Institute of Science and Technology (KAIST), Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury (Korea, Republic of)


    PbS crystals of cubic, octahedral, and dendritic shapes are synthesized in an aqueous solution that contains supramolecular complexes of β-cyclodextrin (CD) and hexadecyltrimethylammonium bromide (CTAB). The morphology of the PbS crystals depends on the concentration of CD or CTAB in the reaction solution; for example, the branched dendritic structures evolve with an appropriate molar ratio of CD/CTAB supramolecular complexes and reaction time. Regardless of the CD/CTAB molar ratios, octahedral PbS crystals are observed at all compositions of CD/CTAB for the reaction times of 1–5 h, while self-assembled branched/dendritic structures are obtained only for CD/CTAB molar ratios of 0.5, 1, and 2 after a prolonged reaction, e.g., for 24–48 h. Systematic investigation reveals that both reaction time and CD/CTAB molar ratio are responsible for self-assembled branched/dendritic structures of octahedral crystals.

  9. First derivative emission spectrofluorimetric method for the determination of LCZ696, a newly approved FDA supramolecular complex of valsartan and sacubitril in tablets. (United States)

    Ragab, Marwa A A; Galal, Shereen M; Korany, Mohamed A; Ahmed, Aya R


    LCZ696 (sacubitril/valsartan, Entresto™) is a therapy lately approved by United States Food and Drug Administration (US FDA) as a heart failure therapy. It is claimed to decrease the mortality rate and hospitalization for patients with chronic heart failure. This study is considered as the first report to investigate the fluorimetric behavior of sacubitril in addition to pursuing all the different conditions that may affect its fluorescence. Various conditions were studied, for example studying the effects of organized media, solvents and pH, which may affect the fluorescence behavior of sacubitril. For the simultaneous determination of the newly approved supramolecular complex of valsartan (VAL) and sacubitril (SAC) in their tablets, a sensitive and simple first derivative spectrofluorimetric method was developed. The method involved the measurement of native fluorescence at 416 nm and 314 nm (λ ex 249 nm) for VAL and SAC, respectively. The first (D1) derivative technique was applied to the emission data to resolve a partial overlap that appeared in their emission spectra. The proposed method was successfully applied for the assay of the two drugs in their supramolecular complex LCZ696 with no interference from common pharmaceutical additives. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines were followed in order to validate the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Two new Ni(II) supramolecular complexes based on ethyl isonicotinate and ethyl nicotinate for removal of acid blue 92 dye (United States)

    Etaiw, Safaa El-din H.; Marie, Hassan


    Two new luminescent supramolecular complexes (SC); [Ni(EIN)4(NCS)2] SC1 and [Ni2(EN)8(NCS)4] SC2, (EIN = ethyl isonicotinate, EN = ethyl nicotinate), have been synthesized by self-assembly method and structurally characterized by X-ray single crystal, FT-IR and UV-Vis spectra, PXRD, elemental and thermogravimetric analyses. Both SC1 and SC2 are monoclinic crystals however, they have different asymmetric units. Ni(II) atoms in both SC are isostructural and have similar hexa-coordinate environment. The structures of SC1 and SC2 consist of parallel polymeric 1D-chains, extended in two and three dimensional supramolecular frameworks by intermolecular hydrogen bonding interactions. SC1 and SC2 are luminescent materials which can be used in applications as molecular sensing systems. SC1 and SC2 were used as heterogeneous catalysts for degradation of acid blue 92 (AB-92) under sun light irradiation. The fluorescence measurements of terephthalic acid technique as a probe molecule were used to determine the •OH radicals. Also the radicals trapping experiments using isopropanol alcohol (IPA) as radical scavenger were discussed. In addition a mechanism of degradation was proposed and discussed.

  11. A supramolecular structure based on copper complex of 2,3-pyridinedicarboxylic acid and 1,3-bis(3-aminopropyl)tetramethyldisiloxane chlorohydrate (United States)

    Soroceanu, Alina; Bargan, Alexandra; Shova, Sergiu; Avadanei, Mihaela; Cazacu, Maria


    Having in mind the synthesis of a cooper complex with the product of condensation between an anhydride and a siloxane diamine as a new polydentate ligand, 2,3-pyridinedicarboxylic anhydride (PDCA) was treated first with 1,3-bis(3-aminopropyl)tetramethyldisiloxane (AP0) and then with cooper chloride in alcoholic solution. However, according to single-crystal X-ray crystallography and IR spectroscopy, the reaction resulted in an ionic compound with the charge balance in agreement with the formation of [H2AP0]2[Cu(PDC)2]·Cl2·2H2O species, where PDC is a double deprotonated 2,3-pyridinedicarboxylic acid. The thermal and moisture behaviors of the complex were studied by thermogravimetrical analysis and dynamic vapor sorption, respectively. The stability of the supramolecular structure with temperature and in methanol solution was studied by ATR-FTIR analysis.

  12. Transfer and control of molecular chirality in the 1 : 2 host-guest supramolecular complex consisting of Mg(II)bisporphyrin and chiral diols: the effect of H-bonding on the rationalization of chirality. (United States)

    Ikbal, Sk Asif; Brahma, Sanfaori; Rath, Sankar Prasad


    A clear rationalization of the origin of chirality transfer from an optically active diol guest to an achiral Mg(ii)bisporphyrin host in a series of 1 : 2 host-guest supramolecular complexes has been reported here that has so far remained the most outstanding issue for the chirogenic process.

  13. New cardioprotective agent flokalin and its supramolecular complexes with target amino acids: An integrated mass-spectrometry and quantum-chemical study (United States)

    Pashynska, Vlada; Stepanian, Stepan; Gömöry, Ágnes; Vékey, Károly; Adamowicz, Ludwik


    This study is devoted to examining the molecular structure and molecular mechanisms of action of the recently developed cardioprotective agent flokalin (Fl), a fluorine containing analogue of pinacidil, which is known as an activator of ATP sensitive potassium membrane channels. A combined experimental and computational investigation of flokalin and its biologically relevant supramolecular complexes with selected amino acids involved in KATP-channels proteins is performed by electrospray ionization mass spectrometry (ESI MS) and by B3LYP/aug-cc-pVDZ quantum-mechanical calculations. First Fl solution is probed by ESI MS and a characteristic mass spectrum of the agent is obtained. Next the intermolecular interactions of Fl with the potentially targeted aminoacids (AA), Lys and Thr, are experimentally investigated. The spectra of the model Fl:AA systems (in 1:1 M ratio) contain information on the ions characteristic to the individual components of the mixtures; though the most interesting spectral results from the biophysical view point are related to the ions of stable molecular clusters formed by flokalin with AA. The peaks of such ions are quite prominent in the spectrum for the Fl:Lys system and less prominent for Fl:Thr. The equilibrium geometries and the corresponding interaction energies of the noncovalent supramolecular complexes registered in the mass spectra are determined in the quantum chemical calculations. The formation of the stable noncovalent complexes of Fl with Lyz and Thr revealed by the ESI MS probing and by the theoretical modelling testify to a possibility of interaction of flokalin with the KATP-channel domains enriched with the two amino acids in biological systems.

  14. X-ray studies on crystalline complexes involving amino acids and peptides. XLII. Adipic acid complexes of L- and DL-arginine and supramolecular association in arginine-dicarboxylic acid complexes. (United States)

    Roy, Siddhartha; Singh, Desh Deepak; Vijayan, M


    The adipic acid complexes of DL-arginine and L-arginine are made up of zwitterionic, singularly positively charged arginium ions and doubly negatively charged adipate ions, with a 2:1 stoichiometry. One of the two crystallographically independent arginium ions in the L-arginine complex has a conformation hitherto unobserved in crystal structures containing the amino acid. In the present study the structural data on arginine complexes of saturated dicarboxylic acids with 0-5 C atoms separating the two carboxyl functions are given. In terms of molecular aggregation, formic and acetic acid complexes behave in a similar way to those involving fairly long carboxylic acids such as adipic acid. By and large, the supramolecular assembly in complexes involving dicarboxylic acids with 3 or more C atoms separating the carboxyl groups (glutaric, adipic and pimelic acids), and those involving formic and acetic acids, have common features. The aggregation patterns in complexes involving oxalic, malonic and maleic acids do not share striking features among themselves (except for the mode of hydrogen-bonded dimerization of arginium ions) or with those involving larger dicarboxylic acids. Complexes of succinic acid, the shortest linear dicarboxylic acid, share features with those involving shorter as well as longer dicarboxylic acids. The difference in the behaviour of long and short dicarboxylic acids and the ambiguous behaviour of succinic acid can be broadly related to their lengths.

  15. Adsorption of Nucleic Acid/Protein Supramolecular Complexes on Goethite: The Influence of Solution Interactions on Behavior at the Solution-Mineral Interface (United States)

    Schmidt, M.; Martinez, C. E.


    Adsorption of biomolecule rich supramolecular complexes onto mineral surfaces plays an important role in the development of organo-mineral associations in soils. In this study, a series of supramolecular complexes of a model nucleic acid (deoxyribonucleic acid (DNA)) and protein (bovine serum albumin (BSA)) are synthesized, characterized and exposed to goethite to probe their adsorption behavior. To synthesize DNA/BSA complexes, a fixed DNA concentration (0.1 mg/mL) was mixed with a range of BSA concentrations (0.025-0.5 mg/mL) in 5 mM KCl at pH=5.0. Circular dichroism spectroscopy demonstrates strong, cooperative, Hill-type binding between DNA and BSA (Ka= 4.74 x 105 M-1) with DNA saturation achieved when BSA concentration reaches 0.4 mg/mL. Dynamic light scattering measurements of DNA/BSA complexes suggest binding accompanies disruption of DNA-DNA intermolecular electrostatic repulsion, resulting in a decrease of the DNA slow relaxation mode with increasing amount of BSA. Zeta potential measurements show increasing amounts of BSA lead to a reduction of negative charge on DNA/BSA complexes, in line with light scattering results. In situ attenuated total reflectance Fourier transform infrared spectroscopic studies of adsorption of DNA/BSA complexes onto goethite show that complexation of BSA with DNA appears to hinder direct coordination of DNA backbone phosphodiester groups with goethite, relative to DNA by itself. Furthermore, increasing amount of BSA (up to 0.4 mg/mL) in DNA/BSA complexes enhances DNA adsorption, possibly as a result of reduced repulsion between adsorbed DNA helices. When BSA concentration exceeds 0.4 mg/mL, a decrease in adsorbed DNA is observed. We hypothesize that this discrepancy in behavior between systems with BSA concentrations below and above saturation of DNA is caused by initial fast adsorption of loosely associated BSA on goethite, restricting access to goethite surface sites. Overall, these results highlight the impact of solution

  16. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko


    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  17. Multivalent supramolecular dendrimer-based drugs. (United States)

    Galeazzi, Simone; Hermans, Thomas M; Paolino, Marco; Anzini, Maurizio; Mennuni, Laura; Giordani, Antonio; Caselli, Gianfranco; Makovec, Francesco; Meijer, E W; Vomero, Salvatore; Cappelli, Andrea


    Supramolecular complexes consisting of a hydrophobic dendrimer host [DAB-dendr-(NHCONH-Ad)(64)] as well as solubilizing and bioactive guest molecules have been synthesized using a noncovalent approach. The guest-host supramolecular assembly is first preassembled in chloroform and transferred via the neat phase to aqueous solution. The bioactive guest molecules can bind to a natural (serotonin 5-HT(3)) receptor with nanomolar affinity as well as to the synthetic dendrimer receptor in aqueous solution, going toward a dynamic multivalent supramolecular construct capable of adapting itself to a multimeric receptor motif.

  18. A triaxial supramolecular weave (United States)

    Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma


    Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

  19. Computation-Guided Design of a Stimulus-Responsive Multienzyme Supramolecular Assembly. (United States)

    Yang, Lu; Dolan, Elliott M; Tan, Sophia K; Lin, Tianyun; Sontag, Eduardo D; Khare, Sagar D


    The construction of stimulus-responsive supramolecular complexes of metabolic pathway enzymes, inspired by natural multienzyme assemblies (metabolons), provides an attractive avenue for efficient and spatiotemporally controllable one-pot biotransformations. We have constructed a phosphorylation- and optically responsive metabolon for the biodegradation of the environmental pollutant 1,2,3-trichloropropane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Singlet and triplet energy transfer dynamics in self-assembled axial porphyrin-anthracene complexes: towards supra-molecular structures for photon upconversion. (United States)

    Gray, Victor; Küçüköz, Betül; Edhborg, Fredrik; Abrahamsson, Maria; Moth-Poulsen, Kasper; Albinsson, Bo


    Energy and electron transfer reactions are central to many different processes and research fields, from photosynthesis and solar energy harvesting to biological and medical applications. Herein we report a comprehensive study of the singlet and triplet energy transfer dynamics in porphyrin-anthracene coordination complexes. Seven newly synthesized pyridine functionalized anthracene ligands, five with various bridge lengths and two dendrimer structures containing three and seven anthracene units, were prepared. We found that triplet energy transfer from ruthenium octaethylporphyrin to an axially coordinated anthracene is possible, and is in some cases followed by back triplet energy transfer to the porphyrin. The triplet energy transfer follows an exponential distance dependence with an attenuation factor, β, of 0.64 Å -1 . Further, singlet energy transfer from anthracene to the ruthenium porphyrin appears to follow a R 6 Förster distance dependence. Porphyrin-anthracene complexes are also used as triplet sensitizers for triplet-triplet annihilation (TTA) based photon upconversion, demonstrating their potential for photophysical and photochemical applications. The triplet lifetime of the complex is extended by the anthracene ligands, resulting in a threefold increase in the upconversion efficiency, Φ UC to 4.5%, compared to the corresponding ruthenium porphyrin-pyridine complex. Based on the results herein we discuss the future design of supra-molecular structures for TTA upconversion.

  1. Multifaceted roles of metabolic enzymes of the Paracoccidioides species complex

    Directory of Open Access Journals (Sweden)

    Caroline Maria Marcos


    Full Text Available Paracoccidioides species are dimorphic fungi, and are the etiologic agents of paracoccidioidomycosis (PCM, a serious disease of multiple organs. The large number of tissues colonized by this fungus suggests the presence of a variety of surface molecules involved in adhesion. A surprising finding is that the majority of enzymes in the glycolytic pathway, tricarboxylic acid (TCA cycle and glyoxylate cycle in Paracoccidioides spp. has adhesive properties that aid in the interaction with the host extracellular matrix, and so act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions and add another dimension to cellular complexity, while benefiting cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play roles in bacterial pathogens, either by acting as proteins secreted in a conventional pathway or not and/or as cell surface component that facilitate adhesion or adherence . This review outlines the multifuncionality exposed by a variety of Paracoccidioides spp. enzymes including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase and enolase. The roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host are discussed.

  2. New five coordinated supramolecular structured cadmium complex as precursor for CdO nanoparticles: Synthesis, crystal structure, theoretical and 3D Hirshfeld surface analyses (United States)

    Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.


    In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.

  3. A combined experimental and theoretical study of the supramolecular self-assembly of Cu(II) malonate complex assisted by various weak forces and water dimer

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prankrishna [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India); Ray Choudhury, Somnath [Central Chemical Laboratory, Geological Survey of India, 15 A and B Kyd Street, Kolkata 700 016 (India); Mitra, Monojit [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India); Kumar Seth, Saikat [Department of Physics, M. G. Mahavidyalaya, Bhupatinagar, Purba Medinipur, West Bengal 721 425 (India); Helliwell, Madeleine [School of Chemistry, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Bauzá, Antonio [Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares) (Spain); Frontera, Antonio, E-mail: [Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares) (Spain); Mukhopadhyay, Subrata, E-mail: [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)


    A Cu(II) malonate complex with formula [Cu(C{sub 3}H{sub 2}O{sub 4})(C{sub 6}H{sub 8}N{sub 2})(H{sub 2}O)]{sub 2}·4H{sub 2}O (1) [C{sub 6}H{sub 8}N{sub 2}=2-picolylamine, C{sub 3}H{sub 2}O{sub 4}{sup 2−}=malonate dianion] has been synthesized by mixing the reactants in their stoichiometric proportion and its crystal structure has been determined by single-crystal X-ray diffraction. In 1, monomeric neutral metal malonate units [Cu(C{sub 3}H{sub 2}O{sub 4})(C{sub 6}H{sub 8}N{sub 2})(H{sub 2}O)] are interlinked with each other through hydrogen bonds, weak lone pair⋯π and cuprophilic interactions to generate supramolecular dimers, which in turn further associated through hydrogen bonding to form infinite 1D chains. Water dimers, through series of hydrogen bonds and weak π–stacking forces are found to be responsible for interconnection of 1D chains, which resulted in a 3D network. A density functional (DFT) study of the energetic features of several noncovalent interactions observed in the solid state have been analyzed and characterized using Bader's theory of “atoms-in-molecules”. We also present here Hirshfeld surface analysis to investigate the close intermolecular contacts. - Graphical Abstract: Interplay of weak forces like hydrogen bonding, lone pair⋯π, Cu⋯Cu and π–stacking interactions leading to the formation of supramolecular network in [Cu(C{sub 3}H{sub 2}O{sub 4})(C{sub 6}H{sub 8}N{sub 2})(H{sub 2}O)]{sub 2}·4H{sub 2}O complex. - Highlights: • A complex of Cu(II) with malonate and 2-picolylamine is synthesized and X-ray characterized. • We report a density functional study of the energetic features of several noncovalent interactions • We perform Hirshfeld surface analysis to investigate the close intermolecular contacts.

  4. Synthesis, spectroscopy, thermal studies and supramolecular ...

    Indian Academy of Sciences (India)


    structures of two new alkali-earth 4-nitrobenzoate complexes containing ... adopt a cis orientation in 2 resulting in different supramolecular structures. Complex 1 .... The compound analysed satisfactorily and exhibited an identical IR spectrum as that of the product from method 1. 2.2 Preparation of anhydrous complexes.

  5. p-halo N4-phenyl substituted thiosemicarbazones: Crystal structure, supramolecular architecture, characterization and bio-assay of their Co(III) and Ni(II) complexes (United States)

    Kotian, Avinash; Kumara, Karthik; Kamat, Vinayak; Naik, Krishna; Kokare, Dhoolesh G.; Nevrekar, Anupama; Lokanath, Neratur Krishnappagowda; Revankar, Vidyanand K.


    In the present work, three potential metal ion chelating ligands, p-halo N4-phenyl substituted thiosemicarbazones are synthesized and characterized. The molecular structure of all (E)-4-(4-halophenyl)-1-(3-hydroxyiminobutan-2-ylidene) thiosemicarbazones (halo = F/Cl/Br) are determined by single crystal X-ray diffraction method. All the molecules have crystallized in monoclinic crystal system with P21/n space group. The ligands show Csbnd H⋯S and Nsbnd H⋯S intermolecular interactions, which are responsible to form the supramolecular self-assemblies through R22(8), R22(12) and R22(14) ring motifs. Hirshfeld surface analysis is carried out to explore the intermolecular interactions. A series of Co(III) and Ni(II) mononuclear transition metal complexes derived from these ligands have been synthesized and characterized by various spectro-analytical methods. The metal to ligand stoichiometry has been found to be 1:2 in all the complexes. The synthesized compounds have been investigated for their in vitro antimicrobial potencies. The compounds are found to be more active than the standard used, in the case of E. coli and A. niger. Additionally, they are also screened for their in vitro antitubercular activity.

  6. Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers (United States)

    Roy, Sangita; Ulijn, Rein V.

    This chapter details the exploitation of biocatalysis in generating supramolecular polymers. This approach provides highly dynamic supramolecular structures, inspired by biological polymeric systems found in the intra- and extracellular space. The molecular design of the self-assembling precursors is discussed in terms of enzyme recognition, molecular switching mechanisms and non-covalent interactions that drive the supramolecular polymerisation process, with an emphasis on aromatic peptide amphiphiles. We discuss a number of unique features of these systems, including spatiotemporal control of nucleation and growth of supramolecular polymers and the possibility of kinetically controlling mechanical properties. Fully reversible systems that operate under thermodynamic control allow for defect correction and selection of the most stable structures from mixtures of monomers. Finally, a number of potential applications of enzymatic supramolecular polymerisations are discussed in the context of biomedicine and nanotechnology.

  7. Topological dynamics in supramolecular rotors. (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V


    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  8. Non-equilibrium supramolecular polymerization. (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M


    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  9. Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods. (United States)

    Simeon, Tomekia M; Ratner, Mark A; Schatz, George C


    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H···O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3]catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H···O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H···O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, we find that electrostatic interactions dominate the [C-H···O] hydrogen-bonding interactions, while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interaction energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correction have important differences compared to DFT-SAPT, while HF and even MP2 results are in poor agreement with DFT-SAPT.

  10. The Nature of Noncovalent Interactions in Catenane Supramolecular Complexes: Calibrating the MM3 Force Field with ab initio, DFT and SAPT Methods (United States)

    Simeon, Tomekia M.; Ratner, Mark A.; Schatz, George C.


    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H⋯O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3] catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H⋯O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H⋯O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, and we find that electrostatic interactions dominate the [C-H⋯O] hydrogen-bonding interactions while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interactions energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correct have important differences compared to DFT-SAPT while HF and even MP2 results are in poor agreement with DFT-SAPT. PMID:23941280

  11. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    Directory of Open Access Journals (Sweden)

    Yoko Kimata-Ariga

    Full Text Available Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT, nitrite reductase (NiR and glutamine synthetase (GS, separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE. GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa and multiple sizes (>120 kDa, respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  12. Supramolecular Photodimerization of Coumarins

    Directory of Open Access Journals (Sweden)

    Koichi Tanaka


    Full Text Available Stereoselective photodimerization of coumarin and its derivatives in supra-molecular systems is reviewed. The enantioselective photodimerization of coumarin and thiocoumarin in inclusion crystals with optically active host compounds is also described.

  13. Supramolecular catalysis: Refocusing catalysis

    NARCIS (Netherlands)

    van Leeuwen, P.W.N.M.; Freixa, Z.; van Leeuwen, P.W.N.M.


    This chapter contains sections titled: * Introduction: A Brief Personal History * Secondary Phosphines or Phosphites as Supramolecular Ligands * Host-Guest Catalysis * Ionic Interactions as a Means to Form Heterobidentate Assembly Ligands * Ditopic Ligands for the Construction of Bidentate Phosphine

  14. Supra-molecular inclusion complexation of ionic liquid 1-butyl-3-methylimidazolium octylsulphate with α- and β-cyclodextrins (United States)

    Banjare, Manoj Kumar; Behera, Kamalakanta; Satnami, Manmohan L.; Pandey, Siddharth; Ghosh, Kallol K.


    Host-guest complexation between ionic liquid (IL) 1-butyl-3-methylimidazolium octylsulphate [Bmim][OS] and cyclodextrins (α- and β- CDs) have been studied. Surface tension, conductivity measurements revealed the formation of 1:1 (M) stoichiometry for inclusion complexes (ICs) and further confirmed by UV-Visible and FT-IR results. The nature of the complexes has been established using interfacial and thermodynamic parameters. The aggregation number, Stern-Volmer constants, association constants were obtained from fluorescence quenching and Benesi-Hildebrand methods. The critical micelle concentration (cmc) and association constants of [Bmim][OS] are higher for β-CD as compared to α-CD. FT-IR spectra indicated that CDs and [Bmim][OS] could from ICs with stoichiometry 1:1 (M).

  15. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies. (United States)

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu


    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA.

  16. The complexities of hydrolytic enzymes from the termite digestive system. (United States)

    Saadeddin, Anas


    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  17. NMR (¹H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. (United States)

    Jahed, Vahid; Zarrabi, Ali; Bordbar, Abdol-Khalegh; Hafezi, Mohammad Sadegh


    In this paper we have investigated the solubility enhancement of curcumin through inclusion complexation by β-cyclodextrin as well as the topology and geometry of interaction between curcumin and carrier. For this purpose, the phase solubility of curcumin was assessed using Higuchi and Connors method, and the inclusion complex was characterised by 1D (1)H and 2D ROESY NMR analysis, and finally confirmed by molecular modelling. The phase solubility diagram demonstrated the AL-type which confirms an increase in curcumin solubility by increasing the concentration of β-cyclodextrin. (1)H NMR and ROESY spectra results showed a cross-peak between H-3 proton of β-cyclodextrin and the aromatic rings group of curcumin. This revealed the hydrophobic interactions between aromatic rings of curcumin and the cavity of β-cyclodextrin. Finally, the enthalpy of formation was obtained from molecular modelling results which in turn indicated that the process is exothermic and low-energy interactions are involved in the inclusion complex formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thin molecular films of supramolecular porphyrins

    Directory of Open Access Journals (Sweden)



    Full Text Available A relevant series of symmetric supramolecular porphyrins has been obtained by attaching four [Ru II(bipy2Cl] groups to the pyridyl substituents of meso-tetra(4-pyridylporphyrin and its metallated derivatives. These compounds display a rich electrochemistry and versatile catalytic, electrocatalytic and photochemical properties, associated with the ruthenium-bipyridine and the porphyrin complexes. These properties can be transferred to the electrodes by attaching thin molecular films of the compounds, by dip-coating, electrostatic assembly or electropolymerization. In this way, the interesting properties of those supermolecules and supramolecular assemblies can be used to prepare molecular devices and sensors.

  19. Supramolecular systems based on novel mono- and dicationic pyrimidinic amphiphiles and oligonucleotides: a self-organization and complexation study. (United States)

    Zakharova, Lucia; Voronin, Mikhail; Semenov, Vyacheslav; Gabdrakhmanov, Dinar; Syakaev, Victor; Gogolev, Yuri; Giniyatullin, Rashit; Lukashenko, Svetlana; Reznik, Vladimir; Latypov, Shamil; Konovalov, Alexander; Zuev, Yuri


    Novel mono- and dicationic pyrimidinic surfactants are synthesized and their aggregation behavior is studied by methods of tensiometry and nuclear magnetic resonance (NMR) self-diffusion. To estimate their potentiality as gene delivery agents, the complexation with oligonucleotides (ONus) is explored by dynamic light scattering (DLS) and zeta-potential titration methods and ethidium bromide exclusion experiments. Bola-type pyrimidinic amphiphile (BPM) demonstrates rather a weak affinity to ONus. Although it induces mixed associations with ONus, only slight charge compensation changes occur at a large excess of bola, with no recharging reached. Similarly, the ethydium bromide exclusion study reveals a slow increase in the binding capacity toward an ONu with an increment in BPM concentration. The monocationic pyrimidinic surfactant (MPM) and its gemini analogue (GPM-1) are ranked as intermediates in both their aggregative activity and complexing properties toward ONus. They both form mixed associates with ONus well below the critical micelle concentrations (cmcs) of 2 and 15 mM respectively. However, GPM-1 has a much lower isoelectric point at the molar ratio surfactant/ONu r~1 compared to r~3 for MPM. This probably indicates a larger electrostatic contribution to the ONu complexation in the case of GPM-1. The most hydrophobic pyrimidinic surfactant (GPM-2), bearing three alkyl tails, demonstrates enhanced aggregative activity and binding capacity toward ONus as compared to former pyrimidinic surfactants. Due to effective aggregative (low cmc of 0.04 mM) plus binding properties (fraction of bound ONu β=0.76 at r=2.5), GPM-2 may be ranked as a promising agent for wider biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Syntheses and structures of three supramolecular complexes based on 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid (United States)

    Yu, Xiao-Yang; Zhang, Xiao; Liu, Zhi-Gang; Cui, Xiao-Bing; Xu, Jia-Ning; Luo, Yu-Hui


    Three new supramolecular compounds, [Cu(o-HPIDC)(bpy)(H2O)]·2H2O 1, [Cu(o-H2PIDC)(phen)Cl]·[Cu(phen)2Cl]·10H2O·Cl 2 and {[Cd(o-H2PIDC)(H2O)2Cl]·H2O}23 (o-H3PIDC = 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline), were hydrothermally synthesized and characterized. In compound 1, the adjacent two supramolecular layers are constructed from different types of helical chains with the same pitch. In compound 2, the adjacent 2D water-chloride layers, {[(H2O)10Cl]-}n, are pillared by [Cu(o-H2PIDC)(phen)Cl] units to form the overall 3D supramolecular network with 1D channels through Osbnd H⋯O hydrogen bond interactions. In compound 3, two Cd(II) are linked into a binuclear [Cd2(o-H2PIDC)2(H2O)4Cl2] with a ten-membered ring by two o-H2PIDC- ligands. The three compounds self-assemble into 3D supramolecular structures via hydrogen bond and π-π stacking interactions. The fluorescence properties of compound 3 was also investigated.

  1. Antimicrobial activity, DNA cleavage, thermal analysis data and crystal structure of some new CdLX.sub.2./sub. complexes: a supramolecular network

    Czech Academy of Sciences Publication Activity Database

    Montazerozohori, M.; Nazaripour, A.; Masoudiasl, A.; Naghiha, R.; Dušek, Michal; Kučeráková, Monika


    Roč. 55, Oct (2015), s. 462-470 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : cadmium(II) * Schiff base * supramolecular * antimicrobial * tetrahedral * x-ray Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.420, year: 2015

  2. Synthesis, spectroscopy and supramolecular structures of two ...

    Indian Academy of Sciences (India)



    May 16, 2007 ... Indian Academy of Sciences. 243. #. Dedicated to Prof. Dr. Werner Weisweiler on the occasion of his 69th birthday. *For correspondence. Synthesis, spectroscopy and supramolecular structures of two magnesium 4-nitrobenzoate complexes. #. BIKSHANDARKOIL R SRINIVASAN,. 1,. * JYOTI V SAWANT,.

  3. Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System

    NARCIS (Netherlands)

    Boekema, Egbert J.; Braun, Hans-Peter


    The protein complexes of the mitochondrial oxidative phosphorylation system were recently reported to form supramolecular assemblies termed respiratory supercomplexes or respirasomes. These supercomplexes are considered to be of great functional importance. Here we review new insights into

  4. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. Deepak Gupta Palanisamy Rajakannu Bhaskaran Shankar Firasat Hussain Malaichamy Sathiyendiran. Special issue on Chemical Crystallography Volume 126 ...

  5. Supramolecular structures for determination and identification of the bond lengths in novel uranyl complexes from their infrared spectra (United States)

    El-Sonbati, A. Z.; Diab, M. A.; Morgan, Sh. M.; Seyam, H. A.


    Novel dioxouranium (VI) heterochelates with neutral bidentate compounds (Ln) have been synthesized. The ligands and the heterochelates [UO2(Ln)2(O2NO)2] were confirmed and characterized by elemental analysis, 1H NMR, UV.-Vis, IR, mass spectroscopy, X-ray diffraction and thermogravimetric analysis (TGA). IR spectral data suggest that the molecules of the Schiff base are coordinated to the central uranium atom (ON donor). The nitrato groups are coordinated as bidentate ligands. The thermodynamic parameters were calculated using Coats-Redfern and Horowitz-Metzger methods. The ligands (Ln) and their complexes (1-3) showed the υ3 frequency of UO22+ has been shown to be an excellent molecular probe for studying the coordinating power of the ligands. The values of υ3 of the prepared complexes containing UO22+ were successfully used to calculate the force constant, FUO (1n 10-8N/Å) and the bond length RUO (Å) of the Usbnd O bond. A strategy based upon both theoretical and experimental investigations has been adopted. The theoretical aspects are described in terms of the well-known theory of 5d-4f transitions. Wilson's, matrix method, Badger's formula, and Jones and El-Sonbati equations were used to calculate the Usbnd O bond distances from the values of the stretching and interaction force constants. The most probable correlation between Usbnd O force constant to Usbnd O bond distance were satisfactorily discussed in term of Badger's rule and the equations suggested by Jones and El-Sonbati. The effect of Hammett's constant is also discussed.

  6. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium (United States)

    Freeman, Michael F.; Helf, Maximilian J.; Bhushan, Agneya; Morinaka, Brandon I.; Piel, Jörn


    Uncultivated bacteria represent a massive resource of new enzymes and bioactive metabolites, but such bacteria remain functionally enigmatic. Polytheonamides are potent peptide cytotoxins produced by uncultivated bacteria that exist as symbionts in a marine sponge. Outside glycobiology, polytheonamides represent the most heavily post-translationally modified biomolecules that are derived from amino acids. The biosynthesis of polytheonamides involves up to 50 site-specific modifications to create a membrane-spanning β-helical structure. Here, we provide functional evidence that only seven enzymes are necessary for this process. They iteratively catalyse epimerization, methylation and hydroxylation of diverse amino acids. To reconstitute C-methylation, we employed the rarely used heterologous host Rhizobium leguminosarum to invoke the activities of two cobalamin-dependent C-methyltransferases. We observed 44 of the modifications to systematically unravel the biosynthesis of one of the most densely modified and metabolically obscure ribosome-derived molecules found in nature.

  7. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)



    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  8. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors. (United States)

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei


    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  9. Magnetism: a supramolecular function

    International Nuclear Information System (INIS)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W.


    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T c = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs

  10. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting


    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  11. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)


    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  12. Combining supramolecular chemistry with biology. (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc


    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  13. Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.


    Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability to catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes to activate otherwise unreactive molecules in the confines of an active site. Although much less complex than the evolved active sites of enzymes, synthetic host molecules have been developed that can carry out complex reactions with their cavities. While progress has been made toward highly efficient and selective reactivity inside of synthetic hosts, the lofty goal of duplicating enzymes specificity remains.[7-9] Pioneered by Lehn, Cram, Pedersen, and Breslow, supramolecular chemistry has evolved well beyond the crown ethers and cryptands originally studied.[10-12] Despite the

  14. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes. (United States)

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W


    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  15. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  16. 3D Printing Polymers with Supramolecular Functionality for Biological Applications. (United States)

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E


    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  17. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.


    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  18. Static Electricity-Responsive Supramolecular Assembly. (United States)

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki


    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of pectinolyttic and cellulotyc enzyme complexes on cashew bagasse maceration in order to obtain carotenoids. (United States)

    Macedo, Manuella; Robrigues, Renata Débora Pinto; Pinto, Gustavo Adolfo Saavedra; de Brito, Edy Sousa


    Cashew apple bagasse is a byproduct of cashew peduncle juice processing. Such waste is a source of carotenoids, but it is usually discarded after the juice extraction. The objective of this work was to study the influence of pectinolytic and cellulolytic enzyme complexes on cashew bagasse maceration in order to obtain carotenoids. It was observed that maceration with the enzymatic complex Pectinex Batch AR showed a higher content of carotenoids, with an overall gain of 79 % over the control carried out without enzyme complex addition.

  20. Synthesis, structure, and properties of supramolecular charge-transfer complexes between bis(18-crown-6)stilbene and ammonioalkyl derivatives of 4,4'-bipyridine and 2,7-diazapyrene. (United States)

    Vedernikov, Artem I; Ushakov, Evgeny N; Efremova, Asya A; Kuz'mina, Lyudmila G; Moiseeva, Anna A; Lobova, Natalia A; Churakov, Andrei V; Strelenko, Yuri A; Alfimov, Michael V; Howard, Judith A K; Gromov, Sergey P


    4,4'-Bipyridine and 2,7-diazapyrene derivatives (A) having two ammonioalkyl N-substituents were synthesized. The complex formation of these compounds with bis(18-crown-6)stilbene (D) was studied by spectrophotometry, cyclic voltammetry, (1)H NMR spectroscopy, and X-ray diffraction analysis. In MeCN, π-donor D and π-acceptors A form supramolecular 1:1 (D·A) and 2:1 (D·A·D) charge-transfer complexes. The D·A complexes have a pseudocyclic structure as a result of ditopic binding of the ammonium groups to the crown-ether fragments. The better the geometric matching between the components, the higher the stability of the D·A complexes (log K up to 9.39). A key driving force of the D·A·D complex formation is the excessive steric strain in the precursor D·A complexes. The pseudocyclic D·A complexes involving the ammoniopropyl derivative of 4,4'-bipyridine were obtained as single crystals. Crystallization of the related ammonioethyl derivative was accompanied by transition of the D·A complexes to a structure of the (D·A)(m) coordination polymer type.

  1. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg


    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  2. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane. (United States)

    Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning


    Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng


    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  4. DFT study and crystal structure analysis of a new nano-structure five coordinated Hg(II) complex involving C-H⋯O, N⋯O and π⋯π interactions in a supra-molecular structure. (United States)

    Montazerozohori, M; Musavi, S A; Masoudiasl, A; Hojjati, A; Assoud, A


    In this research, template synthesis and crystal structure of a new HgLI₂ complex are presented (L=N(1)-(4-nitrobenzylidene)-N(2)-(2-((E)-(4-nitrobenzylidene)amino)ethyl)ethane-1,2-diamine). The mercury complex crystallizes in the triclinic system with space group of P1¯. The crystal structure of the complex shows a distorted trigonal bipyramidal geometry around the mercury(II) center; including two I and an N atoms of Schiff base ligand in equatorial plane and two iminic N atoms in axial positions. Two five membered mercury containing rings [Hg(-N-C-C-N-)] are found in the structure. Some C-H⋯O, N⋯O and π⋯π intermolecular interactions causes a supra-molecular network in the solid-state. In addition to crystal structure analysis, density functional theory (DFT) study at the B3LYP/LanL2DZ level of theory has been also performed on the structure. Thereafter some theoretical structural and spectral data were compared with experimental results. Furthermore, total energy levels of HOMO and LUMO orbitals, molecular electrostatic potential, Mullikan atomic charges, thermodynamic and polarizability properties of the complex were calculated. Finally the mercury complex was prepared in nano-structure size confirmed by SEM and XRD analyses. The particles size of the titled complex was evaluated under 40 nm based on Sherrer's formula. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. (United States)

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi


    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  6. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    Advances in supramolecular chemistry and crystal engineering reported from India within the last decade are highlighted in the categories of new intermolecular interactions, designed supramolecular architectures, network structures, multi-component host–guest systems, cocrys- tals, and polymorphs. Understanding ...

  7. The Effects of Enzyme Complex on Performance, Intestinal Health and Nutrient Digestibility of Weaned Pigs

    Directory of Open Access Journals (Sweden)

    J. Q. Yi


    Full Text Available Two experiments were conducted to evaluate the effect of supplementing a corn-soybean meal-based diet with an enzyme complex containing amylase, protease and xylanase on the performance, intestinal health, apparent ileal digestibility of amino acids and nutrient digestibility of weaned pigs. In Exp. 1, 108 piglets weaned at 28 d of age were fed one of three diets containing 0 (control, 100, or 150 ppm enzyme complex for 4 wks, based on a two-phase feeding program namely 1 to 7 d (phase 1 and 8 to 28 d (phase 2. At the end of the experiment, six pigs from the control group and the group supplemented with 150 ppm enzyme complex were chosen to collect digesta samples from intestine to measure viscosity and pH in the stomach, ileum, and cecum, as well as volatile fatty acid concentrations and composition of the microflora in the cecum and colon. There were linear increases (p<0.01 in weight gain, gain: feed ratio and digestibility of gross energy with the increasing dose rate of enzyme supplementation during the whole experiment. Supplementation with enzyme complex increased the digesta viscosity in the stomach (p<0.05 and significantly increased (p<0.01 the concentrations of acetic, propionic and butyric acid in the cecum and colon. Enzyme supplementation also significantly increased the population of Lactobacilli (p<0.01 in the cecum and decreased the population of E. coli (p<0.05 in the colon. In Exp. 2, six crossbred barrows (initial body weight: 18.26±1.21 kg, fitted with a simple T-cannula at the distal ileum, were assigned to three dietary treatments according to a replicated 3×3 Latin Square design. The experimental diets were the same as the diets used in phase 2 in Exp. 1. Apparent ileal digestibility of isoleucine (p<0.01, valine (p<0.05 and aspartic acid (p<0.05 linearly increased with the increasing dose rate of enzyme supplementation. In conclusion, supplementation of the diet with an enzyme complex containing amylase, protease and

  8. Cucurbiturils as supramolecular inhibitors of DNA restriction by type II endonucleases. (United States)

    Parente Carvalho, Cátia; Norouzy, Amir; Ribeiro, Vera; Nau, Werner M; Pischel, Uwe


    Cucurbiturils (CB6 and CB7) were shown to inhibit the enzymatically catalyzed restriction of plasmids and linear DNA. This effect can be inverted by supramolecular masking of the macrocycles through competitive complexation with polyamines. These experiments provide supramolecular control of biocatalytic processes.

  9. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.


    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  10. Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme. (United States)

    Min, Wei; Jiang, Liang; Xie, X Sunney


    Enzyme molecules are dynamic entities with stochastic fluctuation in both protein conformation and enzymatic activity. However, such a notion of fluctuating enzymes, best characterized by recent single-molecule experiments, was not considered in the classic Michaelis-Menten (MM) kinetic scheme. Here we incorporate the fluctuation concept into the reversible MM scheme, and solve analytically all the possible kinetics (i.e., substrate concentration dependent enzymatic velocity) for a minimal model of fluctuating enzymes. Such a minimal model is found to display a variety of distinct kinetic behaviors (phases) in addition to the classic MM kinetics; excess substrate inhibition, sigmoidal kinetics, and concave biphasic kinetics. We find that all these kinetic phases are interrelated and unified under the framework of fluctuating enzymes and can be adequately described by a phase diagram that consists of two master parameters. Functionally, substrate inhibition, sigmoidal kinetics, and convex biphasic phases exhibit positive cooperativity, whereas concave biphasic phases display negative cooperativity. Remarkably, all these complex kinetics are produced by fluctuating enzymes with single substrate binding site, but the two conformations are, therefore, fundamentally different from the classic MWC and KNF models that require multiple subunit or binding sites. This model also suggests that, for a given enzyme/substrate pair, the non-MM behaviors could undergo transitions among different kinetic phases induced by varying product concentrations, owing to the fundamental Haldane symmetry in the reversible MM scheme.

  11. Supramolecular structures constructed from three novel rare earth ...

    Indian Academy of Sciences (India)

    Three complexes assembled into 3D frameworks based on C-H··· O, O-H··· O hydrogen bond linkages. Keywords. Rare earth metal complex; crystal structure; hydrogen bonds; 3D supramolecular structure. 1. Introduction. The self-assembly of supramolecules via non-covalent bonds is currently an interesting topic of ...

  12. Supramolecular analytical chemistry. (United States)

    Anslyn, Eric V


    A large fraction of the field of supramolecular chemistry has focused in previous decades upon the study and use of synthetic receptors as a means of mimicking natural receptors. Recently, the demand for synthetic receptors is rapidly increasing within the analytical sciences. These classes of receptors are finding uses in simple indicator chemistry, cellular imaging, and enantiomeric excess analysis, while also being involved in various truly practical assays of bodily fluids. Moreover, one of the most promising areas for the use of synthetic receptors is in the arena of differential sensing. Although many synthetic receptors have been shown to yield exquisite selectivities, in general, this class of receptor suffers from cross-reactivities. Yet, cross-reactivity is an attribute that is crucial to the success of differential sensing schemes. Therefore, both selective and nonselective synthetic receptors are finding uses in analytical applications. Hence, a field of chemistry that herein is entitled "Supramolecular Analytical Chemistry" is emerging, and is predicted to undergo increasingly rapid growth in the near future.

  13. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry. (United States)

    Lehn, Jean-Marie


    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  14. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen


    to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions......Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... differences between the eight enzyme-substrate complexes were studied with particular emphasis on the active site, and possible sites for obtaining selectivity among the MMP's are discussed. Differences in the P1' pocket are well-documented and have been extensively exploited in inhibitor design. The present...

  15. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. (United States)

    Dong, Shengyi; Zheng, Bo; Wang, Feng; Huang, Feihe


    CONSPECTUS: Supramolecular polymers, fabricated via the combination of supramolecular chemistry and polymer science, are polymeric arrays of repeating units held together by reversible, relatively weak noncovalent interactions. The introduction of noncovalent interactions, such as hydrogen bonding, aromatic stacking interactions, metal coordination, and host-guest interactions, endows supramolecular polymers with unique stimuli responsiveness and self-adjusting abilities. As a result, diverse monomer structures have been designed and synthesized to construct various types of supramolecular polymers. By changing the noncovalent interaction types, numbers, or chemical structures of functional groups in these monomers, supramolecular polymeric materials can be prepared with tailored chemical and physical properties. In recent years, the interest in supramolecular polymers has been extended from the preparation of intriguing topological structures to the discoveries of potential applications as functional materials. Compared with traditional polymers, supramolecular polymers show some advantages in the fabrication of reversible or responsive materials. The development of supramolecular polymers also offers a platform to construct complex and sophisticated materials with a bottom-up approach. Macrocylic hosts, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, are the most commonly used building blocks in the fabrication of host-guest interaction-based supramolecular polymers. With the introduction of complementary guest molecules, macrocylic hosts demonstrate selective and stimuli-responsive host-guest complexation behaviors. By elaborate molecular design, the resultant supramolecular polymers can exhibit diverse structures based on the self-selectivity of host-guest interactions. The introduction of reversible host-guest interactions can further endow these supramolecular polymers with interesting and fascinating chemical

  16. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. (United States)

    Barker, Brandon E; Sadagopan, Narayanan; Wang, Yiping; Smallbone, Kieran; Myers, Christopher R; Xi, Hongwei; Locasale, Jason W; Gu, Zhenglong


    A major theme in constraint-based modeling is unifying experimental data, such as biochemical information about the reactions that can occur in a system or the composition and localization of enzyme complexes, with high-throughput data including expression data, metabolomics, or DNA sequencing. The desired result is to increase predictive capability and improve our understanding of metabolism. The approach typically employed when only gene (or protein) intensities are available is the creation of tissue-specific models, which reduces the available reactions in an organism model, and does not provide an objective function for the estimation of fluxes. We develop a method, flux assignment with LAD (least absolute deviation) convex objectives and normalization (FALCON), that employs metabolic network reconstructions along with expression data to estimate fluxes. In order to use such a method, accurate measures of enzyme complex abundance are needed, so we first present an algorithm that addresses quantification of complex abundance. Our extensions to prior techniques include the capability to work with large models and significantly improved run-time performance even for smaller models, an improved analysis of enzyme complex formation, the ability to handle large enzyme complex rules that may incorporate multiple isoforms, and either maintained or significantly improved correlation with experimentally measured fluxes. FALCON has been implemented in MATLAB and ATS, and can be downloaded from: ATS is not required to compile the software, as intermediate C source code is available. FALCON requires use of the COBRA Toolbox, also implemented in MATLAB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Genome Analysis of Structure-Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme. (United States)

    Degli Esposti, Mauro


    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni-Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure-function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. The total quasi-steady-state approximation for complex enzyme reactions

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.


    excellent fitting to the solutions of the full system, better than the sQSSA and the single reaction tQSSA. Finally, we discuss the need for a correct model formulation when doing "reverse engineering". which aims at finding unknown parameters by fitting the model to experimentally obtained data. We show......Biochemistry in general and enzyme kinetics in particular have been heavily influenced by the model of biochemical reactions known as Michaelis-Menten kinetics. Assuming that the complex concentration is approximately constant after a short transient phase leads to the usual Michaelis-Menten (MM...... both high and low enzyme concentrations, has been introduced in the last two decades. We extend the tQSSA to more complex reaction schemes, like fully competitive reactions, double phosphorylation, Goldbeter-Koshland switch and we show that for a very large range of parameters our tQSSA provides...

  19. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal


    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  20. Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova


    Full Text Available Biogenic minerals play an important role in the whole human nutrition, but they are included in the grain of the phytates that reduces their bioavailability. Whole wheat bread is generally considered a healthy food, but the presence of mineral elements in it is insignificant, because of weak phytate degradation. From all sources of exogenous phytase the most productive are microscopic fungi. To accelerate the process of transition hard mineral elements are mobilized to implement integrated cellulolytic enzyme preparation based on the actions of phytase (producer is Penicillium canescens. Phytase activity was assessed indirectly by the rate of release of phosphate from the substrate. It has been established that the release rate of the phosphoric acid substrate is dependent on the composition of the drug and the enzyme complex is determined by the presence of xylanase. The presented experimental data shows that a cellulase treatment of the grain in conjunction with the β-glucanase or xylanase leading to an increase in phytase activity could be 1.4 - 2.3 times as compared with the individual enzymes. As a result of concerted action of enzymes complex preparation varies topography grain, increase the pore sizes in seed and fruit shells that facilitate the penetration of the enzyme phytase in the aleurone layer to the site of phytin hydrolysis and leads to an increase in phytase activity. In terms of rational parameters of enzymatic hydrolysis, the distribution of mineral elements in the anatomical parts of the grain after processing complex enzyme preparation with the help of X-ray detector EMF miniCup system in a scanning electron microscope JEOL JSM 6390 were investigated. When processing enzyme preparation wheat trend in the distribution of mineral elements, characteristic of grain - the proportion of these elements in the aleurone layer decreases, and in the endosperm increases. Because dietary fiber and phytate found together in the

  1. Enzyme-substrate complexes of allosteric citrate synthase: evidence for a novel intermediate in substrate binding. (United States)

    Duckworth, Harry W; Nguyen, Nham T; Gao, Yin; Donald, Lynda J; Maurus, Robert; Ayed, Ayeda; Bruneau, Brigitte; Brayer, Gary D


    The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis. The CS of Acetobacter aceti has a similar structure, but has been successfully crystallized with bound substrates: both oxaloacetic acid (OAA) and an analog of acetyl coenzyme A (AcCoA). We engineered a variant of E. coli CS wherein five amino acids in the mobile region have been replaced by those in the A. aceti sequence. The purified enzyme shows unusual kinetics with a low affinity for both substrates. Although the crystal structure without ligands is very similar to that of the WT enzyme (except in the mutated region), complexes are formed with both substrates and the allosteric inhibitor NADH. The complex with OAA in the active site identifies a novel OAA-binding residue, Arg306, which has no functional counterpart in other known CS-OAA complexes. This structure may represent an intermediate in a multi-step substrate binding process where Arg306 changes roles from OAA binding to AcCoA binding. The second complex has the substrate analog, S-carboxymethyl-coenzyme A, in the allosteric NADH-binding site and the AcCoA site is not formed. Additional CS variants unable to bind adenylates at the allosteric site show that this second complex is not a factor in positive allosteric activation of AcCoA binding. © 2013.

  2. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry. (United States)

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur


    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  3. First evidence for a multienzyme complex of lipid biosynthesis pathway enzymes in Cunninghamella bainieri. (United States)

    Shuib, Shuwahida; Ibrahim, Izyanti; Mackeen, Mukram Mohamed; Ratledge, Colin; Hamid, Aidil Abdul


    Malic enzyme (ME) plays a vital role in determining the extent of lipid accumulation in oleaginous fungi being the major provider of NADPH for the activity of fatty acid synthase (FAS). We report here the first direct evidence of the existence of a lipogenic multienzyme complex (the lipid metabolon) involving ME, FAS, ATP: citrate lyase (ACL), acetyl-CoA carboxylase (ACC), pyruvate carboxylase (PC) and malate dehydrogenase (MDH) in Cunninghamella bainieri 2A1. Cell-free extracts prepared from cells taken in both growth and lipid accumulation phases were prepared by protoplasting and subjected to Blue Native (BN)-PAGE coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). A high molecular mass complex (approx. 3.2 MDa) consisting of the above enzymes was detected during lipid accumulation phase indicating positive evidence of multienzyme complex formation. The complex was not detected in cells during the balanced phase of growth or when lipid accumulation ceased, suggesting that it was transiently formed only during lipogenesis.

  4. Extracellular complex of chitinolytic enzymes of Clostridium paraputrificum strain J4 separated by membrane ultrafiltration. (United States)

    Tishchenko, G; Koppová, I; Simůnek, J; Dohnálek, J


    Membrane diafiltration was used for separation of the extracellular complex of chitinolytic enzymes of C. paraputrificum J4 free from contaminants with molar mass higher than 100 kDa and lower than 30 kDa. The enzyme complex containing beta-N-acetylglucosaminidase (NAGase) and six endochitinases was concentrated on a membrane with cut-off 30 kDa. In this retentate, the NAGase/endochitinase specific activity was 13.5/6.5-times higher than in the initial culture filtrate. The proportion (in%) of endochitinases: 23 (90 kDa), 42 (86 kDa), 8 (72 kDa), 16 (68 kDa) and 8 (60 kDa) was calculated from their peak areas (determined by densitometry) in images of zymograms. NAGase (38 kDa) was less active and stable at pH lower than 4 and higher than 8 but it was more temperature-stable than endochitinases, especially at 40-60 degrees C. In contrast to endochitinases, the pH optimum of NAGase activity was shifted by ca. 0.7 pH units to the alkaline region. Extracellular NAGase together with six endochitinases secreted by C. paraputrificum J4 were separated by membrane diafiltration and characterized by molar mass, stability and activity in dependence on pH and temperature. The knowledge of composition of chitinolytic enzymes, their pH and temperature stability is useful for optimization of the separation process.

  5. Enzyme-polyelectrolyte complex: Salt effects on the reaction of urease with polyallylamine (United States)

    Tikhonenko, S. A.; Saburova, E. A.; Durdenko, E. N.; Sukhorukov, B. I.


    The effects of inorganic mono- and divalent salts of different types on how the cation polyelectrolyte polyallylamine hydrochloride (PAA) binds with the oligomer enzyme urease were studied. It was shown that in solutions of the monovalent salts NaCl, KCl, and NH4Cl, polyelectrolyte-protein complexes formed by electrostatic interactions, which decreased monotonically as the salt concentrations increased according to the classic law of statistical physics, correlating the Debye radius with the ionic strength of the solution. In solutions of the divalent salts Na2SO4 and (NH4)2SO4, the efficiency of the formation of the polyelectrolyte-protein complexes changed abruptly (the enzyme was drastically activated) at low salt concentrations (˜0.6-0.8 mM), which was not consistent with the classic theory of charge interactions in solutions with different ionic strengths. Turbidimetric titration at different salt concentrations in the given range revealed a high aggregative ability for sulfates and low ability for chlorides. It was concluded that the anomalies in the concentration dependence of the enzyme activity and aggregative ability were related to the formation of stable bonds PAA to the divalent SO{4/2-} anion, which increased drastically when the ratio of anion concentration to the number of positively charged PAA monomers in solution reached 1: 2.

  6. Generating rate equations for complex enzyme systems by a computer-assisted systematic method

    Directory of Open Access Journals (Sweden)

    Beard Daniel A


    Full Text Available Abstract Background While the theory of enzyme kinetics is fundamental to analyzing and simulating biochemical systems, the derivation of rate equations for complex mechanisms for enzyme-catalyzed reactions is cumbersome and error prone. Therefore, a number of algorithms and related computer programs have been developed to assist in such derivations. Yet although a number of algorithms, programs, and software packages are reported in the literature, one or more significant limitation is associated with each of these tools. Furthermore, none is freely available for download and use by the community. Results We have implemented an algorithm based on the schematic method of King and Altman (KA that employs the topological theory of linear graphs for systematic generation of valid reaction patterns in a GUI-based stand-alone computer program called KAPattern. The underlying algorithm allows for the assumption steady-state, rapid equilibrium-binding, and/or irreversibility for individual steps in catalytic mechanisms. The program can automatically generate MathML and MATLAB output files that users can easily incorporate into simulation programs. Conclusion A computer program, called KAPattern, for generating rate equations for complex enzyme system is a freely available and can be accessed at

  7. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M


    A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent-insoluble c......A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent......-insoluble complexes commonly known as glycolipid "rafts". Thus, aminopeptidase N (EC, aminopeptidase A (EC, dipeptidyl peptidase IV (EC, and sucrase-isomaltase (EC were 34-48% detergent-insoluble. Maltase-glucoamylase (EC was markedly less detergent-insoluble (20......%), and lactase-phlorizin hydrolase (EC was essentially fully soluble in detergent. In radioactively labeled, mucosal explants, the newly synthesized brush border enzymes began to associate with detergent-insoluble complexes while still in their transient, high mannose-glycosylated form...

  8. Vanadium(V) complexes in enzyme systems: aqueous chemistry, inhibition and molecular modeling in inhibitor design. (United States)

    Bhattacharyya, S; Tracey, A S


    Vanadate in aqueous solution is known to influence a number of enzyme-catalyzed reactions. Such effects are well known to carry over to living systems where numerous responses to the influence of vanadium have been well-documented; perhaps the most studied being the insulin-mimetic effect. Studies of the aqueous chemistry of vanadate provide an insight into the mechanisms by which vanadate affects enzyme systems and suggests methods for the elucidation of specific types of responses. Studies of the corresponding enzymes provide complementary information that suggests model vanadate systems be studied and provides clues as to functional groups that might be utilized in the development of selective enzyme inhibition. The insulin-mimetic effect is thought by many workers to originate in the effectiveness of vanadium as an inhibitor of protein tyrosine phosphatase (PTPase) activity. One, or more PTPases regulate the phosphotyrosine levels of the insulin receptor kinase domain. Appropriate ligands allow modification of the reactivity and function of vanadate. For instance, although the complex, ((CH(3))(2)NO)(2)V(O)OH, is not quite as good an inhibitor of PTPase activity as is vanadate, it is much more effective in cell cultures for increasing glucose transport and glycogen synthesis. Studies of the chemistry of this complex provide an explanation of the efficacy of this compound as a PTPase inhibitor that is supported by computer modeling studies. Computer calculations using X-ray data of known PTPases as a basis for homology modeling then suggests functionality that needs to be addressed in developing selective PTPase inhibitors.

  9. The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex (United States)

    Lauble, H.; Kennedy, M. C.; Emptage, M. H.; Beinert, H.; Stout, C. D.


    It has been known for many years that fluoroacetate and fluorocitrate when metabolized are highly toxic, and that at least one effect of fluorocitrate is to inactivate aconitase. In this paper we present evidence supporting the hypothesis that the (−)-erythro diastereomer of 2-fluorocitrate acts as a mechanism based inhibitor of aconitase by first being converted to fluoro-cis-aconitate, followed by addition of hydroxide and with loss of fluoride to form 4-hydroxy-trans-aconitate (HTn), which binds very tightly, but not covalently, to the enzyme. Formation of HTn by these reactions is in accord with the working model for the enzyme mechanism. That HTn is the product of fluorocitrate inhibition is supported by the crystal structure of the enzyme-inhibitor complex at 2.05-Å resolution, release of fluoride stoichiometric with total enzyme when (−)-erythro-2-fluorocitrate is added, HPLC analysis of the product, slow displacement of HTn by 106-fold excess of isocitrate, and previously published Mössbauer experiments. When (+)-erythro-2-fluorocitrate is added to aconitase, the release of fluoride is stoichiometric with total substrate added, and HPLC analysis of the products indicates the formation of oxalosuccinate, and its derivative α-ketoglutarate. This is consistent with the proposed mechanism, as is the formation of HTn from (−)-erythro-2-fluorocitrate. The structure of the inhibited complex reveals that HTn binds like the inhibitor trans-aconitate while providing all the interactions of the natural substrate, isocitrate. The structure exhibits four hydrogen bonds <2.7 Å in length involving HTn, H2O bound to the [4Fe–4S] cluster, Asp-165 and His-167, as well as low temperature factors for these moieties, consistent with the observed very tight binding of the inhibitor. PMID:8942997

  10. The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex. (United States)

    Lauble, H; Kennedy, M C; Emptage, M H; Beinert, H; Stout, C D


    It has been known for many years that fluoroacetate and fluorocitrate when metabolized are highly toxic, and that at least one effect of fluorocitrate is to inactivate aconitase. In this paper we present evidence supporting the hypothesis that the (-)-erythro diastereomer of 2-fluorocitrate acts as a mechanism based inhibitor of aconitase by first being converted to fluoro-cis-aconitate, followed by addition of hydroxide and with loss of fluoride to form 4-hydroxy-trans-aconitate (HTn), which binds very tightly, but not covalently, to the enzyme. Formation of HTn by these reactions is in accord with the working model for the enzyme mechanism. That HTn is the product of fluorocitrate inhibition is supported by the crystal structure of the enzyme-inhibitor complex at 2.05-A resolution, release of fluoride stoichiometric with total enzyme when (-)-erythro-2-fluorocitrate is added, HPLC analysis of the product, slow displacement of HTn by 10(6)-fold excess of isocitrate, and previously published Mössbauer experiments. When (+)-erythro-2-fluorocitrate is added to aconitase, the release of fluoride is stoichiometric with total substrate added, and HPLC analysis of the products indicates the formation of oxalosuccinate, and its derivative alpha-ketoglutarate. This is consistent with the proposed mechanism, as is the formation of HTn from (-)-erythro-2-fluorocitrate. The structure of the inhibited complex reveals that HTn binds like the inhibitor trans-aconitate while providing all the interactions of the natural substrate, isocitrate. The structure exhibits four hydrogen bonds < 2.7 A in length involving HTn, H2O bound to the [4Fe-4S] cluster, Asp-165 and His-167, as well as low temperature factors for these moieties, consistent with the observed very tight binding of the inhibitor.

  11. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. DEEPAK GUPTA, PALANISAMY RAJAKANNU, BHASKARAN SHANKAR,. FIRASAT HUSSAIN and MALAICHAMY SATHIYENDIRAN. ∗. Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail:; ...

  12. Weak interactions modulating the dimensionality in supramolecular architectures in three new nickel(II)-hydrazone complexes, magnetostructural correlation, and catalytic potential for epoxidation of alkenes under phase transfer conditions. (United States)

    Sadhukhan, Dipali; Ray, Aurkie; Pilet, Guillaume; Rizzoli, Corrado; Rosair, Georgina M; Gómez-García, Carlos J; Signorella, Sandra; Bellú, Sebastián; Mitra, Samiran


    Three different ONO donor acetyl hydrazone Schiff bases have been synthesized from the condensation of acetic hydrazide with three different carbonyl compounds: salicylaldehyde (HL(1)), 2-hydroxyacetophenone (HL(2)), and 2, 3-dihydroxybenzaldehyde (HL(3)). These tridentate ligands are reacted with Ni(OOCCF(3))(2)·xH(2)O to yield three new Ni(II) complexes having distorted octahedral geometry at each Ni center: [Ni(L(1))(OOCCF(3))(CH(3)OH)](2) (1), [Ni(L(2))(OOCCF(3))(H(2)O)](2) (2), and [Ni(L(3))(L(3)H)](OOCCF(3))(H(2)O)(1.65)(CH(3)OH)(0.35) (3). The ligands and the complexes have been characterized by elemental analysis and IR and UV-vis spectroscopy, and the structures of the complexes have been established by single crystal X-ray diffraction (XRD) study. 1 and 2 are centrosymmetric dinuclear complexes and are structural isomers whereas 3 is a bis chelated cationic monomer coordinated by one neutral and one monoanionic ligand. O-H···O hydrogen bonds in 3 lead to the formation of a dimer. Slight steric and electronic modifications in the ligand backbone provoke differences in the supramolecular architectures of the complexes, leading to a variety of one, two, and three-dimensional hydrogen bonded networks in complexes 1-3 respectively. Variable temperature magnetic susceptibility measurements reveal that moderate antiferromagnetic interactions operate between phenoxo bridged Ni(II) dimers in 1 and 2 whereas very weak antiferromagnetic exchange occurs through hydrogen bonding and π-π stacking interactions in 3. All complexes are proved to be efficient catalysts for the epoxidation of alkenes by NaOCl under phase transfer condition. The efficiency of alkene epoxidation is dramatically enhanced by lowering the pH, and the reactions are supposed to involve high valent Ni(III)-OCl or Ni(III)-O· intermediates. 3 is the best epoxidation catalyst among the three complexes with 99% conversion and very high turnover number (TON, 396).

  13. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav


    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  14. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin

    Energy Technology Data Exchange (ETDEWEB)

    Budayova-Spano, Monika, E-mail: [European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble (France); Bonneté, Françoise; Ferté, Natalie [Centre de Recherche en Matière Condensée et Nanosciences, Campus de Luminy, Case 913, 13288 Marseille (France); El Hajji, Mohamed [Sanofi-Aventis, 371 Rue du Professeur Blayac, 34184 Montpellier (France); Meilleur, Flora [Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble (France); Blakeley, Matthew Paul [European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France); Castro, Bertrand [Sanofi-Aventis, 371 Rue du Professeur Blayac, 34184 Montpellier (France); European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France)


    Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grown in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.

  15. Effects of enzyme complex SSF (solid state fermentation in pellet diets for Nile tilapia

    Directory of Open Access Journals (Sweden)

    Guilherme de Souza Moura


    Full Text Available The effects of enzyme complex SSF (solid state fermentation on growth performance and the availability of sucrose and monosaccharides in the chyme of Nile were involved. The study included 360 fish (70g±4.43 in a completely randomized design with six dietary treatments (0, 50, 100, 150, 200 and 250 ppm of SSF arranged in six replicates, with 10 fish per replicate. Every 15 days, one tilapia of each experimental unit was sacrificed for analyses of carbohydrate in the chyme. On day 60 of the experiment, the performance parameters were measured. There was a linear effect according to treatment for final weight and weight gain. For the other performance parameters, there were no differences. There was quadratic effect for sucrose and glucose in function of the treatment, whereas the fructose levels increased linearly. The addition of 150 ppm of the enzyme complex SSF in the feed improves the performance of Nile tilapia and increases the availability of sucrose and monosaccharides in the chyme.

  16. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black (United States)

    Hepel, Maria; Stobiecka, Magdalena


    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8 mM GSH. The UV-Vis difference spectra show a positive peak at 383 nm and a negative peak at 458 nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  17. Single Molecule Force Spectroscopy of self complementary hydrogen-bonded supramolecular systems: dimers, polymers and solvent effects

    NARCIS (Netherlands)

    Embrechts, A.


    The work described in this Thesis aimed at a better understanding of the structure-property relationships of supramolecular assemblies with a specific focus on hydrogen-bond dimers and polymers. The hydrogen-bond strength of (supra)molecular complexes in different solvents is usually determined by

  18. Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Rowland


    Full Text Available Lipoic acid is an essential metabolic cofactor added as a posttranslational modification on several multimeric enzyme complexes. These protein complexes, evolutionarily conserved from bacteria to humans, are core regulators of cellular metabolism. While the multistep enzymatic process of adding lipoyl modifications has been well characterized in Escherichia coli, the enzyme required for the removal of these lipoyl moieties (i.e., a lipoamidase or delipoylase has not yet been identified. Here, we describe our discovery of sirtuins as lipoamidases in bacteria and establish their conserved substrates. Specifically, by using a series of knockout, overexpression, biochemical, in vitro, proteomic, and functional assays, we determined the substrates of sirtuin CobB in E. coli as components of the pyruvate dehydrogenase (PDH, α-ketoglutarate dehydrogenase (KDH, and glycine cleavage (GCV complexes. In vitro assays provided direct evidence for this specific CobB activity and its NAD+ dependence, a signature of all sirtuins. By designing a targeted quantitative mass spectrometry method, we further measured sirtuin-dependent, site-specific lipoylation on these substrates. The biological significance of CobB-modulated lipoylation was next established by its inhibition of both PDH and KDH activities. By restricting the carbon sources available to E. coli, we demonstrated that CobB regulates PDH and KDH under several growth conditions. Additionally, we found that SrtN, the sirtuin homolog in Gram-positive Bacillus subtilis, can also act as a lipoamidase. By demonstrating the evolutionary conservation of lipoamidase activity across sirtuin homologs, along with the conservation of common substrates, this work emphasizes the significance of protein lipoylation in regulating central metabolic processes.

  19. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: induction and rationalization of supramolecular chirality. (United States)

    Brahma, Sanfaori; Ikbal, Sk Asif; Rath, Sankar Prasad


    We report here the synthesis, structure, and spectroscopic properties of a series of supramolecular chiral 1:1 tweezer-diamine complexes consisting of an achiral Zn(II) bisporphyrin (Zn2DPO) host and five different chiral diamine guests, namely, (R)-diaminopropane (DAP), (1S,2S)-diaminocyclohexane (CHDA), (S)-phenylpropane diamine (PPDA), (S)-phenyl ethylenediamine (PEDA), and (1R,2R)-diphenylethylene diamine (DPEA). The solid-state structures are preserved in solution, as reflected in their (1)H NMR spectra, which also revealed the remarkably large upfield shifts of the NH2 guest protons with the order Zn2DPO·DAP > Zn2DPO·CHDA > Zn2DPO·PPDA> Zn2DPO·PEDA ≫ Zn2DPO·DPEA, which happens to be the order of binding constants of the respective diamines with Zn2DPO. As the bulk of the substituent at the chiral center of the guest ligand increases, the Zn-Nax distance of the tweezer-diamine complex also increases, which eventually lowers the binding of the guest ligand toward the host. Also, the angle between the two porphyrin rings gradually increases with increasing bulk of the guest in order to accommodate the guest within the bisporphyrin cavity with minimal steric clash. The notably high amplitude bisignate CD signal response by Zn2DPO·DAP, Zn2DPO·CHDA, and Zn2DPO·PPDA can be ascribed to the complex's high stability and the formation of a unidirectional screw as observed in the X-ray structures of the complexes. A relatively lower value of CD amplitude shown by Zn2DPO·PEDA is due to the lower stability of the complex. The projection of the diamine binding sites of the chiral guest would make the two porphyrin macrocycles oriented in either a clockwise or anticlockwise direction in order to minimize host-guest steric clash. In sharp contrast, Zn2DPO·DPEA shows a very low amplitude bisignate CD signal due to the presence of both left- (dictated by the pre-existing chirality of (1R,2R)-DPEA) and right-handed screws (dictated by the steric differentiation at

  20. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip


    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  1. 1H NMR studies of binary and ternary dapsone supramolecular complexes with different drug carriers: EPC liposome, SBE-β-CD and β-CD. (United States)

    Martins, Lucas; Arrais, Monica; de Souza, Alexandre; Marsaioli, Anita


    Binary and ternary systems composed of dapsone, sulfobutylether-β-cyclodextrin (SBE-β-CD), β-CD and egg phosphatidylcholine (EPC) were evaluated using 1D ROESY, saturation transfer difference NMR and diffusion experiments (DOSY) revealing the binary complexes Dap/β-CD (K(a) 1396 l mol(-1)), Dap/SBE-β-CD (K(a) 246 l mol(-1)), Dap/EPC (K(a) 84 l mol(-1)) and the ternary complex Dap/β-CD/EPC (K(a) 18 l mol(-1)) in which dapsone is more soluble. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril (United States)

    Akif, Mohd; Masuyer, Geoffrey; Schwager, Sylva L U; Bhuyan, Bhaskar J; Mugesh, Govindasamy; Isaac, R Elwyn; Sturrock, Edward D; Acharya, K Ravi


    Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin–angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356–1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 Å resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein–selenolate interaction. These new structures of tACE–SeCap and AnCE–SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity. Database Structural data for the two SeCap complexes with ACE and AnCE have been deposited with the RCSB Protein Data Bank under the codes 2YDM and 3ZQZ, respectively. PMID:21810173

  3. A novel pectin-degrading enzyme complex from Aspergillus sojae ATCC 20235 mutants. (United States)

    Mata-Gómez, Marco A; Heerd, Doreen; Oyanguren-García, Iñigo; Barbero, Francis; Rito-Palomares, Marco; Fernández-Lahore, Marcelo


    In the food industry, the use of pectinase preparations with high pectin esterase (PE) activity leads to the release of methanol, which is strictly regulated in food products. Herein, a pectin-degrading enzyme (PDE) complex exhibiting low PE activity of three Aspergillus sojae ATCC 20235 mutants (M3, DH56 and Guserbiot 2.230) was investigated. Production of exo-/endo-polygalacturonase (PG), exo-polymethylgalacturonase (PMG) and pectin lyase (PL) by mutant M3 and A. sojae using two different carbon sources was evaluated in solid-state fermentation. Finally, experimental preparations obtained from the mutants and commercial pectinases standardized to the same potency were screened for PDEs. Mutant M3 grown on sugar beet was found to be the best producer of exo-PG, endo-PG, exo-PMG and PL, with maximum yields of 1111, 449, 130 and 123 U g(-1), respectively. All experimental preparations exhibited low PE activity, at least 21.5 times less than commercial pectinases, and higher endo-PG (40 U mL(-1)). Mutant M3 was the best PDE producer using sugar beet. Mutant strains presented a PDE complex featuring high endo-PG and very low PE activities. This novel complex with low de-esterifying activity can be exploited in the food industry to degrade pectin without releasing methanol. © 2014 Society of Chemical Industry.

  4. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. (United States)

    Esquirol, Lygie; Peat, Thomas S; Wilding, Matthew; Liu, Jian-Wei; French, Nigel G; Hartley, Carol J; Onagi, Hideki; Nebl, Thomas; Easton, Christopher J; Newman, Janet; Scott, Colin


    Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2β2 heterotetramer with a hitherto unidentified 68-amino-acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    recognition and binding, ice structures, and supramolecular chemistry. The traditional view is .... pair-wise leads to synthon control and crystal design in multifunctional molecules. ..... Crystal structure of Na(sac)•1.875H2O (Na pink, O red, N blue, S yellow, C gray, H cream). The regular region on the left side has 10 sac. −.

  6. Synthesis and characterization of mononuclear oxovanadium(IV) complexes and their enzyme inhibition studies with a carbohydrate metabolic enzyme phosphodiesterase I. (United States)

    Mahroof-Tahir, Mohammad; Brezina, Dan; Fatima, Naheed; Choudhary, Muhammad Iqbal; Atta-ur-Tahman


    The increasing interest in vanadium coordination chemistry is based on its well-established chemical and biological functions. A beta-diketonato complex of oxovanadium(IV) is known to be having numerous catalytic applications and also exhibits promising insulin mimetic properties. In continuation of our structure activity relationship studies of metal complexes, we report herein the synthesis and characterization of the vanadium complexes of beta-diketonato ligand system with systematic variations of electronic and steric factors. Two complexes, VO(tmh)(2) (tmh = 2,2,6,6,-tetramethyl-3,5-heptanedione), and VO(hd)(2) (hd = 3,5-heptanedione) were synthesized and characterized by using different spectroscopic techniques. Elemental and mass spectral analysis supports the presence of two beta-diketonato ligands per VO(2+) unit. UV-Vis spectra in different solvents indicate coordination of coordinating solvent molecules at sixth position resulting in red shift of the band I transition. NMR and IR spectra reveal binding of coordinating solvent molecule at vacant sixth position trans to oxo group without releasing beta-diketonato ligands. Enzyme inhibition studies of these and other related oxovanadium(IV) complexes with beta-diketonato ligand system are conducted with snake venom phosphodiesterase I (SPVDE). All of these complexes showed significant inhibitory potential and were found to be non-competitive inhibitors against this enzyme.

  7. Template synthesis of two new supramolecular zinc(II) complexes containing pentadentate N3O2 semicarbazone ligand: Nanostructure synthesis, Hirshfeld surface analysis, and DFT studies (United States)

    Tyula, Yunes Abbasi; Zabardasti, Abedien; Goudarziafshar, Hamid; Roudsari, Majid Sadeghi; Dusek, Michal; Eigner, Vaclav


    Two new zinc(II) complexes, [Zn(H2dapsc) (CH3OH)2][ZnBr2Cl2] (1) and [Zn(H2dapsc) (CH3OH)Br]Br.(CH3OH) (2), where H2dapsc is 2,6-diacetylpyridine bis(semicarbazone), were synthesized using a template method in which the pentadentate N3O2 semicarbazone ligand derived from [1 + 2] condensation of 2,6-diacetylpyridine and semicarbazide in the presence of zinc(II) ion as template agent. These compounds were characterized by IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. Their single crystal X-ray structures showed that in both complex cations, the metal center has a distorted pentagonal-bipyramidal geometry in which the semicarbazone (H2dapsc) ligand occupies the equatorial plane, while the axial positions occupy by two methanol ligands in (1) and two bromo and methanol ligands in (2). Furthermore, the impact of the close intermolecular contacts on the crystal packing of (1) and (2) have been further studied using Hirshfeld surface analysis. Density Functional Theory (DFT) method was applied for the calculation of HOMO-LUMO energy gap, atomic charges and vibrational frequencies of title complexes. Moreover, the nanostructure of zinc complex was synthesized by a sonochemical method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), FT-IR spectroscopy, and elemental analysis.

  8. A One-Pot Self-Assembly Reaction to Prepare a Supramolecular Palladium(II) Cyclometalated Complex: An Undergraduate Organometallic Laboratory Experiment (United States)

    Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M.


    A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…

  9. Supramolecular photochemistry of drugs in biomolecular environments. (United States)

    Monti, Sandra; Manet, Ilse


    In this tutorial review we illustrate how the interaction of photoactive drugs/potential drugs with proteins or DNA in supramolecular complexes can determine the course of the reactions initiated by the drug absorbed photons, evidencing the mechanistic differences with respect to the solution conditions. We focus on photoprocesses, independent of oxygen, that lead to chemical modification of the biomolecules, with formation of new covalent bonds or cleavage of existing bonds. Representative systems are mainly selected from the literature of the last decade. The photoreactivity of some aryl propionic acids, (fluoro)quinolones, furocoumarins, metal coordination complexes, quinine-like compounds, naphthaleneimides and pyrenyl-peptides with proteins or DNA is discussed. The use of light for biomolecule photomodification, historically relevant to biological photosensitization processes and some forms of photochemotherapy, is nowadays becoming more and more important in the development of innovative methods in nanomedicine and biotechnology.

  10. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex. (United States)

    Sivaramakrishna, D; Swamy, Musti J


    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  11. Sunflower Meal and Supplementation of an Enzyme Complex in Layer Diets

    Directory of Open Access Journals (Sweden)

    WAG Araújo


    Full Text Available ABSTRACTThe objective of this experiment was to evaluate the performance of 64- to 79-wk-old laying hens fed diets supplemented with an enzyme complex (EC and containing increasing sunflower meal (SFM levels. A total of 384 Hy-Line Brown layers were distributed according to a randomized block design in a 4 × 2 factorial arrangement (four levels of SFM, and inclusion or not of EC, with eight replicates of six birds each unit. The levels of SFM inclusion were 0, 8, 16 and 24%, utilized in two distinct diets. Diets were calculated to meet all the nutritional requirements of birds, except for the nutrients that would be made available by the nutritional matrix of the enzyme complex, with or without utilization of EC. The parameters analyzed were feed intake (g/bird/day, egg production (%/bird/day, egg weight, egg mass (g/bird/day, feed conversion ratio per egg mass, feed conversion ratio per dozen eggs, body weight gain, egg components (yolk, albumen and eggshell and the economic efficiency index (EEI. There was no interaction between EC addition and the SFM levels in the diet. The addition of EC in the diets of laying hens did not affect egg productive or components parameters. The increase in the SFM levels in the diet presented quadratic effect on egg production and feed conversion ratio per dozen eggs, with calculated optimal sunflower meal inclusion levels of 6.72% and 5.83%, respectively, for each parameter. The best economic efficiency per dozen eggs was obtained with the diet with 16.0% SFM and EC inclusion, whereas per egg mass with the diet with of 24.0% SFM and no EC addition.

  12. Spacer-Controlled Supramolecular Assemblies of Cu(II with Bis(2-Hydroxyphenylimine Ligands. from Monoligand Complexes to Double-Stranded Helicates and Metallomacrocycles

    Directory of Open Access Journals (Sweden)

    Norman Kelly


    Full Text Available Reaction of Cu(NO32·3H2O or Cu(CH3COO2·H2O with the bis(2-hydroxyphenylimine ligands H2L1-H2L4 gave four Cu(II complexes of composition [Cu2(L1(NO32(H2O]·MeOH, [Cu2(L22], [Cu2(L32] and [Cu2(L42]·2MeOH. Depending on the spacer unit, the structures are characterized by a dinuclear arrangement of Cu(II within one ligand (H2L1, by a double-stranded [2+2] helical binding mode (H2L2 and H2L3 and a [2 + 2] metallomacrocycle formation (H2L4. In these complexes, the Cu(II coordination geometries are quite different, varying between common square planar or square pyramidal arrangements, and rather rare pentagonal bipyramidal and tetrahedral geometries. In addition, solution studies of the complex formation using UV/Vis and ESI-MS as well as solvent extraction are reported.

  13. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers. (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W


    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. (United States)

    Shi, Jialan; Gilbert, Gary E


    Lactadherin, a glycoprotein of the milk-fat globule membrane, contains tandem C domains with homology to discoidin-type lectins and to membrane-binding domains of blood-clotting factors V and VIII. We asked whether the structural homology confers the capacity to compete for the membrane-binding sites of factor VIII and factor V and to function as an anticoagulant. Our results indicate that lactadherin competes efficiently with factor VIII and factor V for binding sites on synthetic phosphatidylserine-containing membranes with half-maximal displacement at lactadherin concentrations of 1 to 4 nM. Binding competition correlated to functional inhibition of factor VIIIa-factor IXa (factor Xase) enzyme complex. In contrast to annexin V, lactadherin was an efficient inhibitor of the prothrombinase and the factor Xase complexes regardless of the degree of membrane curvature and the phosphatidylserine content. Lactadherin also inhibited the factor VIIa-tissue factor complex efficiently whereas annexin V was less effective. Because the inhibitory concentration of lactadherin was proportional to the phospholipid concentration, and because lactadherin was not an efficient inhibitor in the absence of phospholipid, the major inhibitory effect of lactadherin relates to blocking phospholipid sites rather than forming inhibitory protein-protein complexes. Lactadherin was also an effective inhibitor of a modified whole blood prothrombin time assay in which clotting was initiated by dilute tissue factor; 60 nM lactadherin prolonged the prothrombin time 150% versus 20% for 60 nM annexin V. These results indicate that lactadherin can function as a potent phospholipid-blocking anticoagulant.

  15. Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome.


    Baginsky, S; Shteiman-Kotler, A; Liveanu, V; Yehudai-Resheff, S; Bellaoui, M; Settlage, R E; Shabanowitz, J; Hunt, D F; Schuster, G; Gruissem, W


    In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This complex has an important role in processing and degradation of RNA. Chloroplasts contain an exoribonuclease homologous to E. coli PNPase. Size exclusion chromatography revealed that chloroplast PNPase elutes as a 580-600 kDa complex, suggesting that it can f...

  16. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. (United States)

    Raynal, Matthieu; Ballester, Pablo; Vidal-Ferran, Anton; van Leeuwen, Piet W N M


    Supramolecular catalysis is a rapidly expanding discipline which has benefited from the development of both homogeneous catalysis and supramolecular chemistry. The properties of classical metal and organic catalysts can now be carefully tailored by means of several suitable approaches and the choice of reversible interactions such as hydrogen bond, metal-ligand, electrostatic and hydrophobic interactions. The first part of these two subsequent reviews will be dedicated to catalytic systems for which non-covalent interactions between the partners of the reaction have been designed although mimicking enzyme properties has not been intended. Ligand, metal, organocatalyst, substrate, additive, and metal counterion are reaction partners that can be held together by non-covalent interactions. The resulting catalysts possess unique properties compared to analogues lacking the assembling properties. Depending on the nature of the reaction partners involved in the interactions, distinct applications have been accomplished, mainly (i) the building of bidentate ligand libraries (intra ligand-ligand), (ii) the building of di- or oligonuclear complexes (inter ligand-ligand), (iii) the alteration of the coordination spheres of a metal catalyst (ligand-ligand additive), and (iv) the control of the substrate reactivity (catalyst-substrate). More complex systems that involve the cooperative action of three reaction partners have also been disclosed. In this review, special attention will be given to supramolecular catalysts for which the observed catalytic activity and/or selectivity have been imputed to non-covalent interaction between the reaction partners. Additional features of these catalysts are the easy modulation of the catalytic performance by modifying one of their building blocks and the development of new catalytic pathways/reactions not achievable with classical covalent catalysts.

  17. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.


    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  18. Oligonuclear 3d-4f complexes as tectons in designing supramolecular solid-state architectures: impact of the nature of linkers on the structural diversity. (United States)

    Gheorghe, Ruxandra; Cucos, Paula; Andruh, Marius; Costes, Jean-Pierre; Donnadieu, Bruno; Shova, Sergiu


    Heteronuclear cationic complexes, [LCuLn]3+ and [(LCu)2Ln]3+, were employed as nodes in designing high-nuclearity complexes and coordination polymers with a rich variety of network topologies (L is the dianion of the Schiff base resulting from the 2:1 condensation of 3-methoxysalycilaldehyde with 1,3-propanediamine). Two families of linkers have been chosen: the first consists of exo-dentate ligands bearing nitrogen-donor atoms (bipyridine (bipy), dicyanamido (dca)), whereas the second consists of exo-dentate ligands with oxygen-donor atoms (anions derived from the acetylenedicarboxylic (H2acdca), fumaric (H2fum), trimesic (H3trim), and oxalic (H2ox) acids). The ligands belonging to the first family prefer copper(II) ions, whereas the ligands from the second family interact preferentially with oxophilic rare-earth cations. The following complexes have been obtained and crystallographically characterized: [LCu(II)(OH2)Gd(III)(NO3)3] (1), [{LCu(II)Gd(III)(NO3)3}2(mu-4,4'-bipy)] (2), 1infinity[LCu(II)Gd(III)(acdca)(1.5)(H2O)2].13H2O (3), 2infinity[LCu(II)Gd(III)(fum)(1.5)(H2O)2].4H2O.C2H5OH (4), 1infinity[LCu(II)Sm(III)(H2O)(Hfum)(fum)] (5), 1infinity[LCu(II)Er(III)(H2O)2(fum)]NO3.3H2O (6), 2infinity[LCu(II)Sm(III)(fum)(1.5)(H2O)2].4H2O.C2H5OH (7), [{(LCu(II))2Sm(III)}2fum2](OH)2 (8), 1infinity[LCu(II)Gd(III)(trim)(H2O)2].H2O (9), 2infinity[{(LCu(II))2Pr(III)}(C2O4)(0.5)(dca)]dca.2H2O (10), [LCu(II)Gd(III)(ox)(H2O)3][Cr(III)(2,2'-bipy)(ox)2].9H2O (11), and [LCuGd(H2O)4{Cr(CN)6}].3H2O (12). Compound 1 is representative of the whole family of binuclear Cu(II)-Ln(III) complexes which have been used as precursors in constructing heteropolymetallic complexes. The rich variety of the resulting structures is due to several factors: 1) the nature of the donor atoms of the linkers, 2) the preference of the copper(II) ion for nitrogen atoms, 3) the oxophilicity of the lanthanides, 4) the degree of deprotonation of the polycarboxylic acids, 5) the various connectivity modes

  19. Structure of PqsD, a Pseudomonas Quinolone Signal Biosynthetic Enzyme, in Complex with Anthranilate

    Energy Technology Data Exchange (ETDEWEB)

    Bera, A.; Atanasova, V; Robinson, H; Eisenstein, E; Coleman, J; Pesci, E; Parsons, J


    Here we present a structural and biophysical characterization of PqsD that includes several crystal structures of the enzyme, including that of the PqsD-anthranilate covalent intermediate and the inactive Cys112Ala active site mutant in complex with anthranilate. The structure reveals that PqsD is structurally similar to the FabH and chalcone synthase families of fatty acid and polyketide synthases. The crystallographic asymmetric unit contains a PqsD dimer. The PqsD monomer is composed of two nearly identical 170-residue ????? domains. The structures show anthranilate-liganded Cys112 is positioned deep in the protein interior at the bottom of an 15 A long channel while a second anthraniloyl-CoA molecule is waiting in the cleft leading to the protein surface. Cys112, His257, and Asn287 form the FabH-like catalytic triad of PqsD. The C112A mutant is inactive, although it still reversibly binds anthraniloyl-CoA. The covalent complex between anthranilate and Cys112 clearly illuminates the orientation of key elements of the PqsD catalytic machinery and represents a snapshot of a key point in the catalytic cycle.

  20. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels

    KAUST Repository

    Shi, Junfeng


    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.

  1. The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes

    DEFF Research Database (Denmark)

    Ghelli, Anna; Tropeano, Concetta V; Calvaruso, Maria Antonietta


    Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe...... exercise intolerance and multisystem manifestations. In this study, we characterized the biochemical properties of cybrids carrying this mutation and report that the homoplasmic p.278Y>C mutation caused a dramatic reduction in the CIII activity and in CIII-driven mitochondrial ATP synthesis. However......, the CI, CI + CIII and CII + CIII activities and the rate of ATP synthesis driven by the CI or CII substrate were only partially reduced or unaffected. Consistent with these findings, mutated cybrids maintained the mitochondrial membrane potential in the presence of oligomycin, indicating...

  2. Color indicator for supramolecular polymer chemistry: phenolphthalein-containing thermo- and pH-sensitive N-(Isopropyl)acrylamide copolymers and β-cyclodextrin complexation. (United States)

    Fleischmann, Carolin; Ritter, Helmut


    The copolymerization parameters of N-(isopropyl)acrylamide (1) and N-(2-hydroxy-5-(1-(4-hydroxyphenyl)-3-oxo-1,3-dihydroisobenzofuran-1-yl)benzyl)acrylamide (2) are determined. For both monomers, the homoaddition proceeds slightly faster than the heteroaddition step; however, the polymer formation occurs in a statistic fashion. Copolymers of different compositions are prepared and the cloud points are determined. Thereby, a significant influence of the concentration of monomer 2 and the pH value is found. For the first time, the complexation of polymer attached phenolphthalein by β-cyclodextrins is shown. Furthermore, it is possible to achieve a decomplexation by the addition of suitable guest molecules. Both procedures can be followed with the naked eye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of dietary supplementation of multi-enzyme complex on the ...

    African Journals Online (AJOL)



    Jul 25, 2011 ... Tahir et al. (2005) who showed that enzyme treatments. (cellulose and hemicellulase) did not affect the relative weights of the digestive system and liver. Gracia et al. (2003) also reported that, enzyme has no effect on the relative weights of digestive organs. But the addition of enzyme to the low energy diet ...

  4. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures. (United States)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît


    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  5. 3D Printing of Biocompatible Supramolecular Polymers and their Composites. (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne


    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  6. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    International Nuclear Information System (INIS)

    Elegheert, Jonathan; Hemel, Debbie van den; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.


    Of the four old yellow enzyme homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex

  7. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex (United States)

    Dai, Han; Case, April W.; Riera, Thomas V.; Considine, Thomas; Lee, Jessica E.; Hamuro, Yoshitomo; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M.; Pietrak, Beth; Schwartz, Benjamin; Blum, Charles A.; Disch, Jeremy S.; Caldwell, Richard; Szczepankiewicz, Bruce; Oalmann, Christopher; Yee Ng, Pui; White, Brian H.; Casaubon, Rebecca; Narayan, Radha; Koppetsch, Karsten; Bourbonais, Francis; Wu, Bo; Wang, Junfeng; Qian, Dongming; Jiang, Fan; Mao, Cheney; Wang, Minghui; Hu, Erding; Wu, Joe C.; Perni, Robert B.; Vlasuk, George P.; Ellis, James L.


    SIRT1, the founding member of the mammalian family of seven NAD+-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases.

  8. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme. (United States)

    Fernandes, Ilizandra A; Esmelindro, Maria Carolina; Corazza, Marcos L; Franceschi, Elton; Treichel, Helen; de Oliveira, Debora; Frizzo, Caren D; Oliveira, J Vladimir


    This paper reports the catalytic oxidation of the concentrated orange oil phase using the complexes [Fe(III)(BMPP)Cl(micro-O)Fe(III)Cl(3)], [Cu(II)(BTMEA)(2)Cl]Cl and [Co(II)(BMPP)]Cl(2) biomimetic to methane monooxygenase enzyme as catalysts and hydrogen peroxide as oxidant. The reaction products of oil oxidation, mainly nootkatone, were identified by gas chromatography/mass spectrometry. A screening of catalysts was performed through a full 2(3) experimental design, varying the temperature from 30 to 70 degrees C, the catalyst concentration from 7.0 x 10(-4) to 1.5 x 10(-3) mol L(-1) and the oxidant/substrate molar ratio from 1:1 to 3:1. The results of reaction kinetics employing the most promising catalysts showed that conversions to nootkatone of up to 8% were achieved after 16 h at 70 degrees C. The results obtained in this study in terms of nootkatone production should be considered encouraging, since a real, industrially collected, raw material, instead of pure valencene, was employed in the reaction experiments, with a final content about ten times that present in the original concentrated oil.

  9. Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry

    Directory of Open Access Journals (Sweden)

    Xin-Yue Lou


    Full Text Available The fabrication of smart materials is gradually becoming a research focus in nanotechnology and materials science. An important criterion of smart materials is the capacity of stimuli-responsiveness, while another lies in selective recognition. Accordingly, supramolecular host-guest chemistry has proven a promising support for building intelligent, responsive systems; hence, synthetic macrocyclic hosts, such as calixarenes, cucurbiturils, cyclodextrins, and pillararenes, have been used as ideal building blocks. Meanwhile, manipulating and harnessing light artificially is always an intensive attempt for scientists in order to meet the urgent demands of technological developments. Fluorescence resonance energy transfer (FRET, known as a well-studied luminescent activity and also a powerful tool in spectroscopic area, has been investigated from various facets, of which the application range has been broadly expanded. In this review, the innovative collaboration between FRET and supramolecular macrocyclic chemistry will be presented and depicted with typical examples. Facilitated by the dynamic features of supramolecular macrocyclic motifs, a large variety of FRET systems have been designed and organized, resulting in promising optical materials with potential for applications in protein assembly, enzyme assays, diagnosis, drug delivery monitoring, sensing, photosynthesis mimicking and chemical encryption.

  10. Abiotic Supramolecular Systems (United States)


    and Intracellular Gene Regulation,” 2010, Mirkin 23. Einstein Award Lecture, Chinese Academy of Sciences, Beijing, China , “Polyvalent...thesized via d the use o x ( TLC ), co ytically-acti lysts, openi TLC -based exes and 2) n Pt(II) m xes contain Pt(II)-conta le the ongly not ining TLC ure 2. Comp ezer complex iety on the ch bon. Consequ d in space rela ically char Ni–S bond r complex 1 s of thallium ich when fil

  11. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions. (United States)

    Mehta, Angad P; Abdelwahed, Sameh H; Mahanta, Nilkamal; Fedoseyenko, Dmytro; Philmus, Benjamin; Cooper, Lisa E; Liu, Yiquan; Jhulki, Isita; Ealick, Steven E; Begley, Tadhg P


    In this minireview, we describe the radical S-adenosylmethionine enzymes involved in the biosynthesis of thiamin, menaquinone, molybdopterin, coenzyme F420, and heme. Our focus is on the remarkably complex organic rearrangements involved, many of which have no precedent in organic or biological chemistry. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Programming supramolecular biohybrids as precision therapeutics. (United States)

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja


    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side

  13. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Wieczorek Andrew S


    Full Text Available Abstract Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA. Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase, and were

  14. Regenerative electronic biosensors using supramolecular approaches

    NARCIS (Netherlands)

    Duan, X.; Rajan, N.; Routenberg, D.; Huskens, Jurriaan; Reed, M.


    A supramolecular interface for Si nanowire FETs has been developed with the aim of creating regenerative electronic biosensors. The key to the approach is Si-NWs functionalized with β-cyclodextrin (β-CD), to which receptor moieties can be attached with an orthogonal supramolecular linker. Here we

  15. Structural, thermal and spectroscopic properties of supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Structural, thermal and spectroscopic properties of supramolecular coordination solids ... trans-[M(NC5H4--CO2)2(OH2)4], participate in exhaustive hydrogen-bond formation among themselves to lead to a robust 3D supramolecular network in the solid ...

  16. Coordination of manganous ion at the active site of pyruvate, phosphate dikinase: the complex of oxalate with the phosphorylated enzyme

    International Nuclear Information System (INIS)

    Kofron, J.L.; Ash, D.E.; Reed, G.H.


    Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate, phosphate dikinase (E/sub p/) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme. Superhyperfine coupling between the unpaired electrons of Mn(I) and ligands specifically labeled with 17 O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the E/sub p/-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction

  17. Recent Advances in Supramolecular Gels and Catalysis. (United States)

    Fang, Weiwei; Zhang, Yang; Wu, Jiajie; Liu, Cong; Zhu, Haibo; Tu, Tao


    Over the past two decades, supramolecular gels have attracted significant attention from scientists in diverse research fields and have been extensively developed. This review mainly focuses on the significant achievements in supramolecular gels and catalysis. First, by incorporating diverse catalytic sites and active organic functional groups into gelator molecules, supramolecular gels have been considered as a novel matrix for catalysis. In addition, these rationally designed supramolecular gels also provide a variety of templates to access metal nanocomposites, which may function as catalysts and exhibit high activity in diverse catalytic transformations. Finally, as a new kind of biomaterial, supramolecular gels formed in situ by self-assembly triggered by catalytic transformations are also covered herein. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supramolecular Structure and Function 9

    CERN Document Server

    Pifat-Mrzljak, Greta


    The book is based on International Summer Schools on Biophysics held in Croatia which, contrary to other workshops centered mainly on one topic or technique, has very broad scope providing advanced training in areas related to biophysics. This volume is presenting papers in the field of biophysics for studying biological phenomena by using physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.) and/or concepts (predictions of protein-protein interactions, virtual ligand screening etc.). The interrelationship of supramolecular structures and there functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.

  19. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles. (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P


    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  20. Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis. (United States)

    Naik, Punith; Wang, Jack P; Sederoff, Ronald; Chiang, Vincent; Williams, Cranos; Ducoste, Joel J


    Lignin is a polymer present in the secondary cell walls of all vascular plants. It is a known barrier to pulping and the extraction of high-energy sugars from cellulosic biomass. The challenge faced with predicting outcomes of transgenic plants with reduced lignin is due in part to the presence of unique protein-protein interactions that influence the regulation and metabolic flux in the pathway. Yet, it is unclear why certain plants have evolved to create these protein complexes. In this study, we use mathematical models to investigate the role that the protein complex, formed specifically between Ptr4CL3 and Ptr4CL5 enzymes, have on the monolignol biosynthesis pathway. The role of this Ptr4CL3-Ptr4CL5 enzyme complex on the steady state flux distribution was quantified by performing Monte Carlo simulations. The effect of this complex on the robustness and the homeostatic properties of the pathway were identified by performing sensitivity and stability analyses, respectively. Results from these robustness and stability analyses suggest that the monolignol biosynthetic pathway is resilient to mild perturbations in the presence of the Ptr4CL3-Ptr4CL5 complex. Specifically, the presence of Ptr4CL3-Ptr4CL5 complex increased the stability of the pathway by 22%. The robustness in the pathway is maintained due to the presence of multiple enzyme isoforms as well as the presence of alternative pathways resulting from the presence of the Ptr4CL3-Ptr4CL5 complex.

  1. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng


    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  2. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles. (United States)

    Zhang, Peng; Yuan, Kangjun; Li, Cheng; Zhang, Xiaoke; Wu, Wei; Jiang, Xiqun


    Cisplatin-rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)-terminated poly(aspartic acid) (Ad-P(Asp)) and the β-cyclodextrin (β-CD)-terminated poly(2-methyl-2-oxazoline). In the formation of the nanoparticles, the β-CD/admantane inclusion complex integrates poly(2-methyl-2-oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin-rich supramolecular nanoparticles have 53% cisplatin-loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near-infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin-rich nanoparticles can target the tumor in vivo effectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. C-terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme–DNA complex and confer high enzyme processivity (United States)

    Strzałka, Agnieszka; Szafran, Marcin J.; Strick, Terence


    Abstract Streptomyces topoisomerase I (TopA) exhibits exceptionally high processivity. The enzyme, as other actinobacterial topoisomerases I, differs from its bacterial homologs in its C-terminal domain (CTD). Here, bioinformatics analyses established that the presence of lysine repeats is a characteristic feature of actinobacterial TopA CTDs. Streptomyces TopA contains the longest stretch of lysine repeats, which terminate with acidic amino acids. DNA-binding studies revealed that the lysine repeats stabilized the TopA–DNA complex, while single-molecule experiments showed that their elimination impaired enzyme processivity. Streptomyces coelicolor TopA processivity could not be restored by fusion of its N-terminal domain (NTD) with the Escherichia coli TopA CTD. The hybrid protein could not re-establish the distribution of multiple chromosomal copies in Streptomyces hyphae impaired by TopA depletion. We expected that the highest TopA processivity would be required during the growth of multigenomic sporogenic hyphae, and indeed, the elimination of lysine repeats from TopA disturbed sporulation. We speculate that the interaction of the lysine repeats with DNA allows the stabilization of the enzyme–DNA complex, which is additionally enhanced by acidic C-terminal amino acids. The complex stabilization, which may be particularly important for GC-rich chromosomes, enables high enzyme processivity. The high processivity of TopA allows rapid topological changes in multiple chromosomal copies during Streptomyces sporulation. PMID:28981718

  4. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav


    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  5. Dielectric properties of barium titanate supramolecular nanocomposites. (United States)

    Lee, Keun Hyung; Kao, Joseph; Parizi, Saman Salemizadeh; Caruntu, Gabriel; Xu, Ting


    Nanostructured dielectric composites can be obtained by dispersing high permittivity fillers, barium titanate (BTO) nanocubes, within a supramolecular framework. Thin films of BTO supramolecular nanocomposites exhibit a dielectric permittivity (εr) as high as 15 and a relatively low dielectric loss of ∼0.1 at 1 kHz. These results demonstrate a new route to control the dispersion of high permittivity fillers toward high permittivity dielectric nanocomposites with low loss. Furthermore, the present study shows that the size distribution of nanofillers plays a key role in their spatial distribution and local ordering and alignment within supramolecular nanostructures.

  6. Main-chain supramolecular block copolymers. (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus


    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  7. Stabilization of reactive species by supramolecular encapsulation. (United States)

    Galan, Albano; Ballester, Pablo


    Molecular containers have attracted the interest of supramolecular chemists since the early beginnings of the field. Cavitands' inner cavities were quickly exploited by Cram and Warmuth to construct covalent containers able to stabilize and assist the characterization of short-lived reactive species such as cyclobutadiene or o-benzyne. Since then, more complex molecular architectures have been prepared able to store and isolate a myriad of fleeting species (i.e. organometallic compounds, cationic species, radical initiators…). In this review we cover selected examples of the stabilization of reactive species by encapsulation in molecular containers from the first reports of covalent containers described by Cram et al. to the most recent examples of containers with self-assembled structure (metal coordination cages and hydrogen bonded capsules). Finally, we briefly review examples reported by Rebek et al. in which elusive reaction intermediates could be detected in the inner cavities of self-folding resorcin[4]arene cavitands by the formation of covalent host-guest complexes. The utilization of encapsulated reactive species in catalysis or synthesis is not covered.

  8. Effects of Ca2+ on flavin-linked complex enzymes in mitochondria isolated from eggs and embryos of sea urchin. (United States)

    Fujiwara, A; Kamata, Y; Yasumasu, I


    Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.

  9. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve


    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  10. Effects of dietary supplementation of multi-enzyme complex on the ...

    African Journals Online (AJOL)

    Two experiments were conducted to determine the effects of dietary supplementation of REAP® enzyme into corn-soybean diet on the energy utilization in poultry and performance of broiler chicks. In the first experiment, a total of 16 50 weeks adult roosters (ISA-Brown) were divided into 4 groups with 4 birds per replicate ...

  11. Physicochemical characterization of Staphylococcus aureus-lysing LysK enzyme in complexes with polycationic (United States)

    Staphylococcus aureus causes many serious visceral, skin, and respiratory diseases. About 90% of clinical strains are multi-drug resistant, but the use of bacteriophage lytic enzymes offers a viable alternative to antibiotic therapy. LysK, the phage K endolysin can lyse S. aureus when purified and ...

  12. Dynamics of complex microbiota and enzymes in Divle Cave cheese and their biochemical consequences

    NARCIS (Netherlands)

    Ozturkoglu Budak, S.


    Divle Cave cheese is a raw ewe’s milk cheese ripened with the aid of a rich microbiota and a wide range of protease and lipase enzymes secreted by individual strains belong to this microbial community. The study presented in this thesis mainly aims to define the diversity and evolution of the

  13. Evaluating hydrogen bond interactions in enzymes containing Mn(III)-histidine complexation using manganese-imidazole complexes. (United States)

    Rajendiran, M; Caudle, T; Kirk, Martin L; Setyawati, Ika; Kampf, Jeff W; Pecoraro, Vincent L


    It is often difficult to control hydrogen bond interactions in small molecule compounds that model metalloenzyme active sites. The imidazole-containing ligands 4,5-dicarboxyimidazole (H(3)DCBI) and 4,5-dicarboxy- N-methylimidazole (H(2)MeDCBI) allow examination of the effects of internal hydrogen bonding between carboxylate and imidazole nitrogen atoms. A new series of mononuclear manganese imidazole complexes have been prepared using these ligands: Mn(III)(salpn)(H(2)DCBI)(DMF) (1), Mn(III)(salpn)(HMeDCBI) (2), Mn(III)(dtsalpn)(HMeDCBI) (3), [Mn(IV)(dtsalpn)(HMeDCBI)]PF(6) (4), Mn(III)(salpn)(H(2)DCBI) (5), Mn(III)(dtsalpn)(H(2)DCBI) (6), and Mn(IV)(dtsalpn)(H(2)DCBI)PF(6) (8). Complexes 1, 2, 3, 5, and 6 have been prepared by direct reaction of salpn [salpn=(salicylideneaminato)-1,3-diaminopropane)] or dtsalpn [dtsalpn=(3,5-di- t-butylsalicylideneaminato)-1,3-diaminopropane)] and H(3)DCBI and H(2)MeDCBI with Mn(III) acetate, while complexes 4 and 8 were made by bulk electrolysis of complex 3 or 6 in dichloromethane. Complexes 1, 2, and 6 were characterized by X-ray diffraction. The impact of hydrogen bonding interactions of the complexes has been demonstrated by X-ray diffraction, cyclic voltammetry, and EPR spectroscopy. In all complexes the central metal ion is present in a six-coordinate geometry. Magnetic susceptibility measurements confirm the spin and oxidation states of the complexes. The cyclic voltammograms of 3 and 6 in dichloromethane reveal single, reversible redox waves with E(1/2)=600 mV and 690 mV, respectively. The X-band EPR spectrum of 4 shows a broad signal around g=4.4, and the corresponding complex 8 possesses a broad signal at slightly lower field ( g=5.5) than 4. These studies demonstrate that even small changes in the effective charge of the imidazole ligand can have a profound impact on the structure, spectroscopy, and magnetism of manganese(IV) complexes. We use these observations to present a model that may explain the origin of the g=4

  14. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid. (United States)

    Tabaei, Seyed R; Rabe, Michael; Zetterberg, Henrik; Zhdanov, Vladimir P; Höök, Fredrik


    Imaging of individual lipid vesicles is used to track single-enzyme kinetics of phospholipid hydrolysis. The method is employed to quantify the catalytic activity of phospholipase A2 (PLA2) in both pure and complex biological fluids. The measurements are demonstrated to offer a subpicomolar limit of detection (LOD) of human secretory PLA2 (sPLA2) in up to 1000-fold-diluted cerebrospinal fluid (CSF). An additional new feature provided by the single-enzyme sensitivity is that information about both relative concentration variations of active sPLA2 in CSF and the specific enzymatic activity can be simultaneously obtained. When CSF samples from healthy controls and individuals diagnosed with Alzheimer's disease (AD) are analyzed, the specific enzymatic activity is found to be preserved within 7% in the different CSF samples whereas the enzyme concentration differs by up to 56%. This suggests that the previously reported difference in PLA2 activity in CSF samples from healthy and AD individuals originates from differences in the PLA2 expression level rather than from the enzyme activity. Conventional ensemble averaging methods used to probe sPLA2 activity do not allow one to obtain such information. Together with an improvement in the LOD of at least 1 order of magnitude compared to that of conventional assays, this suggests that the method will become useful in furthering our understanding of the role of PLA2 in health and disease and in detecting the pharmacodynamic effects of PLA2-targeting drug candidates.

  15. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc


    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  16. Enhanced intermolecular forces in supramolecular polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Lin


    Full Text Available Ureido-pyrimidone (Upy can dimerize in a self-complementary array of quadruple hydrogen bonds. In this paper, supramolecular polymer composites were prepared by blending Upy functionalized nanosilica with Upy end-capped polycarbonatediol. Surface characteristics of Upy functionalized nanosilica and influences of supramolecular forces on interfacial binding were researched. Fourier transform infrared spectroscopy (FTIR, Nuclear magnetic resonance (NMR and Gel permeation chromatography (GPC were used to characterize the synthesized molecules. Grafting ratio of Upy segments on the surface of nanosilica was analysed by Thermogravimetic analysis (TGA. Hydrophobicity and morphology of Upy modified nanosilica were analysed by Contact angle tester and Scanning electron microscope (SEM. Furthermore, dynamic thermo mechanical properties, mechanical properties and distribution of nanosilica in supramolecular polymer composites were also researched. Compared with the matrix resin, tensile stress and young's modulus of supramolecular polymer composites containing 5 wt% modified nanosilica were increased by 292 and 198% respectively.

  17. On some problems of inorganic supramolecular chemistry. (United States)

    Pervov, Vladislav S; Zotova, Anna E


    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supramolecular chemistry - interdisciplinary branch of science

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.


    The scientific problems connected with supramolecular chemistry have been reviewed. The basic concepts have been defined as well as rules governed of macromolecules formation. The special emphasize has been put on present and possible in future application of such systems

  19. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)


    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  20. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas


    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  1. Extracellular complex of chitinolytic enzymes of Clostridium paraputrificum strain J4 separated by membrane ultrafiltration

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Koppová, Ingrid; Šimůnek, Jiří; Dohnálek, Jan


    Roč. 55, č. 4 (2010), s. 386-389 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA525/08/0803; GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : chitinolytic enzymes * Clostridium paraputrificum * membrane diafiltration Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.977, year: 2010

  2. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M


    was apparent after only 1 h of labeling, where aminopeptidase N, sucrase-isomaltase, and alkaline phosphatase together comprised 25-30% of the total labeled, detergent-insoluble proteins, showing that sorting of newly made brush border membrane proteins into the glycolipid "rafts" does take place...... intracellularly. I therefore propose that, in the enterocyte, the brush border enzymes are targeted directly from the trans-Golgi network toward the apical cell surface....

  3. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels

    Directory of Open Access Journals (Sweden)

    Shawn Matthew Dirk


    Full Text Available Phenylpropanoid metabolism yields a mixture of monolignols that undergo chaotic, non-enzymatic reactions such as free radical polymerization and spontaneous self-assembly in order to form the polyphenolic lignin which is a barrier to cost-effective lignocellulosic biofuels. Post-synthesis lignin integration into the plant cell wall is unclear, including how the hydrophobic lignin incorporates into the wall in an initially hydrophilic milieu. Self-assembly, self-organization and aggregation give rise to a complex, 3D network of lignin that displays randomly branched topology and fractal properties. Attempts at isolating lignin, analogous to archaeology, are instantly destructive and non-representative of in planta. Lack of plant ligninases or enzymes that hydrolyze specific bonds in lignin-carbohydrate complexes (LCCs also frustrate a better grasp of lignin. Supramolecular self-assembly, nano-mechanical properties of lignin-lignin, lignin-polysaccharide interactions and association-dissociation kinetics affect biomass deconstruction and thereby cost-effective biofuels production.

  4. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex. (United States)

    Batebi, Hossein; Dragelj, Jovan; Imhof, Petra


    Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal-dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg 2+ -ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction-competent conformation. Active-site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1-DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule. © 2018 Wiley Periodicals, Inc.

  5. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex (United States)

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira


    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR. PMID:21603269

  6. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, M. A., E-mail:; Bakirov, A. V. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation); Yakunin, A. N. [Karpov Institute of Physical Chemistry (Russian Federation); Percec, V. [University of Pennsylvania (United States); Beginn, U. [Universitaet Osnabrueck, Institut fuer Chemie (Germany); Moeller, M. [Institute for Technical and Macromolecular Chemistry (Germany); Chvalun, S. N. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation)


    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  7. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons (United States)

    Shcherbina, M. A.; Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Möller, M.; Chvalun, S. N.


    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  8. The heme complex of Hmu O, a bacterial heme degradation enzyme from Corynebacterium diphtheriae. Structure of the catalytic site. (United States)

    Chu, G C; Tomita, T; Sönnichsen, F D; Yoshida, T; Ikeda-Saito, M


    Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.

  9. Photoinduced electron transfer in supramolecular ruthenium-porphyrin assemblies


    Rota Martir, Diego; Averardi, Mattia; Escudero, Daniel; Jacquemin, Denis; Zysman-Colman, Eli


    EZ-C acknowledges the University of St Andrews and EPSRC (EP/M02105X/1) for financial support. DE thanks funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 700961. DJ acknowledges the European Research Council (grant: 278845) and the RFI Lumomat for financial support. We present dynamic supramolecular systems composed of a Ru(II) complex of the form of [Ru(dtBubpy)2(qpy)][PF6]2 (where dtBubpy is 4,4′-di-tert-...

  10. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells. (United States)

    Haruk, Alexander M; Mativetsky, Jeffrey M


    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  11. Scaffoldless engineered enzyme assembly for enhanced methanol utilization. (United States)

    Price, J Vincent; Chen, Long; Whitaker, W Brian; Papoutsakis, Eleftherios; Chen, Wilfred


    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3-ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an "NADH Sink" was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.

  12. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex (United States)


    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  13. Analysis of supramolecular surface nanostructures using secondary ion mass spectrometry (poster)

    International Nuclear Information System (INIS)

    Halaszova, S.; Velic, D.


    Our system consists of host molecules β-cyclodextrin (C 42 H 70 O 35 ), of implemented Iron nanoparticles (guest). Whole supramolecular complex is placed on a gold substrate. In our project we work with monotiolated β-cyclodextrin (C 42 H 70 O 34 S), consisting of seven α-D-1-4 glucopyranose units. Cyclodextrins have been selected deliberately because of their ability to form inclusion complexes .They are also capable of forming structures similar to self-assembly monolayers. To study the formation of these supramolecular surface nanostructures mass secondary ion spectrometry is used. With this technique fragmentation of monotiolated β-cyclodextrin and the presence of the supramolecular complex on a gold surface can be examined. The observed fragments of monotiolated cyclodextrines films can be divided into three groups: Au X H Y S Z , fragments originating from cyclodextrin molecules associated with Au. Fragments as (C 42 H 70 O 34 S)Na + , (C 42 H 70 O 35 )Na + and (AuC 42 H 69 O 34 S)Na + were identified as well as fragments thereof in cationized form with K + . The main objective of the project is a detailed study and preparation of supramolecular nanostructures consisting of complex guest-host monotiolated β-cyclodextrin host-iron), and a gold substrate. (Authors)

  14. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory (United States)

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.


    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  15. Synthesis, Structure and Properties of Melamine-Based pTHF-Urethane Supramolecular Compounds

    NARCIS (Netherlands)

    Öjelund, Karin; Loontjens, Ton; Steeman, Paul; Palmans, Anja; Maurer, Frans


    The properties of melamine based supramolecular compounds have been studied with rheological, thermal, mechanical, dielectric and scattering techniques and compared with similar covalently bonded materials. The complexes are based on a linear pTHF-diol (M¯n=1 000) connected via a diisocyanate with

  16. Understanding Periodic Dislocations in 2D Supramolecular Crystals: The PFP/Ag(111) Interface

    DEFF Research Database (Denmark)

    Goiri, E.; García Lastra, Juan Maria; Corso, M.


    In-plane dislocation networks arise in both inorganic and organic films as a way of relieving the elastic strain that builds up at the substrate interface. In molecule/surface systems, supramolecular interactions are weak and more complex (compared to the atomic bonds in inorganic films), and the...

  17. Identification of a (H2O)8 cluster in a supramolecular host of a ...

    Indian Academy of Sciences (India)


    Identification of a (H2O)8 cluster in a supramolecular host of a charge transfer platinum(II) complex. SUTANUVA MANDAL, a. IPSITA CHATTERJEE, a. ALFONSO CASTIÑEIRS,. *b. SREEBRATA. GOSWAMI. *a. Page 2. 2. Figure S1. Experimental and simulated ESI-MS spectra of the compound [1]Cl. Figure S2. 1H NMR ...

  18. Screening of physiologically active strain of the filamentous fungi - a producer of a complex of lytic enzymes

    International Nuclear Information System (INIS)

    Kurbatova, E.I.; Sokolova, E.N.; Borshcheva, Yu.A.; Alsivar, S.K.A.; Rimareva, L.V.


    Filamentous Aspergillus fungi were studied to obtain a producer of a complex of the enzymes specific to biodegradation of polymers of cellular walls of vegetable and microbic biomass. Strains were selected by the increased biosynthetic ability in relation to the beta-glucanase (BG), chitinase (CT), mannanase (MN), proteases and pectinases. It was estimated during deep cultivation in the environment containing wheat bran. The fullest complex of hydrolytic enzymes (glucanase, MN, CT, protease and a polygalacturonase (PG)), and also the level of enzymatic activities was in the culture liquid obtained as a result of biosynthesis of Aspergillus foetidus 37-4 (S 37-4) strain. For its cultivation the medium containing salts like potassium dihydrogen phosphate, magnesium sulfate and ammonium sulfate in optimum concentration, and also dioses (maltose, sucrose) and polysaccharides (starch, chitin, pectin) was chosen. The greatest zones of hydrolysis are traced during planting S 37-4 in agar medium containing maltose and low methoxyl citrus pectin. As the synthesis inductor of hemicellulase, MN and CT malt sprouts were used, and of PG - not clarified beet bin fibers. Cultivation was carried out on a thermostatically controlled shaker at 30 deg. C for 120 h. Increase of activity of synthesizable enzymes when using low methoxyl citrus pectin as a media part equaled for BG 5-19%, for PG - 25%, when using a maltose for CT - 100%, MN - 29%. To increase biosynthetic ability of S 37-4 as a mutagen 3-staged ultra-violet radiation (wavelength is 265 nanometers) was applied. The obtained 379-K-5 strain surpassed in activity level a parental strain BG - by 84.8%, CT - by 45.0%, MN - by 62.9%, PG - by 89.0%. The following (4th) stage of radiation led to death of the strain. In comparison with a parental S 37-4 the colony of a mutant strain possessed the bigger size and plentiful formation of an air mycelium, ability to sporogenesis was less expressed

  19. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. (United States)

    Kurzynska-Kokorniak, Anna; Koralewska, Natalia; Pokornowska, Maria; Urbanowicz, Anna; Tworak, Aleksander; Mickiewicz, Agnieszka; Figlerowicz, Marek


    There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. (United States)

    Zikanova, Marie; Skopova, Vaclava; Hnizda, Ales; Krijt, Jakub; Kmoch, Stanislav


    Adenylosuccinate lyase (ADSL) deficiency is neurometabolic disease characterized by accumulation of dephosphorylated enzyme substrates SAICA-riboside (SAICAr) and succinyladenosine (S-Ado) in body fluids of affected individuals. The phenotypic severity differs considerably among patients: neonatal fatal, severe childhood, and moderate phenotypic forms correlating with different values for the ratio between S-Ado and SAICAr concentrations in cerebrospinal fluid have been distinguished. To reveal the biochemical and structural basis for this phenotypic heterogeneity, we expressed and characterized 19 ADSL mutant proteins identified in 16 patients representing clinically distinct subgroups. Respecting compound heterozygosity and considering the homotetrameric structure of ADSL, we used intersubunit complementation and prepared and characterized genotype-specific heteromeric mutant ADSL complexes. We correlated clinical phenotypes with biochemical properties of the mutant proteins and predicted structural impacts of the mutations. We found that phenotypic severity in ADSL deficiency is correlated with residual enzymatic activity and structural stability of the corresponding mutant ADSL complexes and does not seem to result from genotype-specific disproportional catalytic activities toward one of the enzyme substrates. This suggests that the S-Ado/SAICAr ratio is probably not predictive of phenotype severity; rather, it may be secondary to the degree of the patient's development (i.e., to the age of the patient at the time of sample collection). (c) 2010 Wiley-Liss, Inc.

  1. Functional supramolecular polymers for biomedical applications. (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian


    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fe(III) complex of biuret-amide based macrocyclic ligand as peroxidase enzyme mimic. (United States)

    Panda, Chakadola; Ghosh, Munmun; Panda, Tamas; Banerjee, Rahul; Sen Gupta, Sayam


    An Fe(III) complex of a biuret-amide based macrocyclic ligand that exhibits both excellent reactivity for the activation of H(2)O(2) and high stability, especially at low pH and high ionic strength, is reported.

  3. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins. (United States)

    Serricchio, Mauro; Vissa, Adriano; Kim, Peter K; Yip, Christopher M; McQuibban, G Angus


    The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thioester hydrolysis reactivity of zinc hydroxide complexes: investigating reactivity relevant to glyoxalase II enzymes. (United States)

    Berreau, Lisa M; Saha, Amrita; Arif, Atta M


    A recently reported binuclear zinc hydroxide complex [(L(1)Zn(2))(mu-OH)](ClO(4))(2) (, L(1) = 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenolate monoanion) containing a single bridging hydroxide was examined for thioester hydrolysis reactivity. Treatment of it with hydroxyphenylthioacetic acid S-methyl ester in dry CD(3)CN results in no reaction after approximately 65 h at 45(1) degrees C. Binuclear zinc hydroxide complexes of the N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine (L(2)) and N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)ethyl)amine (L(3)) chelate ligands were prepared by treatment of each ligand with molar equivalent amounts of Zn(ClO(4))(2).6H(2)O and KOH in methanol. These complexes, [(L(2)Zn)(2)(mu-OH)(2)](ClO(4))(2) and [(L(3)Zn)(2)(mu-OH)(2)](ClO(4))(2) (), which have been structurally characterized by X-ray crystallography, behave as 1 : 1 electrolytes in acetonitrile, indicating that the binuclear cations dissociate into monomeric zinc hydroxide species in solution. Treatment of them with one equivalent of hydroxyphenylthioacetic acid S-methyl ester per zinc center in acetonitrile results in the formation of a zinc alpha-hydroxycarboxylate complex, [(L(2))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O or [(L(3))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O, and CH(3)SH. These reactions, to our knowledge, are the first reported examples of thioester hydrolysis mediated by zinc hydroxide complexes. The results of this study suggest that a terminal Zn-OH moiety may be required for hydrolysis reactivity with a thioester substrate.

  5. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide: Syntheses, Structural Characterizations and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yue Zheng


    Full Text Available Cyclodextrins (CDs have been extensively studied as drug delivery carriers through host–guest interactions. CD-based poly(pseudorotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers, have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide (PEO is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudorotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.

  6. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age. (United States)

    Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G


    The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades.

  7. Switching surface chemistry with supramolecular machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Timothy D.; Kelly, Michael James; Jeppesen, Jan O. (University of California, Los Angeles, CA); Bunker, Bruce Conrad; Matzke, Carolyn M.; Stoddart, J. Fraser; Huber, Dale L.; Kushmerick, James G.; Flood, Amar H. (University of California, Los Angeles, CA); Perkins, Julie (University of California, Los Angeles, CA); Cao, Jianguo (University of California, Los Angeles, CA)


    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  8. Synthesis and supramolecular assembly of biomimetic polymers (United States)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  9. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  10. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. (United States)

    Makam, Pandeeswar; Gazit, Ehud


    Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.

  11. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin. (United States)

    Tripathi, Ravi; Nair, Nisanth N


    Understanding the molecular details of antibiotic resistance by the bacterial enzymes β-lactamases is vital for the development of novel antibiotics and inhibitors. In this spirit, the detailed mechanism of deacylation of the acyl-enzyme complex formed by cephalothin and class C β-lactamase is investigated here using hybrid quantum-mechanical/molecular-mechanical molecular dynamics methods. The roles of various active-site residues and substrate in the deacylation reaction are elucidated. We identify the base that activates the hydrolyzing water molecule and the residue that protonates the catalytic serine (Ser64). Conformational changes in the active sites and proton transfers that potentiate the efficiency of the deacylation reaction are presented. We have also characterized the oxyanion holes and other H-bonding interactions that stabilize the reaction intermediates. Together with the kinetic and mechanistic details of the acylation reaction, we analyze the complete mechanism and the overall kinetics of the drug hydrolysis. Finally, the apparent rate-determining step in the drug hydrolysis is scrutinized.

  12. Determining the transient kinetic behavior of complex multi-enzyme systems by use of network thermodynamics. (United States)

    Mikulecky, D C; Thellier, M


    As an example of the application of network thermodynamics to the treatment of complicated enzymatic systems, we have studied the transient kinetic behavior of a sequence of five enzymatic reactions, four with Michaelis-Menten kinetics and the final one with sigmoid kinetics. The object was to determine how the time-courses of the concentrations of all the intermediate substrates involved, depend on the effect of forward activation by the first substrate on the final enzymatic step. The case with forward activation exhibited an unexpected behavior with a reversal of the direction of the reaction before reaching equilibrium. The solution of the set of five non-linear differential equations was achieved using the student version of the simulation package PSPICE. The same approach can be utilized to study the behavior of any type of complex multienzymatic system (steady-states, transients, oscillations, chaos), or of combinations of enzymatic reactions with transmembrane transport in compartmental systems.

  13. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function

    DEFF Research Database (Denmark)

    Rowland, Paul; Bjørnberg, Olof; Nielsen, Finn S.


    ) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex...... the orotate displaces the water molecules from the active site and stacks above the DHODA flavin isoalloxazine ring, causing only small movements of the surrounding protein residues. The orotate is completely buried beneath the protein surface, and the orotate binding causes a significant reduction...

  14. Beta-lactamase-catalyzed aminolysis of depsipeptides: Proof of the nonexistence of a specific D-phenylalanine/enzyme complex by double-label isotope trapping

    International Nuclear Information System (INIS)

    Pazhanisamy, S.; Pratt, R.F.


    The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-[[(phenylacetyl)glycyl]oxy]benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presence of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed

  15. Effects of Enzyme Complex Supplementation to a Paddy-based Diet on Performance and Nutrient Digestibility of Meat-type Ducks

    Directory of Open Access Journals (Sweden)

    P. Kang


    Full Text Available Paddy rice is rarely used as a feed because of its high fiber content. In this study, two experiments were conducted to study the effects of supplementing an enzyme complex consisting of xylanase, beta-glucanase and cellulase, to paddy-based diets on the performance and nutrient digestibility in meat-type ducks. In the both experiments, meat-type ducks (Cherry Valley were randomly assigned to four treatments. Treatment 1 was a basal diet of corn-soybean; treatment 2 was a basal diet of corn-paddy-soybean; treatment 3, had enzyme complex added to the corn-paddy-soybean basal diet at levels of 0.5 g/kg diet; and treatment 4, had enzyme complex added to the corn-paddy-soybean diet at levels of 1.0 g/kg diet. The results showed that the enzyme complex increased the ADG, and decreased the ADFI and F/G significantly (p0.05. The outcome of this research indicates that the application of enzyme complex made up of xylanase, beta-glucanase, and cellulase, in the corn-paddy-soybean diet, can improve performance and nutrition digestibility in meat-type ducks.

  16. Achieving Reversible H2/H+ Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshani, Nilusha; Dutta, Arnab; Ginovska-Pangovska, Bojana; Buchko, Garry W.; O' Hagan, Molly J.; Raugei, Simone; Shaw, Wendy J.


    Inspired by the contribution of the protein scaffold to the efficiency with which enzymes function, we report the first molecular complex that is reversible for electrocatalytic H2 production/oxidation at room temperature in methanol. [Ni(PCy2NPhe2)2]2+ (CyPhe; PR2NR’2 = 1,5-diaza-3,7-diphosphacyclooctane, Cy=cyclohexyl, Phe=phenylalanine), shows reversible behavior in acidic methanol with peripheral phenylalanine groups providing key contributions to the catalytic behavior. The importance of the aromatic rings is implicated in achieving reversibility, based on the lack of reversibility of similar complexes, [Ni(PCy2NAmino Acid2)2]2+, containing arginine (CyArg) or glycine (CyGly). A complex with an added OH group on the ring, (CyTyr; Tyr=Tyrosine), also shows similar behavior. NMR studies reveal a significantly slower rate of chair-boat isomerization for the CyPhe relative to other derivatives, suggesting that the aromatic groups provide structural control by interacting with each other, an observation supported by molecular dynamics studies. NMR studies also show extremely fast proton movement, with a proton pathway from the Ni-H through the pendant amine to the –COOH group. Further, studies of acomplex without the –COOH group, [Ni(PCy2NTym2)2]2+ (CyTym; Tym=Tyramine), are not reversible and have slow proton movement from the pendant amine, demonstrating the essential nature of the –COOH group in achieving reversibility. Finally, methanol is demonstrated to play a critical contributing role. The influence of multiple factors on reversibility for this synthetic catalyst is a demonstration of the intricate interplay between the first, second, and outer coordination spheres and resembles the complexity observed in metalloenzymes.

  17. Two new supramolecular compounds induced by novel ...

    Indian Academy of Sciences (India)

    Min Xiao


    Sep 19, 2017 ... Our group has been devoted to the construction of inorganic–organic hybrid compounds ... supramolecular construction has been rarely reported.23. The introduction of C=C bonds in ..... Figure 8. (a) IR spectra of the as-synthesized and solid residue samples of 1 after the photocatalytic degradation of MB.

  18. Supramolecular liquid crystal displays : construction and applications

    NARCIS (Netherlands)

    Hoogboom, Joannes Theodorus Valentinus


    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and

  19. What Triggers Supramolecular Isomerism in Nonmolecular Solids ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 11. What Triggers ... interpret the phase diagram of a system. The structure-synthesis correlation discussed here provides chemical insight to evolve a synthetic protocol to interpret and predict the possibilityof supramolecular isomers in metal organic solids.

  20. Supramolecular polymers for organocatalysis in water. (United States)

    Neumann, Laura N; Baker, Matthew B; Leenders, Christianus M A; Voets, Ilja K; Lafleur, René P M; Palmans, Anja R A; Meijer, E W


    A water-soluble benzene-1,3,5-tricarboxamide (BTA) derivative that self-assembles into one-dimensional, helical, supramolecular polymers is functionalised at the periphery with one L-proline moiety. In water, the BTA-derivative forms micrometre long supramolecular polymers, which are stabilised by hydrophobic interactions and directional hydrogen bonds. Furthermore, we co-assemble a catalytically inactive, but structurally similar, BTA with the L-proline functionalised BTA to create co-polymers. This allows us to assess how the density of the L-proline units along the supramolecular polymer affects its activity and selectivity. Both the supramolecular polymers and co-polymers show high activity and selectivity as catalysts for the aldol reaction in water when using p-nitrobenzaldehyde and cyclohexanone as the substrates for the aldol reaction. After optimisation of the reaction conditions, a consistent conversion of 92 ± 7%, deanti of 92 ± 3%, and eeanti of 97 ± 1% are obtained with a concentration of L-proline as low as 1 mol%.

  1. Supramolecular assemblies based on glycoconjugated dyes

    NARCIS (Netherlands)

    Schmidt, B.


    Supramolecular assemblies of glycoconjugated dyes can be tailored with properties that make them attractive for use in biomedical applications. For example, when assemblies of glycoconjugated dyes are displaying carbohydrates on their periphery in a polyvalent manner, these assemblies can be used to

  2. Strong and Reversible Monovalent Supramolecular Protein Immobilization

    NARCIS (Netherlands)

    Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc


    Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The

  3. Construction of diverse supramolecular assemblies of dimetal ...

    Indian Academy of Sciences (India)

    Construction of diverse supramolecular assemblies of dimetal subunits differing in coordinated water molecules via strong hydrogen bonding interactions: Synthesis, crystal structures and spectroscopic properties. Sadhika Khullar Sanjay K Mandal. Special issue on Chemical Crystallography Volume 126 Issue 5 September ...

  4. Supramolecular assembly based on a heteropolyanion: Synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Supramolecular assembly based on a heteropolyanion: Synthesis and crystal structure of Na3(H2O)6[Al(OH)6Mo6O18] ⋅ 2H2O. Vaddypally Shivaiah Samar K Das. Volume 117 Issue 3 May 2005 pp 227-233 ...

  5. Three silver (I) supramolecular compounds constructed from ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Three silver (I) supramolecular compounds constructed from pyridinium or methylimidazolium polycations: Synthesis, crystal structure and properties. Yao Li Wen Li Zhang Hai Juan Du Chao-Hai Wang Ya Bin Lu Yun-Yin Niu. Volume 127 Issue 9 ...

  6. Structural modifications leading to changes in supramolecular ...

    Indian Academy of Sciences (India)

    1347–1356. c Indian Academy of Sciences. Structural modifications leading to changes in supramolecular aggregation of thiazolo[3, 2-a]pyrimidines: Insights into their conformational features. H NAGARAJAIAH and NOOR SHAHINA BEGUM. ∗. Department of Studies in Chemistry, Bangalore University, Bangalore 560 001, ...

  7. Synthesis, properties and supramolecular structure of ...

    Indian Academy of Sciences (India)

    Synthesis, properties and supramolecular structure of piperazinediium thiosulfate monohydrate. +. BIKSHANDARKOIL R SRINIVASANa*, ASHISH R NAIKa. , SUNDER N DHURIa. ,. CHRISTIAN NÄTHERb and WOLFGANG BENSCHb. aDepartment of Chemistry, Goa University, Goa 403 206, India. bInstitut für ...

  8. Self-assembly of a supramolecular hexagram and a supramolecular pentagram (United States)

    Jiang, Zhilong; Li, Yiming; Wang, Ming; Song, Bo; Wang, Kun; Sun, Mingyu; Liu, Die; Li, Xiaohong; Yuan, Jie; Chen, Mingzhao; Guo, Yuan; Yang, Xiaoyu; Zhang, Tong; Moorefield, Charles N.; Newkome, George R.; Xu, Bingqian; Li, Xiaopeng; Wang, Pingshan


    Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium-terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand LA (VRu2+X, V=bisterpyridine, X=tetraterpyridine, Ru=Ruthenium) was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd2+ or Fe2+ however, unexpected pentagonal structures were formed, that is, [Cd5LA5]30+ and [Fe5LA5]30+. In our redesign, LB [V(Ru2+X)2] was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd2+ to create hexagonal hexagram [Cd12V3LB3]36+ along with traces of the triangle [Cd3V3]6+. Finally, a pure supramolecular hexagram [Fe12V3LB3]36+ was successfully isolated in a high yield using Fe2+ with a higher assembly temperature.

  9. Friction mediated by redox-active supramolecular connector molecules. (United States)

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R


    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.

  10. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)



    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  11. Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. (United States)

    Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi


    Glycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose. Two constructed glycosynthase mutants, D324N and E727A, which catalyze the transfer of a β-glucosyl fluoride donor to galactose, lactose, and melibiose. Here, we determined the crystal structures of D324N and E727A soaked with a mixture of glucose and lactose at 1.8- and 2.1-Å resolutions, respectively. Because glucose and lactose molecules are found at the active sites in both structures, it is possible that these structures mimic the enzyme-product complex of YgjK. A glucose molecule found at subsite -1 in both structures adopts an unusual 1 S 3 skew-boat conformation. Comparison between these structures and the previously determined enzyme-substrate complex structure reveals that the glucose pyranose ring might be distorted immediately after nucleophilic attack by a water molecule. These structures represent the first enzyme-product complex for the GH63 family, as well as the structurally-related glycosidases, and it may provide insight into the catalytic mechanism of these enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan. (United States)

    Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre


    The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.

  13. A dynamic combinatorial approach for identifying side groups that stabilize DNA-templated supramolecular self-assemblies. (United States)

    Paolantoni, Delphine; Cantel, Sonia; Dumy, Pascal; Ulrich, Sébastien


    DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  14. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni


    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  15. Construction and Systematical Symmetric Studies of a Series of Supramolecular Clusters with Binary or Ternary Ammonium Triphenylacetates. (United States)

    Sasaki, Toshiyuki; Ida, Yoko; Yuge, Tetsuharu; Yamamoto, Atsushi; Hisaki, Ichiro; Tohnai, Norimitsu; Miyata, Mikiji


    Functions of clusters in nano or sub-nano scale significantly depend on not only kinds of their components but also arrangements, or symmetry, of their components. Therefore, the arrangements in the clusters have been precisely characterized, especially for metal complexes. Contrary to this, characterizations of molecular arrangements in supramolecular clusters composed of organic molecules are limited to a few cases. This is because construction of the supramolecular clusters, especially obtaining a series of the supramolecular clusters, is difficult due to low stability of non-covalent bonds compare to covalent bonds. From this viewpoint, utilization of organic salts is one of the most useful strategies. A series of the supramolecules could be constructed by combinations of a specific organic molecule with various counter ions. Especially, primary ammonium carboxylates are suitable as typical examples of supramolecules because various kinds of carboxylic acids and primary amines are commercially available, and it is easy to change their combinations. Previously, it was demonstrated that primary ammonium triphenylacetates using various kinds of primary amines specifically construct supramolecular clusters, which are composed of four ammoniums and four triphenylacetates assembled by charge-assisted hydrogen bonds, in crystals obtained from non-polar solvents. This study demonstrates an application of the specific construction of the supramolecular clusters as a strategy to conduct systematical symmetric study for clarification of correlations between molecular arrangements in supramolecules and kinds and numbers of their components. In the same way with binary salts composed of triphenylacetates and one kind of primary ammoniums, ternary organic salts composed of triphenylacetates and two kinds of ammoniums construct the supramolecular clusters, affording a series of the supramolecular clusters with various kinds and numbers of the components.

  16. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width

    KAUST Repository

    Zhang, Ye


    The integration of a tripeptide derivative, which is a versatile self-assembly motif, with a ruthenium(II)tris(bipyridine) complex affords the first supramolecular metallo-hydrogelator that not only self assembles in water to form a hydrogel but also exhibits gel-sol transition upon oxidation of the metal center. Surprisingly, the incorporation of the metal complex in the hydrogelator results in the nanofibers, formed by the self-assembly of the hydrogelator in water, to have the width of a single molecule of the hydrogelator. These results illustrate that metal complexes, besides being able to impart rich optical, electronic, redox, or magnetic properties to supramolecular hydrogels, also offer a unique geometrical control to prearrange the self-assembly motif prior to self-assembling. The use of metal complexes to modulate the dimensionality of intermolecular interactions may also help elucidate the interactions of the molecular nanofibers with other molecules, thus facilitating the development of supramolecular hydrogel materials for a wide range of applications. © 2013 American Chemical Society.

  17. Inhibition of Human Steroid 5-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.; Di Costanzo, L; Penning, T; Christianson, D


    The {Delta}{sup 4}-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5{alpha}- or 5{beta}-reductase. Finasteride is a mechanism-based inactivator of 5{alpha}-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-dependent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5{beta}-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1 {center_dot} NADP{sup +} {center_dot} finasteride complex determined at 1.7 {angstrom} resolution shows that it is not possible for NADPH to reduce the {Delta}{sup 1-2}-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.

  18. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  19. Supramolecular effects as driving force of dipyrrin based functional materials engineering (United States)

    Banakova, E.; Bobrov, A.; Kazak, A.; Marfin, Yu; Merkushev, D.; Molchanov, E.; Rumyantsev, E.; Shipalova, M.; Usoltsev, S.; Vodyanova, O.


    Dipyrrin based luminophores are of major interest in different areas of chemistry, material science and molecular biology. Vast variety of the structures with dipyrrin motif were synthesized and investigated up to date. Modern trend in the dipyrrin chemistry is the aimed functionalization of the ligand or complex structure allowing to gain the mechanism based on supramolecular interactions for controlling spectral and photophysical characteristics of compounds for tuning practically valuable properties for specific tasks. Presented paper summarize the results of our research group, working in the field of dipyrrin complexes with p-elements: synthesis, spectral characteristics evaluation and possibilities of practical application investigation. Discussion is focused on the opportunities of molecules preorganization for achieving the supramolecular interactions causing the tuning of fluorescence of the compounds in solutions, polymeric matrices and thin films.

  20. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk


    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  1. Supramolecular Gold Metallogelators: The Key Role of Metallophilic Interactions

    Directory of Open Access Journals (Sweden)

    João Carlos Lima


    Full Text Available Gold metallogelators is an emerging area of research. The number of results published in the literature is still scarce. The majority of these gels is observed in organic solvents, and the potential applications are still to be explored. In this work, we present an overview about gold metallogelators divided in two different groups depending on the type of solvent used in the gelation process (organogelators and hydrogelators. A careful analysis of the data shows that aurophilic interactions are a common motif directly involved in gelation involving Au(I complexes. There are also some Au(III derivatives able to produce gels but in this case the organic ligands determine the aggregation process. A last section is included about the potential applications that have been reported until now with this new and amazing class of supramolecular assemblies.

  2. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells (United States)

    Haruk, Alexander M.; Mativetsky, Jeffrey M.


    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  3. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati


    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  4. Theoretical studies of the free energies of electron transfer and electron transfer kinetics in nanostructure supramolecular complexes of cis-unsaturated thiocrown ethers and Ce and Gd endohedral metallofullerenes [X–UT–Y][M@C82] (M = Ce, Gd

    Directory of Open Access Journals (Sweden)

    Avat (Arman Taherpour


    Full Text Available Unsaturated thiocrown ethers (described as [X–UT–Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively with cis-geometry are a group of crown ethers that, in light of the size of their cavities and their conformational restriction compared to a corresponding saturated system (1–9, demonstrate interesting properties for physicochemical studies. Formation of endohedral metallofullerenes is thought to involve the transfer of electrons from the encapsulated metal atom(s to the surrounding fullerene cage. Two of these molecules are the Ce@C82 (10 and Gd@C82 (11. The supramolecular complexes of 1–9 with Ce@C82 (10 and Gd@C82 (11 have been shown to possess a host–guest interaction for electron transfer processes, and these behaviors have previously been reported. The relationship between an index (which was introduced as the ratio of summation of the number of carbon atoms (nc and the number of sulfur atoms (ns and oxidation potential (oxE1 of 1–9, as well as the free energies of electron transfer (ΔGet, by the Rehm–Weller equation between 1–9 and 10 and 11 as [X–UT–Y][Ce@C82] (12 and [X–UT–Y][Gd@C82] (13 complexes, were investigated before. In this study, the first and second activation free energies of electron transfer and kinetic rate constants of the electron transfers, ΔGet(n# and ket (n = 1,2, respectively, which are given by the previous studies for [X–UT–Y][Ce@C82] (12 and [X–UT–Y][Gd@C82] (13 complexes, were calculated in accordance with the Marcus theory.

  5. Physics and engineering of peptide supramolecular nanostructures. (United States)

    Handelman, Amir; Beker, Peter; Amdursky, Nadav; Rosenman, Gil


    The emerging "bottom-up" nanotechnology reveals a new field of bioinspired nanomaterials composed of chemically synthesized biomolecules. They are formed from elementary constituents in supramolecular structures by the use of a developed nature self-assembly mechanism. The focus of this perspective paper is on intrinsic fundamental physical properties of bioinspired peptide nanostructures and their small building units linked by weak noncovalent bonds. The observed exceptional optical properties indicate a phenomenon of quantum confinement in these supramolecular structures, which originates from nanoscale size of their elementary building blocks. The dimensionality of the confinement gives insight into intrinsic packing of peptide supramolecular nanomaterials. QC regions, revealed in bioinspired nanostructures, were found by us in amyloid fibrils formed from insulin protein. We describe ferroelectric and related properties found at the nanoscale based on original crystalline asymmetry of the nanoscale building blocks, packing these structures. In this context, we reveal a classic solid state physics phenomenon such as reconstructive phase transition observed in bioorganic peptide nanotubes. This irreversible phase transformation leads to drastic reshaping of their quantum structure from quantum dots to quantum wells, which is followed by variation of their space group symmetry from asymmetric to symmetric. We show that the supramolecular origin of these bioinspired nanomaterials provides them a unique chance to be disassembled into elementary building block peptide nanodots of 1-2 nm size possessing unique electronic, optical and ferroelectric properties. These multifunctional nanounits could lead to a new future step in nanotechnology and nanoscale advanced devices in the fields of nanophotonics, nanobiomedicine, nanobiopiezotronics, etc. This journal is © the Owner Societies 2012

  6. The AMPK enzyme-complex: From the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders

    NARCIS (Netherlands)

    Antonioli, Luca; Colucci, Rocchina; Pellegrini, Carolina; Giustarini, Giulio; Sacco, Deborah; Tirotta, Erika; Caputi, Valentina; Marsilio, Ilaria; Giron, Maria Cecilia; Németh, Zoltán H; Blandizzi, Corrado; Fornai, Matteo


    Introduction: Adenosine monophosphate-activated protein kinase (AMPK), known as an enzymatic complex that regulates the energetic metabolism, is emerging as a pivotal enzyme and enzymatic pathway involved in the regulation of immune homeostatic networks. It is also involved in the molecular

  7. Supramolecular gel electrophoresis of large DNA fragments. (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi


    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metallo-supramolecular Architectures based on Multifunctional N-Donor Ligands


    Tanh Jeazet, Harold Brice


    Self-assembly processes were used to construct supramolecular architectures based on metal-ligand interactions. The structures formed strongly depend on the used metal ion, the ligand type, the chosen counter ion and solvent as well as on the experimental conditions. The focus of the studies was the design of multifunctional N-donor ligands and the characterization of their complexing and structural properties. This work was divided into three distinct main parts: The bis(2-pyridylimine), the...

  9. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules. (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi


    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  10. Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets. (United States)

    Kulkarni, Chidambar; Korevaar, Peter A; Bejagam, Karteek K; Palmans, Anja R A; Meijer, E W; George, Subi J


    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

  11. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics (United States)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  12. Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex

    NARCIS (Netherlands)

    Braun, P; Bitter, W; Tommassen, J


    The propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes

  13. Functional supramolecular ruthenium cyclodextrin dyes for nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, J.; Pikramenou, Z. [School of Chemistry, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Philippopoulos, A.I.; Kontos, A.G.; Falaras, P. [NCSR ' ' Demokritos' ' , Institute of Physical Chemistry, Aghia Paraskevi Atiikis, 15310, Athens (Greece)


    A supramolecular complex [Ru(dcb){sub 2}({alpha}-CD-5-bpy)]Cl{sub 2} (1-{alpha}-CD) (dcb = 4,4'-dicarboxyl-2,2'-bipyridine, {alpha}-CD-5-bpy = 6-mono[5-methyl(5'-methyl-2,2'-bipyridyl)]-permethylated {alpha}-CD) (CD: cyclodextrin) based on a ruthenium tris-bipyridyl core with an appended {alpha}-CD cavity is designed and synthesised, in order to facilitate dye/redox couple interaction and dye regeneration in nanocrystalline TiO{sub 2} solar cells. The luminescent complex is fully characterized and anchored on mesoporous titania electrodes showing increased power-conversion efficiency in solid-state dye-sensitized solar cells using a composite polymer electrolyte. Direct comparison of the properties of the CD complex with an analogous ruthenium complex [Ru(dcb){sub 2}(5,5'-dmbpy)]Cl{sub 2} (2) (5,5'-dmbpy = 5,5'-dimethylbipyridine) without the CD cavity reveals that the photovoltaic performance of 1-{alpha}-CD is enhanced by about 40 % compared to 2. Independent studies have shown complexation of the iodide redox couple to the CD in 1-{alpha}-CD. These results indicate that the CD moiety is able to act as a mediator and fine tune the photoelectrode/electrolyte interface. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  14. Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism. (United States)

    Lin, Yi-Chen; Chang, Shih-Chung; Juang, Rong-Huay


    It has been proposed that malto-oligosaccharides (MOSs) are possibly recycled back into amylopectin biosynthesis via the sequential reactions catalyzed by plastidial α-glucan phosphorylase 1 (Pho1) and disproportionating enzyme 1 (Dpe1). In the present study, the reciprocal co-immunoprecipitation experiments using specific antibodies against Pho1 and Dpe1 demonstrated that these two enzymes can form a complex (the PD complex) in Ipomoea batatas storage roots. The immunohistochemistry analyses also revealed the co-localization of Pho1 and Dpe1 in the amyloplasts, and the protein levels of Pho1 and Dpe1 increased gradually throughout sweet potato storage root development. A high molecular weight PD complex was co-purified from sweet potato storage root lysates by size exclusion chromatography. Enzyme kinetic analyses showed that the PD complex can catalyze maltotriose and maltotetraose to generate glucose-1-phosphate in the presence of inorganic phosphate, and it also performs greater Dpe1 activity toward MOSs than does free form Dpe1. These data suggest that Pho1 and Dpe1 may form a metabolon complex, which provides elevated metabolic fluxes for MOS metabolism via a direct transfer of sugar intermediates, resulting in recycling of glucosyl units back into amylopectin biosynthesis more efficiently.

  15. Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism (United States)

    Lin, Yi-Chen; Chang, Shih-Chung; Juang, Rong-Huay


    It has been proposed that malto-oligosaccharides (MOSs) are possibly recycled back into amylopectin biosynthesis via the sequential reactions catalyzed by plastidial α-glucan phosphorylase 1 (Pho1) and disproportionating enzyme 1 (Dpe1). In the present study, the reciprocal co-immunoprecipitation experiments using specific antibodies against Pho1 and Dpe1 demonstrated that these two enzymes can form a complex (the PD complex) in Ipomoea batatas storage roots. The immunohistochemistry analyses also revealed the co-localization of Pho1 and Dpe1 in the amyloplasts, and the protein levels of Pho1 and Dpe1 increased gradually throughout sweet potato storage root development. A high molecular weight PD complex was co-purified from sweet potato storage root lysates by size exclusion chromatography. Enzyme kinetic analyses showed that the PD complex can catalyze maltotriose and maltotetraose to generate glucose-1-phosphate in the presence of inorganic phosphate, and it also performs greater Dpe1 activity toward MOSs than does free form Dpe1. These data suggest that Pho1 and Dpe1 may form a metabolon complex, which provides elevated metabolic fluxes for MOS metabolism via a direct transfer of sugar intermediates, resulting in recycling of glucosyl units back into amylopectin biosynthesis more efficiently. PMID:28472155

  16. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.


    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  17. Self-assembly of a supramolecular square between [Ni(dppe(TOF2] and 4,4'-Bipyridine

    Directory of Open Access Journals (Sweden)

    Paulo Torres


    Full Text Available The main interest of this research is to contribute to the development and understanding of supramolecular chemistry and molecular architectures, which are constructed by the self-assembly of supramolecular entities. Therefore, the synthesis and characterization (IR, UV, 1H NMR, 31P, 19F, 1H-1H COSY of a nickel (II supramolecular square [7] was performed through the synthesis between nickel chloride [1] and diphenylphosphinoethane (dppe [2] to form the precursor complex [Ni(dppeCl2] [3]. This was followed by the synthesis of the complex of interest, [Ni(dppe(TOF2] [5], using the precursor and silver trifluoromethanesulfonate (Ag-TOF. Finally, the self-assembly was performed between the complex [1,2-bis(diphenylphosphinoethanebistriflatonickel(II] [Ni(dppe(OSO2CF32] [5] and the organic ligand 4,4'-bipyridine [6], which act as vertex and edge, respectively.According to various analyses, it was found that the self-assembly generated only one supramolecular species; a square is the most probable thermodynamic structure.

  18. Molecular and supramolecular speciation of monoamide extractant systems

    International Nuclear Information System (INIS)

    Ferru, G.


    DEHiBA (N,N-di-(ethyl-2-hexyl)isobutyramide, a monoamide, was chosen as selective extractant for the recovery of uranium in the first cycle of the GANEX process, which aims to realize the grouped extraction of actinides in the second step of the process. The aim of this work is an improved description of monoamide organic solutions in alkane diluent after solutes extraction: water, nitric acid and uranyl nitrate. A parametric study was undertaken to characterize species at molecular scale (by IR spectroscopy, UV-visible spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and electro-spray ionisation mass spectrometry) and at supramolecular scale (by vapor pressure osmometry and small angle X-ray scattering coupled to molecular dynamic simulations). Extraction isotherms were modelled taking into account the molecular and supramolecular speciation. These works showed that the organization of the organic solution depends on the amide concentration, the nature and the concentration of the extracted solute. Three regimes can be distinguished. 1/For extractant concentration less than 0.5 mol/L, monomers are predominate species. 2/ For extractant concentrations between 0.5 and 1 mol/L, small aggregates are formed containing 2 to 4 molecules of monoamide. 3/ For more concentrated solutions (greater than 1 mol/L), slightly larger species can be formed after water or nitric acid extraction. Concerning uranyl nitrate extraction, an important and strong organization of the organic phase is observed, which no longer allows the formation of well spherical defined aggregates. At molecular scale, complexes are not sensitive to the organization of the solution: the same species are observed, regardless of the solute and extractant concentrations in organic phase. (author) [fr

  19. Temperature-Induced, Selective Assembly of Supramolecular Colloids in Water

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G.P.; Vilanova, Neus; De Feijter, Isja; Kegel, Willem K.; Voets, Ilja K.


    In this article, we report the synthesis and physical characterization of colloidal polystyrene particles that carry water-soluble supramolecular N,N′,N″,-trialkyl-benzene-1,3,5-tricarboxamides (BTAs) on their surface. These molecules are known to assemble into one-dimensional supramolecular

  20. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W


    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  1. Alternation and tunable composition in hydrogen bonded supramolecular copolymers. (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P


    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  2. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, Hoang D.; Schenkel, J.H.; Huskens, Jurriaan; Ravoo, B.J.; Jonkheijm, Pascal; Brunsveld, Luc


    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  3. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design. (United States)

    Rossow, Torsten; Bayer, Sebastian; Albrecht, Ralf; Tzschucke, C Christoph; Seiffert, Sebastian


    Supramolecular microgel capsules based on polyethylene glycol (PEG) are a promising class of soft particulate scaffolds with tailored properties. An approach to fabricate such particles with exquisite control by droplet-based microfluidics is presented. Linear PEG precursor polymers that carry bipyridine moieties on both chain termini are gelled by complexation to iron(II) ions. To investigate the biocompatibility of the microgels, living mammalian cells are encapsulated within them. The microgel elasticity is controlled by using PEG precursors of different molecular weights at different concentrations and the influence of these parameters on the cell viabilities, which can be optimized to exceed 90% is studied. Reversion of the supramolecular polymer cross-linking allows the microcapsules to be degraded at mild conditions with no effect on the viability of the encapsulated and released cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The ferredoxin-binding site of ferredoxin: Nitrite oxidoreductase. Differential chemical modification of the free enzyme and its complex with ferredoxin. (United States)

    Dose, M M; Hirasawa, M; Kleis-SanFrancisco, S; Lew, E L; Knaff, D B


    Spinach (Spinacea oleracea) leaf ferredoxin (Fd)-dependent nitrite reductase was treated with either the arginine-modifying reagent phenyl-glyoxal or the lysine-modifying reagent pyridoxal-5'-phosphate under conditions where only the Fd-binding affinity of the enzyme was affected and where complex formation between Fd and the enzyme prevented the inhibition by either reagent. Modification with [14C]phenylglyoxal allowed the identification of two nitrite reductase arginines, R375 and R556, that are protected by Fd against labeling. Modification of nitrite reductase with pyridoxal-5'-phosphate, followed by reduction with NaBH4, allowed the identification of a lysine, K436, that is protected by Fd against labeling. Positive charges are present at these positions in all of the Fd-dependent nitrite reductase for which sequences are available, suggesting that these amino acids are directly involved in electrostatic binding of Fd to the enzyme.

  5. The effect of an anionic detergent on complex carbohydrates and enzyme activities in the epidermis of the catfish Heteropneustes fossilis (Bloch). (United States)

    Zaccone, G; Lo Cascio, P; Fasulo, S; Licata, A


    The histochemistry of various oxidative enzymes and complex carbohydrates in the epidermis of the catfish Heteropneustes fossils was investigated after exposure to sublethal concentrations of the detergent sodium alkylbenzenesulphonate. It was found that the detergent treatment was accompanied by a marked increase in the number of mucous cells which produce histochemically detectable amounts of acidic glycoproteins with a shift towards the production of O-acetylated sialic acids. The activities of mitochondrial enzymes were lost in the superficial cell layers. In contrast the activities of glucose-6-phosphate and lactate dehydrogenase increased considerably. The rise in glucose-6-phosphate dehydrogenase was correlated with the metabolic requirements for the enhanced production of mucus under stress. The changes in both enzyme activities and in the chemical composition of mucus may provide a suitable experimental model for histochemical investigations of the effects of stress induced by pollutants on aquatic organisms.

  6. Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene (United States)

    Zhang, Cai-Cai; Li, Sheng-Hua; Zhang, Cui-Fang; Liu, Yu


    A photo/thermal-switchable supramolecular nanoparticles assembly has been constructed based on an inclusion complex between anionic pillar[5]arene 2C-WP5A and azobenzene derivative Azo-py-OMe (G). The novel anionic pillar[5]arene-based host-guest inclusion complexation was investigated by the 1H NMR titration, 2D ROESY and isothermal titration microcalorimetry (ITC) showing high association constant (Ka) of (2.60 ± 0.06) × 104 M-1 with 1:1 binding stoichiometry. Furthermore, the supramolecular nanoparticles assembly can be conveniently obtained from G and a small amount of 2C-WP5A in aqueous solution, which was so-called “host induced aggregating (HIA)”. The size and morphology of the supramolecular nanoparticles assembly were characterized by TEM and DLS. As a result of the photo/thermal-isomerization of G included in the cavity of 2C-WP5A, the size of these nanoparticles could reversibly change from ~800 nm to ~250 nm, which could switch the solution of this assembly from turbid to clear.

  7. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth (United States)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.


    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  8. Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid. (United States)

    Wei, Yan; Zhang, Lei; Wang, Meng-Jie; Chen, Si-Chun; Wang, Zi-Hao; Zhang, Kou-Lin


    Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2-amino-4-sulfobenzoic acid (H(2)asba) in the presence/absence of the auxiliary chelating ligand 1,10-phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3-amino-4-carboxybenzene-1-sulfonato-κO(1))bis(1,10-phenanthroline-κ(2)N,N')copper(II) 3-amino-4-carboxybenzene-1-sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O, (1), and catena-poly[[diaquacopper(II)]-μ-3-amino-4-carboxylatobenzene-1-sulfonato-κ(2)O(4):O(4')], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction analysis, as well as by variable-temperature powder X-ray diffraction analysis (VT-PXRD). Intermolecular π-π stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two-dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba(-) anions, H2O molecules and double chains. Left- and right-handed 21 helices formed by the Hasba(-) anions are arranged alternately within the two-dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a three-dimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration-rehydration behaviour, while complex (2) shows an irreversible dehydration-rehydration behaviour.

  9. Enzyme Mimics: Advances and Applications. (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang


    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice

    International Nuclear Information System (INIS)

    Koiram, P.R.; Veerapur, V.P.; Mazhuvancherry, U.K.; Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, I.K.


    The effect of mononuclear copper (II) complex of curcumin in 1:1 stoichiometry (hereafter referred to as complex) administered 30 mim before γ-irradiation (4.5 Gy) on alterations in antioxidant and Thiobarbituric acid reactive substances (TBARS) levels in livers was studied in comparison to curcumin at a dose of 50 mg/kg. The different antioxidants like glutathione (GSH), glutathione-S-transferase (GST), catalase, superoxide dismuatase (SOD), TBARS and total thiols were estimated in the liver homogenates excised at different time intervals (1, 2 and 4 h) post irradiation using colorimetric methods. There was a radiation-induced decrease in the levels of all the studied enzymes at 1 h post irradiation, while an increase was observed at later time points. Both curcumin and complex treatment in sham-irradiated mice decreased the levels of GSH and total thiols, whereas there was an increase in the levels of catalase, GST and SOD compared to normal control. Under the influence of irradiation, both curcumin and complex treatment protected the decline in the levels of GSH, GST, SOD, catalase and total thiols, and inhibited radiation-induced lipid peroxidation. Further, the complex was found to be more effective in protecting the enzymes at 1 h post irradiation compared to curcumin treated group. This may be due to the higher rate constants of the complex compared to curcumin for their reactions with various free radicals. (author)

  11. Energetically demanding transport in a supramolecular assembly. (United States)

    Cheng, Chuyang; McGonigal, Paul R; Liu, Wei-Guang; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Frasconi, Marco; Stern, Charlotte L; Goddard, William A; Stoddart, J Fraser


    A challenge in contemporary chemistry is the realization of artificial molecular machines that can perform work in solution on their environments. Here, we report on the design and production of a supramolecular flashing energy ratchet capable of processing chemical fuel generated by redox changes to drive a ring in one direction relative to a dumbbell toward an energetically uphill state. The kinetics of the reaction pathway juxtapose a low energy [2]pseudorotaxane that forms under equilibrium conditions with a high energy, metastable [2]pseudorotaxane which resides away from equilibrium.

  12. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish


    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  13. Cellular uptake: lessons from supramolecular organic chemistry. (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan


    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  14. Supramolecular assemblies in [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O complex – Structural, spectroscopic, magnetic and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowska, Agnieszka, E-mail: [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland); Kochel, Andrzej [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław (Poland); Duczmal, Marek [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland)


    The reaction of L-arginine and oxalate ions with copper(II) salts yields a new complex with formula of [Cu(L-Arg){sub 2}(H{sub 2}O)]·C{sub 2}O{sub 4}·6H{sub 2}O (1) (where L-Arg = L-arginine). Single crystals of 1 were synthesized by crystallization from aqueous solution. The complex properties were characterized by X-ray diffraction, spectroscopy (FT-IR, FT-Raman, NIR-Vis-UV and EPR) as well as thermal and magnetic methods. The square pyramidal (SP) geometry around Cu(II) ions in [Cu(L-Arg){sub 2}(H{sub 2}O)]{sup 2+} cation complex is formed by two cis-chelated L-arginine zwitterions and a water molecule coordinated in the apex of square pyramid. The trigonality distortion of SP geometry is relatively small, τ = 0.0087. The solid state EPR spectrum showed broad hyperfine splitting with g{sub ⊥} = 2.061 at 77 K. The copper centres distanced at 7.558(5) Å are joined in a single zig-zag structure via a chain based on the combination of Cu−O(5)−H(29)⋯O(2)−C1−O1−Cu hydrogen bonds along the b axis (d (O2⋯O5) = 2.812 Å). Taking into account the structural features, the magnetic susceptibility data were best-fitted, giving the exchange parameter J = −0.16 cm{sup −1}. Complex 1 is thermally stable up to 66 °C, where it was observed to lose the crystallization water molecules with an 11.7% mass loss (calc. 11.5%). - Highlights: • Crystal and molecular structure of [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O crystals have been studied. • The magnetic interactions of Cu(II) centres are assisted by the formation of single zig-zag chain. • Role of oxalate ions in completed relatively small square pyramid distortion is described. • The cis-fashioned L-arginine created the stronger ligand field than trans-configuration.

  15. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo


    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  16. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. (United States)

    Marcos, Xelhua; Pérez-Casas, Silvia; Llovo, José; Concheiro, Angel; Alvarez-Lorenzo, Carmen


    Supramolecular gels of poloxamer-hydroxyethyl cellulose (HEC)-α-cyclodextrin (αCD) were developed aiming to obtain synergisms regarding solubilization and sustained release of griseofulvin for topical application. The effects of αCD concentration (0-10%w/w) on the phase behavior of aqueous dispersions of Pluronic(®) P123 (14%w/w) mixed with HEC (2%w/w) were evaluated at 4, 20 and 37°C. The cooperative effects of the inclusion complex formation between poly(ethylene oxide) (PEO) blocks and HEC with αCD prevented phase separation and led to supramolecular networks that solubilize the antifungal drug. Rheological and bioadhesive properties of gels with and without griseofulvin could be easily tuned modulating the polymers proportions. Supramolecular gels underwent sol-gel transition at lower temperature than P123 solely dispersions and enabled drug sustained release for at least three weeks. All gels demonstrated good biocompatibility in the HET-CAM test. Furthermore, the drug-loaded gels showed activity against Trichophyton rubrum and Trichophyton mentagrophytes and thus may be useful for the treatment of tinea capitis and other cutaneous fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Enzyme Kinetics Experiment with the Multienzyme Complex Viscozyme L and Two Substrates for the Accurate Determination of Michaelian Parameters (United States)

    Guerra, Nelson Pérez


    A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…

  18. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes (United States)

    Alyar, Saliha; Adem, Şevki


    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.





    Esta tesis tiene como objetivo principal aportar al conocimiento de la Química Supramolecular y de la Nanoquímica considerando la síntesis y caracterización de sistemas supramoleculares, funcionalización de nanopartículas (NPs), nanodecoración de cristales supramoleculares y su evaluación sobre los efectos de los mismos en la viabilidad celular. La promoción de estos sistemas básicos para la creación de sistemas útiles en aplicaciones biomédicas, es del interés de esta tesis. ...

  20. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus


    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  1. New discrete and polymeric supramolecular architectures derived from dinuclear Co(II), Ni(II) and Cu(II) complexes of aryl-linked bis-beta-diketonato ligands and nitrogen bases: synthetic, structural and high pressure studies. (United States)

    Clegg, Jack K; Hayter, Michael J; Jolliffe, Katrina A; Lindoy, Leonard F; McMurtrie, John C; Meehan, George V; Neville, Suzanne M; Parsons, Simon; Tasker, Peter A; Turner, Peter; White, Fraser J


    New examples of nitrogen base adducts of dinuclear Co(II), Ni(II) and Cu(II) complexes of the doubly deprotonated forms of 1,3-aryl linked bis-beta-diketones of type [RC(=O)CH(2)C(=O)C(6)H(4)C(=O)CH(2)C(=O)R] (L(1)H(2)) incorporating the mono- and difunctional amine bases pyridine (Py), 4-ethylpyridine (EtPy), piperidine (pipi), 1,4-piperazine (pip), N-methylmorpholine (mmorph), 1,4-dimethylpiperazine (dmpip) and N,N,N',N'-tetramethylethylenediamine (tmen) have been synthesised by reaction of the previously reported [Cu(2)(L(1))(2)].2.5THF (R = Me), [Cu(2)(L(1))(2)(THF)(2)] (R = t-Bu), [Ni(2)(L(1))(2)(Py)(4)] (R = t-Bu) and [Co(2)(L(1))(2)(Py)(4)] (R = t-Bu) complexes with individual bases of the above type. Comparative X-ray structural studies involving all ten base adduct derivatives have been obtained and reveal a range of interesting discrete and polymeric molecular architectures. The respective products have the following stoichiometries: [Cu(2)(L(1))(2)(Py)(2)].Py (R = Me), [Cu(2)(L(1))(2)(EtPy)(2)].2EtPy (R = t-Bu), [Cu(2)(L(1))(2)(pipi)(2)].2pipi (R = t-Bu), [Cu(2)(L(1))(2)(mmorph)(2)] (R = t-Bu), [Cu(2)(L(1))(2)(tmen)(2)] (R = t-Bu) and {[Cu(2)(L(1))(2)(pip)].pip.2THF}(n), [Co(2)(L(1))(2)(tmen)(2)] (R = t-Bu), [Ni(2)(L(1))(2)(Py)(4)].dmpip (R = t-Bu), [Ni(2)(L(1))(2)(pipi)(4)].pipi (R = t-Bu) and [Ni(2)(L(1))(2)(tmen)(2)] (R = t-Bu). The effect of pressure on the X-ray structure of [Cu(2)(L(1))(2)(mmorph)(2)] has been investigated. An increase in pressure from ambient to 9.1 kbar resulted in modest changes to the unit cell parameters as well as a corresponding decrease of 6.7 percent in the unit cell volume. While a small 'shearing' motion occurs between adjacent molecular units throughout the lattice, no existing bonds are broken or new bonds formed.

  2. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization (United States)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad


    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  3. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance. (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao


    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. (United States)

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X


    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Crystal structure of an essential enzyme in seed starch degradation - barley limit dextrinase in complex with cyclodextrins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Svensson, Birte


    Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of Hv...... provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation....

  6. A quaternary mechanism enables the complex biological functions of octameric human UDP-glucose pyrophosphorylase, a key enzyme in cell metabolism. (United States)

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman


    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens.


    Directory of Open Access Journals (Sweden)

    Siavoush Dastmalchi


    Full Text Available Aldehyde oxidase (EC, a cytosolic enzyme containing FAD, molybdenum and iron-sulphur cluster, is a member of non-cytochrome P-450 enzymes called molybdenum hydroxylases which is involved in the metabolism of a wide range of endogenous compounds and many drug substances. Drug metabolism is one of the important characteristics which influences many aspects of a therapeutic agent such as routes of administration, drug interaction and toxicity and therefore, characterisation of the key interactions between enzymes and substrates is very important from drug development point of view. The aim of this study was to generate a three-dimensional model of human aldehyde oxidase (AO in order to assist us to identify the mode of interaction between enzyme and a set of phethalazine/quinazoline derivatives. Both sequence-based (BLAST and inverse protein fold recognition methods (THREADER were used to identify the crystal structure of bovine xanthine dehydrogenase (pdb code of 1FO4 as the suitable template for comparative modelling of human AO. Model structure was generated by aligning and then threading the sequence of human AO onto the template structure, incorporating the associated cofactors, and molecular dynamics simulations and energy minimization using GROMACS program. Different criteria which were measured by the PROCHECK, QPACK, VERIFY-3D were indicative of a proper fold for the predicted structural model of human AO. For example, 97.9 percentages of phi and psi angles were in the favoured and most favoured regions in the ramachandran plot, and all residues in the model are assigned environmentally positive compatibility scores. Further evaluation on the model quality was performed by investigation of AO-mediated oxidation of a set of phthalazine/quinazoline derivatives to develop QSAR model capable of describing the extent of the oxidation. Substrates were aligned by docking onto the active site of the enzyme using GOLD technology and then

  8. Zwitterionic supramolecular nanoparticles: self-assembly and responsive properties

    NARCIS (Netherlands)

    Stoffelen, C.; Huskens, Jurriaan


    Supramolecular nanoparticles (SNPs) are of high interest in both nanoscience and molecular diagnostics and therapeutics, because of their reversible and designable properties. To ensure colloidal stabilization and biocompatibility, most reported strategies require the use of hydrophilic long-chain

  9. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)


    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  10. Gold nanoparticle assemblies through Hydrogen-bonded supramolecular mediators

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David


    The synthesis of spherical gold nanoparticle assemblies with multicomponent double rosette molecular boxes as mediators is presented. These nine-component hydrogen-bonded supramolecular structures held together by 36 hydrogen bonds induce gold nanoparticle assembly. The morphologies of the

  11. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer (United States)


    polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and mechanical properties...Supramolecular polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and

  12. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio


    -bound states of TPPS were extracted from our spectroscopic measurements combined with the thermodynamic parameters obtained by ITC. The observed spectral shifts indicate that the two hydrogens in the central porphyrin are involved in (PVP + TPPS) binding. This work provides valuable information on thermodynamic stability of (polymer + porphyrin) supramolecular nanostructures and the general understanding of complex competing associative processes in solution

  13. Controlled Self-Assembly of Photofunctional Supramolecular Nanotubes. (United States)

    Cohen, Erez; Weissman, Haim; Pinkas, Iddo; Shimoni, Eyal; Rehak, Pavel; Král, Petr; Rybtchinski, Boris


    Designing supramolecular nanotubes (SNTs) with distinct dimensions and properties is highly desirable, yet challenging, since structural control strategies are lacking. Furthermore, relatively complex building blocks are often employed in SNT self-assembly. Here, we demonstrate that symmetric bolaamphiphiles having a hydrophobic core comprised of two perylene diimide moieties connected via a bipyridine linker and bearing polyethylene glycol (PEG) side chains can self-assemble into diverse molecular nanotubes. The structure of the nanotubes can be controlled by assembly conditions (solvent composition and temperature) and a PEG chain length. The resulting nanotubes differ both in diameter and cross section geometry, having widths of 3 nm (triangular-like cross-section), 4 nm (rectangular), and 5 nm (hexagonal). Molecular dynamics simulations provide insights into the stability of the tubular superstructures and their initial stages of self-assembly, revealing a key role of oligomerization via side-by-side aromatic interactions between bis-aromatic cores. Probing electronic and photonic properties of the nanotubes revealed extended electron delocalization and photoinduced charge separation that proceeds via symmetry breaking, a photofunction distinctly different from that of the fibers assembled from the same molecules. A high degree of structural control and insights into SNT self-assembly advance design approaches toward functional organic nanomaterials.

  14. Controlling molecular deposition and layer structure with supramolecular surface assemblies (United States)

    Theobald, James A.; Oxtoby, Neil S.; Phillips, Michael A.; Champness, Neil R.; Beton, Peter H.


    Selective non-covalent interactions have been widely exploited in solution-based chemistry to direct the assembly of molecules into nanometre-sized functional structures such as capsules, switches and prototype machines. More recently, the concepts of supramolecular organization have also been applied to two-dimensional assemblies on surfaces stabilized by hydrogen bonding, dipolar coupling or metal co-ordination. Structures realized to date include isolated rows, clusters and extended networks, as well as more complex multi-component arrangements. Another approach to controlling surface structures uses adsorbed molecular monolayers to create preferential binding sites that accommodate individual target molecules. Here we combine these approaches, by using hydrogen bonding to guide the assembly of two types of molecules into a two-dimensional open honeycomb network that then controls and templates new surface phases formed by subsequently deposited fullerene molecules. We find that the open network acts as a two-dimensional array of large pores of sufficient capacity to accommodate several large guest molecules, with the network itself also serving as a template for the formation of a fullerene layer.

  15. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth


    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  16. Nonenantioselectivity Property of Human Deoxycytidine Kinase Explained by Structures of the Enzyme in Complex with [subscript L]- and [subscript D]-Nucleosides

    Energy Technology Data Exchange (ETDEWEB)

    Sabini, Elisabetta; Hazra, Saugata; Konrad, Manfred; Lavie, Arnon (UIC); (MXPL-G)


    Biological molecules are predominantly enantioselective. Yet currently two nucleoside analogue prodrugs (3TC and FTC) with opposite chirality compared to physiological nucleosides are clinically approved for the treatment of HIV infections. These prodrugs require conversion to their triphosphorylated forms to achieve pharmacological activity. The first step in the activation of these agents is catalyzed by human deoxycytidine kinase (dCK). This enzyme possesses the ability to phosphorylate nucleosides of the unnatural L-chirality. To understand the molecular basis for the nonenantioselectivity of dCK, we solved the crystal structures of the enzyme in complex with the L-enantiomer and of its physiological substrate deoxycytidine and with the L-nucleoside analogue FTC. These were compared to a structure solved with D-dC. Our results highlight structural adjustments imposed on the L-nucleosides and properties of the enzyme endowing it with the ability to phosphorylate substrates with nonphysiological chirality. This work reveals the molecular basis for the activation of L-nucleosides by dCK.

  17. The crystal structure of an intermediate dimer of aspergilloglutamic peptidase that mimics the enzyme-activation product complex produced upon autoproteolysis. (United States)

    Sasaki, Hiroshi; Kubota, Keiko; Lee, Woo C; Ohtsuka, Jun; Kojima, Masaki; Iwata, So; Nakagawa, Atsushi; Takahashi, Kenji; Tanokura, Masaru


    Aspergilloglutamic peptidase from Aspergillus niger var. macrosporus (AGP) is one of the so-called pepstatin-insensitive acid endopeptidases, which are distinct from the well-studied aspartic peptidases. Among the known homologues of the glutamic peptidases, AGP is a unique two-chain enzyme with a light chain and a heavy chain bound non-covalently with each other, and thus is an interesting target for protein structure-function relationship studies. In this article, we report the crystal structure of a dimeric form of the enzyme at a resolution of 1.6 Å. This form has a unique structure in which the C-terminal region of the light chain of one of the molecules binds to the active site cleft of the other molecule like a part of a substrate. This form mimics the enzyme-activation product complex produced upon autoproteolysis, and provides a structural clue that could help to clarify the activation mechanism. This type of dimeric structure of a peptidase is here reported for the first time.

  18. Highly stereoselective recognition and deracemization of amino acids by supramolecular self-assembly. (United States)

    So, Soon Mog; Moozeh, Kimia; Lough, Alan J; Chin, Jik


    The highly stereoselective supramolecular self-assembly of α-amino acids with a chiral aldehyde derived from binol and a chiral guanidine derived from diphenylethylenediamine (dpen) to form the imino acid salt is reported. This system can be used to cleanly convert D-amino acids into L-amino acids or vice versa at ambient temperature. It can also be used to synthesize α-deuterated D- or L-amino acids. A crystal structure of the ternary complex together with DFT computation provided detailed insight into the origin of the stereoselective recognition of amino acids. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish; (UAB)


    The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate

  20. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. (United States)

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L


    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  1. Lanthanide Chemistry: From Coordination in Chemical Complexes Shaping Our Technology to Coordination in Enzymes Shaping Bacterial Metabolism. (United States)

    Martinez-Gomez, Norma Cecilia; Vu, Huong N; Skovran, Elizabeth


    Lanthanide chemistry has only been extensively studied for the last 2 decades, when it was recognized that these elements have unusual chemical characteristics including fluorescent and potent magnetic properties because of their unique 4f electrons.1,2 Chemists are rapidly and efficiently integrating lanthanides into numerous compounds and materials for sophisticated applications. In fact, lanthanides are often referred to as "the seeds of technology" because they are essential for many technological devices including smartphones, computers, solar cells, batteries, wind turbines, lasers, and optical glasses.3-6 However, the effect of lanthanides on biological systems has been understudied. Although displacement of Ca 2+ by lanthanides in tissues and enzymes has long been observed,7 only a few recent studies suggest a biological role for lanthanides based on their stimulatory properties toward some plants and bacteria.8,9 Also, it was not until 2011 that the first biochemical evidence for lanthanides as inherent metals in bacterial enzymes was published.10 This forum provides an overview of the classical and current aspects of lanthanide coordination chemistry employed in the development of technology along with the biological role of lanthanides in alcohol oxidation. The construction of lanthanide-organic frameworks will be described. Examples of how the luminescence field is rapidly evolving as more information about lanthanide-metal emissions is obtained will be highlighted, including biological imaging and telecommunications.11 Recent breakthroughs and observations from different exciting areas linked to the coordination chemistry of lanthanides that will be mentioned in this forum include the synthesis of (i) macrocyclic ligands, (ii) antenna molecules, (iii) coordination polymers, particularly nanoparticles, (iv) hybrid materials, and (v) lanthanide fuel cells. Further, the role of lanthanides in bacterial metabolism will be discussed, highlighting the

  2. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans. (United States)

    da Silva, M C; Bertolini, M C; Ernandes, J R


    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  3. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. (United States)

    Paterson, Brett M; Alt, Karen; Jeffery, Charmaine M; Price, Roger I; Jagdale, Shweta; Rigby, Sheena; Williams, Charlotte C; Peter, Karlheinz; Hagemeyer, Christoph E; Donnelly, Paul S


    The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of liver enzyme levels in workers exposed to vinyl chloride vapors in a petrochemical complex: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Dolati Mandana


    Full Text Available Abstract Background Polyvinyl chloride is used in production and manufacturing of many essential tools (e.g. plastic pipes, photography films, etc.. Its production is impossible without the use of vinyl chloride monomer (VCM, which can cause liver damage in long-term. In this study we intend to assess the effects of mild to moderate long term exposure to VCM on liver and to assess the importance of liver enzyme measurements as a screening tool. Methods In this study, liver enzyme levels of 52 workers were compared to 48 control workers using the T-test. The cases all worked in a PVC production unit in a petrochemical complex and the controls were randomly selected from office personnel of the same complex. A questionnaire was also filled in about information such as age, weight, work history, etc. in both groups. Results Mean comparisons for ALP and GGT using T-test showed statistically significant differences between the two groups. For AST, ALT and bilirubin (total, direct the mean was higher in the case group but this difference was not statistically significant. Discussion This study showed that mild exposure to VCM can cause mild liver cholestasis. So, using cholestasis assessment tests such as ALP and GGT should be considered in periodic assessment of liver function in PVC producing units.

  5. Sulfate-activating enzymes of Penicillium chrysogenum. The ATP sulfurylase.adenosine 5'-phosphosulfate complex does not serve as a substrate for adenosine 5'-phosphosulfate kinase

    International Nuclear Information System (INIS)

    Renosto, F.; Martin, R.L.; Segel, I.H.


    At a noninhibitory steady state concentration of adenosine 5'-phosphosulfate (APS), increasing the concentration of Penicillium chrysogenum ATP sulfurylase drives the rate of the APS kinase-catalyzed reaction toward zero. The result indicates that the ATP sulfurylase.APS complex does not serve as a substrate for APS kinase, i.e. there is no ''substrate channeling'' of APS between the two sulfate-activating enzymes. APS kinase had no effect on the [S]0.5 values, nH values, or maximum isotope trapping in the single turnover of ATP sulfurylase-bound [ 35 S]APS. Equimolar APS kinase (+/- MgATP or APS) also had no effect on the rate constants for the inactivation of ATP sulfurylase by phenylglyoxal, diethylpyrocarbonate, or N-ethylmaleimide. Similarly, ATP sulfurylase (+/- ligands) had no effect on the inactivation of equimolar APS kinase by trinitrobenzene sulfonate, diethylpyrocarbonate, or heat. (The last promotes the dissociation of dimeric APS kinase to inactive monomers.) ATP sulfurylase also had no effect on the reassociation of APS kinase subunits at low temperature. The cumulative results suggest that the two sulfate activating enzymes do not associate to form a ''3'-phosphoadenosine 5'-phosphosulfate synthetase'' complex

  6. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification

    International Nuclear Information System (INIS)

    Shen, Bo; Yan, Yurong; Tang, Renkuan; Li, Yongguo; Li, Jianbo; Cheng, Wei; Ju, Huangxian; Ding, Shijia


    We report on a novel strategy for the electrochemical detection of cocaine. It is based on the use of a supramolecular aptamer, rolling circle amplification (RCA), and multiplex binding of a biotin-strepavidin system. The aptamer fragments were assembled to a supramolecular aptamer which, in the presence of cocaine, conjugates to streptavidin for anchoring of biotinylated circular DNA. This initiates RCA and enables sensitive electrochemical-enzymatic readout. A significant signal amplification was obtained by using streptavidin linked to alkaline phosphatase that binds to the remaining biotinylated detection probes and catalyzes the hydrolysis of the synthetic enzyme substrate α-naphthylphosphate. This dual amplification strategy tremendously increases the detection limit of the aptasensor. Under optimal conditions and using differential pulse voltammetry, cocaine can be detected in the concentration range between 2 and 500 nM with a detection limit as low as 1.3 nM (at S/N = 3). The method is specific and acceptably reproducible. It was successfully applied to the detection of cocaine in (spiked) urine samples. The data were in good agreement with those obtained by the GC-MS reference method. (author)

  7. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel


    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  8. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans. (United States)

    Wu, Xinyu; Hou, Jin; Chen, Xiaodan; Chen, Xuan; Zhao, Wanghong


    Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization. Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the transcriptional regulatory mechanism. ptxA (-), ptxB (-), as well as ptxA (-) , ptxB (-) double-deletion mutants all had more extended lag phase and lower growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaT, ptxA, ptxB, SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was knockout. The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is regulated by ptxB. ptxA, ptxB, and the upstream gene sgaT, the downstream genes SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.

  9. Heterologous co-expression in E. coli of isoamylase genes from cassava Manihot esculenta Crantz 'KU50' achieves enzyme-active heteromeric complex formation. (United States)

    Panpetch, Pawinee; Field, Robert A; Limpaseni, Tipaporn


    Cloning of two isoamylase genes, MeISA1 and MeISA2, from cassava (Manihot esculenta Crantz) tubers, accompanied by their co-expression in E. coli demonstrates a requirement for heteromeric complex formation to achieve debranching activity. Starch debranching enzyme (DBE) or isoamylase (ISA) (EC., an important enzyme in starch metabolism, catalyses the hydrolysis of α-1,6 glycosidic linkages of amylopectin. Isoforms of ISAs have been reported in higher plants and algae (Fujita et al. in Planta 208:283-293, 1999; Hussain et al. in Plant Cell 15:133-149, 2003; Ishizaki et al. in Agric Biol Chem 47:771-779, 1983; Mouille et al. in Plant Cell 8:1353-1366, 1996). In the current work, cassava ISA genes were isolated from cDNA generated from total RNA from tubers of Manihot esculanta Crantz cultivar KU50. MeISA1 and MeISA2 were successfully amplified and cloned into a pETDuet1 vector. The putative MeISA1 and MeISA2 proteins comprised 763 and 882 amino acids, with substantial similarity to StISA1 and StISA2 from potato (84.4% and 68.9%, respectively). Recombinant MeISA1 and MeISA2 were co-expressed in Escherichia coli SoluBL21 (DE3). Histrap TM -Purified rMeISA1 and rMeISA2 showed approximate molecular weights of 87 and 99 kDa, respectively, by SDS-PAGE. Debranching activity was only detectable in the column fractions where both recombinant ISA isoforms were present. The heteromeric DBE from crude extracts of 4-5 h induced cultures analysed by gel filtration chromatography and western blot showed combinations of rMeISA1 and rMeISA2 at ratios of 1:1 to 4:1. Pooled fractions with DBE activity were used for enzyme characterisation, which showed that the enzyme was specific for amylopectin, with optimum activity at 37 °C and pH 7.0. Enzyme activity was enhanced by Co 2+ , Mg 2+ and Ca 2+ , but was strongly inhibited by Cu 2+ . Debranched amylopectin products showed chain length distributions typical of plant DBE.

  10. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.


    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  11. Surface relief gratings in azobenzene supramolecular systems based on polyimides (United States)

    Schab-Balcerzak, Ewa; Sobolewska, Anna; Stumpe, Joachim; Hamryszak, Lukasz; Bujak, Piotr


    The paper describes formation of new supramolecular azopolymers based on hydrogen bonds as perspective materials for laser induced surface relief gratings (SRGs) and for polarization gratings. Supramolecular films were built on the basis of hydrogen bonds between the functional groups of polymer and azobenzene derivatives, that is 4-[4-(3-hydroxypropyloxy)phenylazo]-pyridine and 4-[4-(6-hydroxyhexyloxy)phenylazo]pyridine. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for polymer-dye supramolecular systems. They revealed glass transition temperatures (Tg) in the range of 170-260 °C, whereas supramolecular systems exhibited lower Tg (88-187 °C). The polymers were easily soluble in aprotic polar solvents and exhibited remarkable good film forming properties. Moreover, new chromophore 4-[4-(3-hydroxypropyloxy)phenylazo]pyridine was synthesized and characterized. The light induced SRGs formation and simultaneous formation of the polarization gratings were explored in prepared polymer-chromophore assembles films using a holographic grating recording technique. First time to the best of our knowledge SRGs were formed in hydrogen-bonded supramolecular systems based on polyimides. The highest SRG amplitude and thus the highest diffraction efficiency were obtained in poly(esterimide)s with the hydroxyl functional group. Additionally, the thermal stability of the photoinduced surface gratings and polarization gratings were tested revealing in the case of the SRGs partial stability and almost complete erasure of the polarization gratings.


    Directory of Open Access Journals (Sweden)

    U. V. Datsyuk


    Full Text Available It is shown that the consumption of natural polyphenolic complex from grape wine in drinking water in the daily dose 2.5 ± 1.1 mg polyphenols/kg body mass of rats during the 10 day before exposure to radiation leads to increased of superoxide dismutase and gluthathione reductase activities in peripheral blood on 24 and 48 hours after full body X-ray irradiation (30 cGy. The of catalase, gluthathione peroxidase activities and the of the reactive thiobarbituric acid substances content in total lysates of peripheral blood within 72 hours after exposure are comparable to those in control rats. Marked decreased of catalase and superoxide dismutase activities at 24, 48 and 24 hours, respectively, was observed after exposure to ionizing radiation and increased content of lipid peroxidation products in all above mentioned time points. The decreased of superoxide dismutase and gluthathione peroxidase activities in lysates of rats aorta at 48 hour and increased content of the reactive thiobarbituric acid substances during 72 hours after radiation exposure were observed. The consumption of polyphenolic complex from wine did not change the superoxide dismutase and catalase activities in lysates of aorta rats treated with ionizing radiation, whereas gluthathione reductase and gluthathione peroxidase activities was increased during 72 hours after radiation influence. The content of TBA reactive substances was significantly decreased in lysates of aorta rats that were exposed to radiation and polyphenols of grape wine, compared with those of animals that were exposed to radiation alone.

  13. Controllable supramolecular structures and luminescent properties of unique trimeric Zn(II) 8-hydroxyquinolinates tuned by functional substituents. (United States)

    Yuan, Guozan; Huo, Yanping; Nie, Xiaoli; Jiang, Hong; Liu, Bin; Fang, Xiaoming; Zhao, Fenghua


    We reported here the self-assembly of two supramolecular structures based on similar trimeric Zn(II) units that are built from novel 2-substituted 8-hydroxyquinoline ligands and coordination Zn(II) ions. The aggregation behavior of zinc salt and ligand in solution was investigated by a variety of techniques, including (1)H NMR, UV-vis and photoluminescence (PL). In the solid state, the supramolecular structures can be controlled by the substituted groups (-NO(2) and -F) via intermolecular interaction, such as π···π stacking, C-H···O, and C-F···F-C interactions. As a result, the two trimeric Zn(II) complexes exhibit disparate photophysical properties. The present research holds great promise in the development of novel multinuclear Zn(II) materials, and may contribute to the understanding of structure-property relationships.

  14. Solid-phase enzyme immunoassay or radioimmunoassay for the detection of immune complexes based on their recognition by conglutinin: conglutinin-binding test

    International Nuclear Information System (INIS)

    Casali, P.; Bossus, A.; Carpentier, N.A.; Lambert, P.H.


    Bovine conglutinin was used in a solid-phase assay for the detection of immune complexes. In a first step, the tested serum sample was incubated in polypropylene tubes coated with conglutinin to allow C3-coated immune complexes to bind to solid-phase conglutinin. In a second step, the conglutinin-bound complexes were detected using an enzyme-conjugated or radiolabelled anti-immunoglobulin antibody. The conglutinin-binding (KgB) test did not suffer from the interference of DNA, heparin or endotoxins. Its limit of sensitivity for aggregated IgG was 3 μg/ml undiluted human serum. Immune complexes prepared in vitro using tetanus toxoid, or DNA, and corresponding antibodies in human sera could be detected at various antigen/antibody ratios and at antibody concentrations lower than 8 μg/ml. The KgB test allowed for the detection of immune complexes in sera from patients with systemic lupus erythematosus, rheumatoid arthritis, idiopathic vasculitis, leprosy and leukemia. These sera were also tested using the 125 I-labelled Clq-binding activity (BA) test and the KgB test simultaneously, and a significant rank order correlation was observed. In patients with leukemia, a significant correlation was observed using three tests, KgB, 125 I-labelled Clq BA and Raji-cell radioimmunoassay (RIA). Therefore, the KgB test appears as a simple and reproducible method, utilizing a very stable reagent, with a sensitivity and specificity comparable to the other tests studied and allowing for clinical application. (author)

  15. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. (United States)

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok


    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics.

  16. Reversible Guest Exchange Mechanisms in Supramolecular Host-GuestAssemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.


    Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characterizing guest exchange such as NMR, UV-VIS, mass spectroscopy, electrochemistry, and calorimetry and also presents representative examples of guest exchange mechanisms. The guest exchange mechanisms of hemicarcerands, cucurbiturils, hydrogen-bonded assemblies, and metal-ligand assemblies are discussed. Special attention is given to systems which exhibit constrictive binding, a motif common in supramolecular guest exchange systems.

  17. Triggering activity of catalytic rod-like supramolecular polymers. (United States)

    Huerta, Elisa; van Genabeek, Bas; Lamers, Brigitte A G; Koenigs, Marcel M E; Meijer, E W; Palmans, Anja R A


    Supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) functionalized with an L- or D-proline moiety display high catalytic activity towards aldol reactions in water. High turnover frequencies (TOF) of up to 27×10(-4) s(-1) and excellent stereoselectivities (up to 96% de, up to 99% ee) were observed. In addition, the catalyst could be reused and remained active at catalyst loadings and substrate concentrations as low as 0.1 mol % and 50 mM, respectively. A temperature-induced conformational change in the supramolecular polymer triggers the high activity of the catalyst. The supramolecular polymer's helical sense in combination with the configuration of the proline (L- or D-) is responsible for the observed selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hypothesized diprotomeric enzyme complex supported by stochastic modelling of palytoxin-induced Na/K pump channels. (United States)

    Vilallonga, Gabriel D; de Almeida, Antônio-Carlos G; Ribeiro, Kelison T; Campos, Sergio V A; Rodrigues, Antônio M


    The sodium-potassium pump (Na + /K + pump) is crucial for cell physiology. Despite great advances in the understanding of this ionic pumping system, its mechanism is not completely understood. We propose the use of a statistical model checker to investigate palytoxin (PTX)-induced Na + /K + pump channels. We modelled a system of reactions representing transitions between the conformational substates of the channel with parameters, concentrations of the substates and reaction rates extracted from simulations reported in the literature, based on electrophysiological recordings in a whole-cell configuration. The model was implemented using the UPPAAL-SMC platform. Comparing simulations and probabilistic queries from stochastic system semantics with experimental data, it was possible to propose additional reactions to reproduce the single-channel dynamic. The probabilistic analyses and simulations suggest that the PTX-induced Na + /K + pump channel functions as a diprotomeric complex in which protein-protein interactions increase the affinity of the Na + /K + pump for PTX.

  19. Supramolecular stabilization of metastable tautomers in solution and the solid state. (United States)

    Juribašić, Marina; Bregović, Nikola; Stilinović, Vladimir; Tomišić, Vladislav; Cindrić, Marina; Sket, Primož; Plavec, Janez; Rubčić, Mirta; Užarević, Krunoslav


    This work presents a successful application of a recently reported supramolecular strategy for stabilization of metastable tautomers in cocrystals to monocomponent, non-heterocyclic, tautomeric solids. Quantum-chemical computations and solution studies show that the investigated Schiff base molecule, derived from 3-methoxysalicylaldehyde and 2-amino-3-hydroxypyridine (ap), is far more stable as the enol tautomer. In the solid state, however, in all three obtained polymorphic forms it exists solely as the keto tautomer, in each case stabilized by an unexpected hydrogen-bonding pattern. Computations have shown that hydrogen bonding of the investigated Schiff base with suitable molecules shifts the tautomeric equilibrium to the less stable keto form. The extremes to which supramolecular stabilization can lead are demonstrated by the two polymorphs of molecular complexes of the Schiff base with ap. The molecules of both constituents of molecular complexes are present as metastable tautomers (keto anion and protonated pyridine, respectively), which stabilize each other through a very strong hydrogen bond. All the obtained solid forms proved stable in various solid-state and solvent-mediated methods used to establish their relative thermodynamic stabilities and possible interconversion conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens


    Full Text Available A supramolecular platform based on self-assembled monolayers (SAMs has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP and pyrophosphate, as well as dipicolinic acid (DPA which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.

  1. Ligand binding and conformational dynamics in a flavin-based electron-bifurcating enzyme complex revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. (United States)

    Demmer, Julius K; Rupprecht, Fiona A; Eisinger, Martin L; Ermler, Ulrich; Langer, Julian D


    Flavin-based electron bifurcation (FBEB) is a novel mechanism of energy coupling used by anaerobic microorganisms to optimize their energy metabolism efficiency. The first high-resolution structure of a complete FBEB enzyme complex, the NADH-dependent reduced ferredoxin: NADP + -oxidoreductase (NfnAB) of Thermotoga maritima, was recently solved. However, no experimental evidence for the NADPH-binding site and conformational changes during the FBEB reaction are available. Here we analyzed ligand binding and the conformational dynamics of oxygen-sensitive NfnAB using Hydrogen-Deuterium Exchange Mass-Spectrometry, including a customized anaerobic workflow. We confirmed the NADH and the previously postulated NADPH-binding site. Furthermore, we observed an NfnA-NfnB rearrangement upon NADPH binding which supports the proposed FBEB mechanism. © 2016 Federation of European Biochemical Societies.

  2. Supra-amphiphiles: a new bridge between colloidal science and supramolecular chemistry. (United States)

    Kang, Yuetong; Liu, Kai; Zhang, Xi


    In addition to conventional amphiphiles, an emerging research area is supra-amphiphiles, which are constructed on the basis of noncovalent interactions and dynamic covalent bonds. In this feature article, we have provided a general introduction to the concept, design principles, and topologies of supra-amphiphiles, starting from some rationally tailored building blocks. In addition, we highlight some progress in the functional assembly of supra-amphiphiles, such as responsive nanoscale carriers, antibacterial and antitumor agents, fluorescent-based chemical sensors, and enzyme mimics. The supra-amphiphile is a new bridge between colloidal science and supramolecular chemistry, and it is a field where we can make full use of our imaginative power.

  3. Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures

    Directory of Open Access Journals (Sweden)

    Casscells S Ward


    Full Text Available Abstract Background The amphiphilic fullerene monomer (AF-1 consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM, transmission electron microscopy (TEM, and dynamic light scattering (DLS studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions. Results Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates. Conclusion In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.

  4. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates. (United States)

    Nachtigall, Olaf; Kördel, Christian; Urner, Leonhard H; Haag, Rainer


    The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene-oligoglycerol conjugates in different environments is reported. Through the formation of host-guest complexes with surface immobilized β-cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light-illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half-lives of the cis isomers were calculated for different environments. Surprisingly, the half-lives on gold nanoparticles were significantly smaller compared to planar gold surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 8th International Symposium on Supramolecular and Macrocyclic Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jeffery T. [Univ. of Maryland, College Park, MD (United States)


    This report summarizes the 8th International Conference on Supramolecular and Macrocyclic Chemistry (ISMSC-8). DOE funds were used to make it more affordable for students, post-docs and junior faculty to attend the conference by covering their registration costs. The conference was held in Crystal City, VA from July 7-11, 2013. See for the conference website. ISMSC-8 encompassed the broad scope and interdisciplinary nature of the field. We met our goal to bring together leading scientists in molecular recognition and supramolecular chemistry. New research directions and collaborations resulted this conference. The DOE funding was crucial for us achieving our primary goal.

  6. Symposium Supramolecular Assemblies on Surface: Nanopatterning, Functionality and Reactivity (United States)


    modules, steer their organisational and dynamic behaviour , and afford novel functions using well-defined homogenous surfaces, textured and sp2...three electron oxidations of singleIndiana University 11:00 AM 11:30 AM Frida 30 Beton, Peter Supramolecular  organisation  on layered semiconductors and...change in oxidation state of the metal. See J. Am. Chem. Soc. 136, 9862 (2014). 1841 - Supramolecular organisation on layered semiconductors and

  7. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release. (United States)

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua


    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug

  8. Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injury protects the heart by upregulation of antioxidant enzymes. (United States)

    Korkmaz-Icöz, Sevil; Atmanli, Ayhan; Radovits, Tamás; Li, Shiliang; Hegedüs, Peter; Ruppert, Mihály; Brlecic, Paige; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor


    We recently demonstrated that the pre-treatment of rats with zinc and acetylsalicylic acid complex in the form of bis(aspirinato)zinc(II) [Zn(ASA)2] is superior to acetylsalicylic acid in protecting the heart from acute myocardial ischemia. Herein, we hypothesized that Zn(ASA)2 treatment after the onset of an acute myocardial injury could protect the heart. The rats were treated with a vehicle or Zn(ASA)2 after an isoproterenol injection. Isoproterenol-induced cardiac damage [inflammatory infiltration into myocardial tissue, DNA-strand breakage evidenced by TUNEL-assay, increased 11-dehydro thromboxane (TX)B2-levels, elevated ST-segment, widened QRS complex and prolonged QT-interval] was prevented by the Zn(ASA)2 treatment. In isoproterenol-treated rats, load-independent left ventricular contractility parameters were significantly improved after Zn(ASA)2. Furthermore, Zn(ASA)2 significantly increased the myocardial mRNA-expression of superoxide dismutase-1, glutathione peroxidase-4 and decreased the level of Na(+)/K(+)/ATPase. Postconditioning with Zn(ASA)2 protects the heart from acute myocardial ischemia. Its mechanisms of action might involve inhibition of pro-inflammatory prostanoids and upregulation of antioxidant enzymes.

  9. Supramolecular Hydrogels Based on DNA Self-Assembly. (United States)

    Shao, Yu; Jia, Haoyang; Cao, Tianyang; Liu, Dongsheng


    Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity. By simple attachment to polymers as a side chain, DNA has been widely used as cross-links in hydrogel preparation. The formed secondary structures could confer on the hydrogel designable responsiveness, such as response to temperature, pH, metal ions, proteins, DNA, RNA, and small signal molecules like ATP. Moreover, single or multiple DNA restriction enzyme sites could be incorporated into the hydrogels by sequence design and greatly expand the latitude of their responses. Compared with most supramolecular hydrogels, these DNA cross-linked hydrogels could be relatively strong and easily adjustable via sequence variation, but it is noteworthy that these hydrogels still have excellent thixotropic properties and could be easily injected through a needle. In addition, the quick formation of duplex has also enabled the multilayer three-dimensional injection printing of living cells with the hydrogel as matrix. When the matrix is built purely by DNA assembly structures, the hydrogel inherits all the previously described characteristics; however, the long persistence length of DNA structures excluded the small size meshes of the network and made the hydrogel permeable to nutrition for cell proliferation. This unique property greatly expands the cell

  10. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.


    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  11. Preparation of supramolecular networks using Langmuir-Blodgett techniques

    Czech Academy of Sciences Publication Activity Database

    Dudič, Miroslav; Perman, Jason; Cipolloni, Marco; Michl, Josef


    Roč. 106, - (2012), s1218-s1218 ISSN 0009-2770. [EuCheMS Chemistry Congress /4./. 26.08.2012-30.08.2012, Prague] EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : supramolecular * monolayer * Langmuir - Blodgett Subject RIV: CC - Organic Chemistry

  12. Intelligent chiral sensing based on supramolecular and interfacial concepts. (United States)

    Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P


    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  13. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa


    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  14. Bile Acids as Building Blocks of Supramolecular Hosts

    Directory of Open Access Journals (Sweden)

    Erkki Kolehmainen


    Full Text Available A review of the use of bile acid-based compounds as building blocks for designing novel supramolecular hosts for molecular recognition is presented. Pharmacological applications and the newest spectroscopic and computational studies of bile acid derivatives are also shortly considered.

  15. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins (United States)

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai


    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  16. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)


    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said...

  17. Supramolecular network formed through OH $\\cdots $ O and - ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 4. Supramolecular network formed through O-H ⋯ O and - stacking interactions: Hydrothermal syntheses and crystal structures of M(H2O)6](optp)2 (M = Mg, Ni, Zn, and optp = 1-oxopyridinium-2-thiopropionate). Murugan Indrani Ramasamy ...

  18. Supramolecular structure of S-(+)-marmesin—a linear ...

    Indian Academy of Sciences (India)


    The crystal structure was determined from X-ray diffraction data using direct methods. The compound crys- tallizes into monoclinic space group P21 with unit cell ... Supramolecular structure; direct methods; hydrogen bond; π–π interaction; envelope; furano- coumarin. 1. Introduction. Furanocoumarins are found to possess ...

  19. Simulation of sub-molecular and supra-molecular fluids

    NARCIS (Netherlands)

    Frenkel, D.


    Computer simulations indicate that many forms of liquid crystalline order in lyotropic systems may be due to simple excluded volume effects. Yet, there is more to liquid crystalline ordering than simple hard-core repulsion. In order to understand liquid crystalline order in supra-molecular systems

  20. Supramolecular helical stacking of metallomesogens derived from enantiopure and racemic polycatenar oxazolines. (United States)

    Barberá, Joaquín; Cavero, Emma; Lehmann, Matthias; Serrano, José-Luis; Sierra, Teresa; Vázquez, Jesús T


    The present report undertakes a challenge of general interest in supramolecular chemistry: the achievement of helical organizations with controlled structure. To achieve this target we considered the possibility of inducing supramolecular chirality using molecules that were designed to organize into columnar mesophases. The use of oxazoline-derived ligands and metal coordination served as tools to prepare molecules with a phasmidic-like structure, which show columnar organization in the liquid crystalline state. To ensure the formation of chiral mesophases, these complexes bear stereogenic centers in the rigid coordination environment of the metal. X-ray and circular dichroism experiments have revealed that chirality transfer does indeed take place from the chiral molecule to the columnar liquid crystal organization. This chiral columnar organization appears as a helix consisting of stacks of molecules that rotate with respect to one another along the column while maintaining their mean planes parallel to each other. In fact, it has been concluded that packing of these polycatenar molecules must be more efficient upon rotation of a molecule with respect to the adjacent one along the column. Furthermore, the same type of helical supraorganization has been found to be present in the mesophase of the racemic mixture and the mixture of diastereomers prepared from the racemic ligand. In this case, segregation of the optical isomers is proposed to occur to give rise to both types of helix (right-handed and left-handed).

  1. Solid-state supramolecular structure of tetrakis(1-(diaminomethylene)thiouron-1-ium) pyromellate (United States)

    Janczak, Jan


    The single crystals of tetrakis(1-(diaminomethylene)thiouron-1-ium) pyromellate suitable for the X-ray analysis were grown using a solution growth technique at room temperature. The compound crystallises in the centrosymmetric space group P21/c of the monoclinic system. Asymmetric unit consists of half of the tetrakis(1-(diaminomethylene)thiouron-1-ium) pyromellate molecule. Both independent parts of the 1-(diaminomethylene)-thiouron-1-ium cations are not strictly planar, but twisted. Both planar arms of the cation are oppositely rotated around the Csbnd N bonds involving the central N atom of the cation. The arrangement of the oppositely charged components, i.e. 1-(diaminomethylene)-thiouron-1-ium cations and pyromellate(4-) anion is determined by the Nsbnd H⋯O hydrogen bonds with R22(8) and R21(6) graphs forming supramolecular tetrakis(1-(diaminomethylene)-thiouron-1-ium) pyromellate units that further interact each other forming three dimensional hydrogen bonded network. Hirshfeld surface and the analysis of the 2D-fingerprint plots are illustrating both qualitatively and quantitatively interactions governing the formation of the supramolecular tetrakis(1-(diaminomethylene)-thiouron-1-ium) pyromellate complex as well as the mutual arrangement of the supramolecules in the crystal. The compound was also characterized by the FT-IR and Raman spectroscopy. Assignment of the bands have been supported by the isotropic frequency shift.

  2. The –SH Protection Method for Determining Accurate Kd Values for Enzyme-Coenzyme Complexes of NAD+-Dependent Glutamate Dehydrogenase and Engineered Mutants: Evidence for Nonproductive NADPH Complexes

    Directory of Open Access Journals (Sweden)

    Joanna Griffin


    Full Text Available Inactivation rates have been measured for clostridial glutamate dehydrogenase and several engineered mutants at various DTNB concentrations. Analysis of rate constants allowed determination of Kd for each non-covalent enzyme-DTNB complex and the rate constant for reaction to form the inactive enzyme-thionitrobenzoate adduct. Both parameters are sensitive to the mutations F238S, P262S, the double mutation F238S/P262S, and D263K, all in the coenzyme binding site. Study of the effects of NAD+, NADH and NADPH at various concentrations in protecting against inactivation by 200 μM DTNB allowed determination of Kd values for binding of these coenzymes to each protein, yielding surprising results. The mutations were originally devised to lessen discrimination against the disfavoured coenzyme NADP(H, and activity measurements showed this was achieved. However, the Kd determinations indicated that, although Kd values for NAD+ and NADH were increased considerably, Kd for NADPH was increased even more than for NADH, so that discrimination against binding of NADPH was not decreased. This apparent contradiction can only be explained if NADPH has a nonproductive binding mode that is not weakened by the mutations, and a catalytically productive mode that, though strengthened, is masked by the nonproductive binding. Awareness of the latter is important in planning further mutagenesis.

  3. Harnessing phages for supramolecular and materials chemistry

    NARCIS (Netherlands)

    Marcozzi, Alessio


    Het eerste gedeelte van de scriptie betreft het onderzoek naar de toepassing van phage display, om korte aptamers te selecteren voor zeer verschillende moleculen. Door deze techniek te gebruiken hebben we een peptide kunnen selecteren die de bateriele enzym dxs in-vitro verhinderd. Dit soort peptide

  4. Methylmalonyl-CoA decarboxylase from Propionigenium modestum--cloning and sequencing of the structural genes and purification of the enzyme complex. (United States)

    Bott, M; Pfister, K; Burda, P; Kalbermatter, O; Woehlke, G; Dimroth, P


    Methylmalonyl-CoA decarboxylase catalyses the only energy-conserving step during succinate fermentation by Propionigenium modestum: the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA is coupled to the vectorial transport of Na+ across the cytoplasmic membrane, thereby creating a sodium ion motive force that is used for ATP synthesis. By taking advantage of the sequence similarity between the beta-subunits of other Na+-transport decarboxylases, a portion of the P. modestum beta-subunit gene was amplified by PCR with degenerated primers. The cloned PCR product then served as homologous probe for cloning suitable fragments from genomic DNA. Sequence analysis of a 3.7-kb region identified four genes which probably form a transcriptional unit, mmdADCB. Remarkably, a mmdE gene which is present in the homologous mmdADECB cluster from Veillonella parvula and encodes the 6-kDa epsilon-subunit, is missing in P. modestum. By sequence comparisons, the following functions could be assigned to the P. modestum proteins: MmdA (56.1 kDa; alpha-subunit), carboxyltransferase; MmdB (41.2 kDa; beta-subunit), carboxybiotin-carrier-protein decarboxylase; MmdC (13.1 kDa; gamma-subunit), biotin carrier protein. MmdD (14.2 kDa; delta-subunit) presumably is essential for the assembly of the complex, as shown for the corresponding V. parvula protein. Methylmalonyl-CoA decarboxylase was solubilized from membranes of P. modestum with n-dodecylmaltoside and enriched 15-fold by affinity chromatography on monomeric avidin resin. The purified protein was composed of four subunits, three of which were identified by N-terminal sequence analysis as MmdA, MmdD, and MmdC. The purified enzyme exhibited a specific activity of up to 25 U/mg protein and an apparent Km value for (S)-methylmalonyl-CoA of approximately 12 microM. Compared to the five-subunit complex of V. parvula, the four-subunit enzyme of P. modestum appeared to be more labile, presumably a consequence of the lack of the epsilon-subunit.

  5. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery. (United States)

    Hu, Xiao-Yu; Jia, Keke; Cao, Yu; Li, Yan; Qin, Shan; Zhou, Fan; Lin, Chen; Zhang, Dongmei; Wang, Leyong


    Two novel types of supramolecular nanocarriers fabricated by the amphiphilic host-guest inclusion complex formed from water-soluble pillar[6]arene (WP6) and azobenzene derivatives G1 or G2 have been developed, in which G1 is structurally similar to G2 but has an extra phenoxy group in its hydrophobic region. Supramolecular micelles can be initially formed by WP6 with G1, which gradually transform into layered structures with liquid-crystalline properties, whereas stable supramolecular vesicles are obtained from WP6 and G2, which exhibit dual photo- and pH-responsiveness. Notably, the resulting WP6⊃G2 vesicles can efficiently encapsulate anticancer drug mitoxantrone (MTZ) to achieve MTZ-loaded vesicles, which maintain good stability in a simulated normal physiological environment, whereas in an acid environment similar to that of tumor cells or with external UV irradiation, the encapsulated drug is promptly released. More importantly, cytotoxicity assay indicates that such vesicles have good biocompatibility and the MTZ-loaded vesicles exhibit comparable anticancer activity to free MTZ, especially with additional UV stimulus, whereas its cytotoxicity for normal cells was remarkably reduced. Flow cytometric analysis further confirms that the cancer cell death caused by MTZ-loaded vesicles is associated with apoptosis. Therefore, the dual pH- and UV-responsive supramolecular vesicles are a potential platform for controlled release and targeted anticancer drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechanism of HIV reverse transcriptase inhibition by zinc: formation of a highly stable enzyme-(primer-template) complex with profoundly diminished catalytic activity. (United States)

    Fenstermacher, Katherine J; DeStefano, Jeffrey J


    Several physiologically relevant cations including Ca(2+), Mn(2+), and Zn(2+) have been shown to inhibit HIV reverse transcriptase (RT), presumably by competitively displacing one or more Mg(2+) ions bound to RT. We analyzed the effects of Zn(2+) on reverse transcription and compared them to Ca(2+) and Mn(2+). Using nucleotide extension efficiency as a readout, Zn(2+) showed significant inhibition of reactions with 2 mM Mg(2+), even when present at only ∼5 μM. Mn(2+) and Ca(2+) were also inhibitory but at higher concentrations. Both Mn(2+) and Zn(2+) (but not Ca(2+)) supported RT incorporation in the absence of Mg(2+) with Mn(2+) being much more efficient. The maximum extension rates with Zn(2+), Mn(2+), and Mg(2+) were ∼0.1, 1, and 3.5 nucleotides per second, respectively. Zinc supported optimal RNase H activity at ∼25 μM, similar to the optimal for nucleotide addition in the presence of low dNTP concentrations. Surprisingly, processivity (average number of nucleotides incorporated in a single binding event with enzyme) during reverse transcription was comparable with Zn(2+) and Mg(2+), and single RT molecules were able to continue extension in the presence of Zn(2+) for several hours on the same template. Consistent with this result, the half-life for RT-Zn(2+)-(primer-template) complexes was 220 ± 60 min and only 1.7 ± 1 min with Mg(2+), indicating ∼130-fold more stable binding with Zn(2+). Essentially, the presence of Zn(2+) promotes the formation of a highly stable slowly progressing RT-(primer-template) complex.

  7. Rational design of single-molecule magnets: a supramolecular approach. (United States)

    Glaser, Thorsten


    )Cr(III)](3+), [Mn(III)(6)Fe(III)](3+), and [Mn(III)(6)Co(III)](3+) with [Mn(III)(6)Cr(III)](3+) being a SMM. A detailed analysis and comparison of the magnetic properties of the three heptanuclear complexes and the tetranuclear half-unit [Mn(III)(3)Cr(III)](3+) provides significant insight for further optimization of the SMM properties. The modular assembly of the heptanuclear complexes from three molecular building blocks allows the fine-tuning of the molecular and steric properties of each building block without losing the driving force for the formation of the heptanuclear complexes. This possibility of rational improvements of our isostructural series is the main advantage of our supramolecular approach.

  8. The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. (United States)

    Antonioli, Luca; Colucci, Rocchina; Pellegrini, Carolina; Giustarini, Giulio; Sacco, Deborah; Tirotta, Erika; Caputi, Valentina; Marsilio, Ilaria; Giron, Maria Cecilia; Németh, Zoltán H; Blandizzi, Corrado; Fornai, Matteo


    Adenosine monophosphate-activated protein kinase (AMPK), known as an enzymatic complex that regulates the energetic metabolism, is emerging as a pivotal enzyme and enzymatic pathway involved in the regulation of immune homeostatic networks. It is also involved in the molecular mechanisms underlying the pathophysiology of chronic inflammatory diseases. AMPK is expressed in several immune cell types including macrophages, lymphocytes, neutrophils and dendritic cells, and governs a broad array of cell functions, which include cytokine production, chemotaxis, cytotoxicity, apoptosis and proliferation. Based on its wide variety of immunoregulatory actions, the AMPK system has been targeted to reveal its impact on the course of immune-related diseases, such as atherosclerosis, psoriasis, joint inflammation and inflammatory bowel diseases. The identification of AMPK subunits responsible for specific anti-inflammatory actions and the understanding of the underlying molecular mechanisms will promote the generation of novel AMPK activators, endowed with improved pharmacodynamic and pharmacokinetic profiles. These new tools will aid us to utilize AMPK pathway activation in the management of acute and chronic inflammatory diseases, while minimizing potential adverse reactions related to the effects of AMPK on metabolic energy.

  9. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme. (United States)

    Ferreira, Dalva E C; De Almeida, Wagner B; Neves, Ademir; Rocha, Willian R


    In this work we have applied quantum mechanical calculations, at the density functional theory level, to investigate the phosphate diester hydrolysis promoted by a cationic heterodinuclear Fe(III)...Zn(II) complex that mimics the structural and functional properties of the purple acid phosphatase (PAP) enzymes. The hydrolysis of the dimethyl phosphate diester was investigated in the gas phase and in solution by means of the continuum PCM model, using the B3LYP hybrid exchange-correlation functional. Our computed results showed that the hydrolysis of the dimethyl phosphate ester takes place in two steps. The first step corresponds to a slow P-O bond formation through nucleophilic attack of the coordinated (Fe(III))-OH group. The second step consists of a proton transfer process followed by the release of a methanol molecule. The first step is rate determining with activation free energy of 12.3 kcal mol(-1), which is about 3 times lower than the activation free energy for the uncatalyzed reaction. We also show that the heterodinuclear site plays an important role favoring an associative mechanism for the phosphate diester hydrolysis, favoring the formation of a high energy intermediate phosphorane, and orienting the phosphate group to the nucleophilic attack.

  10. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. (United States)

    Miyazaki, Takatsugu; Ichikawa, Megumi; Yokoi, Gaku; Kitaoka, Motomitsu; Mori, Haruhide; Kitano, Yoshikazu; Nishikawa, Atsushi; Tonozuka, Takashi


    Proteins belonging to glycoside hydrolase family 63 (GH63) are found in bacteria, archaea and eukaryotes. Although the eukaryotic GH63 proteins have been identified as processing α-glucosidase I, the substrate specificities of the bacterial and archaeal GH63 proteins are not clear. Here, we converted a bacterial GH63 enzyme, Escherichia coli YgjK, to a glycosynthase to probe its substrate specificity. Two mutants of YgjK (E727A and D324N) were constructed, and both mutants showed glycosynthase activity. The reactions of E727A with β-D-glucosyl fluoride and monosaccharides showed that the largest amount of glycosynthase product accumulated when galactose was employed as an acceptor molecule. The crystal structure of E727A complexed with the reaction product indicated that the disaccharide bound at the active site was 2-O-α-D-glucopyranosyl-α-D-galactopyranose (Glc12Gal). A comparison of the structures of E727A-Glc12Gal and D324N-melibiose showed that there were two main types of conformation: the open and closed forms. The structure of YgjK adopted the closed form when subsite -1 was occupied by glucose. These results suggest that sugars containing the Glc12Gal structure are the most likely candidates for natural substrates of YgjK. © 2013 FEBS.

  11. Spectrofluorimetric study of the {beta}-cyclodextrin-dapsone-linear alcohol supramolecular system and determination of dapsone

    Energy Technology Data Exchange (ETDEWEB)

    Ma Li; Tang Bo; Chu Chun


    Dapsone (DDS) forms a 1:1 supramolecular complex with {beta}-cyclodextrin ({beta}-CD) both in the absence and presence of linear alcohols. The apparent association constants (K{sub app}) were measured using a steady-state fluorescence method. K{sub app} decreases linearly with an increasing number of carbon atoms in the chain of the alcohol. We attribute this to a competition between dapsone and linear alcohol for the {beta}-CD hydrophobic cavity as detailed analysis of K{sub app} as a function of the concentration of alcohol suggests that the interactions in the {beta}-CD-dapsone-linear alcohol system do not result in the formation of ternary supramolecular complex. Quenching the fluorescence of dapsone with NaI shows that the {beta}-CD cavity acts as a shield against contact between dapsone and this aqueous phase quencher, while addition of alcohols inhibits this protective effect. This again suggests that alcohols occupy the space within the {beta}-CD cavity with the result that dapsone molecules are forced to reside in the aqueous environment. Based on the significant enhancement of the fluorescence intensity of dapsone produced through complex formation, a spectrofluorimetric method for the determination of dapsone in bulk aqueous solution in the presence of {beta}-CD is developed. The linear relationship between the fluorescence intensity and dapsone concentration was obtained in the range of 3.39 to 1.50x10{sup 3} ng ml{sup -1}, with a correlation coefficient (r) of 0.9998. The detection limit was 1.02 ng ml{sup -1}. There was no interference from the excipients normally used in tablet formulations. The application of the present method to the determination of dapsone in tablets and human plasma gave satisfactory results and was compared with the pharmacopoeia method.

  12. Spectrofluorimetric study of the β-cyclodextrin-dapsone-linear alcohol supramolecular system and determination of dapsone

    International Nuclear Information System (INIS)

    Ma Li; Tang Bo; Chu Chun


    Dapsone (DDS) forms a 1:1 supramolecular complex with β-cyclodextrin (β-CD) both in the absence and presence of linear alcohols. The apparent association constants (K app ) were measured using a steady-state fluorescence method. K app decreases linearly with an increasing number of carbon atoms in the chain of the alcohol. We attribute this to a competition between dapsone and linear alcohol for the β-CD hydrophobic cavity as detailed analysis of K app as a function of the concentration of alcohol suggests that the interactions in the β-CD-dapsone-linear alcohol system do not result in the formation of ternary supramolecular complex. Quenching the fluorescence of dapsone with NaI shows that the β-CD cavity acts as a shield against contact between dapsone and this aqueous phase quencher, while addition of alcohols inhibits this protective effect. This again suggests that alcohols occupy the space within the β-CD cavity with the result that dapsone molecules are forced to reside in the aqueous environment. Based on the significant enhancement of the fluorescence intensity of dapsone produced through complex formation, a spectrofluorimetric method for the determination of dapsone in bulk aqueous solution in the presence of β-CD is developed. The linear relationship between the fluorescence intensity and dapsone concentration was obtained in the range of 3.39 to 1.50x10 3 ng ml -1 , with a correlation coefficient (r) of 0.9998. The detection limit was 1.02 ng ml -1 . There was no interference from the excipients normally used in tablet formulations. The application of the present method to the determination of dapsone in tablets and human plasma gave satisfactory results and was compared with the pharmacopoeia method

  13. Enzyme Informatics (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika


    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  14. Industrial Enzymes and Biocatalysis (United States)

    McAuliffe, Joseph C.; Aehle, Wolfgang; Whited, Gregory M.; Ward, Donald E.

    All life processes are the result of enzyme activity. In fact, life itself, whether plant or animal, involves a complex network of enzymatic reactions. An enzyme is a protein that is synthesized in a living cell. It catalyzes a thermodynamically possible reaction so that the rate of the reaction is compatible with the numerous biochemical processes essential for the growth and maintenance of a cell. The synthesis of an enzyme thus is under tight metabolic regulations and controls that can be genetically or environmentally manipulated sometimes to cause the overproduction of an enzyme by the cell. An enzyme, like chemical catalysts, in no way modifies the equilibrium constant or the free energy change of a reaction.

  15. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces. (United States)

    Ciesielski, Artur; Palma, Carlos-Andres; Bonini, Massimo; Samorì, Paolo


    Materials with a pre-programmed order at the supramolecular level can be engineered with a sub-nanometer precision making use of reversible non- covalent interactions. The intrinsic ability of supramolecular materials to recognize and exchange their constituents makes them constitutionally dynamic materials. The tailoring of the materials properties relies on the full control over the self-assembly behavior of molecular modules exposing recognition sites and incorporating functional units. In this review we focus on three classes of weak-interactions to form complex 2D architectures starting from properly designed molecular modules: van der Waals, metallo-ligand and hydrogen bonding. Scanning tunneling microscopy studies will provide evidence with a sub-nanometer resolution, on the formation of responsive multicomponent architectures with controlled geometries and properties. Such endeavor enriches the scientist capability of generating more and more complex smart materials featuring controlled functions and unprecedented properties.

  16. Non-equilibrium steady states in supramolecular polymerization (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.


    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  17. Azobenzene-based supramolecular polymers for processing MWCNTs. (United States)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide


    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  18. Advances in anion supramolecular chemistry: from recognition to chemical applications. (United States)

    Evans, Nicholas H; Beer, Paul D


    Since the start of this millennium, remarkable progress in the binding and sensing of anions has been taking place, driven in part by discoveries in the use of hydrogen bonding, as well as the previously under-exploited anion-π interactions and halogen bonding. However, anion supramolecular chemistry has developed substantially beyond anion recognition, and now encompasses a diverse range of disciplines. Dramatic advance has been made in the anion-templated synthesis of macrocycles and interlocked molecular architectures, while the study of transmembrane anion transporters has flourished from almost nothing into a rapidly maturing field of research. The supramolecular chemistry of anions has also found real practical use in a variety of applications such as catalysis, ion extraction, and the use of anions as stimuli for responsive chemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The use of supramolecular chemistry in dye delivery systems

    CERN Document Server

    Merckel, D A S


    This thesis reports an investigation into supramolecular recognition of the sulfate/ sulfonate oxoanionic group, a moiety present in the majority of reactive dyes. In the first section the problems associated with the use of reactive dyes in dyeing cotton fabrics together with a literature review of supramolecular approaches to anion recognition are discussed. Drawing on the current literature concerning anion recognition (in particular the recognition of phosphates), the main body of the thesis concerns the design and synthesis of several series ofC-shaped (tweezer) and tripodal potential sulfate/ sulfonate receptors. These receptors incorporate the H-bond donor groups guanidine and thiourea and to a lesser extent urea and amide functionalities. In addition the behaviour of potential tweezer-like receptor molecules based on s-triazine (derived from cyanuric chloride) has also been investigated. The sulfate/ sulfonate and related phosphonate association properties of these potential receptors have been studie...

  20. Blends of conjugated rigid-rod polymers: Novel supramolecular materials for electronics, optoelectronics and photonics

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, S.A. [Univ. of Rochester, NY (United States)


    Selected examples of binary blends of conjugated polymers will be presented to illustrate the vast scope of their supramolecular structures and electronic, optical, nonlinear optical, and optoelectronic properties.

  1. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren


    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  2. Self-assembly of boron-based supramolecular structures


    Christinat, Nicolas


    This work describes the synthesis and characterization of boronic acid-based supramolecular structures. Macrocycles, dendritic structures, polymers, rotaxanes, and cages were assembled using four types of reversible reactions. The key point of the strategy is the parallel utilization of two –or more– of these reactions. Initially, aryl and alkylboronic acids were condensed with dihydroxypyridine ligands to give tetrameric or pentameric macrocycles, in which four or five boronate esters are co...

  3. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’an


    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  4. Glucosamine-Based Supramolecular Nanotubes for Human Mesenchymal Cell Therapy. (United States)

    Talloj, Satish Kumar; Cheng, Bill; Weng, Jen-Po; Lin, Hsin-Chieh


    Herein, we demonstrate an example of glucosamine-based supramolecular hydrogels that can be used for human mesenchymal cell therapy. We designed and synthesized a series of amino acid derivatives based on a strategy of capping d-glucosamine moiety at the C-terminus and fluorinated benzyl group at the N-terminus. From a systematic study on chemical structures, we discovered that the glucosamine-based supramolecular hydrogel [pentafluorobenzyl (PFB)-F-Glu] self-assembled with one-dimensional nanotubular structures at physiological pH. The self-assembly of a newly discovered PFB-F-Glu motif is attributed to the synergistic effect of π-π stacking and extensive intermolecular hydrogen bonding network in aqueous medium. Notably, PFB-F-Glu nanotubes are proven to be nontoxic to human mesenchymal stem cells (hMSCs) and have been shown to enhance hMSC proliferation while maintaining their pluripotency. Retaining of pluripotency capabilities provides potentially unlimited source of undifferentiated cells for the treatment of future cell therapies. Furthermore, hMSCs cultured on PFB-F-Glu are able to secrete paracrine factors that downregulate profibrotic gene expression in lipopolysaccharide-treated human skin fibroblasts, which demonstrates that PFB-F-Glu nanotubes have the potential to be used for wound healing applications. Overall, this article addresses the importance of chemical design to generate supramolecular biomaterials for stem cell therapy.

  5. Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia-pyometra complex. (United States)

    Silva, E; Leitão, S; Henriques, S; Kowalewski, M P; Hoffmann, B; Ferreira-Dias, G; da Costa, L Lopes; Mateus, L


    Escherichia coli (E. coli) is the most frequent bacterium isolated in cases of cystic endometrial hyperplasia-pyometra complex, the most frequent endometrial disorder in the bitch. Toll-like receptors (TLRs) play an essential role in the innate immune system. The aim of this study was to compare transcription of genes encoding TLR2, TLR4 and LPS ligands (CD14, MD-2, LBP), prostaglandin synthesis enzymes (COX1, COX2, PGES1 and PGFS), and to compare COX1 and COX2 protein expression and PGE(2) and PGF(2alpha) endometrial content in the endometrium of canine diestrous uteri with (n=7) or without (n=7) pyometra. All cases of pyometra were hyperplastic and E. coli was the only isolated bacteria, while diestrous normal uteri did not present signs of cystic endometrial hyperplasia and were negative for bacteriology. Except for COX1, transcription of all genes was significantly higher in pyometra than in normal endometria. COX1 protein was observed in both normal and pyometra uteri, but COX2 protein was only present in pyometra cases. Endometrial PGE(2) and PGF(2alpha) content were significantly higher in pyometra than in normal diestrous endometria. In conclusion, data obtained in this study provides evidence that pyometra-isolated E. coli induces the up-regulation of TLR2 and TLR4 genes in the canine diestrous endometrium. This up-regulation, which is probably the result of the stimulation by LPS and lipoprotein E. coli constituents, leads to the endometrial up-regulation of PG synthesis genes. This, in turn, results in a higher endometrial concentration of PGE(2) and PGF(2alpha), which may further regulate the local inflammatory response. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Heat Shock Protein member A2 forms a stable complex with angiotensin converting enzyme and protein disulfide isomerase A6 in human spermatozoa. (United States)

    Bromfield, Elizabeth G; McLaughlin, Eileen A; Aitken, Robert John; Nixon, Brett


    Given the importance of the chaperone Heat Shock Protein A2 (HSPA2) in the regulation of male fertility, this study aimed to identify and characterize additional proteins that may rely on the activity of this chaperone in human spermatozoa. In view of the findings in this study we propose that angiotensin converting enzyme (ACE) and protein disulfide isomerase A6 (PDIA6) are novel interacting proteins of HSPA2 and that this multimeric complex may participate in key elements of the fertilization cascade. The molecular chaperone HSPA2 plays a pivotal role in the remodelling of the sperm surface during capacitation. Indeed, human spermatozoa that are deficient in HSPA2 protein expression lack the ability to recognize human oocytes, resulting in repeated IVF failure in a clinical setting. Moreover, our recent work has shown that defective HSPA2 function induced by oxidative stress leads to the aberrant surface expression of one of its interacting proteins, arylsulfatase A, and thus contributes to a loss of sperm-zona pellucida adhesion. Human spermatozoa were collected from fertile donors, capacitated and prepared for Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) analysis. Protein complexes resolved via BN-PAGE were excised and their constituents were identified using mass spectrometry. The interactions between ACE, PDIA6 and HSPA2 were then confirmed using immunoprecipitation and proximity ligation assays and the localization of these proteins was assessed in isolated spermatozoa and commercially available human testis tissue sections. Finally, pharmacological inhibition of ACE was performed to assess the role of ACE in human sperm capacitation. Herein we have identified ACE and PDIA6 as potential HSPA2-interacting proteins and shown that this assemblage resides in membrane raft microdomains located in the peri-acrosomal region of the sperm head. Additionally, the surface expression of PDIA6, but not ACE, was shown to be dynamically regulated during sperm

  7. Enzyme assays. (United States)

    Brodelius, P E


    The past year or so has seen the development of new enzyme assays, as well as the improvement of existing ones. Assays are becoming more rapid and sensitive as a result of modifications such as amplification of the enzyme product(s). Recombinant DNA technology is now being recognized as a particularly useful tool in the search for improved assay systems.

  8. Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources. (United States)

    Kaushal, Prem Singh; Talawar, Ramappa K; Krishna, P D V; Varshney, Umesh; Vijayan, M


    Uracil-DNA glycosylase (UNG), a repair enzyme involved in the excision of uracil from DNA, from mycobacteria differs from UNGs from other sources, particularly in the sequence in the catalytically important loops. The structure of the enzyme from Mycobacterium tuberculosis (MtUng) in complex with a proteinaceous inhibitor (Ugi) has been determined by X-ray analysis of a crystal containing seven crystallographically independent copies of the complex. This structure provides the first geometric characterization of a mycobacterial UNG. A comparison of the structure with those of other UNG proteins of known structure shows that a central core region of the molecule is relatively invariant in structure and sequence, while the N- and C-terminal tails exhibit high variability. The tails are probably important in folding and stability. The mycobacterial enzyme exhibits differences in UNG-Ugi interactions compared with those involving UNG from other sources. The MtUng-DNA complex modelled on the basis of the known structure of the complex involving the human enzyme indicates a domain closure in the enzyme when binding to DNA. The binding involves a larger burial of surface area than is observed in binding by human UNG. The DNA-binding site of MtUng is characterized by the presence of a higher proportion of arginyl residues than is found in the binding site of any other UNG of known structure. In addition to the electrostatic effects produced by the arginyl residues, the hydrogen bonds in which they are involved compensate for the loss of some interactions arising from changes in amino-acid residues, particularly in the catalytic loops. The results arising from the present investigation represent unique features of the structure and interaction of mycobacterial Ungs.

  9. Two different zinc(II)-aqua complexes held up by a metal-oxide ...

    Indian Academy of Sciences (India)


    intricate three-dimensional hydrogen bonding network. Interestingly, compound 1 exhibits catalytic acti- vity towards oxidation of some primary alcohols. Keywords. Inorganic–organic hybrid material; polyoxometalate supported zinc complexes; crystal structure; supramolecular interactions; catalytic activity. 1. Introduction.

  10. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case. (United States)

    Mroczyńska, Karina; Kaczorowska, Małgorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek; Ośmiałowski, Borys


    The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barriers supports experimental data and helps understanding the properties of multiply hydrogen bonded complexes.

  11. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex. (United States)

    Villa, R F; Gorini, A; Hoyer, S


    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  12. Synthesis, spectroscopy and supramolecular structures of two ...

    Indian Academy of Sciences (India)



    May 16, 2007 ... Abstract. The aqueous reaction of [Mg(H2O)6]Cl2 with the in situ generated sodium salt of 4-nitro- benzoic acid (4-nbaH) and N-methylimidazole (N-MeIm) results in the formation of the dinuclear complex. [Mg(H2O)(N-MeIm)2(4-nba)2]2 1 (4-nba = 4-nitro benzoate), while the direct reaction of [Mg(H2O)6] ...

  13. Supramolecular chemistry of bis-porphyrins


    Hernández Eguía, Laura P.


    (Base de datos de tesis doctorales TESEO) English versionIn this doctoral thesis two main aspects are developed. The first is the synthesis of bis-porphyrin receptors metallated with zinc, both acyclic and cyclic, and with different degrees of saturation of the carbon chain, and the second deals with the studies of complexation with ligands of different types and properties: amines and fullerenes. The first ligands are connected by metal-nitrogen coordination between the nitrogen of the liga...

  14. (I) supramolecular compounds constructed from pyridinium or ...

    Indian Academy of Sciences (India)

    recorded using Cu Kα1 radiation on a PAN analytical. X'Pert PRO ... Crystal data and structure refinement parameters for 1, 2 and 3. Complex. 1. 2. 3. Empirical formula. C24H24Ag3Br6N3. C21H27Ag3Br6N6. C24H24Ag3I6N3. Formula weight ..... Jiang X M, Zhang M J, Zeng H Y, Guo G C and Huang. J S 1999 J. Am.

  15. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case


    Mroczy?ska, Karina; Kaczorowska, Ma?gorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek; O?mia?owski, Borys


    Summary The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance...

  16. Phase stability of a reversible supramolecular polymer solution mixed with nanospheres

    NARCIS (Netherlands)

    Tuinier, R.


    Theory is presented for the phase stability of mixtures containing nanospheres and non-adsorbing reversible supramolecular polymers. This was made possible by incorporating the depletion thickness and osmotic pressure of reversible supramolecular polymer chains into generalized free-volume theory,

  17. Pairs and heptamers of C(70) molecules ordered via PTCDI-melamine supramolecular networks

    NARCIS (Netherlands)

    Silly, Fabien; Shaw, Adam Q.; Porfyrakis, Kyriakos; Briggs, G. A. D.; Castell, Martin R.


    In this paper, we report on the use of two PTCDI-melamine supramolecular networks on Au(111) to trap C(70) molecules. The different supramolecular networks were formed by changing the postannealing temperature after molecular deposition. We observed, using scanning tunneling microscopy, that the

  18. Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System. (United States)

    Shang, Xiaobo; Song, Inho; Ohtsu, Hiroyoshi; Tong, Jiaqi; Zhang, Haoke; Oh, Joon Hak


    Chiral supramolecular structures are attracting great attention due to their specific properties and high potential in chiral sensing and separation. Herein, supramolecular assembling behaviors of chiral perylene diimides have been systematically investigated in a mixed solution of tetrahydrofuran and water. They exhibit remarkably different morphologies and chiral aggregation behaviors depending on the mixing ratio of the solvents, i.e., the fraction of water. The morphogenesis and optoelectronic properties of chiral supramolecular structures have been thoroughly studied using a range of experimental and theoretical methods to investigate the morphological effects of chiral supramolecular assemblies on the electrical performances and photogenerated charge-carrier behaviors. In addition, chiral perylene diimides have been discriminated by combining vibrational circular dichroism with theoretical calculations, for the first time. The chiral supramolecular nanostructures developed herein strongly absorb visible spectral region and exhibit high photoresponsivity and detectivity, opening up new opportunities for practical applications in optoelectronics.

  19. Self-assembly of P-chiral supramolecular phosphines on rhodium and direct evidence for Rh-catalyst-substrate interactions. (United States)

    Koshti, Vijay S; Sen, Anirban; Shinde, Dinesh; Chikkali, Samir H


    Supramolecular phosphine-derived catalysts are known to provide high enantioselectivity in asymmetric transformations such as hydrogenation, but direct evidence unravelling the role of secondary interactions is largely missing. As a representative case study, the role of hydrogen bonding in asymmetric hydrogenation catalysed by p-chiral supramolecular phosphines is investigated. To establish the nature of hydrogen bonding in the self-assembled Rh-complex, NMR experiments were performed at different concentrations and temperatures. It was found that with increasing concentration of 1-(3-(phenyl(o-tolyl)phosphanyl)phenyl)urea ligand (L1), the NH and NH 2 peaks shift downfield. This indicated the presence of intermolecular hydrogen bonding in L1. This observation was further supported by variable temperature NMR experiments wherein, with decreasing temperature, the NH and NH 2 resonances of L1 shifted downfield. The downfield shift once again suggests the existence of intermolecular hydrogen bonding in L1. In contrast, the chemical shift of NH and NH 2 signals did not significantly change with increasing concentration of the self-assembled Rh-complex (C1). This observation suggested the existence of intramolecular hydrogen bonding in the self-assembled complex. The concentration experiment was further corroborated by variable temperature NMR experiments. No change in the chemical shift of NH 2 resonance could be detected with decreasing temperature, which corroborates the existence of intramolecular hydrogen bonding in C1. In a stoichiometric experiment, C1 was treated with hydrogenation substrate N-acetyldehydrophenylalanine (S2) and the proton NMR was recorded. The NH 2 protons of the self-assembled Rh-complex were found to shift downfield, as compared to untreated parent C1. These observations indicated that there is a hydrogen bonding interaction between the Rh-complex and the substrate. To further attest this hypothesis, NH and NH 2 groups were exchanged with ND

  20. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim


    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  1. Preface: special topic on supramolecular self-assembly at surfaces. (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A


    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  2. Lanthanide-Organic Gels as a Multifunctional Supramolecular Smart Platform. (United States)

    Silva, José Yago Rodrigues; da Luz, Leonis Lourenço; Mauricio, Filipe Gabriel Martinez; Vasconcelos Alves, Iane Bezerra; Ferro, Jamylle Nunes de Souza; Barreto, Emiliano; Weber, Ingrid Távora; de Azevedo, Walter Mendes; Júnior, Severino Alves


    A multifunctional smart supramolecular platform based on a lanthanide-organic hydrogel is presented. This platform, which provides unique biocompatibility and tunable optical properties, is synthesized by a simple, fast, and reproducible eco-friendly microwave-assisted route. Photoluminescent properties enable the production of coated light-emitting diodes (LED), unique luminescent barcodes dependent on the excitation wavelength and thin-films for use in tamper seals. Moreover, piroxicam entrapped in hydrogel acts as a transdermal drug release device efficient in inhibiting edemas as compared to a commercial reference.

  3. Studies on the supramolecular shape memory polyurethane containing pyridine moieties (United States)

    Shaojun, Chen

    Fabricating smart materials with supramolecular switch is an attractive research topic. In this study, supramolecular polyurethane networks containing pyridine moieties (PUPys) were synthesized from N,N-bis(2-hydroxylethyl)isonicotinamide (BINA), hexamethylene diisocyanate (HDI), 4, 4-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). A series of studies were carried out to investigate the supramolecular structure, morphology and shape memory properties including of thermal-induced shape memory effect and moisture-sensitive shape memory effect. Results show that hydrogen-bonded supramolecular structure and phase separation morphology are formed in the PUPys. The glass transition temperature (Tg) of soft phase is controlled by the hydrogen bonding while the hard phase grows up from amorphous phase to crystalline phase as the BINA content increases. The addition of MDI-BDO promotes the formation of amorphous hard phase. PUPys have high shape fixity and high shape recovery with the recovery temperature of 45 °C-55 °C. To achieve satisfying shape recovery, 30wt% BINA contents are required. The addition of MDI-BDO improves the shape recovery force. In addition, PUPys have high moisture absorption which increases with the increase of temperature, relative humidity, BINA content as well as the decrease of MDI-BDO content. The final shape recovery decreases with the decrease of BINA content significantly and the strain recovery start time, strain recovery time, strain recovery end time and the time length are also short in the higher BINA content PUPys. Moreover, it is found that the low critical value of BINA unit for PUPys having moisture-sensitive SME is still 30wt%. The addition of MDI-BDO improves the moisture-sensitive shape recovery. Finally, it is proposed that the hydrogen bonding present in the pyridine ring serves as "switch" whereas the formed hard phase via hydrogen bonding present in the urethane groups acts as the physical netpoints for the both

  4. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery. (United States)

    Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei


    Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth

  5. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release. (United States)

    Nummelin, Sami; Liljeström, Ville; Saarikoski, Eve; Ropponen, Jarmo; Nykänen, Antti; Linko, Veikko; Seppälä, Jukka; Hirvonen, Jouni; Ikkala, Olli; Bimbo, Luis M; Kostiainen, Mauri A


    Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self-assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G'≫G'') with outstanding mechanical properties and storage modulus of G'>1000 Pa. The G' value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol-solvated dendrimers into an aqueous solution. Cryogenic TEM, small-angle X-ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small-molecule drugs, to be used for sustained release in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Supramolecular assemblies of nucleoside functionalized carbon nanotubes: synthesis, film preparation, and properties. (United States)

    Micoli, Alessandra; Turco, Antonio; Araujo-Palomo, Elsie; Encinas, Armando; Quintana, Mildred; Prato, Maurizio


    Nucleoside-functionalized multi-walled carbon nanotubes (N-MWCNTs) were synthesized and characterized. A self-organization process using hydrogen bonding interactions was then used for the fabrication of self-assembled N-MWCNTs films free of stabilizing agents, polymers, or surfactants. Membranes were produced by using a simple water-dispersion-based vacuum-filtration method. Hydrogen-bond recognition was confirmed by analysis with IR spectroscopy and TEM images. Restoration of the electronic conduction properties in the N-MWCNTs membranes was performed by removing the organic portion by thermal treatment under an argon atmosphere to give d-N-MWCNTs. Electrical conductivity and thermal gravimetric analysis (TGA) measurements confirmed the efficiency of the annealing process. Finally, oxidative biodegradation of the films N-MWCNTs and d-N-MWCNTs was performed by using horseradish peroxidase (HRP) and low concentrations of H2 O2 . Our results confirm that functional groups play an important role in the biodegradation of CNT by HRP: N-MWCNTs films were completely biodegraded, whereas for d-N-MWCNTs films no degradation was observed, showing that the pristine CNT undergoes minimal enzyme-catalyzed oxidation This novel methodology offers a straightforward supramolecular strategy for the construction of conductive and biodegradable carbon nanotube films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coordination-Enhanced Luminescence on Tetra-Phenylethylene-Based Supramolecular Assemblies

    Directory of Open Access Journals (Sweden)

    Qian-Qian Yan


    Full Text Available Materials with aggregation-induced emission (AIE properties have received increased attention recently due to their potential applications in light-emitting devices, chemo/biosensors and biomedical diagnostics. In general, AIE requires the forced aggregation of the AIEgens induced by the poor solvent or close arrangement of AIEgens covalently attached to polymer chains. Here, we report two coordination-enhanced fluorescent supramolecular complexes featuring hierarchically restricted intramolecular motions via the self-assembly of tetraphenylethylene (TPE-based tetra-dentate (La and bidentate (Lb ligands and the cis-Pd(en(NO32 (en = ethylenediamine unit. While the free ligands are non-emissive in dilute solution and show typical AIE properties in both mixed solvent system and the solid state, the self-assembled complexes maintain their fluorescent nature in the solution state. In particular, the Pd4(La2 complex shows remarkable 6-fold fluorescent enhancement over La in dilute solution. We anticipate that these kinds of coordination-enhanced emissive supramolecules will find applications in biomedical sensing or labeling.

  8. Two 8-Hydroxyquinolinate Based Supramolecular Coordination Compounds: Synthesis, Structures and Spectral Properties

    Directory of Open Access Journals (Sweden)

    Chengfeng Zhu


    Full Text Available Two new Cr(III complexes based on 2-substituted 8-hydroxyquinoline ligands, namely [Cr(L13] (1, (HL1=(E-2-[2-(4-nitro-phenyl-vinyl]-8-hydroxy-quinoline and [Cr(L23] (2, (HL2=(E-2-[2-(4-chloro-phenylvinyl]-8-hydroxy-quinoline, were prepared by a facile hydrothermal method and characterized thoroughly by single crystal X-ray diffraction, powder X-ray diffraction, FTIR, TGA, ESI-MS, UV-Visible absorption spectra and fluorescence emission spectra. Single crystal X-ray diffraction analyses showed that the two compounds featured 3D supramolecular architectures constructed from noncovalent interactions, such as π···π stacking, C-H···π, C-H···O, C-Cl···π, C-H···Cl interactions. The thermogravimetric analysis and ESI-MS study of compounds 1 and 2 suggested that the Cr(III complexes possessed good stability both in solid and solution. In addition, the ultraviolet and fluorescence response of the HL1 and HL2 shown marked changes upon their complexation with Cr(III ion, which indicated that the two 8-hydroxyquinolinate based ligand are promising heavy metal chelating agent for Cr3+.

  9. Evidence for a repair enzyme complex involving ERCC1, and the correcting activities of ERCC4, ERCC11 and the xeroderma pigmentosum group F.

    NARCIS (Netherlands)

    A.J. van Vuuren (Hanneke); E. Appeldoorn (Esther); H. Odijk (Hanny); A. Yasui (Akira); N.G.J. Jaspers (Nicolaas); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)


    textabstractNucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum

  10. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)


    groups (hydrogen bonding acceptor sites) that stabi- lize the metal-opda cationic complex. The present contribution describes the synthesis and structural analysis of compounds [Zn(opda)2. (NO3)2] (1) and [Cd(opda)2(NO3)2] (2) emphasizing intricate supramolecular hydrogen bonding networks in their crystal structures.

  11. Mesoscale characterization of supramolecular transient networks using SAXS and rheology. (United States)

    Pape, A C H; Bastings, Maartje M C; Kieltyka, Roxanne E; Wyss, Hans M; Voets, Ilja K; Meijer, E W; Dankers, Patricia Y W


    Hydrogels and, in particular, supramolecular hydrogels show promising properties for application in regenerative medicine because of their ability to adapt to the natural environment these materials are brought into. However, only few studies focus on the structure-property relationships in supramolecular hydrogels. Here, we study in detail both the structure and the mechanical properties of such a network, composed of poly(ethylene glycol), end-functionalized with ureido-pyrimidinone fourfold hydrogen bonding units. This network is responsive to triggers such as concentration, temperature and pH. To obtain more insight into the sol-gel transition of the system, both rheology and small-angle X-ray scattering (SAXS) are used. We show that the sol-gel transitions based on these three triggers, as measured by rheology, coincide with the appearance of a structural feature in SAXS. We attribute this feature to the presence of hydrophobic domains where cross-links are formed. These results provide more insight into the mechanism of network formation in these materials, which can be exploited for tailoring their behavior for biomedical applications, where one of the triggers discussed might be used.

  12. Supramolecular core-shell nanoparticles for photoconductive device applications (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong


    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  13. Substrate-induced stable enzyme-inhibitor complex formation allows tight binding of novel 2-aminopyrimidin-4(3H)-ones to drug-resistant HIV-1 reverse transcriptase mutants. (United States)

    Samuele, Alberta; Facchini, Marcella; Rotili, Dante; Mai, Antonello; Artico, Marino; Armand-Ugón, Mercedes; Esté, José A; Maga, Giovanni


    We recently reported the synthesis and biological evaluation of a novel series of 5-alkyl-2-(N,N-disubstituted)amino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones (F(2)-N,N-DABOs). These compounds are highly active against both wild-type HIV-1 and the K103N, Y181C, and Y188L mutant strains. Herein we present novel 6-(2-chloro-6-fluorophenylalkyl)-N,N-DABO (2-Cl-6-F-N,N-DABO) derivatives and investigate the molecular basis for their high-affinity binding to HIV-1 reverse transcriptase (RT). Our results show that the new compounds display higher association rates than the difluoro derivatives toward wild-type HIV-1 RT or drug-resistant RT mutant forms. We also show that they preferentially associate to either the free enzyme or the enzyme-nucleic acid binary complex, and that this binding is stabilized upon formation of the ternary complex between HIV-1 RT and both the nucleic acid and nucleotide substrates. Interestingly, one compound showed dissociation rates from the ternary complex with RT mutants K103N and Y181I 10-20-fold slower than from the corresponding complex with wild-type RT.

  14. Photoactive assemblies of organic compounds and biomolecules: drug-protein supramolecular systems. (United States)

    Vayá, Ignacio; Lhiaubet-Vallet, Virginie; Jiménez, M Consuelo; Miranda, Miguel A


    The properties of singlet and triplet excited states are strongly medium-dependent. Hence, these species constitute valuable tools as reporters to probe compartmentalised microenvironments, including drug@protein supramolecular systems. In the present review, the attention is focused on the photophysical properties of the probe drugs (rather than those of the protein chromophores) using transport proteins (serum albumins and α1-acid glycoproteins) as hosts. Specifically, fluorescence measurements allow investigation of the structural and dynamic properties of biomolecules or their complexes. Thus, the emission quantum yields and the decay kinetics of the drug singlet excited states provide key information to determine important parameters such as the stoichiometry of the complex, the binding constant, the relative degrees of occupancy of the different compartments, etc. Application of the FRET concept allows determination of donor-acceptor interchromophoric distances. In addition, anisotropy measurements can be related to the orientation of the drug within the binding sites, where the degrees of freedom for conformational relaxation are restricted. Transient absorption spectroscopy is also a potentially powerful tool to investigate the binding of drugs to proteins, where formation of encapsulated triplet excited states is favoured over other possible processes leading to ionic species (i.e. radical ions), and their photophysical properties are markedly sensitive to the microenvironment experienced within the protein binding sites. Even under aerobic conditions, the triplet lifetimes of protein-complexed drugs are remarkably long, which provides a broad dynamic range for identification of distinct triplet populations or for chiral discrimination. Specific applications of the laser flash photolysis technique include the determination of drug distribution among the bulk solution and the protein binding sites, competition of two types of proteins to bind a drug

  15. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M


    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  16. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite. (United States)

    Shokrollahi, Parvin; Mirzadeh, Hamid; Scherman, Oren A; Huck, Wilhelm T S


    Supramolecular polymers based on quadruple hydrogen-bonding ureido-pyrimidinone (UPy) moieties hold promise as dynamic/stimuli-responsive materials in applications such as tissue engineering. Here, a new class of materials is introduced: supramolecular polymer composites. We show that despite the highly ordered structure and tacticity-dependent nature of hydrogen-bonded supramolecular polymers, the bioactivity of these polymers can be tuned through composite preparation with bioceramics. These novel supramolecular composites combine the superior processability of supramolecular polymers with the excellent bioactivity and mechanical characteristics of bioceramics. In particular, the bioactive composites prepared from supramolecular polycaprolactone and UPy-grafted hydroxyapatite (HApUPy) are described that can be easily formed into microporous biomaterials. The compression moduli increased about 40 and 90% upon composite preparation with HAp and HApUPy, respectively, as an indication to improved mechanical properties. These new materials show excellent potential as microporous composite scaffolds for the adhesion and proliferation of rat mesenchymal stem cells (rMSCs) as a first step toward bone regeneration studies; rMSCs proliferate about 2 and 2.7 times faster on the conventional composite with HAp and the supramolecular composite with (HApUPy) than on the neat PCL1250(UPy)(2). Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  17. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry. (United States)

    Albrecht, Markus


    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  18. Supramolecular chiro-biomedical assays and enantioselective HPLC analyses for evaluation of profens as non-steroidal anti-inflammatory drugs, potential anticancer agents and common xenobiotics. (United States)

    Ali, Imran; Hussain, Iqbal; Saleem, Kishwar; Aboul-Enein, Hassan Y; Bazylak, Grzegorz


    The permanent world-wide increase in therapeutic administration of racemic profens as easy available non-prescribed analgesic drugs and a common first-choice anti-inflammatory agents was recently linked with renewed interest in their beneficial use, also as enantiopure formulations, to treat and/or prevent a variety of human malignancies including its four major types as colorectal, breast, lung, and prostate cancer. This underlies the continuous need of selecting perfectly suited chiral separation methods of profens capable to determine nanolevels of a distomer in presence of the eutomer in a variety of complex biological and environmental media. Thus, current improvements for direct enantiomeric separations of profens by well defined supramolecular-based chiral HPLC and recently developed monolithic, combinatorial, bimodal and polymeric chiral stationary phases employing a modern supramolecular chirality concepts has been outlined in this review. The use of diverse supramolecular approaches for chiral HPLC as an easy accessible tool enabling fast development of nanoscale enantioselective, high-throughput and gradient screening procedures for in situ monitoring of stereoselective ADME properties of profens in range of anticancer drug discovery technologies has been also addressed.

  19. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system. (United States)

    Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T


    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  20. Label-free and nicking enzyme-assisted fluorescence signal amplification for RNase H determination based on a G-quadruplexe/thioflavin T complex. (United States)

    Wu, Kefeng; Ma, Changbei; Deng, Zhiyi; Fang, Ning; Tang, Zhenwei; Zhu, Xingxing; Wang, Kemin


    In this paper, we describe a novel, label-free and nicking enzyme-assisted fluorescence signal amplification strategy that demonstrates to be cost efficient, sensitive, and unique for assaying the RNase H activity and inhibition based on G-quadruplex formation using a thioflavin T (ThT) dye. This novel assay method is able to detect RNase H with a detection limit of 0.03 U /mL and further exhibits a good linearity R 2 = 0.9923 at a concentration range of 0.03-1 U/mL under optimized conditions. Moreover, the inhibition effect of gentamycin on the RNase H activity is also studied. This strategy provides a potential tool for the biochemical enzyme analysis and inhibitor screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation. (United States)

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy


    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.

  2. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures. (United States)

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J


    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  3. The modifier effects of chymotrypsin and trypsin enzymes on fluorescence lifetime distribution of "N-(1-pyrenyl)maleimide-bovine serum albumin" complex (United States)

    Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder


    Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases.

  4. Lysozyme complexes with thermo- and pH-responsive PNIPAM-b-PAA block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Pippa, Natassa [National and Kapodistrian University of Athens, Department of Pharmaceutical Technology, Faculty of Pharmacy (Greece); Meristoudi, Anastasia; Pispas, Stergios, E-mail: [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute (Greece); Demetzos, Costas [National and Kapodistrian University of Athens, Department of Pharmaceutical Technology, Faculty of Pharmacy (Greece)


    Lysozyme is an enzyme responsible for the damage of bacterial cell walls and is abundant in a number of secretions such as tears and human milk. In the present study, we investigated the structure, the physicochemical characteristics, and the temperature-responsiveness of lysozyme complexes with poly(N-isopropylacrylamide)-b-poly(acrylic acid) block polyelectrolyte in aqueous media. A gamut of light-scattering techniques and fluorescence spectroscopy were used in order to examine the complexation process, as well as the structure, solution behavior, and temperature response of the nanosized complexes. The concentration of copolymer polyelectrolyte was kept constant. The values of the scattering intensity, I{sub 90}, which is proportional to the mass of the species in solution, increased gradually as a function of C{sub LYS,} providing proof of the occurring complexation, while the size of the nanostructures decreased. The structure of the complexes became more open as the C{sub LYS} increased. The increase of the salinity did not affect the structural characteristics of the supramolecular nanoparticulate aggregates. On the other hand, the physicochemical and structural characteristics of the complexes changed upon increasing temperature, and the changes depended on the initial ratio block polyelectrolyte/lysozyme. The knowledge on developing block polyelectrolyte/protein complexes through electrostatic interactions, obtained from this investigation, may be applied to the design of nutraceuticals.

  5. Lysozyme complexes with thermo- and pH-responsive PNIPAM- b-PAA block copolymer (United States)

    Pippa, Natassa; Meristoudi, Anastasia; Pispas, Stergios; Demetzos, Costas


    Lysozyme is an enzyme responsible for the damage of bacterial cell walls and is abundant in a number of secretions such as tears and human milk. In the present study, we investigated the structure, the physicochemical characteristics, and the temperature-responsiveness of lysozyme complexes with poly( N-isopropylacrylamide)- b-poly(acrylic acid) block polyelectrolyte in aqueous media. A gamut of light-scattering techniques and fluorescence spectroscopy were used in order to examine the complexation process, as well as the structure, solution behavior, and temperature response of the nanosized complexes. The concentration of copolymer polyelectrolyte was kept constant. The values of the scattering intensity, I 90, which is proportional to the mass of the species in solution, increased gradually as a function of C LYS, providing proof of the occurring complexation, while the size of the nanostructures decreased. The structure of the complexes became more open as the C LYS increased. The increase of the salinity did not affect the structural characteristics of the supramolecular nanoparticulate aggregates. On the other hand, the physicochemical and structural characteristics of the complexes changed upon increasing temperature, and the changes depended on the initial ratio block polyelectrolyte/lysozyme. The knowledge on developing block polyelectrolyte/protein complexes through electrostatic interactions, obtained from this investigation, may be applied to the design of nutraceuticals.

  6. Lysozyme complexes with thermo- and pH-responsive PNIPAM-b-PAA block copolymer

    International Nuclear Information System (INIS)

    Pippa, Natassa; Meristoudi, Anastasia; Pispas, Stergios; Demetzos, Costas


    Lysozyme is an enzyme responsible for the damage of bacterial cell walls and is abundant in a number of secretions such as tears and human milk. In the present study, we investigated the structure, the physicochemical characteristics, and the temperature-responsiveness of lysozyme complexes with poly(N-isopropylacrylamide)-b-poly(acrylic acid) block polyelectrolyte in aqueous media. A gamut of light-scattering techniques and fluorescence spectroscopy were used in order to examine the complexation process, as well as the structure, solution behavior, and temperature response of the nanosized complexes. The concentration of copolymer polyelectrolyte was kept constant. The values of the scattering intensity, I 90 , which is proportional to the mass of the species in solution, increased gradually as a function of C LYS, providing proof of the occurring complexation, while the size of the nanostructures decreased. The structure of the complexes became more open as the C LYS increased. The increase of the salinity did not affect the structural characteristics of the supramolecular nanoparticulate aggregates. On the other hand, the physicochemical and structural characteristics of the complexes changed upon increasing temperature, and the changes depended on the initial ratio block polyelectrolyte/lysozyme. The knowledge on developing block polyelectrolyte/protein complexes through electrostatic interactions, obtained from this investigation, may be applied to the design of nutraceuticals.

  7. Different and Often Opposing Forces Drive the Encapsulation and Multiple Exterior Binding of Charged Guests to a M4L6Supramolecular Vessel in Water. (United States)

    Sgarlata, Carmelo; Mugridge, Jeffrey S; Pluth, Michael D; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N


    The supramolecular assembly [Ga 4 L 6 ] 12- acts as a nanoscale flask to mediate the reactivity of encapsulated reactive guests and also functions as a catalyst to carry out enzyme-like chemical transformations. The guest binding to the interior cavity and exterior of this host is difficult to untangle because multiple equilibria occur in solution, and only when refining simultaneously data obtained from different techniques, such as NMR, UV/Vis, and calorimetry, can the accurate solution thermodynamics of these host-guest systems be determined. This study reports the driving forces for the inclusion and stepwise exterior guest binding of different aliphatic quaternary ammonium guests to the [Ga 4 L 6 ] 12- assembly. Encapsulation into the host cavity was found to be an entropy-driven process, whereas exterior ion association is driven either by enthalpically favorable attractive forces or by the entropy gain due to desolvation, depending on guest size and character. The analysis of the energetics of reaction may help predicting and understanding the intimate role and contribution of the transition state in those rate-accelerated reactions involving this supramolecular assembly as an enzyme-like molecular flask. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Building inorganic supramolecular architectures using principles adopted from the organic solid state

    Directory of Open Access Journals (Sweden)

    Marijana Đaković


    Full Text Available In order to develop transferable and practical avenues for the assembly of coordination complexes into architectures with specific dimensionality, a strategy utilizing ligands capable of simultaneous metal coordination and self-complementary hydrogen bonding is presented. The three ligands used, 2(1H-pyrazinone, 4(3H-pyrimidinone and 4(3H-quinazolinone, consistently deliver the required synthetic vectors in a series of CdII coordination polymers, allowing for reproducible supramolecular synthesis that is insensitive to the different steric and geometric demands from potentially disruptive counterions. In all nine crystallographically characterized compounds presented here, directional intermolecular N—H...O hydrogen bonds between ligands on adjacent complex building blocks drive the assembly and orientation of discrete building blocks into largely predictable topologies. Furthermore, whether the solids are prepared from solution or through liquid-assisted grinding, the structural outcome is the same, thus emphasizing the robustness of the synthetic protocol. The details of the molecular recognition events that take place in this series of compounds have been clearly delineated and rationalized in the context of calculated molecular electrostatic potential surfaces.

  9. Selective Binding and Precipitation of Cesium Ions from Aqueous Solutions: A Size-Driven Supramolecular Reaction. (United States)

    Bengiat, Ravell; Bogoslavsky, Benny; Mandler, Daniel; Almog, Joseph


    The nuclear disasters of Chernobyl and Fukushima presented an urgent need for finding solutions to treatment of radioactive wastes. Among the by-products of nuclear fission is radioactive 137 Cs, which evokes an environmental hazard due to its long half-life (>30 years) and high solubility in water. In this work, a water-soluble organic ligand, readily obtained from alloxan and 1,3,5-benzenetriol, has been found to selectively bind and precipitate Cs + ions from aqueous solutions. The special rigid structure of the ligand, which consists of a "tripodal" carbonyl base above and below an aromatic plane, contributes to the size-driven selectivity towards the large Cs + ions and the formation of a giant, insoluble supramolecular complex. In addition to the low costs of the ligand, high yields and effectiveness in precipitating Cs + ions, the Cs-complex revealed a high endurance to continuous doses of γ-radiation, increasing its potential to act as a precipitating agent for 137 Cs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Random-walk enzymes (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.


    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  11. Random-walk enzymes (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.


    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  12. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    Directory of Open Access Journals (Sweden)

    Daniel I. Hădărugă


    Full Text Available Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  13. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system (United States)

    Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T


    Summary Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated. PMID:25550747

  14. Evolution of Enzyme Kinetic Mechanisms. (United States)

    Ulusu, Nuriye Nuray


    This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure-function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi-bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate's properties, and their kinetic mechanisms have evolved in response to substrate variability.

  15. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly. (United States)

    Iyoda, Masahiko; Hasegawa, Masashi


    The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed.

  16. Novel Supramolecular Polymer Networks Based on Melamine- and Imide-Containing Oligomers

    NARCIS (Netherlands)

    Loontjens, Ton; Put, Jos; Coussens, Betty; Palmen, Jo; Sleijpen, Ton; Plum, Bart


    Reversible, supramolecular polymer networks based on commercially available bulk chemicals, and prepared using an industrially attractive route are described. The difunctional, low molecular weight polytetramethyleneoxide is functionalized with trimellitic imide, and reversibly crosslinked with the

  17. Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy. (United States)

    Tong, Hongxin; Du, Jianwei; Li, Huan; Jin, Qiao; Wang, Youxiang; Ji, Jian


    A programmed supramolecular nanocarrier was developed for multistage targeted photodynamic therapy. This smart nanocarrier exhibited enhanced cellular uptake and controlled mitochondria targeting, as well as an excellent photodynamic therapeutic effect after light irradiation.

  18. Template-directed supramolecular self-assembly of coordination dumbbells at surfaces. (United States)

    Lin, Nian; Langner, Alexander; Tait, Steven L; Rajadurai, Chandrasekar; Ruben, Mario; Kern, Klaus


    Scanning tunneling microscopy reveals, at single-molecular resolution, how external parameters--substrate morphology and guest addition--re-direct the assembly of dumbbell-shaped coordination supramolecules towards different surface-confined supramolecular organizations.

  19. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)


    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  20. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. (United States)

    Liu, Jiewei; Chen, Lianfen; Cui, Hao; Zhang, Jianyong; Zhang, Li; Su, Cheng-Yong


    This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.

  1. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng


    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  2. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira


    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  3. Electrochemical supramolecular recognition of hemin-carbon composites (United States)

    Le, Hien Thi Ngoc; Jeong, Hae Kyung


    Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.

  4. Information processing in the CNS: a supramolecular chemistry? (United States)

    Tozzi, Arturo


    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of

  5. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Margherita De Rosa


    Full Text Available In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs, we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under “on-water” conditions with a significant selectivity toward the reactants. Under “on-water conditions” the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of

  6. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system. (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W


    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren


    networks, formed by mixing multifunctional carboxylic acids such as citric acid (CA), tricarballylic acid (TCAA), trimesic acid (TMA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DETPA) with two di ff erent Je ff amine polyetheramines (designated as D400 and D2000......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  8. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher


    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  9. Non-volatile organic transistor memory devices using the poly(4-vinylpyridine)-based supramolecular electrets. (United States)

    Chou, Y-H; Chiu, Y-C; Lee, W-Y; Chen, W-C


    Supramolecular electrets consisting of poly(4-vinylpyridine) (P4VP) and conjugated molecules of phenol, 2-naphthol and 2-hydroxyanthracene were investigated for non-volatile transistor memory applications. The memory windows of these supramolecular electret devices were significantly enhanced upon increasing the π-conjugation size of the molecule. A high ON/OFF current ratio of more than 10(7) over 10(4) s was achieved on the supramolecule based memory devices.

  10. New Pseudopeptidic Bis(Amino Amides): Supramolecular Behaviour in the Presence of Transition Metals


    Gorla, Lingaraju


    La presente tesis doctoral se ubica dentro del área de la Química Supramolecular y más concretamente en el campo del reconocimiento molecular de cationes metálicos. Los capítulos describen la síntesis y el estudio de nuevos sistemas supramoleculares pseudopeptídicos, así como su aplicación en el reconocimiento molecular de cationes.

  11. Using magnetic birefringence to determine the molecular arrangement of supramolecular nanostructures

    International Nuclear Information System (INIS)

    Gielen, Jeroen C; Shklyarevskiy, Igor O; Christianen, Peter C M; Maan, J C; Schenning, Albertus P H J


    Supramolecular aggregates can be aligned in solution using a magnetic field. Because of the optical anisotropy of the molecular building blocks, the alignment results in an anisotropic refractive index of the solution parallel and perpendicular to the magnetic field. We present a model for calculating the magnetic birefringence, using solely the magnetic susceptibilities and optical polarizabilities of the molecules, for any molecular arrangement. We demonstrate that magnetic birefringence is a very sensitive tool for determining the molecular organization within supramolecular aggregates.

  12. Two Supramolecular Inorganic–Organic Hybrid Crystals Based on Keggin Polyoxometalates and Crown Ethers

    Directory of Open Access Journals (Sweden)

    Jun Xiong


    Full Text Available New supramolecular structures were designed in this work using large-sized polyoxometalates (POMs and crown-ether-based supramolecular cations selected as building blocks. Two novel supramolecular inorganic–organic hybrids [(3-F-4-MeAnis([18]crown-6]2[SMo12O40]•CH3CN (1 and [(4-IAnis([18]crown-6]3[PMo12O40]•4CH3CN (2 (3-F-4-MeAnis = 3-fluoro-4-methylanilinium and 4-IAnis = 4-iodoanilinium were synthesized. Crystals 1 and 2 have been characterized by infrared spectroscopy (IR and elemental analysis (EA. Based on X-ray diffraction analysis, Crystals 1 and 2 were constructed through noncovalent bonding interactions and belong to different space groups due to the difference of the building blocks used. Supramolecular cations formed due to strong N–H···O hydrogen bonding interactions between the six oxygen atoms of [18]crown-6 molecules and nitrogen atoms of anilinium derivatives. Crystal 1 has two different supramolecular cations with an anti-paralleled arrangement that forms a dimer through weak hydrogen bonding interactions between adjacent [18]crown-6 molecules. Crystal 2 has three independent supramolecular cations that fill large spaces between the [PMo12O40] polyoxoanions forming a rhombus-shape packing arrangement in the ac plane. Crystals 1 and 2 are unstable at room temperature.

  13. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols (United States)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko


    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  14. Rational optimization of drug-target residence time: Insights from inhibitor binding to the S. aureus FabI enzyme-product complex (United States)

    Chang, Andrew; Schiebel, Johannes; Yu, Weixuan; Bommineni, Gopal R.; Pan, Pan; Baxter, Michael V.; Khanna, Avinash; Sotriffer, Christoph A.; Kisker, Caroline; Tonge, Peter J.


    Drug-target kinetics has recently emerged as an especially important facet of the drug discovery process. In particular, prolonged drug-target residence times may confer enhanced efficacy and selectivity in the open in vivo system. However, the lack of accurate kinetic and structural data for series of congeneric compounds hinders the rational design of inhibitors with decreased off-rates. Therefore, we chose the Staphylococcus aureus enoyl-ACP reductase (saFabI) - an important target for the development of new anti-staphylococcal drugs - as a model system to rationalize and optimize the drug-target residence time on a structural basis. Using our new, efficient and widely applicable mechanistically informed kinetic approach, we obtained a full characterization of saFabI inhibition by a series of 20 diphenyl ethers complemented by a collection of 9 saFabI-inhibitor crystal structures. We identified a strong correlation between the affinities of the investigated saFabI diphenyl ether inhibitors and their corresponding residence times, which can be rationalized on a structural basis. Due to its favorable interactions with the enzyme, the residence time of our most potent compound exceeds 10 hours. In addition, we found that affinity and residence time in this system can be significantly enhanced by modifications predictable by a careful consideration of catalysis. Our study provides a blueprint for investigating and prolonging drug-target kinetics and may aid in the rational design of long-residence-time inhibitors targeting the essential saFabI enzyme. PMID:23697754

  15. "Intelligent" design of molecular materials: Understanding the concepts of design in supramolecular synthesis of network solids (United States)

    Moulton, Brian D.

    This work endeavors to delineate modern paradigms for crystal engineering, i.e. the design and supramolecular synthesis of functional molecular materials. Paradigms predicated on an understanding of the geometry of polygons and polyhedra are developed. The primary focus is on structural determination by single crystal X-ray crystallography, structural interpretation using a suite of graphical visualization and molecular modeling software, and on the importance of proper graphical representation in the presentation and explanation of crystal structures. A detailed analysis of a selected series of crystal structures is presented. The reduction of these molecular networks to schematic representations that illustrate their fundamental connectivity facilitates the understanding of otherwise complex supramolecular solids. Circuit symbols and Schlafli notation are used to describe the network topologies, which enables networks of different composition and metrics to be easily compared. This reveals that molecular orientations in the crystals and networks are commensurate with networks that can be derived from spherical close packed lattices. The development of a logical design strategy for a new class of materials based on our understanding of the chemical composition and topology of these networks is described. The synthesis and crystal structure of a series of new materials generated by exploitation of this design strategy is presented, in addition to a detailed analysis of the topology of these materials and their relationship to a 'parent' structure. In summary, this dissertation demonstrates that molecular polygons can self-assemble at their vertexes to produce molecular architectures and crystal structures that are consistent with long established geometric dogma. The design strategy represents a potentially broad ranging approach to the design of nanoporous structures from a wide range of chemical components that are based on molecular shape rather than chemical

  16. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, Kristin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemistry


    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hosts joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO42- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through

  17. The Type I Restriction Enzymes as Barriers to Horizontal Gene Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complexes 133/ST771 and 398. (United States)

    Chen, Kai; Stephanou, Augoustinos S; Roberts, Gareth A; White, John H; Cooper, Laurie P; Houston, Patrick J; Lindsay, Jodi A; Dryden, David T F


    The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.

  18. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy (United States)

    Liu, Yamei; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Shen, Guizhi; Yan, Xuehai


    Nanoengineering of hydrophobic photosensitizers (PSs) is a promising approach for improved tumor delivery and enhanced photodynamic therapy (PDT) efficiency. A variety of delivery carriers have been developed for tumor delivery of PSs through the enhanced permeation and retention (EPR) effect. However, a high-performance PS delivery system with minimum use of carrier materials with excellent biocompatibility is highly appreciated. In this work, we utilized the spatiotemporal interfacial adhesion and assembly of supramolecular coordination to achieve the nanoengineering of water-insoluble photosensitizer Chlorin e6 (Ce6). The hydrophobic Ce6 nanoparticles are well stabilized in a aqueous medium by the interfacially-assembled film due to the coordination polymerization of tannic acid (TA) and ferric iron (Fe(III)). The resulting Ce6@TA-Fe(III) complex nanoparticles (referenced as Ce6@TA-Fe(III) NPs) significantly improves the drug loading content (~65%) and have an average size of 60 nm. The Ce6@TA-Fe(III) NPs are almost non-emissive as the aggregated states, but they can light up after intracellular internalization, which thus realizes low dark toxicity and excellent phototoxicity under laser irradiation. The Ce6@TA-Fe(III) NPs prolong blood circulation, promote tumor-selective accumulation of PSs, and enhanced antitumor efficacy in comparison to the free-carrier Ce6 in vivo evaluation.

  19. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Directory of Open Access Journals (Sweden)

    Kohei Koyanagi


    Full Text Available Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA that has α-cyclodextrin (α-CD as a host molecule (α-CD-CTA. Prior to the polymerization of N,N-dimethylacrylamide (DMA, we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-ylpropane dihydrochloride (VA-044 as an initiator in an aqueous solution, poly(DMA was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.

  20. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    Directory of Open Access Journals (Sweden)

    Siavash Riahi


    Full Text Available Ionophore incorporated PVC membrane sensors are well-established analyticaltools routinely used for the selective and direct measurement of a wide variety of differentions in complex biological and environmental samples. Potentiometric sensors have someoutstanding advantages including simple design and operation, wide linear dynamic range,relatively fast response and rational selectivity. The vital component of such plasticizedPVC members is the ionophore involved, defining the selectivity of the electrodes' complexformation. Molecular recognition causes the formation of many different supramolecules.Different types of supramolecules, like calixarenes, cyclodextrins and podands, have beenused as a sensing material in the construction of ion selective sensors. Schiff's bases andcrown ethers, which feature prominently in supramolecular chemistry, can be used assensing materials in the construction of potentiometric ion selective electrodes. Up to now,more than 200 potentiometric membrane sensors for cations and anions based on Schiff'sbases and crown ethers have been reported. In this review cation binding and anioncomplexes will be described. Liquid membrane sensors based on Schiff's bases and crownethers will then be discussed.

  1. Structural Consequences of Anionic Host-Cationic Guest Interactions in a Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Johnson, Darren W.; Szigethy, Geza; Davis, Anna V.; Teat, Simon J.; Oliver, Allen G.; Bergman, Robert G.; Raymond, Kenneth N.


    The molecular structure of the self-assembled supramolecular assembly [M{sub 4}L{sub 6}]{sup 12-} has been explored with different metals (M = Ga{sup III}, Fe{sup III}, Ti{sup IV}) and different encapsulated guests (NEt{sub 4}{sup +}, BnNMe{sub 3}{sup +}, Cp{sub 2}Co{sup +}, Cp*{sub 2}Co{sup +}) by X-ray crystallography. While the identity of the metal ions at the vertices of the M{sub 4}L{sub 6} structure is found to have little effect on the assembly structure, encapsulated guests significantly distort the size and shape of the interior cavity of the assembly. Cations on the exterior of the assembly are found to interact with the assembly through either {pi}-{pi}, cation-{pi}, or CH-{pi} interactions. In some cases, the exterior guests interact with only one assembly, but cations with the ability to form multiple {pi}-{pi} interactions are able to interact with adjacent assemblies in the crystal lattice. The solvent accessible cavity of the assembly is modeled using the rolling probe method and found to range from 253-434 {angstrom}{sup 3}, depending on the encapsulated guest. Based on the volume of the guest and the volume of the cavity, the packing coefficient for each host-guest complex is found to range from 0.47-0.67.

  2. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan


    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  3. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Olga A. Krasheninina


    Full Text Available In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield, ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs, aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.

  4. Host-guest complexes of local anesthetics with cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state (United States)

    Danylyuk, Oksana; Butkiewicz, Helena; Coleman, Anthony W.; Suwinska, Kinga


    Here we describe the host-guest inclusion complexes of local anesthetic drugs with two macrocyclic hosts cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state. The anesthetic agents used in the co-crystallization with the supramolecular hosts are lidocaine, procaine, procainamide, prilocaine and proparacaine. Both macrocycles encapsulate the alkylammonium moieties of anestetics guests into their cavities although the mechanism of complexation, host-guest stoichiometry and geometry differ depending on the nature of the supramolecular host.

  5. Estimation of immune complexes by a microplate-adapted C1q-Protein A enzyme-linked-immunosorbent-assay (C1q-PA-ELISA)

    DEFF Research Database (Denmark)

    Bjerrum, L; Glikmann, G; Jensenius, J C


    of IC were found in the majority of sera from patients with rheumatoid arthritis and SLE. The described C1q-PA-ELISA is a simple and inexpensive method for detection of C1q-binding immune complexes. The reproducibility is acceptable and the sensitivity is higher than for most IC-methods based on C1q-binding....

  6. Estimation of immune complexes by a microplate-adapted C1q-Protein A enzyme-linked-immunosorbent-assay (C1q-PA-ELISA)

    DEFF Research Database (Denmark)

    Bjerrum, L; Glikmann, G; Jensenius, J C


    . Bound IC was measured by use of alkaline phosphatase-labelled Protein A followed by the substrate para-nitro-phenyl-phosphate. A dose response was found for both delta IgG and BSA anti-BSA complexes, while variations in the concentration of monomer IgG did not affect the optical density. Elevated levels...

  7. Construction of an organelle-like nanodevice via supramolecular self-assembly for robust biocatalysts. (United States)

    Li, Hongxia; Zheng, Guojun; Zhu, Shaozhou


    When using the microbial cell factories for green manufacturing, several important issues need to be addressed such as how to maintain the stability of biocatalysts used in the bioprocess and how to improve the synthetic efficiency of the biological system. One strategy widely used during natural evolution is the creation of organelles which can be used for regional control. This kind of compartmentalization strategy has inspired the design of artificial organelle-like nanodevice for synthetic biology and "green chemistry". Mimicking the natural concept of functional compartments, here we show that the engineered thermostable ketohydroxyglutarate aldolase from Thermotoga maritima could be developed as a general platform for nanoreactor design via supramolecular self-assembly. An industrial biocatalyst-(+)-γ-lactamase was selected as a model catalyst and successful encapsulated in the nanoreactor with high copies. These nanomaterials could easily be synthesized by Escherichia coli by heterologous expression and subsequently self-assembles into the target organelle-like nanoreactors both in vivo and in vitro. By probing their structural characteristics via transmission electronic microscopy and their catalytic activity under diverse conditions, we proved that these nanoreactors could confer a significant benefit to the cargo proteins. The encapsulated protein exhibits significantly improved stability under conditions such as in the presence of organic solvent or proteases, and shows better substrate tolerance than free enzyme. Our biodesign strategy provides new methods to develop new catalytically active protein-nanoreactors and could easily be applied into other biocatalysts. These artificial organelles could have widely application in sustainable catalysis, synthetic biology and could significantly improve the performance of microbial cell factories.

  8. Supramolecular Self-Assembly of Histidine-Capped-Dialkoxy-Anthracene: A Visible Light Triggered Platform for facile siRNA Delivery

    KAUST Repository

    Patil, Sachin


    Supramolecular self-assembly of histidine-capped-dialkoxy-anthracene (HDA) results in the formation of light responsive nanostructures.Single-crystal X-ray diffraction analysis of HDA shows two types of hydrogen bonding. The first hydrogen bond is established between the imidazole moieties while the second involves the oxygen atom of one amide group and the hydrogen atom of a second amide group. When protonated in acidic aqueous media, HDA successfully complexes siRNA yielding spherical nanostructures. This biocompatible platform controllably delivers siRNA with high efficacy upon visible light irradiation leading up to 90% of gene silencing in live cells.

  9. Energy Transfer in Supramolecular Heteronuclear Lanthanide Dimers and Application to Fluoride Sensing in Water. (United States)

    Nonat, Aline; Liu, Tao; Jeannin, Olivier; Camerel, Franck; Charbonnière, Loïc J


    In the presence of fluoride anions, [LnL(H 2 O)] + complexes, based on the coordination of a lanthanide (Ln) cation into the cavity of a C 2v symmetrical cyclen-based ligand (L), self-assemble in water to form [(LnL) 2 F] + dimers. The crystal structures of the Yb hydrated monomer and of the fluorinated dimer are reported and analyzed to unravel the impact of the cumulative effect of weak hydrogen bonding and aromatic stacking interactions in the supramolecular assembly. The assembly is stable over a broad range of pH 3-8. A combination of equimolar amounts of Eu and Tb complexes led to a quasistatistical mixture of homo- and heterodimers, as observed by using electrospray mass spectrometry. In the heterodimers, selective excitation into the 7 F 6 → 5 D 4 absorption band of the Tb center at λ=488 nm allowed the observation of a Tb-to-Eu downshifting energy transfer, not observed in the absence of fluoride ions. Analysis of the excited-state lifetimes of the dimers within the frame of the Förster theory of energy transfer showed the transfer to have an efficiency of 34 %, with a corresponding Förster radius of 4.1 Å; thereby, unraveling the short Ln-Ln distance as a crucial parameter of the energy-transfer process. By using equimolar mixtures of the Tb and Eu complexes, the energy-transfer phenomenon was used for a ratiometric sensing of fluoride anions in water with a detection limit of 17.7 nm. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Complex I-associated hydrogen peroxide production is decreased and electron transport chain enzyme activities are altered in n-3 enriched fat-1 mice.

    Directory of Open Access Journals (Sweden)

    Kevork Hagopian

    Full Text Available The polyunsaturated nature of n-3 fatty acids makes them prone to oxidative damage. However, it is not clear if n-3 fatty acids are simply a passive site for oxidative attack or if they also modulate mitochondrial reactive oxygen species (ROS production. The present study used fat-1 transgenic mice, that are capable of synthesizing n-3 fatty acids, to investigate the influence of increases in n-3 fatty acids and resultant decreases in the n-6:n-3 ratio on liver mitochondrial H(2O(2 production and electron transport chain (ETC activity. There was an increase in n-3 fatty acids and a decrease in the n-6:n-3 ratio in liver mitochondria from the fat-1 compared to control mice. This change was largely due to alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine, with only a small percentage of fatty acids in cardiolipin being altered in the fat-1 animals. The lipid changes in the fat-1 mice were associated with a decrease (p<0.05 in the activity of ETC complex I and increases (p<0.05 in the activities of complexes III and IV. Mitochondrial H(2O(2 production with either succinate or succinate/glutamate/malate substrates was also decreased (p<0.05 in the fat-1 mice. This change in H(2O(2 production was due to a decrease in ROS production from ETC complex I in the fat-1 animals. These results indicate that the fatty acid changes in fat-1 liver mitochondria may at least partially oppose oxidative stress by limiting ROS production from ETC complex I.

  11. The Leishmania donovani complex: Genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH and FH), new targets for multilocus sequence typing

    Czech Academy of Sciences Publication Activity Database

    Zemanová, Eva; Jirků, Milan; Mauricio, I. L.; Horák, Aleš; Miles, M. A.; Lukeš, Julius


    Roč. 37, č. 2 (2007), s. 149-160 ISSN 0020-7519 R&D Projects: GA MŠk 2B06129 Grant - others:EU(EU) QLK2-CT-2001-01810 Institutional research plan: CEZ:AV0Z60220518 Source of funding: R - rámcový projekt EK Keywords : Leishmania donovani complex * zymodeme * multilocus sequence typing * Leishmania * phylogenetic network Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.392, year: 2007

  12. Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes

    Directory of Open Access Journals (Sweden)

    Eri Tabata


    Full Text Available Acidic chitinase (Chia has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia. Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia. Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8, but not by using Gly-HCl (pH 2.5 or sodium acetate (pH 4.0 or 5.5. The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.

  13. Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes. (United States)

    Tabata, Eri; Kashimura, Akinori; Wakita, Satoshi; Sakaguchi, Masayoshi; Sugahara, Yasusato; Imamura, Yasutada; Shimizu, Hideaki; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka


    Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.

  14. Surface-Relief Gratings in Halogen-Bonded Polymer–Azobenzene Complexes: A Concentration-Dependence Study


    Stumpel, Jelle E.; Marco, Saccone; Valentina, Dichiarante; Ossi, Lehtonen; Matti, Virkki; Pierangelo, Metrangolo; Arri, Priimagi


    In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer-azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, a...

  15. Ligand Self-Sorting and Nonlinear Effects in Dinuclear Asymmetric Hydrogenation: Complexity in Catalysis

    NARCIS (Netherlands)

    Terrade, F.G.; Lutz, M.; Reek, J.N.H.


    Nature has been a source of inspiration for scientists as billion years of evolution have resulted in magnificent examples of how processes can be controlled efficiently. In the field of supramolecular catalysis, enzymes have been the major source of inspiration. As such, many synthetic systems have

  16. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data. (United States)

    Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi


    Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Certain aspects of the reactivity of carotenoids. Redox processes and complexation

    International Nuclear Information System (INIS)

    Polyakov, Nikolay E; Leshina, Tatyana V


    The published data on the redox reactions of carotenoids, their supramolecular inclusion complexes and the composition, properties and practical application of these complexes are generalised. Special attention is given to the effect of complexation on radical processes involving carotenoids and on the antioxidant activity of carotenoids.

  18. Supramolecular coordination polymer formed from artificial light-harvesting dendrimer. (United States)

    Lee, Hosoowi; Jeong, Young-Hwan; Kim, Joo-Ho; Kim, Inhye; Lee, Eunji; Jang, Woo-Dong


    We report the formation of supramolecular coordination polymers formed from multiporphyrin dendrimers (PZnPM; M = FB or Cu), composed of the focal freebase porphyrin (PFB) or cupper porphyrin (PCu) with eight zinc porphyrin (PZn) wings, and multipyridyl porphyrins (PyPM; M = FB or Cu), PFB or PCu with eight pyridyl groups, through multiple axial coordination interactions of pyridyl groups to PZns. UV-vis absorption spectra were recorded upon titration of PyPFB to PZnPFB. Differential spectra, obtained by subtracting the absorption of PZnPFB without guest addition as well as the absorption of PyPFB, exhibited clear isosbestic points with saturation binding at 1 equiv addition of PyPFB to PZnPFB. Job's plot analysis also indicated 1:1 stoichiometry for the saturation binding. The apparent association constant between PZnPFB and PyPFB (2.91 × 10(6) M(-1)), estimated by isothermal titration calorimetry, was high enough for fibrous assemblies to form at micromolar concentrations. The formation of a fibrous assembly from PZnPFB and PyPFB was visualized by atomic force microscopy and transmission electron microscopy (TEM). When a 1:1 mixture solution of PZnPFB and PyPFB (20 μM) in toluene was cast onto mica, fibrous assemblies with regular height (ca. 2 nm) were observed. TEM images obtained from 1:1 mixture solution of PZnPFB and PyPFB (0.1 wt %) in toluene clearly showed the formation of nanofibers with a regular diameter of ca. 6 nm. Fluorescence emission measurement of PZnPM indicated efficient intramolecular energy transfer from PZn to the focal PFB or PCu. By the formation of supramolecular coordination polymers, the intramolecular energy transfer changed to intermolecular energy transfer from PZnPM to PyPM. When the nonfluorescent PyPCu was titrated to fluorescent PZnPFB, fluorescence emission from the focal PFB was gradually decreased. By the titration of fluorescent PyPFB to nonfluorescent PZnPCu, fluorescence emission from PFB in PyPFB was gradually increased

  19. Atomistic determinants of co-enzyme Q reduction at the Qi-site of the cytochrome bc1 complex

    DEFF Research Database (Denmark)

    Postila, Pekka A.; Kaszuba, Karol; Kuleta, Patryk


    has been studied vigorously. Here, this vast amount of data is reassessed after probing the substrate reduction steps at the Q i-site of the cyt bc 1 complex of Rhodobacter capsulatus using atomistic molecular dynamics simulations. The simulations suggest that the Lys251 side chain could rotate...... into the Q i-site to facilitate binding of half-protonated semiquinone-a reaction intermediate that is potentially formed during substrate reduction. At this bent pose, the Lys251 forms a salt bridge with the Asp252, thus making direct proton transfer possible. In the neutral state, the lysine side chain...

  20. Thermolysis synthesis of pure phase NiO from novel sonochemical synthesized Ni(II) nano metal-organic supramolecular architecture. (United States)

    Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad


    Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.