WorldWideScience

Sample records for suppressor proteins p16ink4a

  1. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  2. The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a

    Directory of Open Access Journals (Sweden)

    Mann Graham J

    2009-01-01

    Full Text Available Abstract Background CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. Results We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. Conclusion This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance.

  3. p16(INK4a translation suppressed by miR-24.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2008-03-01

    Full Text Available Expression of the tumor suppressor p16(INK4a increases during aging and replicative senescence.Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3'-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.

  4. Tumor suppressor p16 INK4a: Downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model.

    Science.gov (United States)

    Sanchez-Ruderisch, Hugo; Fischer, Christian; Detjen, Katharina M; Welzel, Martina; Wimmel, Anja; Manning, Joachim C; André, Sabine; Gabius, Hans-Joachim

    2010-09-01

    The tumor suppressor p16(INK4a) has functions beyond cell-cycle control via cyclin-dependent kinases. A coordinated remodeling of N- and O-glycosylation, and an increase in the presentation of the endogenous lectin galectin-1 sensing these changes on the surface of p16(INK4a)-expressing pancreatic carcinoma cells (Capan-1), lead to potent pro-anoikis signals. We show that the p16(INK4a)-dependent impact on growth-regulatory lectins is not limited to galectin-1, but also concerns galectin-3. By monitoring its expression in relation to p16(INK4a) status, as well as running anoikis assays with galectin-3 and cell transfectants with up- or downregulated lectin expression, a negative correlation between anoikis and the presence of this lectin was established. Nuclear run-off and northern blotting experiments revealed an effect of the presence of p16(INK4a) on steady-state levels of galectin-3-specific mRNA that differed from decreasing the transcriptional rate. On the cell surface, galectin-3 interferes with galectin-1, which initiates signaling toward its pro-anoikis activity via caspase-8 activation. The detected opposite effects of p16(INK4a) at the levels of growth-regulatory galectins-1 and -3 shift the status markedly towards the galectin-1-dependent pro-anoikis activity. A previously undescribed orchestrated fine-tuning of this effector system by a tumor suppressor is discovered.

  5. Expression of p16(INK4A) gene in human pituitary tumours.

    Science.gov (United States)

    Machiavelli, Gloria; Cotignola, Javier; Danilowicz, Karina; Carbonara, Carolina; Paes de Lima, Andrea; Basso, Armando; Bruno, Oscar Domingo; Szijan, Irene

    2008-01-01

    Pituitary adenomas comprise 10-15% of primary intracranial tumours but the mechanisms leading to tumour development are yet to be clearly established. The retinoblastoma pathway, which regulates the progression through the cell cycle, is often deregulated in different types of tumours. We studied the cyclin-dependent kinase inhibitor p16(INK4A) gene expression at mRNA level in human pituitary adenomas. Forty-six tumour specimens of different subtypes, 21 clinically non-functioning, 12 growth hormone-secreting, 6 prolactin-secreting, 6 adrenocorticotropin-secreting, and 1 thyrotropin-secreting tumours were studied. All clinically non-functioning and most of the hormone-secreting tumours were macroadenomas (38/46). The RT-PCR assay and electrophoresis of the PCR-products showed that p16(INK4A) mRNA was undetectable in: 62% of non-functioning, 8% of growth hormone-secreting, 17% of prolactin-secreting and 17% of adrenocorticotropin-secreting adenomas. Forty percent of all macroadenomas and 25% of microadenomas had negative p16(INK4A) mRNA, the latter results suggest that the absence of p16(INK4A) product might be an early event in tumours with no expression of this suppressor gene. Within the non-functioning adenomas 63% were "null cell" and 37% were positive for some hormone, both subgroups showed similar percentage of cases with absence of p16(INK4A) mRNA. Our results show that clinically non-functioning macroadenomas have impaired p16(INK4A) expression in a clearly higher proportion than any other pituitary tumour subtype investigated. Other regulatory pathways may be implicated in the development of tumours with positive p16(INK4A) expression.

  6. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1.

    Science.gov (United States)

    Silva, Gabriela; Aboussekhra, Abdelilah

    2016-05-01

    Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value. © 2015 Wiley Periodicals, Inc.

  7. p16(INK4a) promoter methylation and protein expression in breast fibroadenoma and carcinoma.

    Science.gov (United States)

    Di Vinci, Angela; Perdelli, Luisa; Banelli, Barbara; Salvi, Sandra; Casciano, Ida; Gelvi, Ilaria; Allemanni, Giorgio; Margallo, Edoardo; Gatteschi, Beatrice; Romani, Massimo

    2005-04-10

    The potential role of p16(INK4a) methylation in breast cancer is controversial whereas there are no data on fibroadenoma. To assess if inactivation of p16(INK4a) by promoter hypermethylation occurs in this hyperproliferative benign breast lesion or, on the contrary, it is strictly related to the carcinogenic process, we have tested the different histological components of 15 cases of fibroadenoma and the intraductal and infiltrating components of 15 cases of carcinoma and their adjacent non-tumoral epithelium. All samples were obtained by laser-assisted microdissection. The relationship between promoter methylation status, immunohistochemical protein expression and ki67 proliferative activity was evaluated for each lesion. Our data demonstrate that hypermethylation of p16(INK4a) promoter is a common event occurring at similar frequency in all the different histological areas of the benign and malignant breast lesions taken into exam. Conversely, protein p16 expression, although heterogeneously distributed within the section, is considerably higher in breast carcinoma as compared to fibroadenoma in both tumoral and non-tumoral epithelia and stroma. The protein localization was almost exclusively nuclear in fibroadenoma and non-tumoral epithelia whereas, in carcinoma, the staining was both nuclear and cytoplasmic or cytoplasmic alone. Furthermore, in a subset of fibroadenoma with higher proliferative activity, p16 protein expression was substantially decreased as compared to those showing lower proliferation. We did not observe this association in carcinomas. Our data demonstrate that the hypermethylation of the p16(INK4a) promoter is not specifically associated with malignancy and that, on the contrary, the overexpression of p16 and its cytoplasmic sequestration is a feature of breast carcinoma. (c) 2004 Wiley-Liss, Inc.

  8. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16INK4a in Cancer

    Directory of Open Access Journals (Sweden)

    Ran Zhao

    2016-06-01

    Full Text Available Aberrant gene silencing is highly associated with altered cell cycle regulation during carcinogenesis. In particular, silencing of the CDKN2A tumor suppressor gene, which encodes the p16INK4a protein, has a causal link with several different types of cancers. The p16INK4a protein plays an executional role in cell cycle and senescence through the regulation of the cyclin-dependent kinase (CDK 4/6 and cyclin D complexes. Several genetic and epigenetic aberrations of CDKN2A lead to enhanced tumorigenesis and metastasis with recurrence of cancer and poor prognosis. In these cases, the restoration of genetic and epigenetic reactivation of CDKN2A is a practical approach for the prevention and therapy of cancer. This review highlights the genetic status of CDKN2A as a prognostic and predictive biomarker in various cancers.

  9. P16INK4a Positive Cells in Human Skin Are Indicative of Local Elastic Fiber Morphology, Facial Wrinkling, and Perceived Age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Gunn, David A; Adams, Peter D

    2016-01-01

    Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies...... wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology. In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin...

  10. Avaliação da expressão imunoistoquímica da proteína p16INK4a no adenocarcinoma de esôfago Protein p16INK4a immunohistochemical expression in adenocarcinoma of the esophagus

    Directory of Open Access Journals (Sweden)

    Mário Henrique Osanai

    2011-12-01

    events. The alterations in p16INK4a are frequent in Barrett´s esophagus and esophageal carcinoma. AIM: To verify the prevalence of the immunohistochemical expression of the p16INK4a protein in patients with esophageal adenocarcinoma. METHODS: The study population consisted of 37 patients with resected esophageal adenocarcinoma. The p16INK4a protein expression was determined by immunohistochemistry using primary antibody p16INK4aAb-7, clone 16P07 NeoMarkers and assessed according to the Immunoreactive scoring system (IRS. RESULTS: Of 37 analyzed patients, the most were male (86,5% and the advanced disease was predominant (stages III and IV = 67,5%. In 12 (32,4% the immunohistochemistry was positive for p16INK4a.There was no significative relation between the protein expression and the degrees of histological differentiation of the biopsies and surgical especimens (p=0,81 neither with the staging (p=0,485. CONCLUSION: The lost of the immunohistochemical expression of the p16INK4a protein in this study suggests that p16 is enroled in the carcinogenesis of the adenocarcinoma of esophagus.

  11. EVALUATION OF P16INK4A PROTEIN AS A BIOMARKER FOR CERVICAL INTRAEPITHELIAL NEOPLASIA AND SQUAMOUS CELL CARCINOMA OF THE UTERINE CERVIX

    Directory of Open Access Journals (Sweden)

    Biljana Đorđević

    2011-06-01

    Full Text Available The association of human papilloma virus (HPV infection and cervical intraepithelial neoplasia (CIN is well known. Interaction of HPV proteins with cellular regulatory proteins leads to up regulation of p16INK4A. The aim of this study was to evaluate p16INK4A protein as a biomarker for CIN lesions and squamous cell carcinoma on biopsy specimens of patients who underwent biopsy of the uterine cervix due to abnormal cytological finding.The authors analyzed biopsies from 50 patients with CIN and invasive squamous cell carcinoma of the uterine cervix. Expression of p16INK4A in CIN and invasive squamous cell carcinoma was immunohistochemically analyzed by using monoclonal anti-p16INK4A antibody.A total of 50 patients with CIN and invasive squamous cell carcinoma of the uterine cervix (mean age 40.2±11.5 years, range 20-74 years were analyzed. CIN I lesions were found in 27 (54%, CIN II/CIN III lesions in 9 (18%, and invasive squamous cell carcinoma in 14 (28% patients. Differences in the expression of p16INK4A between CIN I, CIN II/CIN III and squamous cell carcinoma were statistically significant (p<0.0001. Expression of p16INK4A showed low sensitivity (7%, specificity (8%, positive predictive value (8%, and negative predictive value (7% for CIN I. Sensitivity, specificity, positive predictive value, and negative predictive value of p16INK4A were 78%, 61%, 30%, and 93% for CIN II/CIN III, and 100%, 75%, 61%, and 100% for squamous cell carcinoma, respectively.Results of this study suggest that p16INK4A protein may be a sensitive biomarker for CIN II/CIN III lesions and invasive squamous cell carcinoma of the uterine cervix.

  12. The role of tumor suppressor p15Ink4b in the regulation of hematopoietic progenitor cell fate

    International Nuclear Information System (INIS)

    Humeniuk, R; Rosu-Myles, M; Fares, J; Koller, R; Bies, J; Wolff, L

    2013-01-01

    Epigenetic silencing of the tumor suppressor gene p15Ink4b (CDKN2B) is a frequent event in blood disorders like acute myeloid leukemia and myelodysplastic syndromes. The molecular function of p15Ink4b in hematopoietic differentiation still remains to be elucidated. Our previous study demonstrated that loss of p15Ink4b in mice results in skewing of the differentiation pattern of the common myeloid progenitor towards the myeloid lineage. Here, we investigated a function of p15Ink4b tumor suppressor gene in driving erythroid lineage commitment in hematopoietic progenitors. It was found that p15Ink4b is expressed more highly in committed megakaryocyte–erythroid progenitors than granulocyte–macrophage progenitors. More importantly, mice lacking p15Ink4b have lower numbers of primitive red cell progenitors and a severely impaired response to 5-fluorouracil- and phenylhydrazine-induced hematopoietic stress. Introduction of p15Ink4b into multipotential progenitors produced changes at the molecular level, including activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling, increase GATA-1, erythropoietin receptor (EpoR) and decrease Pu1, GATA-2 expression. These changes rendered cells more permissive to erythroid commitment and less permissive to myeloid commitment, as demonstrated by an increase in early burst-forming unit-erythroid formation with concomitant decrease in myeloid colonies. Our results indicate that p15Ink4b functions in hematopoiesis, by maintaining proper lineage commitment of progenitors and assisting in rapid red blood cells replenishment following stress

  13. Loss of heterozygosity of CDKN2A (p16INK4a) and RB1 tumor suppressor genes in testicular germ cell tumors

    International Nuclear Information System (INIS)

    Vladusic, Tomislav; Hrascan, Reno; Pecina-Slaus, Nives; Vrhovac, Ivana; Gamulin, Marija; Franekic, Jasna; Kruslin, Bozo

    2010-01-01

    Testicular germ cell tumors (TGCTs) are the most frequent malignances in young adult men. The two main histological forms, seminomas and nonseminomas, differ biologically and clinically. pRB protein and its immediate upstream regulator p16INK4a are involved in the RB pathway which is deregulated in most TGCTs. The objective of this study was to evaluate the occurrence of loss of heterozygosity (LOH) of the CDKN2A (p16INK4a) and RB1 tumor suppressor genes in TGCTs. Forty TGCTs (18 seminomas and 22 nonseminomas) were analyzed by polymerase chain reaction using the restriction fragment length polymorphism or the nucleotide repeat polymorphism method. LOH of the CDKN2A was found in two (6%) out of 34 (85%) informative cases of our total TGCT sample. The observed changes were assigned to two (11%) nonseminomas out of 18 (82%) informative samples. Furthermore, LOH of the RB1 was detected in two (6%) out of 34 (85%) informative cases of our total TGCT sample. Once again, the observed changes were assigned to two (10.5%) nonseminomas out of 19 (86%) informative samples. Both LOHs of the CDKN2A were found in nonseminomas with a yolk sac tumor component, and both LOHs of the RB1 were found in nonseminomas with an embryonal carcinoma component. The higher incidence of observed LOH in nonseminomas may provide a clue to their invasive behavior

  14. Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    Directory of Open Access Journals (Sweden)

    Frank Georgy A

    2007-03-01

    Full Text Available Abstract Background High risk type human papilloma viruses (HR-HPV induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16ink4a drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16ink4a overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16ink4a overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas Methods Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16ink4a was analyzed by RT-PCR and by immunohistochemical technique. Results The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands. The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16ink4a cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. Conclusion Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical

  15. Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    International Nuclear Information System (INIS)

    Ivanova, Tatiana A; Golovina, Daria A; Zavalishina, Larisa E; Volgareva, Galina M; Katargin, Alexey N; Andreeva, Yulia Y; Frank, Georgy A; Kisseljov, Fjodor L; Kisseljova, Natalia P

    2007-01-01

    High risk type human papilloma viruses (HR-HPV) induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16 ink4a drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16 ink4a overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16 ink4a overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16 ink4a was analyzed by RT-PCR and by immunohistochemical technique. The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands). The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16 ink4a cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical carcinomas and cannot be an effective

  16. Elevated p16ink4a Expression in Human Labial Salivary Glands as a Potential Correlate of Cognitive Aging in Late Midlife

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Tritsaris, Katerina; Reibel, Jesper

    2016-01-01

    BACKGROUND: The cell-cycle inhibitor and tumor suppressor cyclin dependent kinase inhibitor, p16ink4a, is one of the two gene products of the ink4a/ARF (cdkn2a) locus on chromosome 9q21. Up-regulation of p16ink4a has been linked to cellular senescence, and findings from studies on different...... mammalian tissues suggest that p16ink4a may be a biomarker of organismal versus chronological age. OBJECTIVE: The aim of this study was to examine the immunolocalization pattern of p16ink4a in human labial salivary gland (LSG) tissue, and to analyze whether its expression level in LSGs is a peripheral...... correlate of cognitive decline in late midlife. METHODS: The present study was a part of a study of causes and predictors of cognitive decline in middle-aged men in a Danish birth cohort. It is based on data from 181 male participants from the Danish Metropolit birth cohort, born in 1953, who were examined...

  17. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    Science.gov (United States)

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  18. Aberrant Expression of ID2 protein and its correlation with EBV-LMP1 and P16(INK4A) in Classical Hodgkin Lymphoma in China

    International Nuclear Information System (INIS)

    Zhao, Po; Lu, Yali; Liu, Lin; Zhong, Mei

    2008-01-01

    The relationships between the expression of ID2, EBV-LMP1 and P16(INK4A) in Chinese classical Hodgkin lymphoma are unknown and need exploring. Samples of classical Hodgkin lymphoma from 60 Chinese patients were analyzed for the expression of ID2, EBV-LMP1 and p16(INK4A) proteins by immunohistochemistry. ID2 protein was expressed in 83.3% of this group of classical Hodgkin lymphoma, staining strongly in both cytoplasm and nucleus of the Hodgkin and Reed-Sternberg (HRS) cells. EBV-LMP1 and P16(INK4A) were overexpressed in 85.0% and 71.7% of Hodgkin lymphoma, respectively. EBV-LMP1 was noted in the cytoplasm, membrane and nucleus of HRS cells; P16(INK4A) was in the nucleus and cytoplasm. Microscopically, ID2, EBV-LMP1 and P16(INK4A) staining distinguished the HRS cells from the complex background of lymphocytes. ID2 was positively correlated with EBV-LMP1(P < 0.01), but P16(INK4A) was inversely related to EBV-LMP1 (P < 0.05). It is suggested that ID2, EBV-LMP1 and P16(INK4A) could play an important role in the evolution of classical Hodgkin lymphoma, and be considered as potential adjunct markers to identify HRS cells in diagnosis

  19. p16 (INK4a) has clinicopathological and prognostic impact on oropharynx and larynx squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.D. [Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital A.C. Camargo, São Paulo, SP (Brazil); Department of Oncology, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Department of Otolaryngology-Head and Neck Surgery, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Nonogaki, S. [Departamento de Anatomia Patológica, Hospital A.C. Camargo, São Paulo, SP (Brazil); Soares, F.A. [Departamento de Anatomia Patológica, Hospital A.C. Camargo, São Paulo, SP (Brazil); Departamento de Estomatologia, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP (Brazil); Kowalski, L.P. [Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital A.C. Camargo, São Paulo, SP (Brazil)

    2012-09-07

    CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis.

  20. p16 (INK4a) has clinicopathological and prognostic impact on oropharynx and larynx squamous cell carcinoma

    International Nuclear Information System (INIS)

    Silva, S.D.; Nonogaki, S.; Soares, F.A.; Kowalski, L.P.

    2012-01-01

    CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis

  1. Elevated p16ink4a Expression in Human Labial Salivary Glands as a Potential Correlate of Cognitive Aging in Late Midlife.

    Directory of Open Access Journals (Sweden)

    Christiane Elisabeth Sørensen

    Full Text Available The cell-cycle inhibitor and tumor suppressor cyclin dependent kinase inhibitor, p16ink4a, is one of the two gene products of the ink4a/ARF (cdkn2a locus on chromosome 9q21. Up-regulation of p16ink4a has been linked to cellular senescence, and findings from studies on different mammalian tissues suggest that p16ink4a may be a biomarker of organismal versus chronological age.The aim of this study was to examine the immunolocalization pattern of p16ink4a in human labial salivary gland (LSG tissue, and to analyze whether its expression level in LSGs is a peripheral correlate of cognitive decline in late midlife.The present study was a part of a study of causes and predictors of cognitive decline in middle-aged men in a Danish birth cohort. It is based on data from 181 male participants from the Danish Metropolit birth cohort, born in 1953, who were examined for age-associated alterations in cognition, dental health, and morphological and autonomic innervation characteristics of the LSGs. The participants were allocated to two groups based on the relative change in cognitive performance from young adulthood to late midlife. LSG biopsies were analyzed by qRT-PCR for the expression level of p16ink4a. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections of LSGs.p16ink4a immunoreactivity was observed in LSG ductal, myoepithelial, and stromal cells, but not in acinar cells. The mean relative expression of p16ink4a in LSGs was higher in the group of participants with decline in cognitive performance. A logistic regression analysis revealed that the relative p16 expression was predictive of the participant's group assignment. A negative correlation was found between relative p16ink4a expression and the participant's standardized regression residuals from early adulthood to late midlife cognitive performance scores.p16ink4a expression in human LSGs may constitute a potential peripheral correlate of cognitive decline. Human labial

  2. Investigation of p16(INK4a) as a prognostic biomarker in oral epithelial dysplasia.

    Science.gov (United States)

    Nankivell, Paul; Williams, Hazel; Webster, Keith; Pearson, David; High, Alec; MacLennan, Kenneth; Senguven, Burcu; McConkey, Christopher; Rabbitts, Pamela; Mehanna, Hisham

    2014-04-01

    Human papilloma virus is a risk factor for oropharyngeal cancer. Evidence for a similar aetiological role in the development of oral dysplasia or its transformation to oral cancer is not as clear. Meta-analyses estimate the prevalence of high-risk human papilloma virus (HPV) serotypes to be three times higher in pre-malignant lesions and cancer than in normal oral mucosa. However, this does not imply a causal relationship. Conflicting results are reported from the few studies examining the prognostic significance of HPV positivity in the development of oral cancer. We aimed to examine the ability of p16(INK4a) protein expression, a surrogate marker of HPV infection, to predict malignant progression in a large cohort of oral dysplasia patients. One hundred forty eight oral dysplasia cases underwent immunohistochemical analysis using a monoclonal antibody against p16(INK4a) . Clinical factors were also collated on each case. Slides were double scored independently by two trained observers. Univariate analyses using both logistic and Cox regression models were performed. Thirty nine of 148 cases progressed to cancer. Ten of 148 cases (7%) were p16(INK4a) positive. High grade of dysplasia (P = 0.0002) and lesion morphology (P = 0.03) were found to be prognostic of malignant progression. p16(INK4a) score was not prognostic in this cohort (P = 0.29). This did not change with a time to event analysis (P = 0.24). Few studies have assessed the aetiological role of HPV in cancer development from dysplastic lesions. Our study, using one of the largest cohorts of oral dysplasia, demonstrated a low rate of p16(INK4a) positivity and was unable to confirm a prognostic ability for this biomarker. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Simulation of Different Truncated p16INK4a Forms and In Silico Study of Interaction with Cdk4

    Directory of Open Access Journals (Sweden)

    Najmeh Fahham

    2009-01-01

    Full Text Available Protein-protein interactions studies can greatly increase the amount of structural and functional information pertaining to biologically active molecules and processes. The information obtained from such studies can lead to design and application of new modification in order to obtain a desired bioactivity. Many application packages and servers performing docking, such as HEX, DOT, AUTODOCK, and ZDOCK are now available for predicting the lowest free energy state of a protein complex. In this study, we have focused on cyclin-dependent kinase 4 (Cdk4, a key molecule in the regulation of cell cycle progression at the G1-S phase restriction point and p16INK4a, a tumor suppressor which inhibits Cdk4 activity. Truncated structures were created to find the more critical regions of p16 for interaction. The tertiary structures were determined by ProSAL, GENO3D Web Server. We evaluated their interactions with Cdk4 using two docking systems, HEX 4.5 and DOT 1. Calculations were performed on a high-speed computer. Minimizations and visualizations were carried out by PdbViewer 3.7. Considering shape and shape/electrostatic total energy, structures containing ANK II, III and IV motifs that lack the N-terminal region of the full length p16 molecule showed the best fi t complexes among the p16 truncated forms. The free energies were compatible with that of p16 full length original form, the full length. It seems that the N-terminal of the molecule is not crucial for the interaction since the truncated structure containing only this region did not show a good total energy.

  4. Association of antibody to E2 protein of human papillomavirus and p16INK4A with progression of HPV-infected cervical lesions.

    Science.gov (United States)

    Chuerduangphui, Jureeporn; Pientong, Chamsai; Swangphon, Piyawut; Luanratanakorn, Sanguanchoke; Sangkomkamhang, Ussanee; Tungsiriwattana, Thumwadee; Kleebkaow, Pilaiwan; Burassakarn, Ati; Ekalaksananan, Tipaya

    2018-05-09

    Human papillomavirus (HPV) E2 and L1 proteins are expressed in cervical cells during the lytic stage of infection. Overexpression of p16 INK4A is a biomarker of HPV-associated cervical neoplasia. This study investigated antibodies to HPV16 E2, HPV16 L1, and p16 INK4A in sera from women with no squamous intraepithelial lesion (No-SIL) of the cervix, low-grade SIL, high-grade SIL, and cervical squamous cell carcinoma (SCC). HPV DNA was detected by polymerase chain reaction. Anti-E2, -L1, and -p16 INK4A antibodies in sera were determined by western blot. Among 116 samples, 69 (60%) were HPV DNA-positive. Percentages seropositive for anti-E2, -L1, and -p16 INK4A antibodies were 39.6, 22.4, and 23.3%, respectively. Anti-E2 antibody was significantly correlated with HPV DNA-positive cases. Eighty-seven women (75%) were regarded as infected with HPV, having at least one positive result from HPV DNA, L1, or E2 antibody. Antibody to p16 INK4A was associated with HPV infection (odds = 5.444, 95% CI 1.203-24.629, P = 0.028) and precancerous cervical lesions (odds = 5.132, 95% CI 1.604-16.415, P = 0.006). Interestingly, the concurrent detection of anti-E2 and -p16 INK4A antibodies was significantly associated with HPV infection (odds = 1.382, 95% CI 1.228-1.555, P = 0.044). These antibodies might be good candidate biomarkers for monitoring HPV-associated cervical lesion development to cancer.

  5. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    Science.gov (United States)

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. HFE polymorphisms influence the response to chemotherapeutic agents via induction of p16INK4A.

    Science.gov (United States)

    Lee, Sang Y; Liu, Siying; Mitchell, Ryan M; Slagle-Webb, Becky; Hong, Young-Soo; Sheehan, Jonas M; Connor, James R

    2011-11-01

    HFE is a protein that impacts cellular iron uptake. HFE gene variants are identified as risk factors or modifiers for multiple diseases. Using HFE stably transfected human neuroblastoma cells, we found that cells carrying the C282Y HFE variant do not differentiate when exposed to retinoic acid. Therefore, we hypothesized HFE variants would impact response to therapeutic agents. Both the human neuroblastoma and glioma cells that express the C282Y HFE variant are resistant to Temodar, geldanamycin and γ-radiation. A gene array analysis revealed that p16INK4A (p16) expression was increased in association with C282Y expression. Decreasing p16 protein by siRNA resulted in increased vulnerability to all of the therapeutic agents suggesting that p16 is responsible for the resistance. Decreasing HFE expression by siRNA resulted in a 85% decrease in p16 expression in the neuroblastoma cells but not the astrocytoma cells. These data suggest a potential direct relationship between HFE and p16 that may be cell specific or mediated by different pathways in the different cell types. In conclusion, the C282Y HFE variant impacts the vulnerability of cancer cells to current treatment strategies apparently by increasing expression of p16. Although best known as a tumor suppressor, there are multiple reports that p16 is elevated in some forms of cancer. Given the frequency of the HFE gene variants, as high as 10% of the Caucasian population, these data provide compelling evidence that the C282Y HFE variant should be part of a pharmacogenetic strategy for evaluating treatment efficacy in cancer cells. Copyright © 2011 UICC.

  7. Immunohistochemical study of p16 INK4A and survivin expressions in cervical squamous neoplasm

    Directory of Open Access Journals (Sweden)

    Tan Geok

    2010-01-01

    Full Text Available Introduction:Cervical cancer is the second most common cancer affecting Malaysian women. Despite the implementation of pap smear screening, many women are still diagnosed only in the advanced stage of cervical cancer. This could partly be due to failure of detection of its precursor lesions; hence the need to search for novel biomarkers to assist in the screening and diagnosis of cervical neoplasia. This study aims to determine the expression of p16INK4A and survivin as possible predictive biomarkers in cervical squamous neoplasm. Material and Methods: This is a retrospective study on 201 cases of cervical neoplasm comprising of 129 cervical intraepithelial neoplasia (CIN and 72 squamous cell carcinoma (SCC. All samples were evaluated by two independent observers using p16INK4A and survivin monoclonal antibodies. The p16 INK4A expression was graded as negative, focal and diffuse positivity. The intensity for survivin expression was graded as weak, moderate and intense. Results: It is seen that p16 INK4A expression in CIN 1, CIN 2 and CIN 3 were 25.4%, 42.9% and 95.9% respectively. Majority of SCC (98.6% showed p16 INK4A expression. Survivin expressions in CIN 1, CIN 2, CIN 3 and SCC were 56.7%, 33.4%, 87.5% and 98.6%. There was a linear relationship between increasing grade of CIN and p16 INK4A expressions. Conclusion: Our study showed that p16 INK4A expressions correlate well with the increasing grade of CIN. Although survivin does not correlate well to the increasing grade of CIN, it could be useful in differentiating CIN 3 from SCC.

  8. AN UPWARD TREND IN DNA P16INK4A METHYLATION PATTERN AND HIGH RISK HPV INFECTION ACCORDING TO THE SEVERITY OF THE CERVICAL LESION

    Directory of Open Access Journals (Sweden)

    Fernanda Nahoum Carestiato

    2013-09-01

    Full Text Available SUMMARY High-risk human papillomavirus (hr-HPV infection is necessary but not sufficient for cervical cancer development. Recently, P16INK4A gene silencing through hypermethylation has been proposed as an important cofactor in cervical carcinogenesis due to its tumor suppressor function. We aimed to investigate P16INK4A methylation status in normal and neoplastic epithelia and evaluate an association with HPV infection and genotype. This cross-sectional study was performed with 141 cervical samples from patients attending Hospital Moncorvo Filho, Rio de Janeiro. HPV detection and genotyping were performed through PCR and P16INK4A methylation by nested-methylation specific PCR (MSP. HPV frequency was 62.4% (88/141. The most common HPV were HPV16 (37%, HPV18 (16.3% and HPV33/45(15.2%. An upward trend was observed concerning P16INK4A methylation and lesion degree: normal epithelia (10.7%, low grade lesions (22.9%, high grade (57.1% and carcinoma (93.1% (p < 0.0001. A multivariate analysis was performed to evaluate an association between methylation, age, tobacco exposure, HPV infection and genotyping. A correlation was found concerning methylation with HPV infection (p < 0.0001, hr-HPV (p = 0.01, HSIL (p < 0.0007 and malignant lesions (p < 0.0001. Since viral infection and epigenetic alterations are related to cervical carcinoma, we suggest that P16INK4A methylation profile maybe thoroughly investigated as a biomarker to identify patients at risk of cancer.

  9. Radionuclides in cigarettes may lead to carcinogenesis via p16INK4a inactivation

    International Nuclear Information System (INIS)

    Prueitt, Robyn L.; Goodman, Julie E.; Valberg, Peter A.

    2009-01-01

    It is widely accepted that tobacco smoke is responsible for the vast majority of lung cancers worldwide. There are many known and suspected carcinogens present in cigarette smoke, including α-emitting radioisotopes. Epidemiologic studies have shown that increased lung cancer risk is associated with exposure to ionizing radiation, and it is estimated that the majority of smoking-induced lung cancers may be at least partly attributable to the inhaled and deposited radiation dose from radioisotopes in the cigarette smoke itself. Recent research shows that silencing of the tumor suppressor gene p16 INK4a (p16) by promoter methylation plays a role in smoking-related lung cancer. Inactivation of p16 has also been associated with lung cancer incidence in radiation-exposed workers, suggesting that radionuclides in cigarette smoke may be acting with other compounds to cause smoking-induced lung cancer. We evaluated the mechanism of ionizing radiation as an accepted cause of lung cancer in terms of its dose from tobacco smoke and silencing of p16. Because both radiation and cigarette smoking are associated with inactivation of p16, and p16 inactivation has been shown to play a major role in carcinogenesis, ionizing radiation from cigarette smoke likely plays a role in lung cancer risk. How large a role it plays, relative to chemical carcinogens and other modes of action, remains to be elucidated

  10. 5-Aza-2'-deoxycytidine protects against emphysema in mice via suppressing p16Ink4a expression in lung tissue

    Directory of Open Access Journals (Sweden)

    He ZH

    2017-10-01

    Full Text Available Zhi-Hui He,1 Yan Chen,2 Ping Chen,2 Sheng-Dong He,2 Hui-Hui Zeng,2 Ji-Ru Ye,2 Da Liu,2 Jun Cao3 1Intensive Care Unit, 2Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, 3Department of Respiratory Medicine, Hunan Provincial People’s Hospital, Changsha, China Background: There is a growing realization that COPD, or at least emphysema, involves several processes presenting in aging and cellular senescence. Endothelial progenitor cells (EPCs contribute to neovascularization and play an important role in the development of COPD. The gene for p16Ink4a is a major dominant senescence one. The aim of the present study was to observe changes in lung function, histomorphology of lung tissue, and expression of p16Ink4a in lung tissue and bone marrow-derived EPCs in emphysematous mice induced by cigarette-smoke extract (CSE, and further to search for a potential candidate agent protecting against emphysema induced by CSE. Materials and methods: An animal emphysema model was induced by intraperitoneal injection of CSE. 5-Aza-2'-deoxycytidine (5-Aza-CdR was administered to the emphysematous mice. Lung function and histomorphology of lung tissue were measured. The p16Ink4a protein and mRNA in EPCs and lung tissues were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction, respectively. Results: CSE induced emphysema with increased p16Ink4a expression in lung tissue and bone marrow-derived EPCs. 5-Aza-CdR partly protected against emphysema, especially in the lung-morphology profile, and partly protest against the overexpression of p16Ink4a in EPCs and lung tissue induced by CSE. Conclusion: 5-Aza-CdR partly protected against emphysema in mice via suppressing p16Ink4a expression in EPCs and lung tissue. Keywords: 5-Aza-2'-deoxycytidine, cigarette smoke, emphysema, endothelial progenitor cells, p16Ink4a

  11. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    Science.gov (United States)

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  12. Immunohistochemical characteristic of expression levels of Kі-67, p16INK4a, HPV16 in cervical intraepithelial neoplasia and cervical cancer

    Directory of Open Access Journals (Sweden)

    V. A. Tumanskiy

    2017-08-01

    Full Text Available Squamous cervical cancer (SCC is a common tumor in women, which is preceded by the series of pathological processes, among which the key role is played by cervical intraepithelial neoplasia (CIN. Aim. To study the characteristics of immunohistochemical (IHC expression of Ki-67, p16INK4a, HPV16 in squamous cervical epithelium (SCE with dysplastic changes of varying degree (CIN I–III and also in the tumor cells of SCC. Materials and methods. Pathohistological and IHC studies of uterine cervix biopsies from 53 patients (the age ranged from 18 to 45 years were performed. Results. It was found that SCE with CIN I is characterized by the low Ki-67 expression level (Me = 17.87 % (13.76, 22.44 and the extremely low p16INK4a expression level (Me = 0.00 CUOD (0.00; 29.64. The proportion of HPV16-positive patients with CIN I is 27.27 %. CIN II is characterized by the average proliferation level in SCE (Me = 44.96 % (34.91, 55.41 and the moderate p16INK4a expression level (Me = 75.71 CUOD (51.24, 82, 41. The proportion of HPV16-positive patients with CIN II is 71.43 %. CIN III is characterized by the high proliferation level (Me = 74.62 % (68.50, 84.67 and by the high p16INK4a expression level of in SCE (Me = 117.47 CUOD (95.38, 123, 93; the proportion of HPV16-positive patients with CIN III is 77.78%. In all the patients with SСС, nuclear and cytoplasmic expression of HPV16 was detected in the tumor cells. High expression levels of Ki-67 and p16INK4a were detected in the tumor cells. There are direct correlations between the expression levels of Ki-67, p16INK4a, HPV16 and CIN degree. Conclusions. These data indicate that the expression levels of Ki-67, p16INK4a and HPV16 increase with the increasing of CIN grade. The absence of statistically significant differences between the expression levels of Ki-67, p16INK4a and HPV16 in CIN III and the same levels in the tumor cells of SCC indicates that these markers cannot be used for differential diagnosis

  13. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence

    DEFF Research Database (Denmark)

    Agger, Karl; Cloos, Paul A C; Rudkjaer, Lise

    2009-01-01

    The tumor suppressor proteins p16INK4A and p14ARF, encoded by the INK4A-ARF locus, are key regulators of cellular senescence. The locus is epigenetically silenced by the repressive H3K27me3 mark in normally growing cells, but becomes activated in response to oncogenic stress. Here, we show that e...... in mouse embryonic fibroblasts results in suppression of p16Ink4a and p19Arf expression and in their immortalization....

  14. PD-L1 expression is associated with p16INK4A expression in non-oropharyngeal head and neck squamous cell carcinoma

    Science.gov (United States)

    Chen, San-Chi; Chang, Peter Mu-Hsin; Wang, Hsiao-Jung; Tai, Shyh-Kuan; Chu, Pen-Yuan; Yang, Muh-Hwa

    2018-01-01

    PD-L1 expression is critical in helping tumor cells evade the immune system. However, the level of PD-L1 expression in non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC) and its association with patient prognosis remains unclear. A retrospective clinicopathological analysis was performed on 106 patients with non-OPHNSCC diagnosed between 2007 and 2014. In the current study, tissue arrays from paraffin-embedded non-OPHNSCC samples obtained from patients were constructed, and PD-L1 and p16INK4A expression were determined using immunohistochemistry. Systemic inflammatory factors, including C-reactive protein, serum white blood cell, neutrophil, monocyte and lymphocyte counts were also analyzed. The current study demonstrated that PD-L1 was overexpressed in 32.1% (34/106) and p16INK4A in 20.8% (22/106) of patients. The expression of PD-L1 was associated with p16INK4A expression (P<0.01) but was not associated with levels of systemic inflammatory factors. Tumor stage was determined to be a significant prognostic value (stage I/II vs. III/IV, P=0.03), however, PD-L1, p16INK4A or other clinicopathological factors were not. The current study identified an association between PD-L1 and p16INK4A expression in non-OPHNSCC. This may facilitate the development of anti-PD1/PDL1 therapies to treat patients with head and neck cancer. PMID:29434933

  15. Dysregulation of the Bmi-1/p16Ink4a pathway provokes an aging-associated decline of submandibular gland function

    Science.gov (United States)

    Yamakoshi, Kimi; Katano, Satoshi; Iida, Mayu; Kimura, Hiromi; Okuma, Atsushi; Ikemoto-Uezumi, Madoka; Ohtani, Naoko; Hara, Eiji; Maruyama, Mitsuo

    2015-01-01

    Bmi-1 prevents stem cell aging, at least partly, by blocking expression of the cyclin-dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi-1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi-1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi-1/p16Ink4a pathway occurs during aging in vivo. Using real-time in vivo imaging of p16Ink4a expression in Bmi-1-KO mice, we uncovered a novel function of the Bmi-1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging-related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly. PMID:25832744

  16. Protein p 16INK4A expression in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of uterine cervix

    Directory of Open Access Journals (Sweden)

    Gupta Ruchi

    2010-01-01

    Full Text Available The association of human papilloma virus (HPV infection and cervical intraepithelial neoplasia (CIN is well recognized. Interaction of HPV oncogenic proteins with cellular regulatory proteins leads to up regulation of p16 INK4A , a CDK inhibitor, which is a biomarker for HPV infection. We investigated p16 expression in CIN and invasive squamous cell carcinoma (SCC which has not been reported in the Indian population previously. Materials and Methods: Retrospective analysis of 100 cases with 20 cases each of histologically normal cervical epithelium, CIN1, 2, 3 and invasive SCC for p16 expression was performed by immunohistochemistry using commercially available mouse monoclonal antibody to p16 (clone 6H12. Statistical Analysis: For differences in expression among groups, statistical analysis was carried out using ANOVA and post hoc test of Scheffe. Results: p16 immunoreactivity was found to be both nuclear and/or cytoplasmic. The normal cervical epithelium was predominantly negative for p16 (18/20. There was a progressive increase of p16 expression with the grade of CIN. In CIN 1, two cases (20% showed nuclear and nucleocytoplasmic positivity respectively. In contrast, diffuse strong nuclear or nucleocytoplasmic expression was observed in 45 and 55% cases of CIN 2 and CIN 3 respectively. All except one squamous cell carcinoma stained strongly positive for p16. The difference in expression between CIN 2/3 and SCC versus normal cervix was found highly significant (p is equal to 0.008 and p less than 0.001. Conclusions: p16 expression correlates excellently with the grade of CIN and is a sensitive marker of cervical intraepithelial neoplasia.

  17. p16INK4a immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis

    Science.gov (United States)

    Tsoumpou, I; Arbyn, M; Kyrgiou, M; Wentzensen, N; Koliopoulos, G; Martin-Hirsch, P; Paraskevaidis, E

    2009-01-01

    Background P16INK4a is a biomarker for transforming HPV infections that could act as an adjunct to current cytological and histological assessment of cervical smears and biopsies, allowing the identification of those women with ambiguous results that require referral to colposcopy and potentially treatment. Material and Methods We conducted a systematic review of all studies that evaluated the use of p16INK4a in cytological or histological specimens from the uterine cervix. We also estimated the mean proportion of samples that were positive for p16INK4a in cytology and histology, stratified by the grade of the lesion. Results Sixty-one studies were included. The proportion of cervical smears overexpressing p16INK4a increased with the severity of cytological abnormality. Among normal smears, only 12% (95% CI: 7–17%) were positive for the biomarker compared to 45% of ASCUS and LSIL (95% CI: 35–54% and 37– 57% respectively) and 89% of HSIL smears (95% CI: 84–95%). Similarly, in histology only 2% of normal biopsies (95% CI: 0.4– 30%) and 38% of CIN1 (95% CI: 23– 53%) showed diffuse staining for p16INK4a compared to 68% of CIN2 (95% CI: 44– 92%) and 82% of CIN3 (95% CI: 72– 92%). Conclusion Although there is good evidence that p16INK4a immunostaining correlates with the severity of cytological/histological abnormalities, the reproducibility is limited due to insufficiently standardized interpretation of the immunostaining. Therefore, a consensus needs to be reached regarding the evaluation of p16INK4a staining and the biomarker needs to be evaluated in various clinical settings addressing specific clinical questions. PMID:19261387

  18. Deregulated expression of p16INK4a and p53 pathway members in benign and malignant myoepithelial tumours of the salivary glands

    NARCIS (Netherlands)

    Vékony, H.; Röser, K.; Löning, T.; Raaphorst, F.M.; Leemans, C.R.; van der Waal, I.; Bloemena, E.

    2008-01-01

    Aims: Myoepithelial salivary gland tumours are uncommon and follow an unpredictable biological course. The aim was to examine their molecular background to acquire a better understanding of their clinical behaviour. Methods and results: Expression of protein (E2F1, p16INK4a, p53, cyclin D1, Ki67 and

  19. p16INK4A, p53, EGFR expression and KRAS mutation status in squamous cell cancers of the anus: Correlation with outcomes following chemo-radiotherapy

    International Nuclear Information System (INIS)

    Gilbert, Duncan C; Williams, Anthony; Allan, Kimberley; Stokoe, Joanna; Jackson, Tim; Linsdall, Suzanne; Bailey, Charles MH; Summers, Jeff

    2013-01-01

    Background and Purpose: Squamous cell carcinomas of the anal canal are associated with infection with Human Papilloma Viruses (HPVs). Chemo-radiotherapy (CRT) gives 70% 3-year relapse-free survival. Improved predictive markers and therapeutic options are required. Methods: Tumours from 153 patients treated with radical chemo-radiotherapy (50.4 Gy in 28 with concurrent Mitomycin and 5-Fluorouracil between 2004 and 2009) were retrieved and immunohistochemistry performed for p16 INK4A , p53 and EGFR and correlated with outcome. Primary and relapsed samples were analysed for mutations in KRAS. Results: 137/153 (89.5%) stained moderately or strongly for p16 INK4A . p16 INK4A correlated strongly with outcome. 37/137 patients demonstrating moderate/strong p16 INK4A expression relapsed (27.0%), as opposed to 10/16 (62.5%) with absent/weak staining (log rank test p INK4A negative tumours were more frequent in men. p16 INK4A negative patients had significantly worse overall survival (p INK4A is strongly associated with relapse in SCC of the anus and identifies patients with very poor rates of relapse-free and overall survival. Primary and recurrent anal cancer expresses wild type KRAS, unaffected by treatment, supporting trials targeting EGFR in poor risk/recurrent anal cancer

  20. Case report of a p16INK4A-positive branchial cleft cyst.

    Science.gov (United States)

    McLean, T; Iseli, C; Amott, D; Taylor, M

    2015-06-01

    To report the occurrence of a concurrent oropharyngeal papilloma and branchial cleft cyst linked by p16(INK4A) and human papillomavirus immunohistochemistry. A 42-year-old woman presented with a 1-month history of a left lateral neck mass. Contrast enhanced computed tomography showed a hypodense lesion 20 mm in diameter anteromedial to the left sternocleidomastoid muscle. Ultrasound-guided fine needle aspiration suggested a branchial cleft cyst. Panendoscopy was performed at the time of neck mass removal, and a papillomatous lesion was removed from the left hypopharynx. Histopathological analysis showed the neck lesion to be a branchial cyst containing lymphoid tissue, and the oral lesion to be a squamous papilloma. Immunohistochemical analysis showed both the branchial cleft cyst and papilloma to be positive for p16(INK4A) expression and human papillomavirus DNA. Histological and immunohistochemical analyses support the cystic transformation of lymph nodes, or the 'Inclusion Theory', as the aetiology of branchial apparatus anomalies, and raise the possibility that human papillomavirus infection may play a much larger role in disease of the head and neck than previously supposed.

  1. Chemotherapy and Stem Cell Transplantation Increase p16INK4a Expression, a Biomarker of T-cell Aging

    Directory of Open Access Journals (Sweden)

    William A. Wood

    2016-09-01

    Full Text Available The expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6 months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p = 0.003, prior autologous transplantation (p = 0.01 and prior exposure to alkylating agents (p = 0.01. Transplantation was associated with a marked increase in p16INK4a expression 6 months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p = 0.002 than allogeneic transplant recipients (1.9-fold increase, p = 0.0004. RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells.

  2. Clinical and prognosis value of the CIMP status combined with MLH1 or p16 INK4a methylation in colorectal cancer.

    Science.gov (United States)

    Saadallah-Kallel, Amana; Abdelmaksoud-Dammak, Rania; Triki, Mouna; Charfi, Slim; Khabir, Abdelmajid; Sallemi-Boudawara, Tahia; Mokdad-Gargouri, Raja

    2017-08-01

    Aberrant DNA methylation of CpG islands occurred frequently in CRC and associated with transcriptional silencing of key genes. In this study, the CIMP combined with MLH1 or p16 INK4a methylation status was determined in CRC patients and correlated with clinicopathological parameters and overall survival. Our data showed that CIMP+ CRCs were identified in 32.9% of cases and that CACNAG1 is the most frequently methylated promoter. When we combined the CIMP with the MLH1 or the p16 INK4a methylation status, we found that CIMP-/MLH1-U (37.8%) and CIMP-/p16 INK4a -U (35.4%) tumors were the most frequent among the four subtypes. Statistical analysis showed that tumor location, lymphovascular invasion, TNM stage, and MSI differed among the group of patients. Kaplan-Meier analyses revealed differences in overall survival according to the CIMP combined with MLH1 or p16 INK4a methylation status. In a multivariate analysis, CIMP/MLH1 and CIMP/p16 INK4a methylation statuses were predictive of prognosis, and the OS was longer for patients with tumors CIMP-/MLH1-M, as well as CIMP-/p16 INK4a -M. Furthermore, DNMT1 is significantly overexpressed in tumors than in normal tissues as well as in CIMP+ than CIMP- tumors. Our results suggest that tumor classification based on the CIMP status combined with MLH1 or p16 INK4a methylation is useful to predict prognosis in CRC patients.

  3. Polymorphisms in promoter sequences of MDM2, p53, and p16INK4a genes in normal Japanese individuals

    Directory of Open Access Journals (Sweden)

    Yasuhito Ohsaka

    2010-01-01

    Full Text Available Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16INK4a genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C nucleotide position in the p53 gene. The Japanese individuals also exhibited p16INK4a polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16INK4a differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.

  4. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16INK4a gene in human colorectal carcinoma (Caco-2) cells

    International Nuclear Information System (INIS)

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A.

    2014-01-01

    Highlights: • Cactus pear fruit extract and indicaxanthin cause apoptosis of colon cancer cells. • Indicaxanthin does not cause ROS formation, but affects epigenoma in Caco-2 cells. • Indicaxanthin reverses methylation of oncosuppressor p16 INK4a gene in Caco-2 cells. • Indicaxanthin reactivates retinoblastoma in Caco-2 cells. • Bioavailable indicaxanthin may have chemopreventive activity in colon cancer. - Abstract: Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC 50 400 ± 25 mg fresh pulp equivalents/mL, and 115 ± 15 μM (n = 9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16 INK4a gene promoter, reactivation of the silenced mRNA expression and accumulation of p16 INK4a , a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells

  5. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    Science.gov (United States)

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  6. [Sorting role of p16(INK4a)/Ki-67 double immunostaining in the cervical cytology specimens of ASCUS and LSIL cases].

    Science.gov (United States)

    Yu, J; Zhu, H T; Zhao, J J; Su, J Z; Xia, Y D

    2017-05-08

    Objective: To investigate the sorting effect of p16(INK4a)/Ki-67 double immunostaining method in patients with atypical squamous cells of undetermined significance (ASCUS) or low-grade squamous intraepithelial lesion (LSIL) cytology results. Methods: Four-hundred and twenty cases collected during April 2014 to February 2015 of cervical cytology of ASCUS ( n =318) and LSIL ( n =102) were selected, and residual liquid-based cytology specimens were used for p16(INK4a)/Ki-67 double immunostaining. The sensitivity and specificity of the detection of cervical precancerous lesions and cervical cancer were calculated, and the results were compared with high risk HPV. Taking histological follow-up as the gold standard, the test was considered positive when at least one cell exhibited p16(INK4a)/Ki-67 co-staining, without requirement of adjunct morphologic interpretation of positive cells. Results: Further screening CIN2+ in cytology ASCUS and LSIL group , the sensitivity of p16(INK4a)/Ki-67 double immunostaining was slightly lower than high risk HPV (84.2% vs . 94.7%), while the specificity was higher (84.0% vs . 53.9%). For ASCUS patients, the sensitivity of p16(INK4a)/Ki-67 double immunostaining and high risk HPV was 82.6% and 91.3%, and the specificity was 88.8% and 63.7%, respectively. For LSIL patients, the sensitivity of p16(INK4a)/Ki-67 double immunostaining and high risk HPV was 86.7% and 100.0%, and the specificity was 67.8% and 20.7%, respectively. For patients younger and older than 30 years, specificity of p16(INK4a)/Ki-67 double immunostaining was both higher than that of high risk HPV (80.8% vs . 42.3%; 84.6% vs . 56.9%). Conclusions: p16(INK4a)/Ki-67 double immunostaining can effectively identify the high risk population in ASCUS or LSIL, with higher specificity than high risk HPV test. p16(INK4a)/Ki-67 double immunostaining may benefit patients younger than 30 years of age as a preliminary or potential cytology-combining screening tool.

  7. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16{sup INK4a} gene in human colorectal carcinoma (Caco-2) cells

    Energy Technology Data Exchange (ETDEWEB)

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A., E-mail: maria.livrea@unipa.it

    2014-07-18

    Highlights: • Cactus pear fruit extract and indicaxanthin cause apoptosis of colon cancer cells. • Indicaxanthin does not cause ROS formation, but affects epigenoma in Caco-2 cells. • Indicaxanthin reverses methylation of oncosuppressor p16{sup INK4a} gene in Caco-2 cells. • Indicaxanthin reactivates retinoblastoma in Caco-2 cells. • Bioavailable indicaxanthin may have chemopreventive activity in colon cancer. - Abstract: Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC{sub 50} 400 ± 25 mg fresh pulp equivalents/mL, and 115 ± 15 μM (n = 9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16{sup INK4a} gene promoter, reactivation of the silenced mRNA expression and accumulation of p16{sup INK4a}, a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells.

  8. The Contrasting Role of p16Ink4A Patterns of Expression in Neuroendocrine and Non-Neuroendocrine Lung Tumors: A Comprehensive Analysis with Clinicopathologic and Molecular Correlations.

    Directory of Open Access Journals (Sweden)

    Nicola Fusco

    Full Text Available Lung cancer encompasses a constellation of malignancies with no validated prognostic markers. p16Ink4A expression has been reported in different subtypes of lung cancers; however, its prognostic value is controversial. Here, we sought to investigate the clinical significance of p16Ink4A immunoexpression according to specific staining patterns and its operational implications. A total of 502 tumors, including 277 adenocarcinomas, 84 squamous cell carcinomas, 22 large cell carcinomas, 47 typical carcinoids, 12 atypical carcinoids, 28 large cell neuroendocrine carcinomas, and 32 small cell carcinomas were reviewed and subjected to immunohistochemical analysis for p16Ink4A and Ki67. The spectrum of p16Ink4A expression was annotated for each case as negative, sporadic, focal, or diffuse. Expression at immunohistochemical level showed intra-tumor homogeneity, regardless tumor histotype. Enrichments in cells expressing p16Ink4A were observed from lower- to higher-grade neuroendocrine malignancies, whereas a decrease was seen in poorly and undifferentiated non-neuroendocrine carcinomas. Tumor proliferation indices were higher in neuroendocrine tumors expressing p16Ink4A while non-neuroendocrine malignancies immunoreactive for p16Ink4A showed a decrease in Ki67-positive cells. Quantitative statistical analyses including each histotype and the p16Ink4A status confirmed the independent prognostic role of p16Ink4A expression, being a high-risk indicator in neuroendocrine tumors and a marker of good prognosis in non-neuroendocrine lung malignancies. In this study, we provide circumstantial evidence to suggest that the routinary assessment of p16Ink4A expression using a three-tiered scoring algorithm, even in a small biopsy, may constitute a reliable, reproducible, and cost-effective substrate for a more accurate risk stratification of each individual patient.

  9. p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response.

    Science.gov (United States)

    Feng, Xingmei; Xing, Jing; Feng, Guijuan; Huang, Dan; Lu, Xiaohui; Liu, Suzhe; Tan, Wei; Li, Liren; Gu, Zhifeng

    2014-01-01

    Mesenchymal stem cells derived from human dental pulp (DP-MSCs) are characterized by self-renewal and multi-lineage differentiation, which play important roles in regenerative medicine. Autologous transfers, as non-immunogenic, constitute the safest approach in cellular transplantations. However, their use may be limited by age-related changes. In the study, we compared DP-MSCs isolated from human in five age groups: 5-12 y, 12-20 y, 20-35 y, 35-50 y, and >50 y. We tested the effect of age on proliferation, differentiation, senescence-associated β-galactosidase (SA-β-gal), cell cycle and programmed cell death. DP-MSCs showed characteristics of senescence as a function of age. Meanwhile, the expression of p16(INK4A) and γ-H2A.X significantly increased with age, whereas heat shock protein 60 (HSP60) was decreased in the senescent DP-MSCs. Reactive oxygen species (ROS) staining showed the number of ROS-stained cells and the DCFH fluorescent level were higher in the aged group. Further we examined the senescence of DP-MSCs after modulating p16(INK4A) signaling. The results indicated the dysfunction of DP-MSCs was reversed by p16(INK4A) siRNA. In summary, our study indicated p16(INK4A) pathway may play a critical role in DP-MSCs age-related changes and the DNA damage response (DDR) and stress response may be the main mediators of DP-MSCs senescence induced by excessive activation of p16(INK4A) signaling. Copyright © 2014. Published by Elsevier Ireland Ltd.

  10. SM22α-induced activation of p16INK4a/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of γ-radiation and doxorubicin in HepG2 cells

    International Nuclear Information System (INIS)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan; Paik, Sang Gi; Cho, Eun Wie; Kim, In Gyu

    2010-01-01

    Research highlights: → SM22α overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of γ-radiation or doxorubicin promotes cellular senescence. → SM22α overexpression elevates p16 INK4a followed by pRB activation, but there are no effects on p53/p21 WAF1/Cip1 pathway. → SM22α-induced MT-1G activates p16 INK4a /pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22α) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22α overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22α overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of γ-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 μg/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21 WAF1/Cip1 induction or p16 INK4a /retinoblastoma protein (pRB) activation. SM22α overexpression in HepG2 cells elevated p16 INK4a followed by pRB activation, but did not activate the p53/p21 WAF1/Cip1 pathway. Moreover, MT-1G, which is induced by SM22α overexpression, was involved in the activation of the p16 INK4a /pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22α modulates cellular senescence caused by damaging agents via regulation of the p16 INK4a /pRB pathway in HepG2 cells and that these effects of SM22α are partially mediated by MT-1G.

  11. Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16Ink4a) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats

    International Nuclear Information System (INIS)

    Tsuchiya, Takuma; Wang, Liyun; Yafune, Atsunori; Kimura, Masayuki; Ohishi, Takumi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-01-01

    Cell cycle aberration was immunohistochemically examined in relation to preneoplastic liver cell foci expressing glutathione S-transferase placental form (GST-P) at early stages of tumor-promotion in rats with thioacetamide (TAA), a hepatocarcinogen facilitating liver cell regeneration. Immunoexpression of p16 Ink4a following exposure to other hepatocarcinogens/promoters and its DNA methylation status were also analyzed during early and late tumor-promotion stages. GST-P + liver cell foci increased cell proliferation and decreased apoptosis when compared with surrounding liver cells. In concordance with GST-P + foci, checkpoint proteins at G 1 /S (p21 Cip1 , p27 Kip1 and p16 Ink4a ) and G 2 /M (phospho-checkpoint kinase 1, Cdc25c and phospho-Wee1) were either up- or downregulated. Cellular distribution within GST-P + foci was either increased or decreased with proteins related to G 2 -M phase or DNA damage (topoisomerase IIα, phospho-histone H2AX, phospho-histone H3 and Cdc2). In particular, p16 Ink4a typically downregulated in GST-P + foci and regenerative nodules at early tumor-promotion stage with hepatocarcinogens facilitating liver cell regeneration and in neoplastic lesions at late tumor-promotion stage with hepatocarcinogens/promoters irrespective of regenerating potential. Hypermethylation at exon 2 of Cdkn2a was detected at both early- and late-stages. Thus, diverse disruptive expression of G 1 /S and G 2 /M proteins, which allows for clonal selection of GST-P + foci, results in the acquisition of multiple aberrant phenotypes to disrupt checkpoint function. Moreover, increased DNA-damage responses within GST-P + foci may be the signature of genetic alterations. Intraexonic hypermethylation may be responsible for p16 Ink4a -downregulation, which facilitates cell cycle progression in early preneoplastic lesions produced by repeated cell regeneration and late-stage neoplastic lesions irrespective of the carcinogenic mechanism.

  12. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT.

    Science.gov (United States)

    Haga, Kei; Ohno, Shin-ichi; Yugawa, Takashi; Narisawa-Saito, Mako; Fujita, Masatoshi; Sakamoto, Michiie; Galloway, Denise A; Kiyono, Tohru

    2007-02-01

    Activation of telomerase is sufficient for immortalization of some types of human cells but additional factors may also be essential. It has been proposed that stress imposed by inadequate culture conditions induces senescence due to accumulation of p16(INK4a). Here, we present evidence that many human cell types undergo senescence by activation of the p16(INK4a)/Rb pathway, and that introduction of Bmi-1 can inhibit p16(INK4a) expression and extend the life span of human epithelial cells derived from skin, mammary gland and lung. Introduction of p16(INK4a)-specific short hairpin RNA, as well as Bmi-1, suppressed p16(INK4a) expression in human mammary epithelial cells without promoter methylation, and extended their life span. Subsequent introduction of hTERT, the telomerase catalytic subunit, into cells with low p16(INK4a) levels resulted in efficient immortalization of three cell types without crisis or growth arrest. The majority of the human mammary epithelial cells thus immortalized showed almost normal ploidy as judged by G-banding and spectral karyotyping analysis. Our data suggest that inhibition of p16(INK4a) and introduction of hTERT can immortalize many human cell types with little chromosomal instability.

  13. Survey of familial glioma and role of germline p16INK4A/p14ARF and p53 mutation

    DEFF Research Database (Denmark)

    Robertson, Lindsay B; Armstrong, Georgina N; Olver, Bianca D

    2010-01-01

    There is increasing recognition of familial propensity to glioma as a distinct clinical entity beyond a few rare syndromes; however its genetic basis is poorly understood. The role of p16(INK4A)/p14(ARF) and p53 mutations in sporadic glioma provides a strong rationale for investigating germline m...

  14. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  15. Decreased D2-40 and increased p16INK4A immunoreactivities correlate with higher grade of cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Lu Zhouping

    2011-07-01

    Full Text Available Abstract Background D2-40 has been shown a selective marker for lymphatic endothelium, but also shown in the benign cervical basal cells. However, the application of D2-40 immunoreactivity in the cervical basal cells for identifying the grade of cervical intraepithelial neoplasia (CIN has not been evaluated. Methods In this study, the immunoreactive patterns of D2-40, compared with p16INK4A, which is currently considered as the useful marker for cervical cancers and their precancerous diseases, were examined in total 125 cervical specimens including 32 of CIN1, 37 of CIN2, 35 of CIN3, and 21 of normal cervical tissue. D2-40 and p16INK4A immunoreactivities were scored semiquantitatively according to the intensity and/or extent of the staining. Results Diffuse D2-40 expression with moderate-to-strong intensity was seen in all the normal cervical epithelia (21/21, 100% and similar pattern of D2-40 immunoreactivity with weak-to-strong intensity was observed in CIN1 (31/32, 97.2%. However, negative and/or focal D2-40 expression was found in CIN2 (negative: 20/37, 54.1%; focal: 16/37, 43.2% and CIN3 (negative: 22/35, 62.8%; focal: 12/35, 34.3%. On the other hand, diffuse immunostaining for p16INK4A was shown in 37.5% of CIN1, 64.9% of CIN2, and 80.0% of CIN3. However, the immunoreactive pattern of D2-40 was not associated with the p16INK4A immunoreactivity. Conclusions Immunohistochemical analysis of D2-40 combined with p16INK4A may have a significant implication in clinical practice for better identifying the grade of cervical intraepithelial neoplasia, especially for distinguishing CIN1 from CIN2/3.

  16. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16(INK4a) gene in human colorectal carcinoma (Caco-2) cells.

    Science.gov (United States)

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A

    2014-07-18

    Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC50 400±25 mg fresh pulp equivalents/mL, and 115±15 μM (n=9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16(INK4a) gene promoter, reactivation of the silenced mRNA expression and accumulation of p16(INK4a), a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Paolo Spallarossa

    Full Text Available Patients treated with low-dose anthracyclines often show late onset cardiotoxicity. Recent studies suggest that this form of cardiotoxicity is the result of a progenitor cell disease. In this study we demonstrate that Cord Blood Endothelial Progenitor Cells (EPCs exposed to low, sub-apoptotic doses of doxorubicin show a senescence phenotype characterized by increased SA-b-gal activity, decreased TRF2 and chromosomal abnormalities, enlarged cell shape, and disarrangement of F-actin stress fibers accompanied by impaired migratory ability. P16( INK4A localizes in the cytoplasm of doxorubicin-induced senescent EPCs and not in the nucleus as is the case in EPCs rendered senescent by different stimuli. This localization together with the presence of an arrest in G2, and not at the G1 phase boundary, which is what usually occurs in response to the cell cycle regulatory activity of p16(INK4A, suggests that doxorubicin-induced p16( INK4A does not regulate the cell cycle, even though its increase is closely associated with senescence. The effects of doxorubicin are the result of the activation of MAPKs p38 and JNK which act antagonistically. JNK attenuates the senescence, p16( INK4A expression and cytoskeleton remodeling that are induced by activated p38. We also found that conditioned medium from doxorubicin-induced senescent cardiomyocytes does not attract untreated EPCs, unlike conditioned medium from apoptotic cardiomyocytes which has a strong chemoattractant capacity. In conclusion, this study provides a better understanding of the senescence of doxorubicin-treated EPCs, which may be helpful in preventing and treating late onset cardiotoxicity.

  18. A pilot study to compare the detection of HPV-16 biomarkers in salivary oral rinses with tumour p16INK4a expression in head and neck squamous cell carcinoma patients

    International Nuclear Information System (INIS)

    Chai, Ryan C.; Lim, Yenkai; Frazer, Ian H.; Wan, Yunxia; Perry, Christopher; Jones, Lee; Lambie, Duncan; Punyadeera, Chamindie

    2016-01-01

    Human papilloma virus-16 (HPV-16) infection is a major risk factor for a subset of head and neck squamous cell carcinoma (HNSCC), in particular oropharyngeal squamous cell carcinoma (OPSCC). Current techniques for assessing the HPV-16 status in HNSCC include the detection of HPV-16 DNA and p16 INK4a expression in tumor tissues. When tumors originate from hidden anatomical sites, this method can be challenging. A non-invasive and cost-effective alternative to biopsy is therefore desirable for HPV-16 detection especially within a community setting to screen at-risk individuals. The present study compared detection of HPV-16 DNA and RNA in salivary oral rinses with tumor p16 INK4a status, in 82 HNSCC patients using end-point and quantitative polymerase chain reaction (PCR). Of 42 patients with p16 INK4a -positive tumours, 39 (sensitivity = 92.9 %, PPV = 100 % and NPV = 93 %) had oral rinse samples with detectable HPV-16 DNA, using end-point and quantitative PCR. No HPV-16 DNA was detected in oral rinse samples from 40 patients with p16 INK4a negative tumours, yielding a test specificity of 100 %. For patients with p16 INK4a positive tumours, HPV-16 mRNA was detected using end-point reverse transcription PCR (RT-PCR) in 24/40 (sensitivity = 60 %, PPV = 100 % and NPV = 71 %), and using quantitative RT-PCR in 22/40 (sensitivity = 55 %, PPV = 100 % and NPV = 69 %). No HPV-16 mRNA was detected in oral rinse samples from the p16 INK4a -negative patients, yielding a specificity of 100 %. We demonstrate that the detection of HPV-16 DNA in salivary oral rinse is indicative of HPV status in HNSCC patients and can potentially be used as a diagnostic tool in addition to the current methods. The online version of this article (doi:10.1186/s12885-016-2217-1) contains supplementary material, which is available to authorized users

  19. Stathmin 1 and p16(INK4A) are sensitive adjunct biomarkers for serous tubal intraepithelial carcinoma.

    Science.gov (United States)

    Novak, Marián; Lester, Jenny; Karst, Alison M; Parkash, Vinita; Hirsch, Michelle S; Crum, Christopher P; Karlan, Beth Y; Drapkin, Ronny

    2015-10-01

    To credential Stathmin 1 (STMN1) and p16(INK4A) (p16) as adjunct markers for the diagnosis of serous tubal intraepithelial carcinoma (STIC), and to compare STMN1 and p16 expression in p53-positive and p53-negative STIC and invasive high-grade serous carcinoma (HGSC). Immunohistochemistry (IHC) was used to examine STMN1 and p16 expression in fallopian tube specimens (n=31) containing p53-positive and p53-negative STICs, invasive HGSCs, and morphologically normal FTE (fallopian tube epithelium). STMN1 and p16 expression was scored semiquantitatively by four individuals. The semiquantitative scores were dichotomized, and reported as positive or negative. Pooled siRNA was used to knockdown p53 in a panel of cell lines derived from immortalized FTE and HGSC. STMN1 and p16 were expressed in the majority of p53-positive and p53-negative STICs and concomitant invasive HGSCs, but only scattered positive cells were present in morphologically normal FTE. Both proteins were expressed consistently across multiple STICs from the same patient and in concomitant invasive HGSC. Knockdown of p53 in immortalized FTE cells and in four HGSC-derived cell lines expressing different missense p53 mutations did not affect STMN1 protein levels. This study demonstrates that STMN1 and p16 are sensitive and specific adjunct biomarkers that, when used with p53 and Ki-67, improve the diagnostic accuracy of STIC. The addition of STMN1 and p16 helps to compensate for practical limitations of p53 and Ki-67 that complicate the diagnosis in up to one third of STICs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Stathmin 1 and p16INK4A are sensitive adjunct biomarkers for serous tubal intraepithelial carcinoma

    Science.gov (United States)

    Novak, Marián; Lester, Jenny; Karst, Alison M.; Parkash, Vinita; Hirsch, Michelle S.; Crum, Christopher P.; Karlan, Beth Y.

    2015-01-01

    Objective To credential Stathmin 1 (STMN1) and p16INK4A (p16) as adjunct markers for the diagnosis of serous tubal intraepithelial carcinoma (STIC), and to compare STMN1 and p16 expression in p53-positive and p53-negative STIC and invasive high-grade serous carcinoma (HGSC). Methods Immunohistochemistry (IHC) was used to examine STMN1 and p16 expression in fallopian tube specimens (n=31) containing p53-positive and p53-negative STICs, invasive HGSCs, and morphologically normal FTE (fallopian tube epithelium). STMN1 and p16 expression was scored semiquantitatively by four individuals. The semiquantitative scores were dichotomized, and reported as positive or negative. Pooled siRNA was used to knockdown p53 in a panel of cell lines derived from immortalized FTE and HGSC. Results STMN1 and p16 were expressed in the majority of p53-positive and p53-negative STICs and concomitant invasive HGSCs, but only scattered positive cells were positive in morphologically normal FTE. Both proteins were expressed consistently across multiple STICs from the same patient and in concomitant invasive HGSC. Knockdown of p53 in immortalized FTE cells and in four HGSC-derived cell lines expressing different missense p53 mutations did not affect STMN1 protein levels. Conclusions This study demonstrates that STMN1 and p16 are sensitive and specific adjunct biomarkers that, when used with p53 and Ki-67, improve the diagnostic accuracy of STIC. The addition of STMN1 and p16 helps to compensate for practical limitations of p53 and Ki-67 that complicate the diagnosis in up to one third of STICs. PMID:26206555

  1. Screening for human papillomavirus in basaloid squamous carcinoma: utility of p16(INK4a), CISH, and PCR.

    Science.gov (United States)

    Winters, Ryan; Trotman, Winifred; Adamson, Christine S C; Rajendran, Vanitha; Tang, Alice; Elhosseiny, Abdelmonem; Evans, Mark F

    2011-06-01

    This study compares p16( INK4a) immunohistochemistry (IHC), HPV chromogenic in situ hybridization (ISH), and HPV polymerase chain reaction (PCR) genotyping for detection of HPV infection in basaloid squamous carcinoma (BSCC). A retrospective histopathological analysis of 40 BSCC from a single institution was carried out. p16 IHC, HPV DNA extraction and ISH, and HPV PCR genotyping were performed, and there was excellent agreement between all 3 methods of HPV detection. Analysis of variance yielded no significant differences between the results of the 3 tests ( P = .354) and Pearson product-moment correlation coefficients calculated for each pair of tests demonstrated direct correlation (r = .61 for PCR and IHC, r = .61 for PCR and ISH, and r = 1.00 for ISH and IHC). This supports the use of p16(INK4a) IHC as an initial screening tool for HPV infection in BSCC, while definitive evidence of HPV DNA can be sought subsequently with PCR or CISH.

  2. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    Science.gov (United States)

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  3. High-grade acute organ toxicity and p16INK4A expression as positive prognostic factors in primary radio(chemo)therapy for patients with head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Tehrany, Narges; Rave-Fraenk, Margret; Hess, Clemens F.; Wolff, Hendrik A.; Kitz, Julia; Li, Li; Kueffer, Stefan; Lorenzen, Stephan; Beissbarth, Tim; Burfeind, Peter; Reichardt, Holger M.; Canis, Martin

    2015-01-01

    Superior treatment response and survival for patients with human papilloma virus (HPV)-positive head and neck cancer (HNSCC) are documented in clinical studies. However, the relevance of high-grade acute organ toxicity (HGAOT), which has also been correlated with improved prognosis, has attracted scant attention in HPV-positive HNSCC patients. Hence we tested the hypothesis that both parameters, HPV and HGAOT, are positive prognostic factors in patients with HNSCC treated with definite radiotherapy (RT) or radiochemotherapy (RCT). Pretreatment tumor tissue and clinical records were available from 233 patients receiving definite RT (62 patients) or RCT (171 patients). HPV infection was analysed by means of HPV DNA detection or p16 INK4A expression; HGAOT was defined as the occurrence of acute organ toxicity >grade 2 according to the Common Toxicity Criteria. Both variables were correlated with overall survival (OS) using Cox proportional hazards regression. Positivity for HPV DNA (44 samples, 18.9 %) and p16 INK4A expression (102 samples, 43.8 %) were significantly correlated (p < 0.01), and HGAOT occurred in 77 (33 %) patients. Overall, the 5-year OS was 23 %; stratified for p16 INK4A expression and HGAOT, OS rates were 47 %, 42 %, 20 % and 10 % for patients with p16 INK4A expression and HGAOT, patients with HGAOT only, patients with p16 INK4A expression only, and patients without p16 INK4A expression or HGAOT, respectively. After multivariate testing p16 INK4A expression (p = 0.003) and HGAOT (p < 0.001) were significantly associated with OS. P16 INK4A expression and HGAOT are independent prognostic factors for OS of patients with HNSCC, whereas p16 INK4A expression is particularly important for patients without HGAOT. (orig.) [de

  4. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Kleine-Kohlbrecher, Daniela; Dietrich, Nikolaj

    2007-01-01

    The p16INK4A and p14ARF proteins, encoded by the INK4A-ARF locus, are key regulators of cellular senescence, yet the mechanisms triggering their up-regulation are not well understood. Here, we show that the ability of the oncogene BMI1 to repress the INK4A-ARF locus requires its direct association...... and is dependent on the continued presence of the EZH2-containing Polycomb-Repressive Complex 2 (PRC2) complex. Significantly, EZH2 is down-regulated in stressed and senescing populations of cells, coinciding with decreased levels of associated H3K27me3, displacement of BMI1, and activation of transcription...

  5. High-grade acute organ toxicity and p16{sup INK4A} expression as positive prognostic factors in primary radio(chemo)therapy for patients with head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tehrany, Narges; Rave-Fraenk, Margret; Hess, Clemens F.; Wolff, Hendrik A. [University Medical Center Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Kitz, Julia; Li, Li; Kueffer, Stefan [University Medical Center Goettingen, Department of Pathology, Goettingen (Germany); Lorenzen, Stephan; Beissbarth, Tim [University Medical Center, Department of Medical Statistics, Goettingen (Germany); Burfeind, Peter [University Medical Center, Institute for Human Genetics, Goettingen (Germany); Reichardt, Holger M. [University Medical Center, Institute for Cellular and Molecular Immunology, Goettingen (Germany); Canis, Martin [Head and Neck Surgery, University Medical Center Goettingen, Department of Otorhinolaryngology, Goettingen (Germany)

    2015-07-15

    Superior treatment response and survival for patients with human papilloma virus (HPV)-positive head and neck cancer (HNSCC) are documented in clinical studies. However, the relevance of high-grade acute organ toxicity (HGAOT), which has also been correlated with improved prognosis, has attracted scant attention in HPV-positive HNSCC patients. Hence we tested the hypothesis that both parameters, HPV and HGAOT, are positive prognostic factors in patients with HNSCC treated with definite radiotherapy (RT) or radiochemotherapy (RCT). Pretreatment tumor tissue and clinical records were available from 233 patients receiving definite RT (62 patients) or RCT (171 patients). HPV infection was analysed by means of HPV DNA detection or p16{sup INK4A} expression; HGAOT was defined as the occurrence of acute organ toxicity >grade 2 according to the Common Toxicity Criteria. Both variables were correlated with overall survival (OS) using Cox proportional hazards regression. Positivity for HPV DNA (44 samples, 18.9 %) and p16{sup INK4A} expression (102 samples, 43.8 %) were significantly correlated (p < 0.01), and HGAOT occurred in 77 (33 %) patients. Overall, the 5-year OS was 23 %; stratified for p16{sup INK4A} expression and HGAOT, OS rates were 47 %, 42 %, 20 % and 10 % for patients with p16{sup INK4A} expression and HGAOT, patients with HGAOT only, patients with p16{sup INK4A} expression only, and patients without p16{sup INK4A} expression or HGAOT, respectively. After multivariate testing p16{sup INK4A} expression (p = 0.003) and HGAOT (p < 0.001) were significantly associated with OS. P16{sup INK4A} expression and HGAOT are independent prognostic factors for OS of patients with HNSCC, whereas p16{sup INK4A} expression is particularly important for patients without HGAOT. (orig.) [German] Ein besseres Therapieansprechen von humanen Papillomavirus (HPV)-positiven Kopf-Hals-Tumoren (HNSCC) ist durch Studien belegt. Weniger Beachtung hat bisher die Relevanz unerwuenschter

  6. Comparative modeling and docking studies of p16ink4/Cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1

    Directory of Open Access Journals (Sweden)

    e Zahra Syeda Naqsh

    2013-01-01

    Full Text Available Abstract Background Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1 Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase (2 Growth inhibitory pathways (p53/Rb/P14ARF, STK11 (3 Apoptotic pathways (Bcl-2/Bax/Fas/FasL. Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. Results YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of −0.132 and −0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. Conclusion This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of

  7. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  8. p16(INK4a) /Ki-67 dual labelling as a marker for the presence of high-grade cancer cells or disease progression in urinary cytopathology.

    Science.gov (United States)

    Piaton, E; Advenier, A S; Carré, C; Decaussin-Petrucci, M; Mege-Lechevallier, F; Ruffion, A

    2013-10-01

    Overexpression of p16(INK4a) independent of the presence of E6-E7 oncoproteins of high-risk papillomaviruses has been identified in bladder carcinoma in situ lesions with or without concurrent papillary or invasive high-grade (HG) urothelial carcinoma. As p16(INK4a) and Ki-67 co-expression clearly indicates deregulation of the cell cycle, the aim of this study was to investigate the frequency of p16(INK4a) /Ki-67 dual labelling in urinary cytology samples. Immunolabelling was performed in demounted, destained Papanicolaou slides after ThinPrep(®) processing. A total of 84 urinary cytology samples (18 negative, 10 low grade, 19 atypical urothelial cells and 37 high grade) were analysed for p16(INK4a) /Ki-67 co-expression. We assessed underlying urothelial malignancy with cystoscopy, histopathology and follow-up data in every case. Compared with raw histopathological results, p16 (INK4a) /Ki-67 dual labelling was observed in 48 out of 55 (87.3%) HG lesions and in 11 out of 29 (37.9%) negative, papillary urothelial neoplasia of low malignant potential or low-grade carcinomas (P = 0.05). All cases with high-grade/malignant cytology were dual labelled. Sixteen out of 17 (94.1%) carcinoma in situ cases and eight out of 14 (57.1%) cases with atypical urothelial cells matching with HG lesions were dual labelled. Extended follow-up allowed three cases of progression to be diagnosed in dual-labelled cases with negative/low-grade cytology results after a 9- to 11-months delay. The data show that p16(INK4a) /Ki-67 co-expression allows most HG cancer cells to be detected initially and in the follow-up period. Additional studies are needed in order to determine whether dual labelling can be used as a triage tool for atypical urothelial cells in the urine. © 2012 John Wiley & Sons Ltd.

  9. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells.

    Science.gov (United States)

    Hall, Brandon M; Balan, Vitaly; Gleiberman, Anatoli S; Strom, Evguenia; Krasnov, Peter; Virtuoso, Lauren P; Rydkina, Elena; Vujcic, Slavoljub; Balan, Karina; Gitlin, Ilya; Leonova, Katerina; Polinsky, Alexander; Chernova, Olga B; Gudkov, Andrei V

    2016-07-01

    Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-gal(pH6)), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-gal(pH6)-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-gal(pH6)-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-gal(pH6)-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-gal(pH6)-positive cells and reconsideration of potential cellular target for anti-aging treatment.

  10. Culturing on Wharton's jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways.

    Science.gov (United States)

    Hao, Haojie; Chen, Guanghui; Liu, Jiejie; Ti, Dongdong; Zhao, Yali; Xu, Shenjun; Fu, Xiaobing; Han, Weidong

    2013-01-01

    Mesenchymal stem cells (MSCs) hold great therapeutic potential. However, MSCs undergo replication senescence during the in vitro expansion process. Wharton's jelly from the human umbilical cord harbors a large number of MSCs. In this study, we hypothesized that Wharton's jelly would be beneficial for in vitro expansion of MSCs. Wharton's jelly extract (WJEs), which is mainly composed of extracellular matrix and cytokines, was prepared as coating substrate. Human MSCs were isolated and cultured on WJE-coated plates. Although the proliferation capacity of cells was not augmented by WJE in early phase culture, adynamic growth in late-phase culture was clearly reduced, suggesting that the replicative senescence of MSCs was efficiently slowed by WJE. This was confirmed by β-galactosidase staining and telomere length measurements of MSCs in late-phase culture. In addition, the decreased differentiation ability of MSCs after long-term culture was largely ameliorated by WJE. Reactive oxygen species (ROS), p53, and p16INK4a/pRb expression increased with passaging. Analysis at the molecular level revealed that WJE-based culture efficiently suppressed the enhancement of intracellular ROS, p53, and p16INK4a/pRb in MSCs. These data demonstrated that WJE provided an ideal microenvironment for MSCs culture expansion in vitro preserved MSC properties by delaying MSCs senescence, and allowed large numbers of MSCs to be obtained for basic research and clinical therapies.

  11. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    Science.gov (United States)

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  12. Detection of HPV and the role of p16INK4A overexpression as a surrogate marker for the presence of functional HPV oncoprotein E7 in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Lardon Filip

    2010-03-01

    Full Text Available Abstract Background Based on the well-recognized etiological role of human papillomavirus (HPV in cervical, anogenital and oropharyngeal carcinogenesis, a potential role of HPV in colorectal carcinogenesis has been suggested. For that reason, the aim of the present study was to investigate the presence of HPV DNA in colorectal carcinomas (CRC and to study overexpression of p16INK4A as a marker for the presence of an active HPV oncoprotein E7. These findings were correlated with clinical and pathological prognostic factors of CRC. Methods The presence of HPV was assessed using a multiplex PCR system of 10 non-biotinylated primers. The amplified fragments of HPV positive samples were further analyzed by a highly sensitive, broad spectrum SPF10 PCR and subsequently genotyped using reverse hybridization in a line probe assay. P16INK4A protein expression was investigated in a subset of 90 (30 HPV positive and 60 HPV negative CRC samples by immunohistochemistry. Results HPV DNA was found in 14.2% of the CRC samples with HPV16 as the most prevalent type. No significant differences in clinical and pathological variables were found between HPV positive and negative CRCs, except for age. HPV positive patients were significantly younger (p = 0.05. There was no significant correlation between the presence of HPV and overexpression of p16INK4A (p = 0.325. Conclusions In conclusion, the presence of oncogenic HPV DNA in a small cohort of CRC samples may suggest that HPV may be involved in the carcinogenesis of some CRC. However, contrary to what has been observed in head and neck squamous cell cancer and cancer of the uterine cervix, p16INK4A does not seem to be a surrogate marker for an active HPV infection in CRC. Therefore, further functional analyses are necessary to elucidate the role of HPV in CRC.

  13. Concurrent disruption of p16INK4a and the ARF-p53 pathway predicts poor prognosis in aggressive non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Grønbaek, K; de Nully Brown, P; Møller, Michael Boe

    2000-01-01

    . By using a panel of PCR-based methods, we have examined the status of the p16INK4a, ARF and p53 genes in 123 cases of non-Hodgkin's lymphoma (NHL) at diagnosis. Alterations of one or more of these genes were detected in seven of 36 (19%) cases with low- to intermediate-grade histology, and in 35 of 87 (40...

  14. Are adjunctive markers useful in routine cervical cancer screening? Application of p16(INK4a) and HPV-PCR on ThinPrep samples with histological follow-up

    DEFF Research Database (Denmark)

    Schledermann, D; Andersen, B T; Bisgaard, K

    2008-01-01

    The objectives of the study were to evaluate 1) the diagnostic sensitivity and specificity of p16(INK4a) as a marker for high-grade cervical lesions, 2) the results of a real-time polymerase chain reaction detecting high-risk human papillomavirus, and 3) the interobserver variability of the p16(INK...

  15. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d.

    Science.gov (United States)

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna

    2017-10-02

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  16. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing.

    Science.gov (United States)

    Fusaro, Adriana F; Barton, Deborah A; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L; Kawchuk, Lawrence M; Vaslin, Maite F S; Correa, Regis L; Waterhouse, Peter M

    2017-10-10

    The plant viral family Luteoviridae is divided into three genera: Luteovirus , Polerovirus and Enamovirus . Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.

  17. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing

    Directory of Open Access Journals (Sweden)

    Adriana F. Fusaro

    2017-10-01

    Full Text Available The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV, however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense.

  18. Influence of human papillomavirus and p16INK4a on treatment outcome of patients with anal cancer

    International Nuclear Information System (INIS)

    Koerber, Stefan Alexander; Schoneweg, Clara; Slynko, Alla; Krug, David; Haefner, Matthias F.; Herfarth, Klaus; Debus, Juergen; Sterzing, Florian; Knebel Doeberitz, Magnus von

    2014-01-01

    Background: The purpose of this study was to evaluate HPV-DNA and p16 INK4a (p16) expression as prognostic markers for outcome in patients with anal cancer. Methods: From January 2000 to December 2011 a cohort of 105 anal cancer patients was treated with definitive chemoradiation at our institution. Tumor biopsies from 90 patients were analyzed for HPV-DNA by polymerase chain reaction and for p16 expression by immunohistochemistry. Results: Median follow-up was 48.6 months (range 2.8–169.1 months). HPV-DNA or p16-expression was found in 75 anal cancers each (83.3%), concordance was detectable in 70 tumors (77.8%). Significantly improved overall survival (OS) [77.1% vs. 51.4%, p = 0.005], progression-free survival (PFS) [64.0% vs. 35.0%, p < 0.001] and improved local control [81.0% vs. 55.9%, p = 0.023] was found for concomitant HPV- and p16-positive anal carcinomas (cHPPAC) in univariate analysis. Multivariate analysis showed better OS [p = 0.015] and PFS [p = 0.002] for cHPPAC. Conclusion: The combination of HPV-DNA and p16 can be used as an independent prognostic parameter in anal cancer patients

  19. Double positivity for HPV-DNA/p16ink4a is the biomarker with strongest diagnostic accuracy and prognostic value for human papillomavirus related oropharyngeal cancer patients.

    Science.gov (United States)

    Mena, Marisa; Taberna, Miren; Tous, Sara; Marquez, Sandra; Clavero, Omar; Quiros, Beatriz; Lloveras, Belen; Alejo, Maria; Leon, Xavier; Quer, Miquel; Bagué, Silvia; Mesia, Ricard; Nogués, Julio; Gomà, Montserrat; Aguila, Anton; Bonfill, Teresa; Blazquez, Carmen; Guix, Marta; Hijano, Rafael; Torres, Montserrat; Holzinger, Dana; Pawlita, Michael; Pavon, Miguel Angel; Bravo, Ignacio G; de Sanjosé, Silvia; Bosch, Francesc Xavier; Alemany, Laia

    2018-03-01

    The etiologic role of human papillomaviruses (HPV) in oropharyngeal cancer (OPC) is well established. Nevertheless, information on survival differences by anatomic sub-site or treatment remains scarce, and it is still unclear the HPV-relatedness definition with best diagnostic accuracy and prognostic value. We conducted a retrospective cohort study of all patients diagnosed with a primary OPC in four Catalonian hospitals from 1990 to 2013. Formalin-fixed, paraffin-embedded cancer tissues were subjected to histopathological evaluation, DNA quality control, HPV-DNA detection, and p16 INK4a /pRb/p53/Cyclin-D1 immunohistochemistry. HPV-DNA positive and a random sample of HPV-DNA negative cases were subjected to HPV-E6*I mRNA detection. Demographic, tobacco/alcohol use, clinical and follow-up data were collected. Multivariate models were used to evaluate factors associated with HPV positivity as defined by four different HPV-relatedness definitions. Proportional-hazards models were used to compare the risk of death and recurrence among HPV-related and non-related OPC. 788 patients yielded a valid HPV-DNA result. The percentage of positive cases was 10.9%, 10.2%, 8.5% and 7.4% for p16 INK4a , HPV-DNA, HPV-DNA/HPV-E6*I mRNA, and HPV-DNA/p16 INK4a , respectively. Being non-smoker or non-drinker was consistently associated across HPV-relatedness definitions with HPV positivity. A suggestion of survival differences between anatomic sub-sites and treatments was observed. Double positivity for HPV-DNA/p16 INK4a showed strongest diagnostic accuracy and prognostic value. Double positivity for HPV-DNA/p16 INK4a , a test that can be easily implemented in the clinical practice, has optimal diagnostic accuracy and prognostic value. Our results have strong clinical implications for patients' classification and handling and also suggest that not all the HPV-related OPC behave similarly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type.

    Science.gov (United States)

    Duro, D; Bernard, O; Della Valle, V; Leblanc, T; Berger, R; Larsen, C J

    1996-02-15

    We have reported previously a preliminary study of a t(9;14)(p21-22; q11) in B-cell acute lymphoblastic leukemia. This translocation had rearranged the TCRA/D locus on chromosome band 14q11 and the locus encoding the tumor suppressor gene P16INK4/MTS1 (P16) on band 9p21 (D. Duro et al., Oncogene, 11: 21-29, 1995). In the present report, the breakpoints were precisely localized on each chromosome partner. On the 14q- derivative, the sequence derived from chromosome 9 was interrupted at 1.0 kb upstream of the first exon of P16, close to a consensus recombination heptamer, CACTGTG. In addition, the chromosome 14 breakpoint was localized at the end of the TCRD2 (delta 2) segment, and 22 residues with unknown origin were present at the translocation junction. On the 9p+ derivative, chromosome 9 sequences were in continuity with those displaced onto chromosome 14, and the 14q11 breakpoint was located within TCRJA29 segment. These features are consistent with aberrant activity of the TCR gene recombinase complex. Although all three coding exons of P16 were displaced onto the chromosome 14q-derivative, no P16 transcript was detected in the leukemic cells. Because the region spanning the P16 exon 1 was not inactivated by methylation and because the other P16 allele was deleted, the implication is that the chromosome breakpoint was likely to disrupt regulatory elements involved in the normal expression of the gene. As a whole, then, our results show that translocations affecting band 9p21 can participate to the inactivation of P16, thus justifying a systematic survey of translocations of the 9p21 band in acute lymphoblastic leukemia.

  1. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Directory of Open Access Journals (Sweden)

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  2. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. ..... rangement of the EGF receptor gene in primary human brain tumors ... the INK4A gene in superficial bladder tumors.

  3. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    Science.gov (United States)

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  4. Estudo de p27, p21, p16 em epitélio escamoso normal, papiloma escamoso e carcinoma de células escamosas da cavidade oral Comparative analysis of the immunohistochemistry expression of p27, p21WAF/Cip1, and p16INK4a in oral normal epithelium, squamous papilloma and squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Piazza Queiroz

    2009-12-01

    Full Text Available INTRODUÇÃO E OBJETIVO: O tipo de câncer oral mais frequente é o carcinoma de células escamosas, que corresponde a 95% dos casos(9. O papiloma escamoso oral é uma neoplasia benigna normalmente associada à infecção pelo papilomavírus humano (HPV(21. A análise da literatura mostra alterações nos genes reguladores do ciclo celular p27, p21WAF/Cip1 e p16INK4a, porém sem uma definição de seus papéis na carcinogênese oral. O objetivo foi caracterizar imuno-histoquimicamente p27, p21WAF/Cip1 e p16NK4a em epitélio escamoso normal, papilomas escamosos e carcinomas de células escamosas da cavidade oral. MÉTODOS: Imuno-histoquímica para p27, p21WAF/Cip1 e p16NK4a em 32 casos de epitélio escamoso normal, 30 casos de papiloma escamoso e 34 de carcinoma de células escamosas da cavidade oral. RESULTADOS: p27: 97,06% dos casos de carcinoma de células escamosas apresentaram imunopositividade focal. O grupo papiloma escamoso apresentou 33,33% e o grupo controle, 18,75%. p21WAF/Cip1: 100% de imunopositividade focal tanto no grupo controle como no grupo carcinoma de células escamosas, e 90% no grupo papiloma escamoso. p16INK4a: 100% de imunopositividade focal para os grupos controle e papiloma escamoso, e 94% para o grupo carcinoma de células escamosas. CONCLUSÃO: Imuno-histoquimicamente demonstrou-se diferença significativa para p27 quando feita comparação dos grupos controle e papiloma escamoso com o grupo carcinoma de células escamosas. O p21WAF/Cip1 não demonstrou poder de diferenciar os grupos analisados. O p16INK4a apresentou imunopositividade difusa em uma minoria dos casos do grupo carcinoma de células escamosas. O grupo papiloma escamoso se comportou de maneira similar ao grupo controle em relação aos três marcadores.INTRODUCTION: The most frequent type of oral cancer is the squamous cell carcinoma, which corresponds to 95% of the cases(9.The oral squamous papilloma is a benign neoplasia, commonly associated with

  5. Dysregulated ΔNp63α inhibits expression of Ink4a/arf, blocks senescence, and promotes malignant conversion of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Linan Ha

    Full Text Available p63 is critical for squamous epithelial development, and elevated levels of the ΔNp63α isoform are seen in squamous cell cancers of various organ sites. However, significant controversy exists regarding the role of p63 isoforms as oncoproteins or tumor suppressors. Here, lentiviruses were developed to drive long-term overexpression of ΔNp63α in primary keratinocytes. Elevated levels of ΔNp63α in vitro promote long-term survival and block both replicative and oncogene-induced senescence in primary keratinocytes, as evidenced by the expression of SA-β-gal and the presence of nuclear foci of heterochromatin protein 1γ. The contribution of ΔNp63α to cancer development was assessed using an in vivo grafting model of experimental skin tumorigenesis that allows distinction between benign and malignant tumors. Grafted lenti-ΔNp63α keratinocytes do not form tumors, whereas lenti-GFP/v-ras(Ha keratinocytes develop well-differentiated papillomas. Lenti-ΔNp63α/v-ras(Ha keratinocytes form undifferentiated carcinomas. The average volume of lenti-ΔNp63α/v-ras(Ha tumors was significantly higher than those in the lenti-GFP/v-ras(Ha group, consistent with increased BrdU incorporation detected by immunohistochemistry. The block in oncogene-induced senescence corresponds to sustained levels of E2F1 and phosphorylated AKT, and is associated with loss of induction of p16(ink4a/p19(arf. The relevance of p16(ink4a/p19(arf loss was demonstrated in grafting studies of p19(arf-null keratinocytes, which develop malignant carcinomas in the presence of v-ras(Ha similar to those arising in wildtype keratinocytes that express lenti-ΔNp63α and v-ras(Ha. Our findings establish that ΔNp63α has oncogenic activity and its overexpression in human squamous cell carcinomas contributes to the malignant phenotype, and implicate its ability to regulate p16(ink4a/p19(arf in the process.

  6. Inactivation of p15INK4b in chronic arsenic poisoning cases

    Directory of Open Access Journals (Sweden)

    Aihua Zhang

    2014-01-01

    Full Text Available Arsenic exposure from burning high arsenic-containing coal has been associated with human skin lesion and cancer. However, the mechanisms of arsenic-related carcinogenesis are not fully understood. Inactivation of critical tumor suppression genes by epigenetic regulation or genetic modification might contribute to arsenic-induced carcinogenicity. This study aims to clarify the correlation between arsenic pollution and functional defect of p15INK4b gene in arsenic exposure residents from a region of Guizhou Province, China. To this end, 103 arsenic exposure residents and 105 control subjects were recruited in this study. The results showed that the exposure group exhibited higher levels of urinary and hair arsenic compared with the control group (55.28 vs 28.87 μg/L, 5.16 vs 1.36 μg/g. Subjects with higher arsenic concentrations are more likely to have p15INK4b methylation and gene deletion (χ2 = 4.28, P = 0.04 and χ2 = 4.31, P = 0.04. We also found that the degree of p15INK4b hypermethylation and gene deletion occurred at higher incidence in the poisoning cases with skin cancer (3.7% and 14.81% in non-skin cancer group, 41.18% and 47.06 in skin cancer group, and were significantly associated with the stage of skin lesions (χ2 = 12.82, P < 0.01 and χ2 = 7.835, P = 0.005. These observations indicate that inactivation of p15INK4b through genetic alteration or epigenetic modification is a common event that is associated with arsenic exposure and the development of arsenicosis.

  7. Inmunohistoquímica de la proteína p16INK4a en biopsias y extendidos cervicovaginales y su relación con HPV por PCR Immunohistochemistry of p16INK4a in biopsies and cervicovaginal smears, and its correlation with HPV detected by PCR

    Directory of Open Access Journals (Sweden)

    Alejandro García

    2008-12-01

    Full Text Available Estudios recientes sugieren que la sobreexpresión de p16, determinada por inmunohistoquímica, sería un marcador específico de células escamosas displásicas y neoplásicas con alta asociación con HPV de alto riesgo. Nuestro objetivo fue correlacionar los hallazgos cito/histológicos con la expresión de p16 y el subtipo de HPV por PCR. Seleccionamos 95 biopsias de cuello uterino y 4 legrados endocervicales de 99 individuos, y 30 extendidos cervicovaginales de otros 30 individuos, que se dividieron según el diagnóstico morfológico. Inmunomarcamos cortes del material incluido en parafina y los extendidos con el kit CINtecT p16INK4a (DAKO. Evaluamos HPV por PCR utilizando 25/99 biopsias con lesión intraepitelial escamosa de bajo grado. Observamos marcación positiva para p16 en 1/35 biopsias (2.9% y 1/11 extendidos (9% en los grupos sin HPV ni displasia; 16/25 biopsias (64% y 6/10 extendidos (60% en aquellos con lesión de bajo grado y 38/39 biopsias (97.4% y 8/9 extendidos (89% en los grupos con lesión de alto grado y carcinoma escamoso. Todas las muestras con HPV-6/11 fueron negativas o positivas focales para p16, en tanto que aquellas con HPV-18 u otros subtipos fueron mayoritariamente positivas de tipo difuso. Concluimos que la expresión de p16 presenta alta correlación con el diagnóstico cito/histológico y alta asociación entre la marcación difusa y la presencia de HPV de alto riesgo, aportando mayor objetividad en casos dudosos y ayudando a seleccionar grupos de individuos con riesgo de progresión de enfermedad, con un costo aceptable para estudiar grandes grupos.Recent studies suggest that p16 overexpression determined by immunohistochemistry would be a specific marker for neoplastic and dysplastic squamous cells associated with high-risk HPV. The purpose of this study was to assess the correlation between cyto-histological findings, p16 expression and HPV subtype. A total of 99 biopsies were selected, 4 endocervical

  8. Immunoexpression of P16INK4a, Rb and TP53 proteins in bronchiolar columnar cell dysplasia (BCCD in lungs resected due to primary non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2008-02-01

    Full Text Available Lung cancer is the leading cause of death worldwide. High mortality comes out mainly of the fact that majority of the cases are diagnosed in advanced stadium. An expanded diagnostics of precancerous conditions would certainly contribute to lowering the mortality rate. Many of the molecular changes accompanying the multistep cancer development could be observed using the immunohistochemistry method. In this paper we describe the morphology and cell cycle proteins immunoexpression of the novel probable preinvasive lesion - bronchiolar columnar cell dysplasia (BCCD. Thirty cases of BCCD selected out of 193 patients population, treated for primary non-small cell lung cancer were investigated. Loss of P16INK4a protein was observed in 70% of all cases and was statistically significant in patients with adenocarcinoma. Two cases show abnormal cytoplasmic localization of this protein. TP53 protein accumulates in 26.7% of all BCCD. Rb protein was active in 48.3% of the BCCD cases. In two cases we observed differentiation of the cells composing BCCD into multilayer epithelium of the squamous type, which occurs with formation of desmosomes. We suppose that BCCD may be preneoplastic lesion leading to adenocarcinoma as well as to peripheral squamous cell lung cancer.

  9. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    Science.gov (United States)

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.

  10. Sexual behaviour, HPV status and p16INK4a expression in oropharyngeal and oral cavity squamous cell carcinomas: a case-case comparison study.

    Science.gov (United States)

    Emmett, Sarah; Boros, Samuel; Whiteman, David C; Porceddu, Sandro V; Panizza, Benedict J; Antonsson, Annika

    2018-06-01

    A significant proportion of mucosal squamous cell carcinomas of the head and neck (HNSCC; particularly of the oropharynx) are directly attributable to the human papillomavirus (HPV). The increase in the incidence of HPV-related tumours has been postulated to be due to changing sexual practices in the community. We analysed 136 formalin-fixed paraffin-embedded squamous cell carcinomas from the oral cavity (n=40) and oropharynx (n=96) recruited from the Princess Alexandra Hospital (Brisbane, Australia). Samples were analysed for the presence of HPV DNA using a combination of mucosal HPV general primer GP+ PCR and sequencing; p 16INK4a expression was assessed by immunohistochemistry. Each patient completed a questionnaire detailing their lifestyle factors, such as tobacco smoking and alcohol consumption, marital status, and sexual behaviour and history. The HPV DNA prevalence was 5 % in the oral cavity cancers and 72 % in the oropharyngeal cancers (P<0.0001). HPV-16 was the most commonly detected HPV type (found in 91 % of all HPV-positive tumours). There was a strong correlation between HPV DNA positivity and positive p16 INK4a staining in oropharyngeal tumours (P<0.0001). Having an HPV-related tumour was associated with being married or having been married previously (P=0.046), an increasing number of passionate kissing partners (P=0.046), ever having given oral sex (P=0.0007) and an increasing number of oral sex partners (P=0.0015). This study found a higher prevalence of HPV in oropharyngeal compared to oral cavity tumours, with a strong association being identified between oral sex behaviours and HPV-positive tumours. Further research is needed to establish that vaccines will reduce the transmission and carriage of oropharyngeal HPV infections.

  11. Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response.

    Science.gov (United States)

    Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T

    2009-06-01

    p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.

  12. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    Science.gov (United States)

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  13. p16 mutation spectrum in the premalignant condition Barrett's esophagus.

    Directory of Open Access Journals (Sweden)

    Thomas G Paulson

    Full Text Available BACKGROUND: Mutation, promoter hypermethylation and loss of heterozygosity involving the tumor suppressor gene p16 (CDKN2a/INK4a have been detected in a wide variety of human cancers, but much less is known concerning the frequency and spectrum of p16 mutations in premalignant conditions. METHODS AND FINDINGS: We have determined the p16 mutation spectrum for a cohort of 304 patients with Barrett's esophagus, a premalignant condition that predisposes to the development of esophageal adenocarcinoma. Forty seven mutations were detected by sequencing of p16 exon 2 in 44 BE patients (14.5% with a mutation spectrum consistent with that caused by oxidative damage and chronic inflammation. The percentage of patients with p16 mutations increased with increasing histologic grade. In addition, samples from 3 out of 19 patients (15.8% who underwent esophagectomy were found to have mutations. CONCLUSIONS: The results of this study suggest the environment of the esophagus in BE patients can both generate and select for clones with p16 mutations.

  14. P18 tumor suppressor gene and progression of oligodendrogliomas to anaplasia.

    Science.gov (United States)

    He, J; Hoang-Xuan, K; Marie, Y; Leuraud, P; Mokhtari, K; Kujas, M; Delattre, J Y; Sanson, M

    2000-09-26

    P18INK4C is a good candidate to be the tumor suppressor gene involved in oligodendrogliomas on 1p32. Loss of heterozygosity on 1p, mutation(s), homozygous deletion(s), and expression of p18 in 30 oligodendroglial tumors were investigated. Loss of heterozygosity on 1p was found in 15 tumors. A p18 mutation was found at an recurrence of an anaplastic oligodendroglioma, but not in the primary, low-grade tumor. No homozygous deletions were found and p18 was expressed in all cases. These results show that p18 alteration is involved in tumor progression in a subset of oligodendrogliomas.

  15. Involvement of Bmi-1 gene in the development of gastrointestinal stromal tumor by regulating p16Ink4A/p14ARF gene expressions: An in vivo and in vitro study.

    Science.gov (United States)

    Wang, Jiang-Li; Wu, Jiang-Hong; Hong, Cai; Wang, Ya-Nong; Zhou, Ye; Long, Zi-Wen; Zhou, Ying; Qin, Hai-Shu

    2017-12-01

    This study was conducted in order to explore the role that Bmi-1 plays during the development of a gastrointestinal stromal tumor (GIST) by regulation of the p16 Ink4A and p14 ARF expressions. Eighty-six patients diagnosed with GIST were selected to take part in this experiment. The Bmi-1 protein expressions in GIST and adjacent normal tissues were detected using immunohistochemistry and further analyzed by using photodensitometry. To monitor and track the progression of the GIST, a 3-year follow-up was conducted for all affected patients. After cell transfection, the GIST cells were assigned into the control group (without transfection), the negative control (NC) group (transfected with Bmi-1-Scramble plasmid), and the Bmi-1 shRNA group (transfected with the pcDNA3.1-Bmi-1 shRNA plasmid). Protein and mRNA expressions collected from Bmi-1, p16 lnk4A , P14 ARF , cyclin D1, and CDK4 were measured using both the RT-qPCR and western blotting methods Cell senescence was assessed and obtained by using the β-Galactosidase (β-Gal) activity assay. The use of a Soft agar colony formation assay and CCK-8 assay were performed in order to detect the cell growth and subsequent proliferation. Cell invasion and migration were analyzed using the Transwell assay and scratch test. Bmi-1 in the GIST tissues was found to be significantly higher and the p16 lnk4A and P14 ARF expressions were lower than those in the adjacent normal tissues. Bmi-1 was negatively correlated with p16 lnk4A and P14 ARF expressions according to the correlation analysis. Bmi-1 expression was associated with the TNM stage, postoperative recurrence, metastasis, tumor size, and the 5-year survival rate. Area under ROC curve was calculated at 0.884, and sensitivity, specificity, and accuracy of Bmi-1 predicting the GIST were 67.44%, 97.67%, and 65.12%, respectively. Patients exhibiting a high Bmi-1 expression in the GIST tissues had lower survival rates than those with low Bmi-1 expression. In comparison with

  16. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  17. Immunohistochemical expression of p53, p16 and hTERT in oral squamous cell carcinoma and potentially malignant disorders

    Directory of Open Access Journals (Sweden)

    Aline Correa Abrahao

    2011-02-01

    Full Text Available Oral carcinogenesis is a multi-step process. One possible step is the development of potentially malignant disorders known as leukoplakia and erytroplakia. The objective of this study was to use immunohistochemistry to analyze the patterns of expression of the cell-cycle regulatory proteins p53 and p16INK4a in potentially malignant disorders (PMD of the oral mucosa (with varying degrees of dysplasia and in oral squamous cell carcinomas (OSCC to correlate them with the expression of telomerase (hTERT. Fifteen PMD and 30 OSCC tissue samples were analyzed. Additionally, 5 cases of oral epithelial hyperplasia (OEH were added to analyze clinically altered mucosa presenting as histological hyperplasia without dysplasia. p53 positivity was observed in 93.3% of PMD, in 63.3% of OSCC and in 80% of OEH. Although there was no correlation between p53 expression and the grade of dysplasia, all cases with severe dysplasia presented p53 suprabasal immunoexpression. p16INK4a expression was observed in 26.7% of PMD, in 43.3% of OSCC and in 2 cases of OEH. The p16INK4a expression in OEH, PMD and OSCC was unable to differentiate non-dysplastic from dysplastic oral epithelium. hTERT positivity was observed in all samples of OEH and PMD and in 90% of OSCC. The high hTERT immunoexpression in all three lesions indicates that telomerase is present in clinically altered oral mucosa but does not differentiate hyperplastic from dysplastic oral epithelium. In PMD of the oral mucosa, the p53 immunoexpression changes according to the degree of dysplasia by mechanisms independent of p16INK4a and hTERT.

  18. Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Deborah A Altomare

    2011-04-01

    Full Text Available The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A and p14(ARF, which are frequently co-deleted in human malignant mesothelioma (MM. The importance of p16(INK4A loss in human cancer is well established, but the relative significance of p14(ARF loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/- and Arf(+/- mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/- and Arf(+/- mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/- mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b. In contrast, MMs from Arf(+/- mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a and p19(Arf cooperate to accelerate asbestos-induced tumorigenesis.

  19. CDK5-mediated phosphorylation of p19INK4d avoids DNA damage-induced neurodegeneration in mouse hippocampus and prevents loss of cognitive functions.

    Science.gov (United States)

    Ogara, María Florencia; Belluscio, Laura M; de la Fuente, Verónica; Berardino, Bruno G; Sonzogni, Silvina V; Byk, Laura; Marazita, Mariela; Cánepa, Eduardo T

    2014-07-01

    DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. p16(INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2011-02-01

    Full Text Available Although caloric restriction (CR has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG in the culture medium. Moreover, GR decreased expression of p16(INK4a (p16, a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.

  1. The overexpression of p16 is not a surrogate marker for high-risk human papilloma virus genotypes and predicts clinical outcomes for vulvar cancer

    International Nuclear Information System (INIS)

    Sznurkowski, Jacek J.; Żawrocki, Anton; Biernat, Wojciech

    2016-01-01

    We aimed to evaluate the correlation between p16 ink4a -overexpression and high risk (hr)HPV-DNA in vulvar squamous cell carcinoma (vSCC) tumors as well as the impact of both biomarkers on the prognosis of vSCC patients. PCR-detection of (hr)HPV-DNA and immunohistochemical staining for p16 ink4a were conducted in 85 vSCC tumors. Survival analyses included the Kaplan–Meier method, log-rank test and Cox proportional hazards model. p16 ink4a -overexpression and (hr)HPV-DNA were detected in 35 and 37 of the 85 tumors, respectively. Among the 35 p16 ink4a -positive tumors, 10 lacked (hr)HPV-DNA (29 %). Among the 50 p16 ink4a -negative tumors, (hr)HPV-DNA was detected in 12 cases (24 %). The median follow-up was 89.20 months (range 1.7–189.5 months). P16 ink4a -overexpression, but not (hr)HPV-DNA positivity of the primary tumor, was correlated with prolonged overall survival (OS) (p = 0.009). P16 ink4a -overexpression predicted a better response to radiotherapy (p < 0.001). Univariate analysis has demonstrated that age (p = 0.025), tumor grade (p = 0.001), lymph node metastasis (p < 0.001), FIGO stage (p < 0.001), p16 ink4a -overexpression (p = 0.022), and adjuvant RTX (p < 0.001) were prognostic factors for OS. Multivariate analysis has demonstrated that lymph node metastasis (HR 1–2.74, 95 % CI 1.50–5.02, p = 0.019), tumor grade (HR 1–2.80, 95 % CI 1.33–5.90, p = 0.007) and p16 ink4a -overexpression (HR 1–2.11, 95 % CI 1.13–3.95, p = 0.001) are independent prognostic factors. The discovered overlap suggests the use of p16 ink4a in combination with HPV-DNA detection as an ancillary test for future research and clinical studies in vSCC. The prognostic and predictive value of p16 ink4a -overexpression should be tested in larger cohort studies. The online version of this article (doi:10.1186/s12885-016-2503-y) contains supplementary material, which is available to authorized users

  2. Immunostaining for p16(INK4a) used as a conjunctive tool improves interobserver agreement of the histologic diagnosis of cervical intraepithelial neoplasia

    DEFF Research Database (Denmark)

    Horn, L.C.; Reichert, A.; Oster, A.

    2008-01-01

    The quality of cervical histopathology is critical to cervical cancer prevention, cancer treatment, and research programs. On the basis of the histology results further patient management is determined. However, the diagnostic interpretation of histologic hematoxylin-eosin (H&E)-stained slides is...... immunohistochemistry as an adjunct to conventional H&E-stained specimens thus contributes to a more reproducible diagnosis of cervical intraepithelial neoplasia, and may be a valuable aid for the interpretation of cervical histology Udgivelsesdato: 2008/4......The quality of cervical histopathology is critical to cervical cancer prevention, cancer treatment, and research programs. On the basis of the histology results further patient management is determined. However, the diagnostic interpretation of histologic hematoxylin-eosin (H&E)-stained slides......) immunohistochemistry may increase the performance of pathologists in diagnosing squamous lesions in cervical punch and cone biopsies. When using a consecutive p 16(INK4a)-stained slide in conjunction to the H&E-stained slide, interobserver agreement between 6 pathologists improved significantly for both cervical punch...

  3. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    International Nuclear Information System (INIS)

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-01-01

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0 PE , in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0 PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0 PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  4. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fusaro, Adriana F. [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Correa, Regis L. [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Nakasugi, Kenlee; Jackson, Craig [University of Sydney, NSW 2006 (Australia); Kawchuk, Lawrence [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada); Vaslin, Maite F.S. [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Waterhouse, Peter M., E-mail: peter.waterhouse@sydney.edu.au [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia)

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  5. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Science.gov (United States)

    Carcagno, Abel L; Marazita, Mariela C; Ogara, María F; Ceruti, Julieta M; Sonzogni, Silvina V; Scassa, María E; Giono, Luciana E; Cánepa, Eduardo T

    2011-01-01

    A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.

  6. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Abel L Carcagno

    Full Text Available BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell

  7. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1

    DEFF Research Database (Denmark)

    Negishi, Masamitsu; Saraya, Atsunori; Mochizuki, Shinobu

    2010-01-01

    . METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through...... is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways....

  8. The overexpression of p16 is not a surrogate marker for high-risk human papilloma virus genotypes and predicts clinical outcomes for vulvar cancer.

    Science.gov (United States)

    Sznurkowski, Jacek J; Żawrocki, Anton; Biernat, Wojciech

    2016-07-13

    We aimed to evaluate the correlation between p16(ink4a)-overexpression and high risk (hr)HPV-DNA in vulvar squamous cell carcinoma (vSCC) tumors as well as the impact of both biomarkers on the prognosis of vSCC patients. PCR-detection of (hr)HPV-DNA and immunohistochemical staining for p16(ink4a) were conducted in 85 vSCC tumors. Survival analyses included the Kaplan-Meier method, log-rank test and Cox proportional hazards model. p16(ink4a)-overexpression and (hr)HPV-DNA were detected in 35 and 37 of the 85 tumors, respectively. Among the 35 p16(ink4a)-positive tumors, 10 lacked (hr)HPV-DNA (29 %). Among the 50 p16(ink4a)-negative tumors, (hr)HPV-DNA was detected in 12 cases (24 %). The median follow-up was 89.20 months (range 1.7-189.5 months). P16(ink4a)-overexpression, but not (hr)HPV-DNA positivity of the primary tumor, was correlated with prolonged overall survival (OS) (p = 0.009). P16(ink4a)-overexpression predicted a better response to radiotherapy (p overexpression (p = 0.022), and adjuvant RTX (p overexpression (HR 1-2.11, 95 % CI 1.13-3.95, p = 0.001) are independent prognostic factors. The discovered overlap suggests the use of p16(ink4a) in combination with HPV-DNA detection as an ancillary test for future research and clinical studies in vSCC. The prognostic and predictive value of p16(ink4a)-overexpression should be tested in larger cohort studies.

  9. CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response.

    Directory of Open Access Journals (Sweden)

    Mariela C Marazita

    Full Text Available DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with (32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage.

  10. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Sugio, Kenji; Kuwabara, Yasuo

    2003-01-01

    The FDG uptake in lung cancer is considered to reflect the degree of malignancy, while alterations of some tumor suppressor genes are considered to be related to the malignant biological behavior of tumors. The aim of this study is to examine the relationship between FDG-PET and alterations in the tumor suppression genes of lung cancer. We examined 28 patients with primary lung cancer who underwent FDG-PET before surgery consisting of 17 patients with adenocarcinoma, 10 with squamous cell carcinoma and 1 with large cell carcinoma. The FDG-PET findings were evaluated based on the standardized uptake value (SUV). Alterations in the tumor suppressor genes, Rb, p16, p27 and p53, were evaluated immunohistochemically. The FDG uptake in lung cancer with alteration in each tumor suppressor gene tended to be higher than in those genes without alterations, although the differences were not significant. In 15 tumors with alterations in either tumor suppressor genes, the FDG uptake was 6.83±3.21. On the other hand, the mean FDG uptake was 1.95 in 2 tumors without alterations in any genes. The difference in the FDG uptake between the 2 groups was statistically significant (p<0.001). In conclusion, the presence of abnormalities in the tumor suppressor genes, which results in an accelerated cell proliferation, is thus considered to increase the FDG uptake in lung cancer. (author)

  11. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1

    International Nuclear Information System (INIS)

    Huang Weifeng; Tan Dapeng; Wang Xiuli; Han Songyan; Tan Jiang; Zhao Yanmei; Lu Jun; Huang Baiqu

    2006-01-01

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15 INK4b and p21 WAF1/cip1 genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15 INK4b and p21 WAF1/cip1 transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15 INK4b , but not that of p21 WAF1/cip1 , implicating the different roles of HDAC3 in repression of p15 INK4b and p21 WAF1/cip1 transcription. Data from this study indicate that the inhibition of p15 INK4b and p21 WAF1/cip1 may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis

  12. Usefulness of p16ink4a, ProEX C, and Ki-67 for the diagnosis of glandular dysplasia and adenocarcinoma of the cervix uteri.

    Science.gov (United States)

    Negri, Giovanni; Bellisano, Giulia; Carico, Elisabetta; Faa, Gavino; Kasal, Armin; Antoniazzi, Sonia; Egarter-Vigl, Eduard; Piccin, Andrea; Dalla Palma, Paolo; Vittadello, Fabio

    2011-07-01

    Although the diagnostic criteria of in-situ and invasive adenocarcinomas of the cervix uteri are well established, the differentiation from benign mimics may be difficult and the morphologic features of the precursors of endocervical adenocarcinoma are still debated. In this study, we evaluated the usefulness of p16ink4a (p16), ProEX C, and Ki-67 for the diagnosis of endocervical adenocarcinoma and its precursors. Immunohistochemistry with p16, ProEX C, and Ki-67 was performed in 82 glandular lesions including 15 invasive adenocarcinomas, 29 adenocarcinomas in situ (AIS), 22 non-neoplastic samples, and 16 cases of glandular dysplasia (GD), which showed significant nuclear abnormalities but did not meet the diagnostic criteria for AIS. The immunohistochemical expression pattern was scored according to the percentage of the stained cells (0, 1+, 2+, and 3+ when 0% to 5%, 6% to 25%, 26% to 50%, and more than 50% of the cells were stained, respectively) and was evaluated for each antibody. p16 was at least focally expressed (1+ or more) in 14 of 15 invasive adenocarcinomas, in all AIS and in 7 negative samples. ProEX C and Ki-67 both scored 1+ or more in all adenocarcinomas and AIS and in 8 and 6 negative samples, respectively. Of the GD 15, 14, and 15 expressed p16, ProEX C, and Ki-67, respectively. The score differences between neoplastic and non-neoplastic samples were highly significant for each marker (Pcervix uteri and may also improve the diagnostic accuracy of endocervical GD. In particularly problematic cases, the combination of p16 and a proliferation marker can provide additional help for the interpretation of these lesions.

  13. Electrochemical sensing of tumor suppressor protein p53-deoxyribonucleic acid complex stability at an electrified interface

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Černocká, Hana; Ostatná, Veronika; Navrátilová, Lucie; Brázdová, Marie

    2014-01-01

    Roč. 828, MAY2014 (2014), s. 1-8 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA13-00956S; GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : Deoxyribonucleic acid-protein binding * Tumor suppressor protein p53 * Electrochemical sensing Subject RIV: BO - Biophysics Impact factor: 4.513, year: 2014

  14. Epigenetic changes in the CDKN2A locus are associated with differential expression of P16INK4A and P14ARF in HPV-positive oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Schlecht, Nicolas F; Ben-Dayan, Miriam; Anayannis, Nicole; Lleras, Roberto A; Thomas, Carlos; Wang, Yanhua; Smith, Richard V; Burk, Robert D; Harris, Thomas M; Childs, Geoffrey; Ow, Thomas J; Prystowsky, Michael B; Belbin, Thomas J

    2015-01-01

    Human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) is recognized as a distinct disease entity associated with improved survival. DNA hypermethylation profiles differ significantly by HPV status suggesting that a specific subset of methylated CpG loci could give mechanistic insight into HPV-driven OPSCC. We analyzed genome-wide DNA methylation of primary tumor samples and adjacent normal mucosa from 46 OPSCC patients undergoing treatment at Montefiore Medical Center, Bronx, NY using the Illumina HumanMethylation27 beadchip. For each matched tissue set, we measured differentially methylated CpG loci using a change in methylation level (M value). From these analyses, we identified a 22 CpG loci panel for HPV+ OPSCC that included four CDKN2A loci downstream of the p16(INK4A) and p14(ARF) transcription start sites. This panel was significantly associated with overall HPV detection (P < 0.05; ROC area under the curve = 0.96, 95% CI: 0.91–1.0) similar to the subset of four CDKN2A-specific CpG loci (0.90, 95% CI: 0.82–0.99) with equivalence to the full 22 CpG panel. DNA hypermethylation correlated with a significant increase in alternative open reading frame (ARF) expression in HPV+ OPSCC primary tumors, but not to the other transcript variant encoded by the CDKN2A locus. Overall, this study provides evidence of epigenetic changes to the downstream region of the CDKN2A locus in HPV+ oropharyngeal cancer that are associated with changes in expression of the coded protein products

  15. Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein.

    Science.gov (United States)

    Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin

    2010-10-10

    Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function

    Science.gov (United States)

    Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique

    2006-01-01

    Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454

  17. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.

    Science.gov (United States)

    Alonso, Michelle; Tamasdan, Cristina; Miller, Douglas C; Newcomb, Elizabeth W

    2003-02-01

    Flavopiridol is a synthetic flavone, which inhibits growth in vitro and in vivo of several solid malignancies such as renal, prostate, and colon cancers. It is a potent cyclin-dependent kinase inhibitor presently in clinical trials. In this study, we examined the effect of flavopiridol on a panel of glioma cell lines having different genetic profiles: five of six have codeletion of p16(INK4a) and p14(ARF); three of six have p53 mutations; and one of six shows overexpression of mouse double minute-2 (MDM2) protein. Independent of retinoblastoma and p53 tumor suppressor pathway alterations, flavopiridol induced apoptosis in all cell lines but through a caspase-independent mechanism. No cleavage products for caspase 3 or its substrate poly(ADP-ribose) polymerase or caspase 8 were detected. The pan-caspase inhibitor Z-VAD-fmk did not inhibit flavopiridol-induced apoptosis. Mitochondrial damage measured by cytochrome c release and transmission electron microscopy was not observed in drug-treated glioma cells. In contrast, flavopiridol treatment induced translocation of apoptosis-inducing factor from the mitochondria to the nucleus. The proteins cyclin D(1) and MDM2 involved in the regulation of retinoblastoma and p53 activity, respectively, were down-regulated early after flavopiridol treatment. Given that MDM2 protein can confer oncogenic properties under certain circumstances, loss of MDM2 expression in tumor cells could promote increased chemosensitivity. After drug treatment, a low Bcl-2/Bax ratio was observed, a condition that may favor apoptosis. Taken together, the data indicate that flavopiridol has activity against glioma cell lines in vitro and should be considered for clinical development in the treatment of glioblastoma multiforme.

  18. p16 as a diagnostic marker of cervical neoplasia: a tissue microarray study of 796 archival specimens

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Stephen

    2009-01-01

    from archival formalin fixed, paraffin-embedded donor tissues from 796 patients, and included cases of cervical intraepithelial neoplasia (CIN)1 (n = 249), CIN2 (n = 233), CIN3 (n = 181), and invasive cervical carcinoma (n = 133). p16INK4a expression was scored using two different protocols: 1......BACKGROUND: To evaluate the usefulness of this biomarker in the diagnosis of cases of cervical neoplasia we studied the immunohistochemical expression of p16INK4a in a large series of archival cervical biopsies arranged into tissue microarray format. METHODS: TMAs were constructed with tissue cores...... dysplasia or the presence of invasive carcinoma. CONCLUSION: Immunohistochemical analysis of p16INK4a expression is a useful diagnostic tool. Expression is related to the degree of histological dysplasia, suggesting that it may have prognostic and predicative value in the management of cervical neoplasia....

  19. Curcumin Triggers p16-Dependent Senescence in Active Breast Cancer-Associated Fibroblasts and Suppresses Their Paracrine Procarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Siti-Fauziah Hendrayani

    2013-06-01

    Full Text Available Activated cancer-associated fibroblasts (CAFs or myofibroblasts not only facilitate tumor growth and spread but also affect tumor response to therapeutic agents. Therefore, it became clear that efficient therapeutic regimens should also take into account the presence of these supportive cells and inhibit their paracrine effects. To this end, we tested the effect of low concentrations of curcumin, a pharmacologically safe natural product, on patient-derived primary breast CAF cells. We have shown that curcumin treatment upregulates p16INK4A and other tumor suppressor proteins while inactivates the JAK2/STAT3 pathway. This reduced the level of alpha-smooth muscle actin (α-SMA and the migration/invasion abilities of these cells. Furthermore, curcumin suppressed the expression/secretion of stromal cell-derived factor-1 (SDF-1, interleukin-6 (IL-6, matrix metalloproteinase-2 (MMP-2, MMP-9, and transforming growth factor-β, which impeded their paracrine procarcinogenic potential. Intriguingly, these effects were sustained even after curcumin withdrawal and cell splitting. Therefore, using different markers of senescence [senescence-associated β-galactosidase (SA-β-gal activity, Ki-67 and Lamin B1 levels, and bromodeoxyuridine incorporation], we have shown that curcumin markedly suppresses Lamin B1 and triggers DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts. Importantly, this curcumin-related senescence was p16INK4A-dependent and occurred with no associated inflammatory secretory phenotype. These results indicate the possible inactivation of cancer-associated myofibroblasts and present the first indication that curcumin can trigger DNA damage-independent and safe senescence in stromal fibroblasts.

  20. Intrinsic radiation resistance in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A.

    2006-01-01

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16 ink4a , one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16 ink4a contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16 ink4a expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16 ink4a expression on chondrosarcoma cell resistance to low-dose γ-irradiation (1-5 Gy). p16 ink4a expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16 ink4a transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16 ink4a plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas

  1. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  2. Involvement of PSMD10, CDK4, and Tumor Suppressors in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodimethylamine.

    Directory of Open Access Journals (Sweden)

    Md Hafiz Uddin

    Full Text Available Clonorchis sinensis is a group-I bio-carcinogen for cholangiocarcinoma (CCA. Although the epidemiological evidence links clonorchiasis and CCA, the underlying molecular mechanism involved in this process is poorly understood. In the present study, we investigated expression of oncogenes and tumor suppressors, including PSMD10, CDK4, p53 and RB in C. sinensis induced hamster CCA model.Different histochemical/immunohistochemical techniques were performed to detect CCA in 4 groups of hamsters: uninfected control (Ctrl., infected with C. sinensis (Cs, ingested N-nitrosodimethylamine (NDMA, and both Cs infected and NDMA introduced (Cs+NDMA. The liver tissues from all groups were analyzed for gene/protein expressions by quantitative PCR (qPCR and western blotting.CCA was observed in all hamsters of Cs+NDMA group with well, moderate, and poorly differentiated types measured in 21.8% ± 1.5%, 13.3% ± 1.3%, and 10.8% ± 1.3% of total tissue section areas respectively. All CCA differentiations progressed in a time dependent manner, starting from the 8th week of infection. CCA stroma was characterized with increased collagen type I, mucin, and proliferative cell nuclear antigen (PCNA. The qPCR analysis showed PSMD10, CDK4 and p16INK4 were over-expressed, whereas p53 was under-expressed in the Cs+NDMA group. We observed no change in RB1 at mRNA level but found significant down-regulation of RB protein. The apoptosis related genes, BAX and caspase 9 were found downregulated in the CCA tissue. Gene/protein expressions were matched well with the pathological changes of different groups except the NDMA group. Though the hamsters in the NDMA group showed no marked pathological lesions, we observed over-expression of Akt/PKB and p53 genes proposing molecular interplay in this group which might be related to the CCA initiation in this animal model.The present findings suggest that oncogenes, PSMD10 and CDK4, and tumor suppressors, p53 and RB, are involved in the

  3. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA.

    Science.gov (United States)

    Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T

    2013-01-01

    The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.

  4. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA.

    Directory of Open Access Journals (Sweden)

    María F Ogara

    Full Text Available The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.

  5. Involvement of PSMD10, CDK4, and Tumor Suppressors in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodimethylamine

    Science.gov (United States)

    Uddin, Md. Hafiz; Choi, Min-Ho; Kim, Woo Ho; Jang, Ja-June; Hong, Sung-Tae

    2015-01-01

    Background Clonorchis sinensis is a group-I bio-carcinogen for cholangiocarcinoma (CCA). Although the epidemiological evidence links clonorchiasis and CCA, the underlying molecular mechanism involved in this process is poorly understood. In the present study, we investigated expression of oncogenes and tumor suppressors, including PSMD10, CDK4, p53 and RB in C. sinensis induced hamster CCA model. Methods Different histochemical/immunohistochemical techniques were performed to detect CCA in 4 groups of hamsters: uninfected control (Ctrl.), infected with C. sinensis (Cs), ingested N-nitrosodimethylamine (NDMA), and both Cs infected and NDMA introduced (Cs+NDMA). The liver tissues from all groups were analyzed for gene/protein expressions by quantitative PCR (qPCR) and western blotting. Principal Findings CCA was observed in all hamsters of Cs+NDMA group with well, moderate, and poorly differentiated types measured in 21.8% ± 1.5%, 13.3% ± 1.3%, and 10.8% ± 1.3% of total tissue section areas respectively. All CCA differentiations progressed in a time dependent manner, starting from the 8th week of infection. CCA stroma was characterized with increased collagen type I, mucin, and proliferative cell nuclear antigen (PCNA). The qPCR analysis showed PSMD10, CDK4 and p16INK4 were over-expressed, whereas p53 was under-expressed in the Cs+NDMA group. We observed no change in RB1 at mRNA level but found significant down-regulation of RB protein. The apoptosis related genes, BAX and caspase 9 were found downregulated in the CCA tissue. Gene/protein expressions were matched well with the pathological changes of different groups except the NDMA group. Though the hamsters in the NDMA group showed no marked pathological lesions, we observed over-expression of Akt/PKB and p53 genes proposing molecular interplay in this group which might be related to the CCA initiation in this animal model. Conclusions/Significance The present findings suggest that oncogenes, PSMD10 and CDK4

  6. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  7. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  8. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo, E-mail: yutsudo@biken.osaka-u.ac.jp

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  9. Mild and severe cereal yellow dwarf viruses differ in silencing suppressor efficiency of the P0 protein.

    Science.gov (United States)

    Almasi, Reza; Miller, W Allen; Ziegler-Graff, Véronique

    2015-10-02

    Viral pathogenicity has often been correlated to the expression of the viral encoded-RNA silencing suppressor protein (SSP). The silencing suppressor activity of the P0 protein encoded by cereal yellow dwarf virus-RPV (CYDV-RPV) and -RPS (CYDV-RPS), two poleroviruses differing in their symptomatology was investigated. CYDV-RPV displays milder symptoms in oat and wheat whereas CYDV-RPS is responsible for more severe disease. We showed that both P0 proteins (P0(CY-RPV) and P0(CY-RPS)) were able to suppress local RNA silencing induced by either sense or inverted repeat transgenes in an Agrobacterium tumefaciens-mediated expression assay in Nicotiana benthamiana. P0(CY-RPS) displayed slightly higher activity. Systemic spread of the silencing signal was not impaired. Analysis of short-interfering RNA (siRNA) abundance revealed that accumulation of primary siRNA was not affected, but secondary siRNA levels were reduced by both CYDV P0 proteins, suggesting that they act downstream of siRNA production. Correlated with this finding we showed that both P0 proteins partially destabilized ARGONAUTE1. Finally both P0(CY-RPV) and P0(CY-RPS) interacted in yeast cells with ASK2, a component of an E3-ubiquitin ligase, with distinct affinities. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    OpenAIRE

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corr?, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation t...

  11. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    The study subjects consisted of 75 healthy ... that p16 protein expression was significantly lower in ToF group compared to ... in p16 promoters in ToF patients was negatively correlated with p16 protein ... studies, human foetal ventricular cardiomyocytes (HFCs) are ..... oral epithelial dysplasia: a prospective cohort study.

  12. Influence of anticancer drugs on interactions of tumor suppressor protein p53 with DNA

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Němcová, Kateřina; Brázdová, Marie; Kašpárková, Jana; Brabec, Viktor; Fojta, Miroslav

    2005-01-01

    Roč. 272, Suppl. 1 (2005), s. 562 ISSN 1474-3833. [FEBS Congress /30./ and IUBMB Conference /9./. 02.07.2005-07.07.2005, Budapest] R&D Projects: GA MZd(CZ) NC7574 Institutional research plan: CEZ:AV0Z50040507 Keywords : tumour suppressor protein p53 * anticancer drugs * interaction with DNA Subject RIV: BO - Biophysics

  13. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  14. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    Science.gov (United States)

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses.

    Science.gov (United States)

    Wang, Ken-Der; Empleo, Roman; Nguyen, Tan Tri V; Moffett, Peter; Sacco, Melanie Ann

    2015-06-01

    Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0(T) (u) ), PLRV (P0(PL) ) and Cucurbit aphid-borne yellows virus (P0(CA) ) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0(PL) only. Genetic analysis showed that recognition of P0(T) (u) by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0(T) (u) mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  16. Expression of Anion Exchanger 1 Sequestrates p16 in the Cytoplasm in Gastric, Colonic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wei-Wei Shen

    2007-10-01

    Full Text Available p16INK4A (p16 binds to cyclin-dependent kinase 4/6, negatively regulates cell growth. Recent studies have led to an understanding of additional biologic functions for p16; however, the detailed mechanisms involved are still elusive. In this article, we show an unexpected expression of anion exchanger 1 (AEi in the cytoplasm in poorly, moderately differentiated gastric, colonic adenocarcinoma cells, in its interaction with p16, thereby sequestrating the protein in the cytoplasm. Genetic alterations of p16, AEi were not detectable. Forced expression of AEi in these cells sequestrated more p16 in the cytoplasm, whereas small interfering RNA-mediated silencing of AEi in the cells induced the release of p16 from the cytoplasm to the nucleus, leading to cell death, growth inhibition of tumor cells. By analyzing tissue samples obtained from patients with gastric, colonic cancers, we found that 83.33% of gastric cancers, 56.52% of colonic cancers coexpressed AEi, p16 in the cytoplasm. We conclude that AEi plays a crucial role in the pathogenesis of gastric, colonic adenocarcinoma, that p16 dysfunction is a novel pathway of carcinogenesis.

  17. E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    OpenAIRE

    Carcagno, Abel L.; Marazita, Mariela C.; Ogara, María F.; Ceruti, Julieta M.; Sonzogni, Silvina V.; Scassa, María E.; Giono, Luciana E.; Cánepa, Eduardo T.

    2011-01-01

    Background: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality o...

  18. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  19. Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer

    International Nuclear Information System (INIS)

    Carey, Jason PW; Asirvatham, Ananthi J; Galm, Oliver; Ghogomu, Tandeih A; Chaudhary, Jaideep

    2009-01-01

    Inhibitor of differentiation 4 (Id4), a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH) transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP) analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS), expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR), p21, p27 and p53 expression in DU145 cells. The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously silenced tumor suppressors

  20. Promoter Methylation of RASSF1A Associates to Adult Secondary Glioblastomas and Pediatric Glioblastomas.

    Science.gov (United States)

    Muñoz, Jorge; Inda, María Del Mar; Lázcoz, Paula; Zazpe, Idoya; Fan, Xing; Alfaro, Jorge; Tuñón, Teresa; Rey, Juan A; Castresana, Javier S

    2012-01-01

    While allelic losses and mutations of tumor suppressor genes implicated in the etiology of astrocytoma have been widely assessed, the role of epigenetics is still a matter of study. We analyzed the frequency of promoter hypermethylation by methylation-specific PCR (MSP) in five tumor suppressor genes (PTEN, MGMT, RASSF1A, p14(ARF), and p16(INK4A)), in astrocytoma samples and cell lines. RASSF1A was the most frequently hypermethylated gene in all grades of astrocytoma samples, in cell lines, and in adult secondary GBM. It was followed by MGMT. PTEN showed a slight methylation signal in only one GBM and one pilocytic astrocytoma, and in two cell lines; while p14(ARF) and p16(INK4A) did not show any evidence of methylation in primary tumors or cell lines. In pediatric GBM, RASSF1A was again the most frequently altered gene, followed by MGMT; PTEN, p14 and p16 showed no alterations. Lack or reduced expression of RASSF1A in cell lines was correlated with the presence of methylation. RASSF1A promoter hypermethylation might be used as a diagnostic marker for secondary GBM and pediatric GBM. Promoter hypermethylation might not be an important inactivation mechanism in other genes like PTEN, p14(ARF) and p16(INK4A), in which other alterations (mutations, homozygous deletions) are prevalent.

  1. Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein

    Science.gov (United States)

    Zhang, Encheng; Shen, Bing; Mu, Xingyu; Qin, Yan; Zhang, Fang; Liu, Yong; Xiao, Jiantao; Zhang, Pingzhao; Wang, Chenji; Tan, Mingyue; Fan, Yu

    2016-01-01

    VGLL4 is a transcriptional repressor that interacts with transcription factors TEADs and inhibits YAP-induced overgrowth and tumorigenesis. VGLL4 protein was dramatically reduced in various types of human cancers. But how VGLL4 protein is post-transcriptional regulated is poorly understood. In this study, we identify deubiquitinating enzyme USP11 as a novel VGLL4 interactor. We reveal that the USP domain of USP11 and the N-terminal region of VGLL4 are required for mutual binding. USP11 controls VGLL4 protein stability by promoting its deubiquitination. Furthermore, our results show that knockdown of USP11 promotes cell growth, migration, and invasion in a YAP-dependent manner. Together, our results suggest that USP11 may exert its tumor suppressor role by modulating VGLL4/YAP-TEADs regulatory loop. PMID:28042509

  2. Inhibitor of differentiation 4 (Id4 is a potential tumor suppressor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Carey Jason PW

    2009-06-01

    Full Text Available Abstract Background Inhibitor of differentiation 4 (Id4, a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS, expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR, p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously

  3. Meiotic and pedigree segregation analyses in carriers of t(4;8)(p16;p23.1) differing in localization of breakpoint positions at 4p subband 4p16.3 and 4p16.1.

    Science.gov (United States)

    Midro, Alina T; Zollino, Marcella; Wiland, Ewa; Panasiuk, Barbara; Iwanowski, Piotr S; Murdolo, Marina; Śmigiel, Robert; Sąsiadek, Maria; Pilch, Jacek; Kurpisz, Maciej

    2016-02-01

    The purpose of this study was to compare meiotic segregation in sperm cells from two carriers with t(4;8)(p16;p23.1) reciprocal chromosome translocations (RCTs), differing in localization of the breakpoint positions at the 4p subband-namely, 4p16.3 (carrier 1) and 4p16.1 (carrier 2)-and to compare data of the pedigree analyses performed by direct method. Three-color fluorescent in situ hybridization (FISH) on sperm cells and FISH mapping for the evaluation of the breakpoint positions, data from pedigrees, and direct segregation analysis of the pedigrees were performed. Similar proportions of normal/balanced and unbalanced sperm cells were found in both carriers. The most common was an alternate type of segregation (about 52 % and about 48 %, respectively). Unbalanced adjacent I and adjacent II karyotypes were found in similar proportions about 15 %. The direct segregation analysis (following Stengel-Rutkowski) of the pedigree of carriers of t(4;8)(p16.1;p23.1) was performed and results were compared with the data of the pedigree segregation analysis obtained earlier through the indirect method. The probability of live-born progeny with unbalanced karyotype for carriers of t(4;8)(p16.1;p23.1) was moderately high at 18.8 %-comparable to the value obtained using the indirect method for the same carriership, which was 12 %. This was, however, markedly lower than the value of 41.2 % obtained through the pedigree segregation indirect analysis estimated for carriers of t(4;8)(p16.3;p23.1), perhaps due to the unique composition of genes present within the 4p16.1-4p 16.3 region. Revealed differences in pedigree segregation analysis did not correspond to the very similar profile of meiotic segregation patterns presented by carrier 1 and carrier 2. Most probably, such discordances may be due to differences in embryo survival rates arising from different genetic backgrounds.

  4. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Directory of Open Access Journals (Sweden)

    Bianco Linda

    2009-11-01

    Full Text Available Abstract Background In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein. In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef. Results The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19 gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue. Conclusion We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor

  5. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    OpenAIRE

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-...

  6. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    SI-JU GAO

    The study subjects consisted of 75 healthy controls and 63 ToF ... Additionally, our analysis suggested that CpG island methylation in p16 promoters in ToF ..... reduced p16 protein expression in lung cancer (Kondo et al. 2006). In this context ..... promoter methylation in gastric carcinogenesis: a meta-analysis. Mol. Biol. Rep.

  7. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System

    Directory of Open Access Journals (Sweden)

    Stephen R. Armstrong

    2016-12-01

    Full Text Available The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.

  8. ZNF649, a novel Kruppel type zinc-finger protein, functions as a transcriptional suppressor

    International Nuclear Information System (INIS)

    Yang Hong; Yuan Wuzhou; Wang Ying; Zhu Chuanbing; Liu Bisheng; Wang Yuequn; Yang, Dan; Li Yongqing; Wang Canding; Wu Xiushan; Liu Mingyao

    2005-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporo-spatial manner. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here we report the identification and characterization of a novel human zinc-finger gene named ZNF649. The cDNA of ZNF649 is 3176 bp, encoding a protein of 505 amino acids in the nuclei. Northern blot analysis indicates that ZNF649 is expressed in most of the examined human adult and embryonic tissues. ZNF649 is a transcription suppressor when fused to GAL-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF649 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF649 protein may act as a transcriptional repressor in mitogen-activated protein kinase signaling pathway to mediate cellular functions

  9. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  10. High CpG island methylation ofp16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    Navya

    employed to detect CpG island methylation in p16 promoter region and ... of Fallot;p16 gene;p16 protein;CpG islands;Methylation;Promoter regions ..... Our findings that p16 has a role in heart development is ... Asian Pac J Cancer Prev 15, 75-84. .... phenotype in colorectal cancer using a large population-based sample.

  11. Expression of cdk4 and p16 in Oral Lichen Planus.

    Science.gov (United States)

    Goel, Sinny; Khurana, Nita; Marwah, Akanksha; Gupta, Sunita

    2015-01-01

    The purpose of this study was to evaluate the expression of cdk4 and p16, the proteins implicated in hyperproliferation and arrest in oral lichen planus and to compare their expression in erosive and non-erosive oral lichen planus and with normal mucosa and oral squamous cell carcinoma. Analysis of cdk4 and p16 expression was done in 43 erosive oral lichen planus (EOLP) and 17 non-erosive oral lichen planus (NOLP) cases, 10 normal mucosa and 10 oral squamous cell carcinoma (OSCC) cases with immunohistochemistry. This study demonstrated a significantly increased expression of cytoplasmic cdk4 (80% cases, cells stained - 19.6%), and cytoplasmic p16 (68.3% cases, cells stained - 16.4%) in oral lichen planus (OLP) compared to normal mucosa. cdk4 was much higher in OSCC in both cytoplasm and nuclei compared to normal mucosa. Also, while comparing OLP with positive control, significant difference was noted for cdk4 and p16, with expression being more in OSCC. While comparing EOLP with NOLP; significant differences were seen for cdk4 cytoplasmic staining only, for number of cases with positive staining as well as number of cells stained. Overexpression of cytoplasmic cdk4 and p16 was registered in oral lichen planus, however considerably lower than in squamous cell carcinoma. Erosive oral lichen planus demonstrated overexpression of cytoplasmic cdk4 and premalignant nature compared to non-erosive lesion. Therefore there is an obvious possibility for cytoplasmic expression of cdk4 and p16 to predict malignant potential of oral lichen planus lesions.

  12. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus

    DEFF Research Database (Denmark)

    Dietrich, Nikolaj; Bracken, Adrian P; Trinh, Emmanuelle

    2007-01-01

    -ARF, and that ectopic expression of CBX8 leads to repression of the Ink4a-Arf locus and bypass of senescence, leading to cellular immortalization. Gene expression and location analysis demonstrate that besides the INK4A-ARF locus, CBX8 also regulates a number of other genes important for cell growth and survival...

  13. Identification of a new target of miR-16, Vacuolar Protein Sorting 4a.

    Directory of Open Access Journals (Sweden)

    Neeta Adhikari

    Full Text Available The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs to discover pathways in heart failure (HF.The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD.BEDTools v2.14.3 was used to discriminate SNPs within predicted 3'UTR miRNA binding sites. A member of the miR-15/107 family, miR-16, was decreased in the circulation of end-stage HF patients and increased in response to a LVAD (p<0.001. MiR-16 decreased Vacuolar Protein Sorting 4a (VPS4a expression in HEK 293T cells (p<0.01. The SNP rs16958754 was identified in the miR-15/107 family binding site of VPS4a which abolished direct binding of miR-16 to the 3'UTR of VPS4a (p<0.05. VPS4a was increased in the circulation of end-stage HF patients (p<0.001, and led to a decrease in the number of HEK 293T cells in vitro (p<0.001.We provide evidence that miR-16 decreases in the circulation of end-stage HF patients and increases with a LVAD. Modeling studies suggest that miR-16 binds to and decreases expression of VPS4a. Overexpression of VPS4a decreases cell number. Together, these experiments suggest that miR-16 and VPS4a expression are altered in end-stage HF and in response to unloading with a LVAD. This signaling pathway may lead to reduced circulating cell number in HF.

  14. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    Science.gov (United States)

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  15. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Zhang, Shanxiang; Li, Xin

    2016-01-01

    with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6...... was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize...

  16. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    Science.gov (United States)

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-07

    To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by c2 test. Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).

  17. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  18. ATM Mediates pRB Function To Control DNMT1 Protein Stability and DNA Methylation

    Science.gov (United States)

    Suzuki, Misa; Hayashi, Naoyuki; Kobayashi, Masahiko; Sasaki, Nobunari; Nishiuchi, Takumi; Doki, Yuichiro; Okamoto, Takahiro; Kohno, Susumu; Muranaka, Hayato; Kitajima, Shunsuke; Yamamoto, Ken-ichi

    2013-01-01

    The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression. PMID:23754744

  19. Immunohistochemical analysis of P53 protein in odontogenic cysts

    Science.gov (United States)

    Gaballah, Essam Taher M.A.; Tawfik, Mohamed A.

    2010-01-01

    The p53 is a well-known tumor suppressor gene, the mutations of which are closely related to the decreased differentiation of cells. Findings of studies on immunohistochemical P53 expression in odontogenic cysts are controversial. The present study was carried-out to investigate the immunohistochemical expression of P53 protein in odontogenic cysts. Thirty paraffin blocks of diagnosed odontogenic cysts were processed to determine the immunohistochemical expression of P53 protein. Nine of the 11 odontogenic keratocysts (81.8%) expressed P53, one of three dentigerous cyst cases expressed P53, while none of the 16 radicular cysts expressed P53 protein. The findings of the present work supported the reclassification of OKC as keratocystic odontogenic tumor. PMID:23960493

  20. Ultrastructural Comparison of Processing of Protein and Pigment in the Ink Gland of Four Species of Sea Hares

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Prince

    2015-01-01

    Full Text Available The ink glands of four sea hare species (Aplysia californica, A. parvula, A. juliana, and Dolabrifera dolabrifera were compared to determine where ink protein is synthesized, how it is incorporated into protein storage vesicles, and the degree of variation in the structure of the ink gland. Ink protein was synthesized in RER cells and stored in amber and white vesicles. Lack of competent RER cells in the ink gland of D. dolabrifera was correlated with the absence of ink protein. Ink protein had similar characteristics in all three Aplysia species but, again, it was absent in D. dolabrifera. Its uptake involved pinocytosis by protein vesicle cell membranes. Granulate cells showed little variation in structure among the four species, the opposite was the case for RER cells. The conversion of the red algal pigment, phycoerythrin, to phycoerythrobilin (PEB occurs in the digestive gland but the change of PEB to aplysioviolin (APV, the form of pigment released by the ink gland, occurs in the ink gland itself by both granulate cells and pigment vesicles. The literature describes five types of vesicles based upon color and contents in the ink gland of these four species. We report only three types of vesicle: colored (purple, protein (white and amber, and transparent (includes clear vesicles.

  1. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer.

    Science.gov (United States)

    Lee, Jeong-Yeon; Jang, Ki-Seok; Shin, Dong-Hui; Oh, Mi-Yun; Kim, Hyun-Jun; Kim, Yongseok; Kong, Gu

    2008-06-01

    Mel-18, a polycomb group (PcG) protein, has been suggested as a tumor suppressor in human breast cancer. Previously, we reported that Mel-18 has antiproliferative activity in breast cancer cells. However, its functional mechanism has not been fully elucidated. Here, we investigated the role of Mel-18 in human breast cancer. We saw an inverse correlation between Mel-18 and phospho-Akt, which were expressed at low and high levels, respectively, in primary breast tumor tissues from 40 breast cancer patients. The effect of Mel-18 on cell growth was examined in two breast cancer cell lines, SK-BR-3 and T-47D, which express relatively low and high levels of endogenous Mel-18, respectively. On Mel-18 overexpression in SK-BR-3 cells, cell growth was attenuated and G(1) arrest was observed. Likewise, suppression of Mel-18 by antisense expression in T-47D cells led to enhanced cell growth and accelerated G(1)-S phase transition. In these cells, cyclin-dependent kinase (Cdk)-4 and Cdk2 activities were affected by Mel-18, which were mediated by changes in cyclin D1 expression and p27(Kip1) phosphorylation at Thr(157), but not by INK4a/ARF genes. The changes were both dependent on the phosphatidylinositol 3-kinase/Akt signaling pathway. Akt phosphorylation at Ser(473) was reduced by Mel-18 overexpression in SK-BR-3 cells and enhanced by Mel-18 suppression in T-47D cells. Akt-mediated cytoplasmic localization of p27(Kip1) was inhibited by Mel-18 in SK-BR-3 cells. Moreover, Mel-18 overexpression showed reduced glycogen synthase kinase-3beta phosphorylation, beta-catenin nuclear localization, T-cell factor/lymphoid enhancer factor promoter activity, and cyclin D1 mRNA level. Taken together, we established a linear relationship between Mel-18-->Akt-->G(1) phase regulators.

  2. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells

    Science.gov (United States)

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M.

    2014-01-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of CDK inhibitors (CDKI) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF-2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells FGF-2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15INK4B and p27KIP1, become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration. PMID:25447026

  3. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  4. Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging

    Directory of Open Access Journals (Sweden)

    Francis Kevin P

    2011-08-01

    Full Text Available Abstract Background Transient expression of proteins in plants has become a favoured method over the production of stably transformed plants because, in addition to enabling high protein yields, it is both fast and easy to apply. An enhancement of transient protein expression can be achieved by plant virus-encoded RNA silencing suppressor proteins. Since viral suppressor proteins differ in their efficiency to enhance transient protein expression in plants, we developed a whole-leaf green fluorescent protein (GFP-based imaging assay to quantitatively assess suppressor protein activity. Results In a transient GFP-expression assay using wild-type and GFP-transgenic N. benthamiana, addition of the plant viral suppressors Beet mild yellowing virus (BMYV-IPP P0 or Plum pox virus (PPV HC-Pro was shown to increase fluorescent protein expression 3-4-fold, 7 days post inoculation (dpi when compared to control plants. In contrast, in agroinfiltrated patches without suppressor activity, near complete silencing of the GFP transgene was observed in the transgenic N. benthamiana at 21 dpi. Both co-infiltrated suppressors significantly enhanced GFP expression over time, with HC-Pro co-infiltrations leading to higher short term GFP fluorescence (at 7 dpi and P0 giving higher long term GFP fluorescence (at 21 dpi. Additionally, in contrast to HC-Pro co-infiltrations, an area of complete GFP silencing was observed at the edge of P0 co-infiltrated areas. Conclusions Fluorescence imaging of whole intact leaves proved to be an easy and effective method for spatially and quantitatively observing viral suppressor efficiency in plants. This suppressor assay demonstrates that plant viral suppressors greatly enhanced transient GFP expression, with P0 showing a more prolonged suppressor activity over time than HC-Pro. Both suppressors could prove to be ideal candidates for enhancing target protein expression in plants.

  5. High CpG island methylation ofp16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    Navya

    :Tetralogy of Fallot;p16 gene;p16 protein;CpG islands;Methylation;Promoter regions ... of congenital heart disease, as well as the exclusion of previous history of ..... malignant progression of oral epithelial dysplasia: a prospective cohort study.

  6. Pharmacological activation of tumor suppressor, wild-type p53 as a promising strategy to fight cancer

    Directory of Open Access Journals (Sweden)

    Alicja Sznarkowska

    2010-08-01

    Full Text Available A powerful tumor suppressorp53 protein is a transcription factor which plays a critical role in eliciting cellular responses to a variety of stress signals, including DNA damage, hypoxia and aberrant proliferative signals, such as oncogene activation. Since its discovery thirty one years ago, p53 has been connected to tumorigenesis as it accumulates in the transformed tumor cells. Cellular stress induces stabilization of p53 and promotes, depending on the stress level, cell cycle arrest or apoptosis in the irreversibly damaged cells. The p53 protein is found inactive in more than 50�0of human tumors either by enhanced proteasomal degradation or due to the inactivating point mutations in its gene. Numerous data indicate that low molecular weight compounds, identified by molecular modeling or in the functional, cell-based assays, efficiently activate non-mutated p53 in cancer cells which in consequence leads to their elimination due to p53-dependent apoptosis. In this work we describe the structure and cellular function of p53 as well as the latest discoveries on the compounds with high anti-tumor activities aiming at reactivation of the tumor suppressor function of p53.

  7. The tumor suppressors p33ING1 and p33ING2 interact with alien in vivo and enhance alien-mediated gene silencing.

    Science.gov (United States)

    Fegers, Inga; Kob, Robert; Eckey, Maren; Schmidt, Oliver; Goeman, Frauke; Papaioannou, Maria; Escher, Niko; von Eggeling, Ferdinand; Melle, Christian; Baniahmad, Aria

    2007-11-01

    The tumor suppressor p33ING1 is involved in DNA repair and cell cycle regulation. Furthermore, p33ING1 is a transcriptional silencer that recognizes the histone mark for trimethylated lysine 4 at histone H3. Interestingly, expression of p33ING1 and p33ING2 is able to induce premature senescence in primary human fibroblasts. The corepressor Alien is involved in gene silencing mediated by selected members of nuclear hormone receptors. In addition, Alien acts as a corepressor for E2F1, a member of the E2F cell cycle regulatory family. Furthermore, recent findings suggest that Alien is complexed with transcription factors participating in DNA repair and chromatin. Here, using a proteomic approach by surface-enhanced laser desorption ionization and mass spectrometry (SELDI-MS) combined with immunological techniques, we show that Alien interacts in vivo with the tumor suppressor p33ING1 as well as with the related tumor suppressor candidate p33ING2. The interaction of Alien with p33ING1 and p33ING2 was confirmed in vitro with GST-pull-down, suggesting a direct binding of Alien to these factors. The binding domain was mapped to a central region of Alien. Functionally, the expression of p33ING1 or p33ING2 enhances the Alien-mediated silencing, suggesting that the interaction plays a role in transcriptional regulation. Thus, the findings suggest that the identified interaction between Alien and the tumor suppressors p33ING1 and p33ING2 reveals a novel cellular protein network.

  8. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.

    Science.gov (United States)

    Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki

    2003-09-01

    The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for

  9. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2

    OpenAIRE

    Glaunsinger, Britt A.; Weiss, Robert S.; Lee, Siu Sylvia; Javier, Ronald

    2001-01-01

    Adenovirus type 9 (Ad9) is distinct among human adenoviruses because it elicits solely mammary tumors in animals and its primary oncogenic determinant is the E4 region-encoded ORF1 (E4-ORF1) protein. We report here that the PDZ domain-containing protein ZO-2, which is a candidate tumor suppressor protein, is a cellular target for tumorigenic Ad9 E4-ORF1 but not for non-tumorigenic wild-type E4-ORF1 proteins encoded by adenovirus types 5 and 12. Complex formation was mediated by the C-terminal...

  10. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  11. Significant difference in p53 and p21 protein immunoreactivity in HPV 16 positive and HPV negative breast carcinomas

    International Nuclear Information System (INIS)

    Hennig, E.M.; Norwegian Radium Hospital, Oslo; Kvinnsland, S.; Holm, R.; Nesland, J.M.

    1999-01-01

    Human papillomavirus (HPV) 16 has previously been found in 19/41 breast carcinomas (46%) in women with a history of HPV 16 positive CIN III lesions. There was no significant difference in distribution of histological subtypes, mean or median tumour diameter or number of regional lymph node metastases in the HPV positive and HPV negative breast carcinoma groups. P53, p21 and c-erbB-2 proteins were analyzed by immunohistochemistry in the HPV 16 positive and HPV negative breast carcinomas. There was a significant difference in p53 and p21 protein immunoreactivity between HPV 16 positive and HPV negative breast carcinomas (p=0.0091 and p=0.0040), with a significant less detectable p53 and p21 protein immunoreactivity in the HPV 16 positive cases. There was also a significant difference in the coexpression of p53/p21 between the HPV 16 positive and HPV 16 negative breast carcinomas (p=0.002). No significant difference in immunostaining for c-erbB-2 protein in the two groups was found (p=0.15), or for the coexpression of p53/c-erbB-2 (p=0.19). The significantly lower expression of p53 and p21 proteins in HPV 16 positive than in HPV 16 negative breast carcinomas supports the hypothesis of inactivation and degradation of wild-type p53 proteins by HPV 16 E6 and that p53 mutation is not necessary for transformation in the HPV 16 positive cases. (orig.)

  12. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  13. Direct binding of the N-terminus of HTLV-1 tax oncoprotein to cyclin-dependent kinase 4 is a dominant path to stimulate the kinase activity.

    Science.gov (United States)

    Li, Junan; Li, Hongyuan; Tsai, Ming-Daw

    2003-06-10

    The involvement of Tax oncoprotein in the INK4-CDK4/6-Rb pathway has been regarded as a key factor for immortalization and transformation of human T-cell leukemia virus 1 (HTLV-1) infected cells. In both p16 -/- and +/+ cells, expression of Tax has been correlated with an increase in CDK4 activity, which subsequently increases the phosphorylation of Rb and drives the infected cells into cell cycle progression. In relation to these effects, Tax has been shown to interact with two components of the INK4-CDK4/6-Rb pathway, p16 and cyclin D(s). While Tax competes with CDK4 for p16 binding, thus suppressing p16 inhibition of CDK4, Tax also binds to cyclin D(s) with concomitant increases in both CDK4 activity and the phosphorylation of cyclin D(s). Here we show that both Tax and residues 1-40 of the N-terminus of Tax, Tax40N, bind to and activate CDK4 in vitro. In the presence of INK4 proteins, binding of Tax and Tax40N to CDK4 counteracts against the inhibition of p16 and p18 and acts as the major path to regulate Tax-mediated activation of CDK4. We also report that Tax40N retains the transactivation ability. These results of in vitro studies demonstrate a potentially novel, p16-independent route to regulate CDK4 activity by the Tax oncoprotein in HTLV-1 infected cells.

  14. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/Cip1 in colorectal carcinoma

    NARCIS (Netherlands)

    Slebos, R. J.; Baas, I. O.; Clement, M.; Polak, M.; Mulder, J. W.; van den Berg, F. M.; Hamilton, S. R.; Offerhaus, G. J.

    1996-01-01

    Inactivation of the p53 tumour-suppressor gene is common in a wide variety of human neoplasms. In the majority of cases, single point mutations in the protein-encoding sequence of p53 lead to positive immunohistochemistry (IHC) for the p53 protein, and are accompanied by loss of the wild-type

  15. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  16. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  17. Polymorphism of the p53 tumor suppressor gene is associated with susceptibility to uterine leiomyoma.

    Science.gov (United States)

    Denschlag, Dominik; Bettendorf, Herta; Watermann, Dirk; Keck, Christoph; Tempfer, Clemens; Pietrowski, Detlef

    2005-07-01

    To evaluate the association between the presence of uterine leiomyoma and two single nuclear polymorphisms of the p53 tumor suppressor and the angiopoietin-2 (ANGPT2) genes. Prospective case control study. Academic research institution. One hundred thirty-two women with clinically and surgically diagnosed uterine leiomyomas and 280 controls. Peripheral venous puncture. Genotyping was performed by polymerase chain reaction-based amplification of the Arg and Pro variants at codon 72 of the p53 gene and by restriction fragment length polymorphism analysis of the G/G and G/A alleles in exon 4 of the ANGPT2 gene. Comparing women with uterine leiomyomas and controls, no statistically significant difference with respect to allele frequency and genotype distribution were ascertained for the ANGPT2 polymorphism (P=.2 and P=.5, respectively). However, for the p53 tumor suppressor gene polymorphism, statistically significant differences in terms of a higher Pro allele frequency and a higher prevalence of the Pro/Pro genotype among women with uterine leiomyoma (32.0% vs. 16.0%, respectively, and 21.3% vs. 4.7%, respectively) were ascertained (P=.001, OR 1.74; 95% CI 1.24-2.45, P=.001; OR 3.84, 95% CI 1.81-8.14; respectively). Carriage of the p53 polymorphism at codon 72 predicts the susceptibility to leiomyoma in a Caucasian population and may contribute to the pathogenesis of uterine leiomyoma.

  18. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  19. Companied P16 genetic and protein status together providing useful information on the clinical outcome of urinary bladder cancer.

    Science.gov (United States)

    Pu, Xiaohong; Zhu, Liya; Fu, Yao; Fan, Zhiwen; Zheng, Jinyu; Zhang, Biao; Yang, Jun; Guan, Wenyan; Wu, Hongyan; Ye, Qing; Huang, Qing

    2018-04-01

    SPEC P16/CEN3/7/17 Probe fluorescence-in-situ-hybridization (FISH) has become the most sensitive method in indentifying the urothelial tumors and loss of P16 has often been identified in low-grade urothelial lesions; however, little is known about the significations of other P16 genetic status (normal and amplification) in bladder cancer.We detected P16 gene status by FISH in 259 urine samples and divided these samples into 3 groups: 1, normal P16; 2, loss of P16; and 3, amplified P16. Meanwhile, p16 protein expression was measured by immunocytochemistry and we characterized the clinicopathologic features of cases with P16 gene status.Loss of P16 occurred in 26.2%, P16 amplification occurred in 41.3% and P16 gene normal occurred in 32.4% of all cases. P16 genetic status was significantly associated with tumor grade and primary tumor status (P = .008 and .017), but not with pathological tumor stage, overall survival, and p16 protein expression. However, P16 gene amplification accompanied protein high-expression has shorter overall survival compared with the overall patients (P = .023), and P16 gene loss accompanied loss of protein also had the tendency to predict bad prognosis (P = .067).Studies show that the genetic status of P16 has a close relation with the stages of bladder cancer. Loss of P16 is associated with low-grade urothelial malignancy while amplified P16 donotes high-grade. Neither P16 gene status nor p16 protein expression alone is an independent predictor of urothelial bladder carcinoma, but combine gene and protein status together providing useful information on the clinical outcome of these patients.

  20. Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Xiao-Yan He

    2017-10-01

    Full Text Available Calreticulin (CRT, a multifunctional Ca2+-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272 in secreted form (B16-CRT, or recombinant enhanced green fluorescence protein (rEGFP (B16-EGFP, were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC-dependent manner. The B16-CRT-bearing mice showed increased Gr1+ MDSC infiltration in tumor tissues, accelerated proliferation of CD11b+Ly6G+Ly6Clow (G-MDSC precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC in periphery. In in vitro studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs via interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.

  1. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  2. The Histone Lysine Demethylase JMJD3/KDM6B Is Recruited to p53 Bound Promoters and Enhancer Elements in a p53 Dependent Manner

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Rappsilber, Juri

    2014-01-01

    linked to the regulation of different biological processes such as differentiation of embryonic stem cells, inflammatory responses in macrophages, and induction of cellular senescence via regulation of the INK4A-ARF locus. Here we show here that JMJD3 interacts with the tumour suppressor protein p53. We...... find that the interaction is dependent on the p53 tetramerization domain. Following DNA damage, JMJD3 is transcriptionally upregulated and by performing genome-wide mapping of JMJD3, we demonstrate that it binds genes involved in basic cellular processes, as well as genes regulating cell cycle......, response to stress and apoptosis. Moreover, we find that JMJD3 binding sites show significant overlap with p53 bound promoters and enhancer elements. The binding of JMJD3 to p53 target sites is increased in response to DNA damage, and we demonstrate that the recruitment of JMJD3 to these sites is dependent...

  3. Structure-Based Design of CSDK4-Specific Inhibitors

    National Research Council Canada - National Science Library

    Marmorstein, Ronen

    2003-01-01

    ...) are implicated in more than 80% of human neoplasias (Ortega et al., 2002). For example, the gene encoding the CDK4/6 inhibitory protein, p16INK4, is deleted or mutated in the majority of leukemias, bladder cancers and familial melanomas (Roussel, 1999...

  4. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    Science.gov (United States)

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  5. The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7.

    Science.gov (United States)

    Szalmás, Anita; Tomaić, Vjekoslav; Basukala, Om; Massimi, Paola; Mittal, Suruchi; Kónya, József; Banks, Lawrence

    2017-04-01

    Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays. IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor. Copyright © 2017 American Society for Microbiology.

  6. The Quest for the 1p36 Tumor Suppressor

    Science.gov (United States)

    Bagchi, Anindya; Mills, Alea A.

    2010-01-01

    Genomic analyses of late-stage human cancers have uncovered deletions encompassing 1p36, thereby providing an extensive body of literature supporting the idea that a potent tumor suppressor resides in this interval. Although a number of genes have been proposed as 1p36 candidate tumor suppressors, convincing evidence that their encoded products protect from cancer has been scanty. A recent functional study identified CHD5 as a novel tumor suppressor mapping to 1p36. Here we discuss evidence supporting CHD5’s tumor suppressive role. Together, these findings suggest that strategies designed to enhance CHD5 activity could provide novel approaches for treating a broad range of human malignancies. PMID:18413720

  7. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb.

    Science.gov (United States)

    Neuveut, C; Low, K G; Maldarelli, F; Schmitt, I; Majone, F; Grassmann, R; Jeang, K T

    1998-06-01

    Human T-cell leukemia virus type 1 is etiologically linked to the development of adult T-cell leukemia and various human neuropathies. The Tax protein of human T-cell leukemia virus type I has been implicated in cellular transformation. Like other oncoproteins, such as Myc, Jun, and Fos, Tax is a transcriptional activator. How it mechanistically dysregulates the cell cycle is unclear. Previously, it was suggested that Tax affects cell-phase transition by forming a direct protein-protein complex with p16(INK4a), thereby inactivating an inhibitor of G1-to-S-phase progression. Here we show that, in T cells deleted for p16(INK4a), Tax can compel an egress of cells from G0/G1 into S despite the absence of serum. We also show that in undifferentiated myocytes, expression of Tax represses cellular differentiation. In both settings, Tax expression was found to increase cyclin D-cdk activity and to enhance pRb phosphorylation. In T cells, a Tax-associated increase in steady-state E2F2 protein was also documented. In searching for a molecular explanation for these observations, we found that Tax forms a protein-protein complex with cyclin D3, whereas a point-mutated and transcriptionally inert Tax mutant failed to form such a complex. Interestingly, expression of wild-type Tax protein in cells was also correlated with the induction of a novel hyperphosphorylated cyclin D3 protein. Taken together, these findings suggest that Tax might directly influence cyclin D-cdk activity and function, perhaps by a route independent of cdk inhibitors such as p16(INK4a).

  8. DMPD: Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17070092 Suppressor of cytokine signaling (SOCS) 2, a protein with multiple function...Epub 2006 Oct 27. (.png) (.svg) (.html) (.csml) Show Suppressor of cytokine signaling (SOCS) 2, a protein with multiple function...SOCS) 2, a protein with multiple functions. Authors Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Pu

  9. A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Bing Su

    Full Text Available Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP, which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness.

  10. Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. Characterization of a soluble suppressor of B cell immunoglobulin production

    International Nuclear Information System (INIS)

    Fleisher, T.A.; Greene, W.C.; Blaese, R.M.; Waldmann, T.A.

    1981-01-01

    Human peripheral blood mononuclear cells (PBMC) activated with the mitogenic lectin concanavalin A (Con A) elaborate a soluble immune suppressor supernatant (SISS) that contains at least 2 distinct suppressor factors. One of these, SISS-B, inhibits polyclonal B cell immunoglobulin production, whereas the other, SISS-T, suppresses T cell proliferation to both mitogens and antigens. The latter mediator is discussed in the companion paper. Characteristics of the human soluble suppressor of B cell immunoglobulin production (SISS-B) include: 1) inhibition by a noncytotoxic mechanism, 2) loss of activity in the presence of the monosaccharide L-rhamnose, 3) appearance within 8 to 16 hr after the addition of Con A, 4) elaboration by cells irradiated with 500 or 2000 rads, 5) production by highly purified T cells, 6) stability at pH 2.5 but instability at 56/sup o/C, and 7) m.w. of 60 to 80,000. These data indicate that after Con A activation, selected T cells not only become potent suppressor cells, but also generate a soluble saccharide-specific factor(s) that inhibits polyclonal immunoglobulin production by human B cells

  11. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    International Nuclear Information System (INIS)

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins

  12. Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma.

    LENUS (Irish Health Repository)

    Burke, Louise

    2012-02-03

    PURPOSE: Many studies have highlighted the aberrant expression and prognostic significance of individual proteins in either the Rb (particularly cyclin D1, p16INK4A, and pRb) or the p53 (p53 and p21Waf1) pathways in non-small cell lung cancer. We hypothesize that cumulative abnormalities within each and between these pathways would have significant prognostic potential regarding survival. EXPERIMENTAL DESIGN: Our study population consisted of 106 consecutive surgically resected cases of predominantly early-stage non-small cell lung cancer from the National Cancer Institute-Mayo Clinic series, and assessment of proteins involved both immunohistochemical (cyclin D1, p21Waf1, pRb, p16INK4A, and p53) and mutational analysis (p53) in relationship to staging and survival. RESULTS: Cyclin D1 overexpression was noted in 48% of the tumors, p16INK4A negative in 53%, pRb negative in 17%, p53 immunopositive in 50%, p53 mutation frequency in 48%, and p21(Waf1) overexpression in 47%, none with prognostic significance. Cyclin D1 overexpression in pRb-negative tumors revealed a significantly worse prognosis with a mean survival of 2.3 years (P = 0.004). A simultaneous p53 mutation dramatically reduced the mean survival time to 0.9 years (P = 0.007). Cyclin D1 overexpression with either a p53 mutation or a p53 overexpression was also associated with a significantly poorer prognosis (P = 0.0033 and 0.0063, respectively). CONCLUSIONS: Some cumulative abnormalities in the Rb and p53 pathways (e.g., cyclin D1 overexpression and p53 mutations) significantly cooperate to predict a poor prognosis; however, the complexity of the cell cycle protein interaction in any given tumor warrants caution in interpreting survival results when specific protein abnormalities are taken in isolation.

  13. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma

    Directory of Open Access Journals (Sweden)

    Jun-qi Liu

    2015-09-01

    Full Text Available Objective: To investigate the expression of p16, cyclin D1, retinoblastoma tumor suppressor protein (Rb and MIB-1 in skull base chordoma and chondrosarcoma tissues, and to determine the clinicopathological significance of the above indexes in these diseases. Methods: A total of 100 skull base chordoma, 30 chondrosarcoma, and 20 normal cartilage tissue samples were analyzed by immunohistochemistry. The expression levels of p16, cyclinD1, Rb and MIB-1 proteins were assessed for potential correlation with the clinicopathological features. Results: As compared to normal cartilage specimen (control, there was decreased expression of p16, and increased expression of cyclin D1, Rb and MIB-1 proteins, in both skull base chordoma and chondrosarcoma specimens. MIB-1 LI levels were significantly increased in skull base chordoma specimens with negative expression of p16, and positive expression of cyclin D1 and Rb (P  0.05. However, p16 and MIB-1 levels correlated with the intradural invasion, and expression of p16, Rb and MIB-1 correlated with the number of tumor foci (P < 0.05. Further, the expression of p16 and MIB-1 appeared to correlate with the prognosis of patients with skull base chordoma. Conclusions: The abnormal expression of p16, cyclin D1 and Rb proteins might be associated with the tumorigenesis of skull base chordoma and chondrosarcoma. Keywords: p16, Cyclin D1, Rb, MIB-1, Skull base chordoma, Skull base chondrosarcoma

  14. Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication

    DEFF Research Database (Denmark)

    Piunti, Andrea; Rossi, Alessandra; Cerutti, Aurora

    2014-01-01

    The ability of PRC1 and PRC2 to promote proliferation is a main feature that links polycomb (PcG) activity to cancer. PcGs silence the expression of the tumour suppressor locus Ink4a/Arf, whose products positively regulate pRb and p53 functions. Enhanced PcG activity is a frequent feature of human...

  15. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    Science.gov (United States)

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  16. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression

    Directory of Open Access Journals (Sweden)

    Hanamura Ichiro

    2006-10-01

    Full Text Available Abstract Background A high proliferative capacity of tumor cells usually is associated with shortened patient survival. Disruption of the RB pathway, which is critically involved in regulating the G1 to S cell cycle transition, is a frequent target of oncogenic events that are thought to contribute to increased proliferation during tumor progression. Previously, we determined that p18INK4c, an essential gene for normal plasma cell differentiation, was bi-allelically deleted in five of sixteen multiple myeloma (MM cell lines. The present study was undertaken to investigate a possible role of p18INK4c in increased proliferation of myeloma tumors as they progress. Results Thirteen of 40 (33% human myeloma cell lines do not express normal p18INK4c, with bi-allelic deletion of p18 in twelve, and expression of a mutated p18 fragment in one. Bi-allelic deletion of p18, which appears to be a late progression event, has a prevalence of about 2% in 261 multiple myeloma (MM tumors, but the prevalence is 6 to10% in the 50 tumors with a high expression-based proliferation index. Paradoxically, 24 of 40 (60% MM cell lines, and 30 of 50 (60% MM tumors with a high proliferation index express an increased level of p18 RNA compared to normal bone marrow plasma cells, whereas this occurs in only five of the 151 (3% MM tumors with a low proliferation index. Tumor progression is often accompanied by increased p18 expression and an increased proliferation index. Retroviral-mediated expression of exogenous p18 results in marked growth inhibition in three MM cell lines that express little or no endogenous p18, but has no effect in another MM cell line that already expresses a high level of p18. Conclusion Paradoxically, although loss of p18 appears to contribute to increased proliferation of nearly 10% of MM tumors, most MM cell lines and proliferative MM tumors have increased expression of p18. Apart from a small fraction of cell lines and tumors that have inactivated

  17. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Kundu, Chanakya N. [School of Biotechnology, KIIT University, Bhubaneswar (India); Verma, Subhash C. [Department of Microbiology and Immunology, University of Nevada, School of Medicine, Reno, NV 89557 (United States); Choudhuri, Tathagata, E-mail: tatha@ils.res.in [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Department of Biotechnology, Siksha Bhavana, Visva Bharati, Santiniketan, Bolpur (India)

    2014-01-05

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.

  18. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    International Nuclear Information System (INIS)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit; Kundu, Chanakya N.; Verma, Subhash C.; Choudhuri, Tathagata

    2014-01-01

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways

  19. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  20. High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4

    International Nuclear Information System (INIS)

    Sousa, R.E.; Oliveira, J.; Gören, A.; Miranda, D.; Silva, M.M.; Hilliou, Loic; Costa, C.M.; Lanceros-Mendez, S.

    2016-01-01

    Highlights: • C-LiFePO 4 paste was been prepared for screen-printing technique. • The inks produced have a Newtonian viscosity of 3 Pa.s for this printing technique. • C-LiFePO 4 inks present a 48.2 mAh.g −1 after 50 cycles at 5C. • This ink is suitable in the development of printed lithium ion batteries. - Abstract: Lithium-ion battery cathodes have been fabricated by screen-printing through the development of C-LiFePO 4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 μm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are ∼ 450 Ω and 2.5 × 10 −16 cm 2 s −1 , respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g −1 at 5C and a discharge value of 39.8 mAh g −1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO 4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries.

  1. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    Science.gov (United States)

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4

    DEFF Research Database (Denmark)

    Farkas, Thomas; Hansen, Klaus; Holm, Karin

    2002-01-01

    The "pocket proteins" pRb (retinoblastoma tumor suppressor protein), p107, and p130 regulate cell proliferation via phosphorylation-sensitive interactions with E2F transcription factors and other proteins. We previously identified 22 in vivo phosphorylation sites in human p130, including three...

  3. Expression of MDM2 mRNA, MDM2, P53 and P16 Proteins in Urothelial Lesions in the View of the WHO 4th Edition Guidelines as A Molecular Insight towards Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Olfat Hammam

    2017-08-01

    Full Text Available AIM: Here we imposed a multimarker molecular panel composed of P53, MDM2 protein & mRNA & P16 with the identification of sensitive and specific cut offs among the Egyptian urothelial carcinomas bilharzial or not emphasize the pathological and molecular classifications, pathways and prognosis as a privilege for adjuvant therapy. METHODS: Three hundred and ten urothelial lesions were pathologically evaluated and grouped as follows: 50 chronic cystitis as benign, 240 urothelial carcinomas and 20 normal bladder tissue as a control. Immunohistochemistry for MDM Protein, P16 & p53 and In Situ Hybridization for MDM2mRNA were done. RESULTS: MDM2mRNA overexpression correlated with low grade low stage non invasive tumors, while P53 > 40% & p16 40% & P16 10% from high grade, high stage invasive urothelial carcinomas (with p53 > 40, p16 40 & p16 < 10%, together with the histopathological features can distinguish in situ urothelial lesions from dysplastic and atypical lesions.

  4. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer.

    Science.gov (United States)

    Balogh, G A; Mailo, D A; Corte, M M; Roncoroni, P; Nardi, H; Vincent, E; Martinez, D; Cafasso, M E; Frizza, A; Ponce, G; Vincent, E; Barutta, E; Lizarraga, P; Lizarraga, G; Monti, C; Paolillo, E; Vincent, R; Quatroquio, R; Grimi, C; Maturi, H; Aimale, M; Spinsanti, C; Montero, H; Santiago, J; Shulman, L; Rivadulla, M; Machiavelli, M; Salum, G; Cuevas, M A; Picolini, J; Gentili, A; Gentili, R; Mordoh, J

    2006-04-01

    p53 wild-type is a tumor suppressor gene involved in DNA gene transcription or DNA repair mechanisms. When damage to DNA is unrepairable, p53 induces programmed cell death (apoptosis). The mutant p53 gene is the most frequent molecular alteration in human cancer, including breast cancer. Here, we analyzed the genetic alterations in p53 oncogene expression in 55 patients with breast cancer at different stages and in 8 normal women. We measured by ELISA assay the serum levels of p53 mutant protein and p53 antibodies. Immunohistochemistry and RT-PCR using specific p53 primers as well as mutation detection by DNA sequencing were also evaluated in breast tumor tissue. Serological p53 antibody analysis detected 0/8 (0%), 0/4 (0%) and 9/55 (16.36%) positive cases in normal women, in patients with benign breast disease and in breast carcinoma, respectively. We found positive p53 mutant in the sera of 0/8 (0.0%) normal women, 0/4 (0%) with benign breast disease and 29/55 (52.72%) with breast carcinoma. Immunohistochemistry evaluation was positive in 29/55 (52.73%) with mammary carcinoma and 0/4 (0%) with benign breast disease. A very good correlation between p53 mutant protein detected in serum and p53 accumulation by immunohistochemistry (83.3% positive in both assays) was found in this study. These data suggest that detection of mutated p53 could be a useful serological marker for diagnostic purposes.

  5. Attenuation of p38α MAPK stress response signaling delays the in vivo aging of skeletal muscle myofibers and progenitor cells.

    Science.gov (United States)

    Papaconstantinou, John; Wang, Chen Z; Zhang, Min; Yang, San; Deford, James; Bulavin, Dmitry V; Ansari, Naseem H

    2015-09-01

    Functional competence and self-renewal of mammalian skeletal muscle myofibers and progenitor cells declines with age. Progression of the muscle aging phenotype involves the decline of juvenile protective factorsi.e., proteins whose beneficial functions translate directly to the quality of life, and self-renewal of progenitor cells. These characteristics occur simultaneously with the age-associated increase of p38α stress response signaling. This suggests that the maintenance of low levels of p38α activity of juvenile tissues may delay or attenuate aging. We used the dominant negative haploinsufficient p38α mouse (DN-p38α(AF/+)) to demonstrate that in vivo attenuation of p38α activity in the gastrocnemius of the aged mutant delays age-associated processes that include: a) the decline of the juvenile protective factors, BubR1, aldehyde dehydrogenase 1A (ALDH1A1), and aldehyde dehydrogenase 2 (ALDH2); b) attenuated expression of p16(Ink4a) and p19(Arf) tumor suppressor genes of the Cdkn2a locus; c) decreased levels of hydroxynonenal protein adducts, expression of COX2 and iNOS; d) decline of the senescent progenitor cell pool level and d) the loss of gastrocnemius muscle mass. We propose that elevated P-p38α activity promotes skeletal muscle aging and that the homeostasis of p38α impacts the maintenance of a beneficial healthspan.

  6. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    Science.gov (United States)

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  7. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  8. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  9. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling.

    Science.gov (United States)

    Fu, Wei-Ming; Zhu, Xiao; Wang, Wei-Mao; Lu, Ying-Fei; Hu, Bao-Guang; Wang, Hua; Liang, Wei-Cheng; Wang, Shan-Shan; Ko, Chun-Hay; Waye, Mary Miu-Yee; Kung, Hsiang-Fu; Li, Gang; Zhang, Jin-Fang

    2015-10-01

    Long non-coding RNA Hotair has been considered as a pro-oncogene in multiple cancers. Although there is emerging evidence that reveals its biological function and the association with clinical prognosis, the precise mechanism remains largely elusive. We investigated the function and mechanism of Hotair in hepatocellular carcinoma (HCC) cell models and a xenograft mouse model. The regulatory network between miR-218 and Hotair was elucidated by RNA immunoprecipitation and luciferase reporter assays. Finally, the correlation between Hotair, miR-218 and the target gene Bmi-1 were evaluated in 52 paired HCC specimens. In this study, we reported that Hotair negatively regulated miR-218 expression in HCC, which might be mediated through an EZH2-targeting-miR-218-2 promoter regulatory axis. Further investigation revealed that Hotair knockdown dramatically inhibited cell viability and induced G1-phase arrest in vitro and suppressed tumorigenicity in vivo by promoting miR-218 expression. Oncogene Bmi-1 was shown to be a functional target of miR-218, and the main downstream targets signaling, P16(Ink4a) and P14(ARF), were activated in Hotair-suppressed tumorigenesis. In primary human HCC specimens, Hotair and Bmi-1 were concordantly upregulated whereas miR-218 was downregulated in these tissues. Furthermore, Hotair was inversely associated with miR-218 expression and positively correlated with Bmi-1 expression in these clinical tissues. Hotair silence activates P16(Ink4a) and P14(ARF) signaling by enhancing miR-218 expression and suppressing Bmi-1 expression, resulting in the suppression of tumorigenesis in HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. High promoter hypermethylation frequency of p14/ARF in supratentorial PNET but not in medulloblastoma.

    Science.gov (United States)

    Inda, M M; Muñoz, J; Coullin, P; Fauvet, D; Danglot, G; Tuñón, T; Bernheim, A; Castresana, J S

    2006-04-01

    Medulloblastoma (MB) is the most common primitive neuroectodermal tumour (PNET) of the central nervous system. Although supratentorial PNET (sPNET) and MB are histologically similar, their clinical behaviour differs, sPNET being more aggressive than MB. The aim of this study was to determine whether sPNET and MB are genetically different entities. We investigated 32 PNET primary tumour samples (23 MB and nine sPNET) and four PNET cell lines, for the presence of CDKN2A homozygous deletions at exon 1-alpha of p16/INK4 and exon 1-beta of p14/ARF, and promoter hypermethylation of both genes. No homozygous deletion of either p16/INK4 or p14/ARF was demonstrated in any of the PNET primary tumour samples. Methylation of p16/INK4 was found in one of six sPNET and in one of 23 MB, while p14/ARF methylation was observed in three of six sPNET and in three of 21 MB. No methylation of p16/INK4 or p14/ARF was found in any of the PNET cell lines analysed. The three MB cell lines did not show p16/INK4 expression, and only the MB Daoy cell line (homozygously deleted at CDKN2A) presented loss of p14/ARF expression. Our results in this limited series of central PNET show that p14/ARF is frequently involved in PNET carcinogenesis, with a higher frequency, but not statistically significant, for sPNET than for MB.

  11. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression

    DEFF Research Database (Denmark)

    Lukas, J; Petersen, B O; Holm, K

    1996-01-01

    The E2F family of transcription factors regulate genes, whose products are essential for progression through the mammalian cell cycle. The transcriptional activity of the E2Fs is inhibited through the specific binding of the retinoblastoma protein, pRB, and the pRB homologs p107 and p130 to their......The E2F family of transcription factors regulate genes, whose products are essential for progression through the mammalian cell cycle. The transcriptional activity of the E2Fs is inhibited through the specific binding of the retinoblastoma protein, pRB, and the pRB homologs p107 and p130...

  12. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.

    Science.gov (United States)

    Ruibal, Cecilia; Castro, Alexandra; Carballo, Valentina; Szabados, László; Vidal, Sabina

    2013-11-05

    Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study provides the first direct genetic

  13. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  14. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  15. p53 Protein interacts specifically with the meiosis-specific mammalian RecA-like protein DMC1 in meiosis.

    Science.gov (United States)

    Habu, Toshiyuki; Wakabayashi, Nobunao; Yoshida, Kayo; Yomogida, Kenntaro; Nishimune, Yoshitake; Morita, Takashi

    2004-06-01

    The tumor suppressor protein p53 is specifically expressed during meiosis in spermatocytes. Subsets of p53 knockout mice exhibit testicular giant cell degenerative syndrome, which suggests p53 may be associated with meiotic cell cycle and/or DNA metabolism. Here, we show that p53 binds to the mouse meiosis-specific RecA-like protein Mus musculus DMC1 (MmDMC1). The C-terminal domain (amino acid 234-340) of MmDMC1 binds to DNA-binding domain of p53 protein. p53 might be involved in homologous recombination and/or checkpoint function by directly binding to DMC1 protein to repress genomic instability in meiotic germ cells.

  16. Molecular and clinical description of a girl with a 46,X,t(Y;4)(q11.2;p16)/45,X,der(4)t(Y;4)(q11.2;p16) karyotype and a small cryptic 4p subtelomeric deletion.

    Science.gov (United States)

    Zahed, Laila; Sismani, Carolina; Ioannides, M; Saleh, Monzer; Koumbaris, G; Kenj, Mazen; Abdallah, Amal; Ayyache, Maya; Patsalis, Philippos

    2008-04-01

    We report on a 13-year-old female with short stature, minimal axillary and pubic hair, no breast development, absence of uterus and ovaries, with the following karyotype on lymphocyte cultures: 46,X,t(Y;4)(q11.2;p16)[40]/45,X,der(4)t(Y;4)(q11.2;p16)[10]. Loss of the small derivative Y chromosome in 20% of the cells was also confirmed in skin fibroblast cultures. FISH analyses using Y centromere, SRY, subtelomere XpYp/XqYq, Y and 4 painting probes, confirmed the cytogenetic findings. High-resolution STS analyses using 40 markers covering the Y chromosome did not identify any deletion on the Y. However, de novo absence of the 4p subtelomeric region was noted by FISH, although this deletion was not revealed by Array-CGH at 1 Mb resolution, the last array clone being 0.35 or 1 Mb distal to the 4p FISH probe. The female phenotype of this patient must be due to the loss of the derivative Y chromosomes in some of her cells, especially the gonads, while the 4p subtelomeric deletion does not seem to contribute to her phenotype. Copyright 2008 Wiley-Liss, Inc.

  17. The protein histidine phosphatase LHPP is a tumour suppressor.

    Science.gov (United States)

    Hindupur, Sravanth K; Colombi, Marco; Fuhs, Stephen R; Matter, Matthias S; Guri, Yakir; Adam, Kevin; Cornu, Marion; Piscuoglio, Salvatore; Ng, Charlotte K Y; Betz, Charles; Liko, Dritan; Quagliata, Luca; Moes, Suzette; Jenoe, Paul; Terracciano, Luigi M; Heim, Markus H; Hunter, Tony; Hall, Michael N

    2018-03-29

    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.

  18. Dissecting functions of the retinoblastoma tumor suppressor and the related pocket proteins by integrating genetic, cell biology, and electrophoretic techniques

    DEFF Research Database (Denmark)

    Hansen, Klaus; Lukas, J; Holm, K

    1999-01-01

    The members of the 'pocket protein' family, comprising the retinoblastoma tumor suppressor (pRB) and its relatives, p107 and p130, negatively regulate cell proliferation and modulate fundamental biological processes including embryonic development, differentiation, homeostatic tissue renewal...

  19. The PCNA-associated factor KIAA0101/p15PAF binds the potential tumor suppressor product p33ING1b

    International Nuclear Information System (INIS)

    Simpson, Fiona; Lammerts van Bueren, Kelly; Butterfield, Natalie; Bennetts, Jennifer S.; Bowles, Josephine; Adolphe, Christelle; Simms, Lisa A.; Young, Joanne; Walsh, Michael D.; Leggett, Barbara; Fowles, Lindsay F.; Wicking, Carol

    2006-01-01

    The KIAA0101/p15 PAF /OEATC-1 protein was initially isolated in a yeast two-hybrid screen for proliferating cell nuclear antigen (PCNA) binding partners, and was shown to bind PCNA competitively with the cell cycle regulator p21 WAF . PCNA is involved in DNA replication and damage repair. Using polyclonal antisera raised against a p15 PAF fusion protein, we have shown that in a range of mammalian tumor and non-tumor cell lines the endogenous p15 PAF protein localises to the nucleus and the mitochondria. Under normal conditions no co-localisation with PCNA could be detected, however following exposure to UV it was possible to co-immunoprecipitate p15 PAF and PCNA from a number of cell lines, suggesting a UV-enhanced association of the two proteins. Overexpression of p15 PAF in mammalian cells was also found to protect cells from UV-induced cell death. Based on similarities between the behaviour of p15 PAF and the potential tumor suppressor product p33ING1b, we have further shown that these two proteins interact in the same complex in cell cultures. This suggests that p15 PAF forms part of a larger protein complex potentially involved in the regulation of DNA repair, apoptosis and cell cycle progression

  20. Antioxidant and antimicrobial activities of squid ink powder

    Directory of Open Access Journals (Sweden)

    Fatimah Zaharah, M.Y.

    2017-10-01

    Full Text Available Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assays named 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and Ferric Reducing Antioxidant Power (FRAP assay, and antimicrobial analysis were done on the powdered squid ink. The proximate results of squid ink powder were 4.43 ± 0.29% moisture, 62.46 ± 0.62% protein, 3.96 ± 0.08% fat, and 9.29 ± 0.05% ash. Results of DPPH assay showed that water extraction of squid ink powder has the highest 94.87 ± 4.87%, followed by ethanol 67.57 ± 7.55%, and hexane extract 2.10 ± 1.18%. FRAP assay result presented the same trend with water extraction had the highest value of 929.67 ± 2.31 μmol Fe (II / g of sample extract, followed by ethanol extract 201.00 ± 26.29 μmol Fe (II per gram sample and hexane 79.67 ± 12.66 μmol Fe (II / g of sample extract. Both water and ethanol extract showed antimicrobial properties with inhibition range of 7 to 15 mm, respectively. Fresh squid ink had 1.254 × 103 colony forming unit per gram of sample of microbial content. Squid ink powder had protein as major compound and microbial content was below from standard value of fisheries products as stated in Food Act 1983 and Regulation 1985.

  1. High frequency of p 16 promoter methylation in non-small cell lung carcinomas from Chile

    Directory of Open Access Journals (Sweden)

    LEDA M GUZMAN

    2007-01-01

    Full Text Available The inactivation of tumour suppressor genes by aberrant methylation of promoter regions has been described as a frequent event in neoplasia development, including lung cancer. The p16 gene is a tumour suppressor gene involved in the regulation of cell cycle progression that has been reported to be inactivated by promoter methylation in lung carcinomas at variable frequencies around the world in a smoking habit dependent manner. The purpose of this study was to investigate the methylation status of the promoter region of the p16 gene in 74 non-small cell lung carcinomas from Chile. The frequency of p16 gene inactivation by promoter methylation was determined as 79.7% (59/74. When we considered histological type, we observed that p16 promoter methylation was significantly higher in squamous cell carcinomas (30/33, 91% compared with adenocarcinomas (21/30, 70% (p=0.029. In addition, no association between p16 promoter methylation and gender, age or smoking habit was found (p=0.202, 0.202 and 0.147 respectively. Our results suggest that p16 promoter hypermethylation is a very frequent event in non-small cell lung carcinomas from Chile and could be smoking habit-independent

  2. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  3. The Ebola virus VP35 protein is a suppressor of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Joost Haasnoot

    2007-06-01

    Full Text Available RNA silencing or interference (RNAi is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.

  4. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Zhan, Qian [The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xu, Hongying [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili; Li, Chen [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Xiao, Qian; Xiang, Shili; Hui, Tianli [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xiang, Tingxiu, E-mail: larissaxiang@163.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rengs726@126.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2016-06-10

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  5. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    International Nuclear Information System (INIS)

    Fan, Yu; Zhan, Qian; Xu, Hongying; Li, Lili; Li, Chen; Xiao, Qian; Xiang, Shili; Hui, Tianli; Xiang, Tingxiu; Ren, Guosheng

    2016-01-01

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  6. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization

    DEFF Research Database (Denmark)

    Müller, H; Moroni, M C; Vigo, E

    1997-01-01

    The E2F transcription factors are essential for regulating the correct timing of activation of several genes whose products are implicated in cell proliferation and DNA replication. The E2Fs are targets for negative regulation by the retinoblastoma protein family, which includes pRB, p107, and p130......, and they are in a pathway that is frequently found altered in human cancers. There are five members of the E2F family, and they can be divided into two functional subgroups. Whereas, upon overexpression, E2F-1, -2, and -3 induce S phase in quiescent fibroblasts and override G1 arrests mediated by the p16INK4A tumor...... suppressor protein or neutralizing antibodies to cyclin D1, E2F-4 and -5 do not. Using E2F-1 and E2F-4 as representatives of the two subgroups, we showed here, by constructing a set of chimeric proteins, that the amino terminus of E2F-1 is sufficient to confer S-phase-inducing potential as well...

  7. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  8. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  9. Duplication 4p and deletion 4p (Wolf-Hirschhorn syndrome) due to complementary gametes from a 3:1 segregation of a maternal balanced t(4;13)(p16;q11) translocation.

    Science.gov (United States)

    Takeno, S S; Corbani, M; Andrade, J A D; Smith, M de A C; Brunoni, D; Melaragno, M I

    2004-08-30

    We present clinical and cytogenetic data on a family with a t(4;13)(p16;q11) translocation present in four generations. The balanced translocation resulted in one individual with monosomy 4p and one individual with trisomy 4p, due to 3:1 segregation. The male patient with trisomy 4p was fertile and transmitted the extra chromosome to his daughter. Copyright 2004 Wiley-Liss, Inc.

  10. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  11. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus

    NARCIS (Netherlands)

    Caron, H.; van Sluis, P.; Buschman, R.; Pereira do Tanque, R.; Maes, P.; Beks, L.; de Kraker, J.; Voûte, P. A.; Vergnaud, G.; Westerveld, A.; Slater, R.; Versteeg, R.

    1996-01-01

    Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p

  12. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  13. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  14. p53 tumor suppressor gene: significance in neoplasia - a review

    International Nuclear Information System (INIS)

    Alam, J.M.

    2000-01-01

    p53 is a tumor suppressor gene located on chromosome 17p13.1. Its function includes cell cycle control and apoptosis. Loss of p53 function, either due to decreased level or genetic transformation, is associated with loss of cell cycle control, decrease, apoptosis and genomic modification, such mutation of p53 gene is now assessed and the indicator of neoplasia of cancer of several organs and cell types, p53 has demonstrated to have critical role in defining various progressive stages of neoplasia, therapeutic strategies and clinical application. The present review briefly describes function of p53 in addition to its diagnostic and prognostic significance in detecting several types of neoplasia. (author)

  15. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies.

    Science.gov (United States)

    Ehm, Patrick; Nalaskowski, Marcus M; Wundenberg, Torsten; Jücker, Manfred

    2015-01-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in haematopoietic cells. By converting PI(3,4,5)P3 to PtdIns(3,4)P2 at the plasma membrane, SHIP1 modifies PI3-kinase mediated signaling. We have recently demonstrated that SHIP1 is a nucleo-cytoplasmic shuttling protein and SHIP1 nuclear puncta partially colocalize with FLASH, a component of nuclear bodies. In this study, we demonstrate that endogenous SHIP1 localizes to intranucleolar regions of both normal and leukemic haematopoietic cells. In addition, we report that ectopically expressed SHIP1 accumulates in nucleolar cavities and colocalizes with the tumor suppressor protein p53 and components of PML nuclear bodies (e.g. SP100, SUMO-1 and CK2). Moreover, SHIP1 also colocalizes in nucleolar cavities with components of the ubiquitin-proteasome pathway. By using confocal microscopy data, we generated 3D-models revealing the enormous extent of the SHIP1 aggresomes in the nucleolus. Furthermore, treatment of cells with the proteasome inhibitor MG132 causes an enlargement of nucleolar SHIP1 containing structures. Unexpectedly, this accumulation can be partially prevented by treatment with the inhibitor of nuclear protein export Leptomycin B. In recent years, several proteins aggregating in nucleolar cavities were shown to be key factors of neurodegenerative diseases and cancerogenesis. Our findings support current relevance of nuclear localized SHIP1.

  16. Immunohistochemical expression of p53 proteins in Wilms' tumour: a possible association with the histological prognostic parameter of anaplasia.

    Science.gov (United States)

    Cheah, P L; Looi, L M; Chan, L L

    1996-01-01

    Wilms' tumour (nephroblastoma) has been associated with chromosomal abnormalities at the 11p13, 11p15 and 16q regions. A study into the possibility of mutations occurring within p53, the ubiquitous adult tumour suppressor gene, in Wilms' tumour was carried out. Thirty-eight cases were studied. Of these 36 were categorised into the favourable histology group and two into the unfavourable histology group based on the National Wilms' Tumour Study criteria. Archival formalin-fixed, paraffin-embedded tissue sections from each case were stained with a polyclonal (AB565:Chemicon) and a monoclonal (DO7:Dako) antibody raised against p53 protein using a peroxidase-labelled streptavidin biotin kit (Dako). 'Cure' (disease-free survival of 60 months or longer) was documented in 39% of cases with favourable histology tumours. Eleven percent in this group succumbed to the disease. Both cases with unfavourable histology died. Four out of 36 (11%) tumours with favourable histology demonstrated weak to moderate staining with both AB565 and DO7 in more than 75% of tumour cells. In contrast, p53 protein expression in unfavourable histology tumours was significantly increased compared with the favourable histology group (P = 0.021) with both cases demonstrating immunopositivity in > 75% of tumour cells when stained with AB565 and DO7. The intensity of staining ranged from moderate to strong in both cases. It appears from this preliminary study that the immunohistochemical expression of p53 protein in Wilms' tumour, presumably a result of mutation in the p53 tumour suppressor gene, correlates with histological classification, histological categorisation being one of the useful features in the prognostic assessment of Wilms' tumours.

  17. CDKN1C/p57kip2 is a candidate tumor suppressor gene in human breast cancer

    International Nuclear Information System (INIS)

    Larson, Pamela S; Schlechter, Benjamin L; King, Chia-Lin; Yang, Qiong; Glass, Chelsea N; Mack, Charline; Pistey, Robert; Morenas, Antonio de las; Rosenberg, Carol L

    2008-01-01

    CDKN1C (also known as p57 KIP2 ) is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21 CIP1 and B/p27 KIP1 ) have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. We determined rates of allele imbalance or loss of heterozygosity (AI/LOH) in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR), and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC). All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. AI/LOH at 11p15.5 occurred in 28/73 (38%) informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19%) cancers (p = ns). In contrast, CDKN1C mRNA levels were reduced in 9/10 (90%) cancers (p < 0.0001), ranging from 2–60% of paired normal epithelium. Similarly, CDKN1C protein staining was seen in 19/20 (95%) cases' normal epithelium but in only 7/14 (50%) cases' CIS (p < 0.004) and 5/18 (28%) cases' IC (p < 0.00003). The reduction appears primarily due to loss of CDKN1C expression from myoepithelial layer cells, which stained intensely in 17/20 (85%) normal lobules, but in 0/14 (0%) CIS (p < 0.00001). In contrast, luminal cells displayed less intense, focal staining fairly consistently across histologies. Decreased CDKN1C was not clearly associated with tumor grade, histology, ER, PR or HER2 status. CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor

  18. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Yu, Ting, E-mail: t.yu2@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Hakkola, Jukka, E-mail: Jukka.hakkola@oulu.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4

  19. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

    DEFF Research Database (Denmark)

    Jansson, M D; Djodji Damas, Nkerorema; Lees, M

    2014-01-01

    MicroRNAs (miRNAs) regulate many key cancer-relevant pathways and may themselves possess oncogenic or tumor-suppressor functions. Consequently, miRNA dysregulation has been shown to be a prominent feature in many human cancers. The p53 tumor suppressor acts as a negative regulator of cell prolife...... tumor cells. Furthermore, we show that a negative correlation between miR-339-5p and MDM2 expression exists in human cancer, implying that the interaction is important for cancer development.Oncogene advance online publication, 2 June 2014; doi:10.1038/onc.2014.130....

  20. High CpG island methylation of p16 gene and loss of p16 protein

    Indian Academy of Sciences (India)

    Methylation-specific polymerase chain reaction (MSP) was employed to detect CpG island methylation in p16 promoter region andWestern blotting was used to detect p16 expression of all subjects. Real-time fluorescence quantitative polymerase chain reaction (FQ-PCR) was performed to test p16 mRNA expression.

  1. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  2. Metastasis suppressor proteins in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer; Atasoy, Pınar; Yulug, Isik G

    2016-07-01

    Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins.

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-11-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.

  4. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  5. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Science.gov (United States)

    Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-01

    Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  6. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Directory of Open Access Journals (Sweden)

    Inga Hinrichsen

    Full Text Available Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV. However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16 in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  7. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    Science.gov (United States)

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  8. Immunophenotypic Analysis in Early Müllerian Serous Carcinogenesis.

    Science.gov (United States)

    Nafisi, Houman; Ghorab, Zeina; Ismill, Nadia; Dubé, Valerie; Plotkin, Anna; Han, Guangming; Cesari, Matthew; Lu, Fang-I; Saad, Reda; Khalifa, Mahmoud; Nofech-Mozes, Sharon

    2015-09-01

    Studies on the immunophenotypes of early forms of serous carcinoma arising from female genital tract are limited. We aimed to examine p53, p16(Ink4a), estrogen receptor (ER), progesterone receptor (PR), ERBB2, WT1, and Ki-67 protein expression in endometrial intraepithelial carcinoma (n=29), serous tubal intraepithelial lesion (n=4) and carcinoma (STIC, n=10), and the putative precursor p53 signature (n=11). Among endometrial intraepithelial carcinoma, 80% demonstrated p53 overexpression and 10% were consistent with a null phenotype. p16(Ink4a) immunostaining were observed in all endometrial intraepithelial carcinoma cases. ER, PR, ERBB2, and WT1 were positive in 54%, 25%, 11%, and 18% of cases, respectively. STIC cases demonstrated p53 overexpression and null phenotype in 90% and 10%, respectively. All STIC cases were p16(Ink4a) and WT1 positive, whereas ER and PR were positive in 70% and 20%, respectively. All STICs were negative for ERBB2. Among serous tubal intraepithelial lesion cases, 75% demonstrated p53 overexpression and 25% a null phenotype. p53 was positive in all 11 p53 signature cases, whereas p16(Ink4a) was universally negative. Finally, ER and PR were positive in 100% and 73% of p53 signature cases, respectively. These results suggest that p16(Ink4a) has a role in early Müllerian serous carcinogenesis but is absent in the earliest noncommitted lesion. p16(Ink4a) immunohistochemistry can be used as an adjunct confirmatory tool in p53-null cases with limited surface area.

  9. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat.

    Science.gov (United States)

    Seluanov, Andrei; Hine, Christopher; Azpurua, Jorge; Feigenson, Marina; Bozzella, Michael; Mao, Zhiyong; Catania, Kenneth C; Gorbunova, Vera

    2009-11-17

    The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed "early contact inhibition." Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27(Kip1). In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16(Ink4a). Furthermore, we show that the roles of p16(Ink4a) and p27(Kip1) in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16(Ink4a), and regular contact inhibition is controlled by p27(Kip1). We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.

  10. Immunopurification of the suppressor tRNA dependent rabbit β-globin readthrough protein

    International Nuclear Information System (INIS)

    Hatfield, D.; Thorgeirsson, S.S.; Copeland, T.D.; Oroszlan, S.; Bustin, M.

    1988-01-01

    In mammalian cells, the rabbit β-globin readthrough protein is the only known example of a naturally occurring readthrough protein which does not involve a viral system. To provide an efficient means for its isolation, detection, and study, the authors elicited specific antibodies against this unique protein. The 22 amino acid peptide corresponding to the readthrough portion of this protein was synthesized, coupled to keyhole limpet hemocyanin, and injected into sheep. Specific antibodies to the peptide were produced as demonstrated by the enzyme-linked immunosorbent assay technique and by immunoblotting. The antibodies did not react with globin. The rabbit β-globin readthrough protein was separated from globin and other reticulocyte proteins by polyacrylamide gel electrophoresis and visualized by silver staining or by labeling with [ 35 S] methionine. Incorporation of [ 35 S] methionine into the readthrough protein was significantly enhanced upon addition of an opal suppressor tRNA to reticulocyte lysates. Immunoblotting revealed that the readthrough protein also occurs in lysates without added suppressor tRNA. The antibodies were purified on an affi-gel column which had been coupled with the peptide antigen. The readthrough protein was then purified from reticulocytes by immunoaffinity chromatography and by high-performance liquid chromatography. The results provide conclusive evidence that the β-globin readthrough protein is naturally occurring in rabbit reticulocytes

  11. Molecular dynamics simulation of S100B protein to explore ligand blockage of the interaction with p53 protein

    Science.gov (United States)

    Zhou, Zhigang; Li, Yumin

    2009-10-01

    As a tumor suppressor, p53 plays an important role in cancer suppression. The biological function of p53 as a tumor suppressor is disabled when it binds to S100B. Developing the ligands to block the S100B-p53 interaction has been proposed as one of the most important approaches to the development of anti-cancer agents. We screened a small compound library against the binding interface of S100B and p53 to identify potential compounds to interfere with the interaction. The ligand-binding effect on the S100B-p53 interaction was explored by molecular dynamics at the atomic level. The results show that the ligand bound between S100B and p53 propels the two proteins apart by about 2 Å compared to the unligated S100B-p53 complex. The binding affinity of S100B and p53 decreases by 8.5-14.6 kcal/mol after a ligand binds to the interface from the original unligated state of the S100B-p53 complex. Ligand-binding interferes with the interaction of S100B and p53. Such interference could impact the association of S100B and p53, which would free more p53 protein from the pairing with S100B and restore the biological function of p53 as a tumor suppressor. The analysis of the binding mode and ligand structural features would facilitate our effort to identify and design ligands to block S100B-p53 interaction effectively. The results from the work suggest that developing ligands targeting the interface of S100B and p53 could be a promising approach to recover the normal function of p53 as a tumor suppressor.

  12. Structure-function analysis of the retinoblastoma tumor suppressor protein – is the whole a sum of its parts?

    Directory of Open Access Journals (Sweden)

    Dick Frederick A

    2007-09-01

    Full Text Available Abstract Biochemical analysis of the retinoblastoma protein's function has received considerable attention since it was cloned just over 20 years ago. During this time pRB has emerged as a key regulator of the cell division cycle and its ability to block proliferation is disrupted in the vast majority of human cancers. Much has been learned about the regulation of E2F transcription factors by pRB in the cell cycle. However, many questions remain unresolved and researchers continue to explore this multifunctional protein. In particular, understanding how its biochemical functions contribute to its role as a tumor suppressor remains to be determined. Since pRB has been shown to function as an adaptor molecule that links different proteins together, or to particular promoters, analyzing pRB by disrupting individual protein interactions holds tremendous promise in unraveling the intricacies of its function. Recently, crystal structures have reported how pRB interacts with some of its molecular partners. This information has created the possibility of rationally separating pRB functions by studying mutants that disrupt individual binding sites. This review will focus on literature that investigates pRB by isolating functions based on binding sites within the pocket domain. This article will also discuss the prospects for using this approach to further explore the unknown functions of pRB.

  13. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  14. Studies of Ink Trapping III Direct Detection of Small Air Bubbles in Ink Layer

    Directory of Open Access Journals (Sweden)

    Ikuo Naito

    2006-12-01

    Full Text Available Ink trappings were studied by using polyethylene terephthalate (PET film with black inks for offset proofing and synthetic paper. By observing printed matter from reverse side through the PET film, we detected many air bubbles in the ink layer and between the ink layer and the PET film. They are classified roughly to two groups, small number of large ones (φ = 2 - 5 μm and many small ones (φ = 0.5 - 1.0 μm. The former ones were fixed air bubbles during the trapping. The latter ones decreased according to increase the amount of ink trapped (y. Because number of the air bubbles (Nair bubble increased with increasing the ink distribution time, they seemed to be yielded by suspension of air into the ink layer during ink distribution. By observing printed surface, we also detected many ink peaks (immediately after the trapping and pinholes (at 24 h. The numbers of the ink peaks and pinholes (Nink peak and Npinhole, respectively decreased also with increasing the y value and increased with increasing the ink distribution time. We studied effects of nip width on these values (distribution time = 2 min.; nip width = 2, 3 and 4 mm. The Nair bubble value decreased with increasing nip width contrary to increase the Nink peak and Npinhole values. The effects can be represented by differences in the values of 2 and 4 mm nip widths. At y = 2 gm-2, the difference in the Nair bubble value is about one third (synthetic paper ink or a half (offset proofing ink of the difference in the Nink peak values.

  15. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective.

    Science.gov (United States)

    Lee, Hun Seok; Kundu, Juthika; Kim, Ryong Nam; Shin, Young Kee

    2015-12-15

    Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.

  16. Transducer of ERBB2.1 (TOB1 as a Tumor Suppressor: A Mechanistic Perspective

    Directory of Open Access Journals (Sweden)

    Hun Seok Lee

    2015-12-01

    Full Text Available Transducer of ERBB2.1 (TOB1 is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4 and phosphatase and tensin homolog-10 (PTEN, and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.

  17. Evaluation of P16 expression in canine appendicular osteosarcoma.

    Science.gov (United States)

    Murphy, B G; Mok, M Y; York, D; Rebhun, R; Woolard, K D; Hillman, C; Dickinson, P; Skorupski, K

    2017-06-20

    Osteosarcoma (OSA) is a common malignant bone tumor of large breed dogs that occurs at predictable anatomic sites. At the time of initial diagnosis, most affected dogs have occult pulmonary metastases. Even with aggressive surgical treatment combined with chemotherapy, the majority of dogs diagnosed with OSA live less than 1 year from the time of diagnosis. The ability to identify canine OSA cases most responsive to treatment is needed. In humans, OSA is also an aggressive tumor that is histologically and molecularly similar to canine OSA. The expression of the tumor suppressor gene product P16 by human OSA tissue has been linked to a favorable response to chemotherapy. We identified an antibody that binds canine P16 and developed a canine OSA tissue microarray in order to test the hypothesis that P16 expression by canine OSA tissue is predictive of clinical outcome following amputation and chemotherapy. Although statistical significance was not reached, a trend was identified between the lack of canine OSA P16 expression and a shorter disease free interval. The identification of a molecular marker for canine OSA is an important goal and the results reported here justify a larger study.

  18. Chromogenic In Situ Hybridization and p16/Ki67 Dual Staining on Formalin-Fixed Paraffin-Embedded Cervical Specimens: Correlation with HPV-DNA Test, E6/E7 mRNA Test, and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Roberta Zappacosta

    2013-01-01

    Full Text Available Although HPV-DNA test and E6/E7 mRNA analyses remain the current standard for the confirmation of human papillomavirus (HPV infections in cytological specimens, no universally adopted techniques exist for the detection of HPV in formalin-fixed paraffin-embedded samples. Particularly, in routine laboratories, molecular assays are still time-consuming and would require a high level of expertise. In this study, we investigated the possible use of a novel HPV tyramide-based chromogenic in situ hybridization (CISH technology to locate HPV on tissue specimens. Then, we evaluate the potential usefulness of p16INK4a/Ki-67 double stain on histological samples, to identify cervical cells expressing HPV E6/E7 oncogenes. In our series, CISH showed a clear signal in 95.2% of the specimens and reached a sensitivity of 86.5%. CISH positivity always matched with HPV-DNA positivity, while 100% of cases with punctated signal joined with cervical intraepithelial neoplasia grade 2 or worse (CIN2+. p16/Ki67 immunohistochemistry gave an interpretable result in 100% of the cases. The use of dual stain significantly increased the agreement between pathologists, which reached 100%. Concordance between dual stain and E6/E7 mRNA test was 89%. In our series, both CISH and p16INK4a/Ki67 dual stain demonstrated high grade of performances. In particular, CISH would help to distinguish episomal from integrated HPV, in order to allow conclusions regarding the prognosis of the lesion, while p16INK4a/Ki67 dual stain approach would confer a high level of standardization to the diagnostic procedure.

  19. Chromogenic In Situ Hybridization and p16/Ki67 Dual Staining on Formalin-Fixed Paraffin-Embedded Cervical Specimens: Correlation with HPV-DNA Test, E6/E7 mRNA Test, and Potential Clinical Applications

    Science.gov (United States)

    Zappacosta, Roberta; Colasante, Antonella; Viola, Patrizia; D'Antuono, Tommaso; Lattanzio, Giuseppe; Capanna, Serena; Gatta, Daniela Maria Pia; Rosini, Sandra

    2013-01-01

    Although HPV-DNA test and E6/E7 mRNA analyses remain the current standard for the confirmation of human papillomavirus (HPV) infections in cytological specimens, no universally adopted techniques exist for the detection of HPV in formalin-fixed paraffin-embedded samples. Particularly, in routine laboratories, molecular assays are still time-consuming and would require a high level of expertise. In this study, we investigated the possible use of a novel HPV tyramide-based chromogenic in situ hybridization (CISH) technology to locate HPV on tissue specimens. Then, we evaluate the potential usefulness of p16INK4a/Ki-67 double stain on histological samples, to identify cervical cells expressing HPV E6/E7 oncogenes. In our series, CISH showed a clear signal in 95.2% of the specimens and reached a sensitivity of 86.5%. CISH positivity always matched with HPV-DNA positivity, while 100% of cases with punctated signal joined with cervical intraepithelial neoplasia grade 2 or worse (CIN2+). p16/Ki67 immunohistochemistry gave an interpretable result in 100% of the cases. The use of dual stain significantly increased the agreement between pathologists, which reached 100%. Concordance between dual stain and E6/E7 mRNA test was 89%. In our series, both CISH and p16INK4a/Ki67 dual stain demonstrated high grade of performances. In particular, CISH would help to distinguish episomal from integrated HPV, in order to allow conclusions regarding the prognosis of the lesion, while p16INK4a/Ki67 dual stain approach would confer a high level of standardization to the diagnostic procedure. PMID:24369532

  20. BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1

    DEFF Research Database (Denmark)

    Carpenter, Brian; Hill, Kathryn J; Charalambous, Marika

    2004-01-01

    The Wilms' tumor suppressor protein WT1 is a transcriptional regulator that plays a key role in the development of the kidneys. The transcriptional activation domain of WT1 is subject to regulation by a suppression region within the N terminus of WT1. Using a functional assay, we provide direct...... evidence that this requires a transcriptional cosuppressor, which we identify as brain acid soluble protein 1 (BASP1). WT1 and BASP1 associate within the nuclei of cells that naturally express both proteins. BASP1 can confer WT1 cosuppressor activity in transfection assays, and elimination of endogenous...

  1. Functional ablation of pRb activates Cdk2 and causes antiestrogen resistance in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hemant Varma

    2007-12-01

    Full Text Available Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb family tumor suppressors causes antiestrogen resistance in MCF-7 cells, a widely studied model of estrogen responsive human breast cancers. In this study, we investigate the mechanism by which pRb inactivation leads to antiestrogen resistance. Cdk4 and cdk2 are two key cell cycle regulators that can phosphorylate and inactivate pRb, therefore we tested whether these kinases are required in cells lacking pRb function. pRb family members were inactivated in MCF-7 cells by expressing polyomavirus large tumor antigen (PyLT, and cdk activity was inhibited using the cdk inhibitors p16(INK4A and p21(Waf1/Cip1. Cdk4 activity was no longer required in cells lacking functional pRb, while cdk2 activity was required for proliferation in both the presence and absence of pRb function. Using inducible PyLT cell lines, we further demonstrated that pRb inactivation leads to increased cyclin A expression, cdk2 activation and proliferation in antiestrogen arrested cells. These results demonstrate that antiestrogens do not inhibit cdk2 activity or proliferation of MCF-7 cells in the absence of pRb family function, and suggest that antiestrogen resistant breast cancer cells resulting from pRb pathway inactivation would be susceptible to therapies that target cdk2.

  2. Analysis of human papilloma virus in oral squamous cell carcinoma using p16: An immunohistochemical study

    Science.gov (United States)

    Patil, S.; Rao, R. S.; Amrutha, N.; Sanketh, D. S.

    2014-01-01

    Aims: The aim of this study is to evaluate the expression of human papilloma virus (HPV) in oral squamous cell carcinoma (OSCC) and to correlate the association of HPV in histological grades of OSCC using p16 (p16INK4a) immunohistochemistry (IHC). Subjects and Methods: This study consists of 30 histological diagnosed cases of OSCC (10-well-differentiated oral squamous cell carcinoma [WDOSCC], 10-moderately differentiated oral squamous cell carcinoma [MDOSCC] and 10-poorly differentiated oral squamous cell carcinoma [PDOSCC]). The sections were subjected to IHC procedure using p16. Two parameters in immunohistochemical p16 expression were evaluated by 3 observers based on the criteria by Galgano M. Tetal (2010) (a) percentage of p16 positive cases (b) pattern of p16 staining in various grades of OSCC. Statistical Analysis Used: Kappa test. Results: Totally, 30 samples of 0SCC, p16 positivity was noted in 26/30 (86.66%). Of 26 positive cases, p16 staining was positive in 7/10 (70%) of WDOSCC, 9/10 (90%) in MDOSCC and, 10/10 (100%) PDOSCC. Incidentally, we also found single dispersed cell staining in WDOSCC, patchy staining in MDOSCC and more diffuse staining pattern predominant in PDOSCC. Conclusions: Our study revealed an association between HPV and OSCC. Diffuse staining pattern was noted in PDOSCC, which in turn depicts the increase viral overload, which might have an influence on its aggressive behavior. PMID:24818098

  3. The induction of a tumor suppressor gene (p53) expression by low-dose radiation and its biological meaning

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1997-01-01

    I report the induced accumulation of wild-type p53 protein of a tumor suppressor gene within 12 h in various organs of rats exposed to X-ray irradiation at low doses (10-50 cGy). The levels of p53 in some organs of irradiated rats were increased about 2- to 3-fold in comparison with the basal p53 levels in non-irradiated rats. Differences in the levels of p53 induction after low-dose X-ray irradiation were observed among the small intestine, bone marrow, brain, liver, adrenal gland, spleen, hypophysis and skin. In contrast, there was no obvious accumulation of p53 protein in the testis and ovary. Thus, the induction of cellular p.53 accumulation by low-dose X-ray irradiation in rats seems to be organ-specific. I consider that cell type, and interactions with other signal transduction pathways of the hormone system, immune system and nervous system may contribute to the variable induction of p53 by low-dose X-ray irradiation. I discussed the induction of p53 by radiation and its biological meaning from an aspect of the defense system for radiation-induced cancer. (author)

  4. Evidence for protein 4.1B acting as a metastasis suppressor

    Czech Academy of Sciences Publication Activity Database

    Cavanna, T.; Pokorná, Eva; Veselý, Pavel; Gray, C.; Zicha, D.

    2007-01-01

    Roč. 120, č. 4 (2007), s. 606-616 ISSN 0021-9533 Institutional research plan: CEZ:AV0Z50520514 Keywords : 4.1B protein * metastasis * migration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.383, year: 2007

  5. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice

    NARCIS (Netherlands)

    Bruggeman, SWM; Valk-Lingbeek, ME; van der Stoop, PPM; Jacobs, JJL; Kieboom, K; Tanger, E; Hulsman, D; Leung, C; Arsenijevic, Y; Marino, S; van Lohuizen, M

    2005-01-01

    The Polycomb group (PcG) gene Bmi1 promotes cell proliferation and stem cell self-renewal by repressing the Ink4a/Arf locus. We used a genetic approach to investigate whether Ink4a or Arf is more critical for relaying Bmi1 function in lymphoid cells, neural progenitors, and neural stem cells. We

  6. Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias

    KAUST Repository

    McKerricher, Garret

    2015-03-01

    In this paper, fully inkjet printed multilayer capacitors and inductors are fabricated and characterized using poly 4-vinylphenol (PVP) ink as the dielectric layer and silver nanoparticle ink as the conductor. Inkjet printed through vias, created with a novel dissolving method are used to make RF structures in a multilayer inkjet printing process. The vias have been realized in a 350-nm PVP film and exhibit resistance better than 0.1 Ω. Spiral inductors from 10 to 75 nH have been realized with maximum quality factors around five. The 10-nH inductor exhibits a self-resonant frequency slightly below 1 GHz. Metal-insulator-metal capacitors are realized with densities of 50 pF/mm-2. These capacitors demonstrate values ranging from 16 to 50 pF. The 16-pF capacitor shows a self-resonant frequency over 1.5 GHz. The successful implementation of inductors and capacitors in an all inkjet printed multilayer process with vias is an important step toward fully inkjet-printed large area and flexible RF systems.

  7. Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias

    KAUST Repository

    McKerricher, Garret; Gonzalez Perez, Jose; Shamim, Atif

    2015-01-01

    In this paper, fully inkjet printed multilayer capacitors and inductors are fabricated and characterized using poly 4-vinylphenol (PVP) ink as the dielectric layer and silver nanoparticle ink as the conductor. Inkjet printed through vias, created with a novel dissolving method are used to make RF structures in a multilayer inkjet printing process. The vias have been realized in a 350-nm PVP film and exhibit resistance better than 0.1 Ω. Spiral inductors from 10 to 75 nH have been realized with maximum quality factors around five. The 10-nH inductor exhibits a self-resonant frequency slightly below 1 GHz. Metal-insulator-metal capacitors are realized with densities of 50 pF/mm-2. These capacitors demonstrate values ranging from 16 to 50 pF. The 16-pF capacitor shows a self-resonant frequency over 1.5 GHz. The successful implementation of inductors and capacitors in an all inkjet printed multilayer process with vias is an important step toward fully inkjet-printed large area and flexible RF systems.

  8. Microbiological survey of commercial tattoo and permanent makeup inks available in the United States.

    Science.gov (United States)

    Nho, S W; Kim, S-J; Kweon, O; Howard, P C; Moon, M S; Sadrieh, N K; Cerniglia, C E

    2018-05-01

    Tattooing and use of permanent makeup (PMU) has dramatically increased over the last decade, with a concomitant increase in ink-related infections. The aim of this study was to determine whether micro-organisms are present, and if so, the number and their identification in the commercial tattoo and PMU inks available in the United States. We surveyed 85 unopened tattoo and PMU inks, purchased from 13 companies. We incubated 100 μl of ink samples on trypticase soy agar plates for bacterial growth, 7H10 Middlebrook medium for mycobacterial growth, and Sabouraud dextrose medium for fungal growth. In total, 42 inks were contaminated with micro-organisms (49%). Thirty-three inks were contaminated with bacteria, 2 inks with fungi, and 7 inks had both bacterial and fungal growth. Mycobacteria were not detected in any of the examined tattoo and PMU inks. In 26 inks, microbial concentrations ranged between 10 1 and 10 3 CFU per ml, but higher counts (>10 3 CFU per ml) were recorded in 16 inks. We identified 83 bacteria by their 16S rDNA sequences, including 20 genera and 49 species. Strains of Bacillus spp. (53%) were dominant, followed by Lysinibacillus fusiformis (7%) and Pseudomonas aeruginosa (5%). Thirty-four (41%) possibly clinically relevant strains were identified, including P. aeruginosa, Dermacoccus barathri and Roseomonas mucosa, some of which have been previously reported to be associated with human skin infections. The results indicate that commercial tattoo and PMU inks on the US market surveyed in this study contain a wide range of micro-organisms, including pathogenic bacteria. Microbial contaminants in tattoo and PMU inks are an emerging safety concern for public health. This study provides evidence that microbial contamination of tattoo and PMU inks available in the United States is more common than previously thought and highlights the importance of monitoring these products for potentially pathogenic micro-organisms. Published 2018. This article is a U

  9. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering.

    Science.gov (United States)

    Ottolini, Denis; Calì, Tito; Negro, Alessandro; Brini, Marisa

    2013-06-01

    DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.

  10. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  11. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    Science.gov (United States)

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1.

    Science.gov (United States)

    Csorba, Tibor; Lózsa, Rita; Hutvágner, György; Burgyán, József

    2010-05-01

    RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double-stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein-protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA-induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre-programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high-molecular-weight complex, suggesting the existence of a multi-protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA-RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co-expressed AGO1 in both the presence and absence of P0.

  13. The effect of sampling methods on the apparent constituents of ink from the squid Sepioteuthis australis.

    Science.gov (United States)

    Madaras, F; Gerber, J P; Peddie, F; Kokkinn, M J

    2010-11-01

    Results of experiments conducted on ink recovered from the squid Sepioteuthis australis indicate that there is no epinephrine or protein naturally present in the ink as it would be ejected in vivo. Protein content was effectively zero when ink was syringed from the duct end of the ink sac of freshly killed animals. By contrast, there were proteins in samples collected from dead specimens where ink was collected by a stripping method. From these samples, a single large molecular weight protein was identified as having tyrosinase activity. Digestion of syringed ink did not yield signs of melanin-bound proteins. Analysis of supernatants after centrifugation of squid ink consistently revealed the presence of DOPA, dopamine, and taurine, whereas epinephrine and nor-epinephrine were recorded from what was believed to be contaminated ink. Histological investigations of the ink sac revealed a compartmentalised glandular structure distal to the duct end. Closer observation of the glandular tissue showed that compartments increased in size as they matured and moved further into the lumen. It was concluded that the presence of epinephrine and tyrosinase (or a related protein) in the ink of S. australis could be attributed to rupturing of basal glandular compartments or contamination from other sources during the extraction process.

  14. Identification of target genes of the p16INK4A-pRB-E2F pathway

    DEFF Research Database (Denmark)

    Vernell, Richard; Helin, Kristian; Müller, Heiko

    2003-01-01

    as physiological targets of the pRB pathway, and the further characterization of these genes should provide insights into how this pathway controls proliferation. We show that Gibbs sampling detects enrichment of several sequence motifs, including E2F consensus binding sites, in the upstream regions of these genes...

  15. A Rice gid1 Suppressor Mutant Reveals That Gibberellin Is Not Always Required for Interaction between Its Receptor, GID1, and DELLA Proteins[W][OA

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-01-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1P99S interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1P99A has smaller Ka (association) and Kd (dissociation) values for GA4 than does wild-type GID1. This suggests that the GID1P99A lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1P99A. Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants. PMID:21098733

  16. Suppressor of cytokine signaling 4 (SOCS4 protects against severe cytokine storm and enhances viral clearance during influenza infection.

    Directory of Open Access Journals (Sweden)

    Lukasz Kedzierski

    2014-05-01

    Full Text Available Suppressor of cytokine signaling (SOCS proteins are key regulators of innate and adaptive immunity. There is no described biological role for SOCS4, despite broad expression in the hematopoietic system. We demonstrate that mice lacking functional SOCS4 protein rapidly succumb to infection with a pathogenic H1N1 influenza virus (PR8 and are hypersusceptible to infection with the less virulent H3N2 (X31 strain. In SOCS4-deficient animals, this led to substantially greater weight loss, dysregulated pro-inflammatory cytokine and chemokine production in the lungs and delayed viral clearance. This was associated with impaired trafficking of influenza-specific CD8 T cells to the site of infection and linked to defects in T cell receptor activation. These results demonstrate that SOCS4 is a critical regulator of anti-viral immunity.

  17. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  18. Enlightened protein: Fhit tumor suppressor protein structure and function and its role in the toxicity of protoporphyrin IX-mediated photodynamic reaction

    International Nuclear Information System (INIS)

    Zawacka-Pankau, Joanna

    2009-01-01

    The Fhit tumor suppressor protein possesses Ap 3 A (diadenosine triphosphate - ApppA) hydrolytic activity in vitro and its gene is found inactive in many pre-malignant states due to gene inactivation. For several years Fhit has been a widely investigated protein as its cellular function still remains largely unsolved. Fhit was shown to act as a molecular 'switch' of cell death via cascade operating on the influence of ATR-Chk1 pathway but also through the mitochondrial apoptotic pathway. Notably, Fhit was reported by our group to enhance the overall eradication effect of porphyrin-mediated photodynamic treatment (PDT). In this review the up-to-date findings on Fhit protein as a tumor suppressor and its role in PDT are presented.

  19. Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16.

    Science.gov (United States)

    Pfeiffer, Daniel; Jendrossek, Dieter

    2012-11-01

    Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with "phasin 2 motifs." To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins

  20. The negative predictive value of p16INK4a to assess the outcome of cervical intraepithelial neoplasia 1 in the uterine cervix

    DEFF Research Database (Denmark)

    Hariri, Jalil; Øster, Anne

    2007-01-01

    The immunohistochemical expression of p16 in formalin-fixed and paraffin-embedded histological sections was evaluated in a retrospective study comprising a low-grade group of 100 cases of cervical intraepithelial neoplasia (CIN) 1, a high-grade group of 50 cases of CIN 2 to 3, and a benign group...

  1. PML tumor suppressor protein is required for HCV production

    International Nuclear Information System (INIS)

    Kuroki, Misao; Ariumi, Yasuo; Hijikata, Makoto; Ikeda, Masanori; Dansako, Hiromichi; Wakita, Takaji; Shimotohno, Kunitada; Kato, Nobuyuki

    2013-01-01

    Highlights: ► PML tumor suppressor protein is required for HCV production. ► PML is dispensable for HCV RNA replication. ► HCV could not alter formation of PML-NBs. ► INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  2. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype.

    Science.gov (United States)

    Li, Ji-Yao; Chai, Biao-Xin; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W

    2010-01-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein 4 (Asb-4) is specifically expressed in the energy homeostasis-related brain areas and colocalizes with proopiomelanocortin (POMC) neurons of the arcuate nucleus (ARC). Injection of insulin into the third ventricle of the rat brain increased Asb-4 mRNA expression in the paraventricular nucleus but not in the ARC of the hypothalamus, whereas injection of leptin (ip) increased Asb-4 expression in both mouse paraventricular nucleus and ARC. A transgenic mouse in which Myc-tagged Asb-4 is specifically expressed in POMC neurons of the ARC was made and used to study the effects of Asb-4 on ingestive behavior and metabolic rate. Animals with overexpression of Asb-4 in POMC neurons demonstrated an increase in food intake. However, POMC-Asb-4 transgenic animals gained significantly less weight from 6-30 wk of age. The POMC-Asb-4 mice had reduced fat mass and increased lean mass and lower levels of blood leptin. The transgenic animals were resistant to high-fat diet-induced obesity. Transgenic mice had significantly higher rates of oxygen consumption and carbon dioxide production than wild-type mice during both light and dark periods. The locomotive activity of transgenic mice was increased. The overexpression of Asb-4 in POMC neurons increased POMC mRNA expression in the ARC. The transgenic animals had no observed effect on peripheral glucose metabolism and the activity of the autonomic nervous system. These results indicate that Asb-4 is a key regulatory protein in the central nervous system, involved in the control of feeding behavior and metabolic rate.

  3. Properties of conductive thick-film inks

    Science.gov (United States)

    Holtze, R. F.

    1972-01-01

    Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.

  4. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Harrison David J

    2007-11-01

    Full Text Available Abstract Background TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how Rb-deficiency would affect responses to TGFβ-induced cell cycle arrest. Results Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16INK4A and P21Cip and reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16INK4A was not activated and the great majority of cells continued cycling. Rb is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cip1 and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of p53 and p21Cip1. Hepatocytes deficient in p53 or p21Cip1 showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21Cip and P53 work through the same pathway to regulate G1/S in response to TGFβ. In Rb-deficient cells however, p53 but not p21Cip deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity. Conclusion The present results show that otherwise genetically normal hepatocytes with disabled p53, p21Cip1 or Rb genes respond less well to the antiproliferative effects of TGFβ. As the function of

  5. Model compounds of iron gall inksa Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Lerf, A. [Bavarian Academy of Sciences, Walther Meißner Institute (Germany); Wagner, F. E., E-mail: fwagner@tum.de [Technical University of Munich, Physics Department E15 (Germany)

    2016-12-15

    Ferrogallic inks were used for at least two millennia before they became obsolete in the 20{sup th} century. The chemistry of such inks is, however, still largely unclear. Today it is of particular interest for the conservation of old manuscripts. {sup 57}Fe Mössbauer spectra of the ink on historical documents showed the presence of Fe(II) oxalate and of Fe(III) sites presumably representing iron oxihydroxides. To obtain more information on the behaviour of ink on paper we have performed Mössbauer studies at 300 and 4.2 K on iron gall inks prepared from FeSO{sub 4}⋅7H{sub 2}O and tannin. These inks were either written on paper or isolated as a precipitate by centrifugation. In the dried precipitate there is still a strong contribution of the FeSO{sub 4}⋅7H{sub 2}O which is absent in the same ink written on paper, for which a broad ferrous component with a quadrupole splitting (QS) of about 2.5 mm/s was found. The dominant Fe(III) site present in all inks on paper with QS ≈ 0.82 mm/s is not Fe(III) gallate and different from the precipitates. We propose that nanoparticulate oxidic clusters or molecular composites covered by a shell of polymerized oxidation products of the phenols are formed on the paper.

  6. Model compounds of iron gall inksa Mössbauer study

    International Nuclear Information System (INIS)

    Lerf, A.; Wagner, F. E.

    2016-01-01

    Ferrogallic inks were used for at least two millennia before they became obsolete in the 20 th century. The chemistry of such inks is, however, still largely unclear. Today it is of particular interest for the conservation of old manuscripts. 57 Fe Mössbauer spectra of the ink on historical documents showed the presence of Fe(II) oxalate and of Fe(III) sites presumably representing iron oxihydroxides. To obtain more information on the behaviour of ink on paper we have performed Mössbauer studies at 300 and 4.2 K on iron gall inks prepared from FeSO 4 ⋅7H 2 O and tannin. These inks were either written on paper or isolated as a precipitate by centrifugation. In the dried precipitate there is still a strong contribution of the FeSO 4 ⋅7H 2 O which is absent in the same ink written on paper, for which a broad ferrous component with a quadrupole splitting (QS) of about 2.5 mm/s was found. The dominant Fe(III) site present in all inks on paper with QS ≈ 0.82 mm/s is not Fe(III) gallate and different from the precipitates. We propose that nanoparticulate oxidic clusters or molecular composites covered by a shell of polymerized oxidation products of the phenols are formed on the paper.

  7. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries

    Science.gov (United States)

    Delannoy, P.-E.; Riou, B.; Brousse, T.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2015-08-01

    This work demonstrates ink-jet printed LiFePO4-based composite porous electrodes for microbattery application. As binder and dispersant, we found that aqueous inks with more suitable rheological properties with respect to ink-jet printing are prepared with the low molecular weight poly-acrylic-co-maleic acid copolymer, rather than with the carboxymethyl cellulose standard binder of the lithium-ion technology. The ink-jet printed thin and porous electrode shows very high rate charge/discharge behavior, both in LiPF6/ethylene carbonate-dimethyl carbonate (LP30) and lithium bis(trifluoromethane)sulfonylimide salt (Li-TFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethane)suflonylimide ionic liquid (PYR13-TFSI) electrolytes, as well as good cyclability.

  8. A Chimeric Protein PTEN-L-p53 Enters U251 Cells to Repress Proliferation and Invasion.

    Science.gov (United States)

    Xiao, Man; An, Yang; Wang, Fengling; Yao, Chao; Zhang, Chu; Xin, Junfang; Duan, Yongjian; Zhao, Xiaofang; Fang, Na; Ji, Shaoping

    2018-05-23

    PTEN, a well-known tumor suppressor, dephosphorylates PIP3 and inhibits AKT activity. A translational variant of PTEN has been identified and termed PTEN-Long (PTEN-L). The additional 173 amino acids (PTEN-L leader) at the N-terminal constitute a potential signal peptide. Differing from canonical PTEN, PTEN-L is secreted into the extracellular fluid and re-enters recipient cells, playing the similar roles as PTEN in vivo and in vitro. This character confers the PTEN-L a therapeutic ability via directly protein delivering instead of traditional DNA and RNA vector options. In the present study, we employed PTEN-L leader to assemble a fusion protein, PTEN-L-p53, inosculated with the transcriptional regulator TP53, which is another powerful tumor suppressor. We overexpressed PTEN-L-p53 in HEK293T cells and detected it in both the cytoplasm and nucleus. Subsequently, we found that PTEN-L-p53 was secreted outside of the cells and detected in the culture media by immunoblotting. Furthermore, we demonstrated that PTEN-L-p53 freely entered the cells and suppressed the viability of U251cells (p53 R273H , a cell line with p53 R273H-mutation). PTEN-L-p53 is composed of endogenous protein/peptide bearing low immunogenicity, and only the junction region between PTEN-L leader and p53 can act as a new immune epitope. Accordingly, this fusion protein can potentially be used as a therapeutic option for TP53-abnormality cancers. Copyright © 2018. Published by Elsevier Inc.

  9. Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach

    Science.gov (United States)

    Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel

    2017-01-01

    Background: The squid ink extract is well known for its biomedical properties. Objective: In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Materials and Methods: Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. Results: In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Conclusion: Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. SUMMARY Squid ink is very high in a number of important nutrients. It’s particularly high in antioxidants for instance, which as well all know help to protect

  10. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma.

    Science.gov (United States)

    Minna, Emanuela; Romeo, Paola; De Cecco, Loris; Dugo, Matteo; Cassinelli, Giuliana; Pilotti, Silvana; Degl'Innocenti, Debora; Lanzi, Cinzia; Casalini, Patrizia; Pierotti, Marco A; Greco, Angela; Borrello, Maria Grazia

    2014-05-15

    Thyroid cancer incidence is rapidly increasing. Papillary Thyroid Carcinoma (PTC), the most frequent hystotype, usually displays good prognosis, but no effective therapeutic options are available for the fraction of progressive PTC patients. BRAF and RET/PTC are the most frequent driving genetic lesions identified in PTC. We developed two complementary in vitro models based on RET/PTC1 oncogene, starting from the hypothesis that miRNAs modulated by a driving PTC-oncogene are likely to have a role in thyroid neoplastic processes. Through this strategy, we identified a panel of deregulated miRNAs. Among these we focused on miR-199a-3p and showed its under-expression in PTC specimens and cell lines. We demonstrated that miR-199a-3p restoration in PTC cells reduces MET and mTOR protein levels, impairs migration and proliferation and, more interesting, induces lethality through an unusual form of cell death similar to methuosis, caused by macropinocytosis dysregulation. Silencing MET or mTOR, both involved in survival pathways, does not recapitulate miR-199a-3p-induced cell lethality, thus suggesting that the cooperative regulation of multiple gene targets is necessary. Integrated analysis of miR-199a-3p targets unveils interesting networks including HGF and macropinocytosis pathways. Overall our results indicate miR-199a-3p as a tumor suppressor miRNA in PTC.

  11. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome

    Science.gov (United States)

    Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco

    2012-01-01

    Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968

  12. Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s

    Directory of Open Access Journals (Sweden)

    Sun Yu

    2011-11-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 and Coxsackievirus A16 (CA16 are two major etiological agents of Hand, Foot and Mouth Disease (HFMD. EV71 is associated with severe cases but not CA16. The mechanisms contributed to the different pathogenesis of these two viruses are unknown. VP1 and VP4 are two major structural proteins of these viruses, and should be paid close attention to. Results The sequences of vp1s from 14 EV71 and 14 CA16, and vp4s from 10 EV71 and 1 CA16 isolated in this study during 2007 to 2009 HFMD seasons were analyzed together with the corresponding sequences available in GenBank using DNAStar and MEGA 4.0. Phylogenetic analysis of complete vp1s or vp4s showed that EV71 isolated in Beijing belonged to C4 and CA16 belonged to lineage B2 (lineage C. VP1s and VP4s from 4 strains of viruses expressed in E. coli BL21 cells were used to detect IgM and IgG in human sera by Western Blot. The detection of IgM against VP1s of EV71 and CA16 showed consistent results with current infection, while none of the sera were positive against VP4s of EV71 and CA16. There was significant difference in the positive rates between EV71 VP1 and CA16 VP1 (χ2 = 5.02, P 2 = 15.30, P 2 = 26.47, P 2 = 16.78, P Conclusions EV71 and CA16 were highly diverse in the nucleotide sequences of vp1s and vp4s. The sera positive rates of VP1 and VP4 of EV71 were lower than those of CA16 respectively, which suggested a less exposure rate to EV71 than CA16 in Beijing population. Human serum antibodies detected by Western blot using VP1s and VP4s as antigen indicated that the immunological reaction to VP1 and VP4 of both EV71 and CA16 was different.

  13. miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL

    International Nuclear Information System (INIS)

    Wang, Yanbo; Chen, Luxiao; Wu, Zhenyu; Wang, Minghai; Jin, Fangfang; Wang, Nan; Hu, Xiuting; Liu, Zhengya; Zhang, Chen-Yu; Zen, Ke; Chen, Jiangning; Liang, Hongwei; Zhang, Yujing; Chen, Xi

    2016-01-01

    The origin and development of breast cancer remain complex and obscure. Recently, microRNA (miRNA) has been identified as an important regulator of the initiation and progression of breast cancer, and some studies have shown the essential role of miR-124-3p as a tumor suppressor in breast tumorigenesis. However, the detailed role of miR-124-3p in breast cancer remains poorly understood. Quantitative RT-PCR and western blotting assays were used to measure miR-124-3p and CBL expression levels in breast cancer tissues, respectively. Luciferase reporter assay was employed to validate the direct targeting of CBL by miR-124-3p. Cell proliferation and invasion assays were performed to analyze the biological functions of miR-124-3p and CBL in breast cancer cells. In the present study, we found that miR-124-3p was consistently downregulated in breast cancer tissues. Moreover, we showed that miR-124-3p significantly suppressed the proliferation and invasion of breast cancer cells. In addition, we investigated the molecular mechanism through which miR-124-3p contributes to breast cancer tumorigenesis and identified CBL (Cbl proto-oncogene, E3 ubiquitin protein ligase) as a direct target gene of miR-124-3p. Moreover, we found that ectopic expression of CBL can attenuate the inhibitory effect of miR-124-3p on cell proliferation and invasion in breast cancer cells. This study identified a new regulatory axis in which miR-124-3p and CBL regulate the proliferation and invasion of breast cancer cells. The online version of this article (doi:10.1186/s12885-016-2862-4) contains supplementary material, which is available to authorized users

  14. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    International Nuclear Information System (INIS)

    Pan, Haitao; Hao, Shaofei; Zheng, Qixin; Li, Jingfeng; Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong; Yang, Qin

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability

  15. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Haitao; Hao, Shaofei [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Jingfeng [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang, Qin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-08-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability.

  16. A storage-protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat.

    Science.gov (United States)

    Ren, S X; McIntosh, R A; Sharp, P J; The, T T

    1996-11-01

    A suppressor of resistance to powdery mildew conferred by Pm8 showed complete association with the presence of a storage-protein marker resolved by electrophoresis on SDS-PAGE gels. This marker was identified as the product of the gliadin allele Gli-A1a. The mildewresponse phenotypes of wheats possessing the 1BL.1RS translocation were completely predictable from electrophoretograms. The suppressor, designated SuPm8, was located on chromosome 1AS. It was specific in its suppression of Pm8, and did not affect the rye-derived resistance phenotypes of wheat lines with Pm17, also located in 1RS, or of lines with Pm7.

  17. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  18. Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect.

    Science.gov (United States)

    Fujita, H; Okada, F; Hamada , J; Hosokawa, M; Moriuchi, T; Koya, R C; Kuzumaki, N

    2001-09-01

    Gelsolin, an actin-binding protein, is implicated as a critical regulator in cell motility. In addition, we have reported that cellular levels of gelsolin are decreased in various tumor cells, and overexpression of gelsolin by gene transfer suppresses tumorigenicity. We sought to assess the effects of gelsolin overexpression on metastasis and to determine the importance of a carboxyl-terminus that confers Ca(2+) dependency on gelsolin for effects of its overexpression. Expression vectors with cDNA encoding either full-length wild-type or His321 mutant form, isolated from a flat revertant of Ras-transformed cells and a carboxyl-terminal truncate, C-del of gelsolin, were transfected into a highly metastatic murine melanoma cell line, B16-BL6. Expression of introduced cDNA in transfectants was confirmed using Western blotting, 2-dimensional gel electrophoresis and reverse transcription-polymerase chain reaction (RT-PCR). We characterized phenotypes of transfectants, such as growth rate, colony formation in soft agar, cell motility and metastasis formation in vivo. Transfectants expressing the wild-type, His321 mutant and C-del gelsolin exhibited reduced growth ability in soft agar. Although expression of integrin beta1 or alpha4 on the cell surface of transfectants was not changed, wild-type and His321 mutant gelsolin, except for C-del gelsolin, exhibited retardation of cell spreading, reduced chemotatic migration to fibronectin and suppressed lung colonization in spontaneous metastasis assay. Gelsolin may function as a metastasis suppressor as well as a tumor suppressor gene. The carboxyl-terminus of gelsolin is important for retardation of cell spreading, reduced chemotasis and metastasis suppression. Copyright 2001 Wiley-Liss, Inc.

  19. A screen for genetic suppressor elements of hepatitis C virus identifies a supercharged protein inhibitor of viral replication.

    Directory of Open Access Journals (Sweden)

    Rudo L Simeon

    Full Text Available Genetic suppressor elements (GSEs are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection. A 244 amino acid gene fragment, B1, was strongly enriched after 5 rounds of selection. B1 derives from a single-base frameshift of the enhanced green fluorescent protein (eGFP which was used as a filler during fragment cloning. B1 has a very high net positive charge of 43 at neutral pH and a high charge-to-mass (kDa ratio of 1.5. We show that B1 expression specifically inhibits HCV replication. In addition, five highly positively charged B1 fragments produced from progressive truncation at the C-terminus all retain the ability to inhibit HCV, suggesting that a high positive charge, rather than a particular motif in B1, likely accounts for B1's anti-HCV activity. Another supercharged protein, +36GFP, was also found to strongly inhibit HCV replication when added to cells at the time of infection. This study reports a new methodology for HCV inhibitor screening and points to the anti-HCV potential of positively charged proteins/peptides.

  20. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins

    DEFF Research Database (Denmark)

    Hansen, J A; Lindberg, K; Hilton, D J

    1999-01-01

    In this study we have investigated the role of suppressor of cytokine signaling (SOCS) proteins in GH receptor-mediated signaling. GH-induced transcription was inhibited by SOCS-1 and SOCS-3, while SOCS-2 and cytokine inducible SH2-containing protein (CIS) had no effect By using chimeric SOCS pro...

  1. ERF is a Potential ERK Modulated Tumor Suppressor in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    6/27/2016 - 6/27/2019 1.20 calendar Prostate Cancer Foundation (formerly CaP CURE) $ 75,000 Epigenetic ...AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rohit...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277

  2. PML tumor suppressor protein is required for HCV production

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Misao [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Ariumi, Yasuo, E-mail: ariumi@kumamoto-u.ac.jp [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Hijikata, Makoto [Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Ikeda, Masanori; Dansako, Hiromichi [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640 (Japan); Shimotohno, Kunitada [Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516 (Japan); Kato, Nobuyuki [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  3. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination.

    Science.gov (United States)

    Abdelhamid, Rehab F; Obara, Yuji; Kohzuma, Takamitsu

    2008-01-01

    Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.

  4. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  5. 4p16.1-p15.31 duplication and 4p terminal deletion in a 3-years old Chinese girl: Array-CGH, genotype-phenotype and neurological characterization.

    Science.gov (United States)

    Piccione, Maria; Salzano, Emanuela; Vecchio, Davide; Ferrara, Dante; Malacarne, Michela; Pierluigi, Mauro; Ferrara, Ines; Corsello, Giovanni

    2015-07-01

    Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Takeshi Chiyomaru

    Full Text Available Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs. In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1 and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as 'Pathways in cancer', 'Jak-STAT signaling pathway', and 'Wnt signaling pathway'. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3' UTR of several target genes (such as RAC1, EGFR and EP300 that are components of 'Pathways in cancer'. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa.

  7. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  8. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation

    DEFF Research Database (Denmark)

    Nielsen, G P; Stemmer-Rachamimov, A O; Ino, Y

    1999-01-01

    examined the CDKN2A/p16 gene and p16 protein in NFs and MPNSTs from patients with NF1. On immunohistochemical analysis, all NFs expressed p16 protein. The MPNSTs, however, were essentially immunonegative for p16, with striking transitions in cases that contained both benign and malignant elements. None...

  9. Treament Response in the neck: p16+ versus p16- oropharyngeal cancer

    International Nuclear Information System (INIS)

    Mak, Daisy; Hicks, Rodney J.; Rischin, Danny; Solomon, Ben; Peters, Lester; Corry, June; Bressel, Mathias; Young, Richard J.

    2013-01-01

    To compare nodal response rates following chemoradiotherapy in patients with p16+ and p16− oropharyngeal squamous cell carcinoma (OPSCC). Patients with node-positive OPSCC treated at Peter MacCallum Cancer Centre on the published phase I–III tirapazamine trials were identified. All patients had conventional assessment (clinical examination (CA), CT and/or MRI) and positron emission tomography (PET) at both baseline and 2–4 months post-treatment. There were 30 p16+ and 18 p16− patients, the former group having significantly higher stage nodal disease (P=0.016). The mean overall reduction in nodal size at post-treatment assessment was similar in p16+ and p16− patients (78% vs. 75%), and no statistically significant difference in nodal complete response (CR) rates was detected by either CA (50% vs. 39%, P=0.35) or PET/PET-CT (93% vs. 83%, P=0.19). PET was significantly more accurate in determining the true nodal CR rate in both groups, with a negative predictive value of 96%. Nodal response rates following chemoradiotherapy appear to be similar in p16+ and p16− patients when assessed by either CA or PET/PET-CT. However, higher nodal CR was seen in PET/PET-CT compared with CA in both groups. Metabolic imaging is more accurate than CA in assessing nodal response post-treatment.

  10. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC.

    Science.gov (United States)

    Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt

    2017-07-27

    In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    Science.gov (United States)

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  12. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis.

    Science.gov (United States)

    Armata, Heather L; Golebiowski, Diane; Jung, Dae Young; Ko, Hwi Jin; Kim, Jason K; Sluss, Hayla K

    2010-12-01

    Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.

  13. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  14. Molecular Mechanism of Enhanced Anticancer Effect of Nanoparticle Formulated LY2835219 via p16-CDK4/6-pRb Pathway in Colorectal Carcinoma Cell Line

    Directory of Open Access Journals (Sweden)

    Xu Tang

    2016-01-01

    Full Text Available LY2835219 is a dual inhibitor to CDK4 and CDK6. This study was to prepare LY2835219-loaded chitosan nanoparticles (CNP/LY and LY2835219-loaded hyaluronic acid-conjugated chitosan nanoparticles (HACNP/LY and revealed their anticancer effect and influence on p16-CDK4/6-pRb pathway against colon cell line. The nanoparticle sizes of CNP/LY and HACNP/LY were approximately 195±39.6 nm and 217±31.1 nm, respectively. The zeta potentials of CNP/LY and HACNP/LY were 37.3±1.5 mV and 30.3±2.2 mV, respectively. And the preparation process showed considerable drug encapsulation efficiency and loading efficiency. LY2835219, CNP/LY, and HACNP/LY inhibited HT29 cell proliferation with 0.68, 0.54, and 0.30 μM of IC50, respectively. G1 phase was arrested by LY2835219 and its formulations. Furthermore, inhibition of CDK4/6 by LY2835219 formulations induced CDK4, CDK6, cyclin D1, and pRb decrease and p16 increase at both protein and mRNA levels. Overall, nanoparticle formulated LY2835219 could enhance the cytotoxicity and cell cycle arrest, and HACNP/LY strengthened the trend furtherly compared to CNP/LY. It is the first time to demonstrate the anticancer effect and mechanism against HT29 by LY2835219 and its nanoparticles. The drug and its nanoparticle formulations delay the cell growth and arrest cell cycle through p16-CDK4/6-pRb pathway, while the nanoparticle formulated LY2835219 could strengthen the process.

  15. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  16. High-resolution analysis of 16q22.1 in breast carcinoma using DNA amplifiable probes (multiplex amplifiable probe hybridization technique) and immunohistochemistry.

    Science.gov (United States)

    Rakha, Emad A; Armour, John A L; Pinder, Sarah E; Paish, Claire E; Ellis, Ian O

    2005-05-01

    Loss of the chromosomal material at 16q22.1 is one of the most frequent genetic aberrations found in both lobular and low-grade nonlobular invasive carcinoma of the breast, indicating the presence of a tumour suppressor gene (TSG) at this region in these tumours. However, the TSG (s) at the 16q22.1 in the more frequent nonlobular carcinomas is still unknown. Multiplex Amplifiable Probe Hybridisation (MAPH) is a simple, accurate and a high-resolution technique that provides an alternative approach to DNA copy-number measurement. The aim of our study was to examine the most likely candidate genes at 16q22.1 using MAPH assay combined with protein expression analysis by immunohistochemistry. We identified deletion at 16q22.1 that involves some or all of these genes. We also noticed that the smallest region of deletion at 16q22.1 could be delineated to a 3 Mb region centromeric to the P-cadherin gene. Apart from the correlation between E-cadherin protein expression and its gene copy number, no correlation was detected between the expression of E2F-4, CTCF, TRF2 or P-cadherin with their gene's copy number. In the malignant tissues, no significant loss or decrease of protein expression of any gene other than E-cadherin was seen in association with any specific tumour type. No expression of VE-cadherin or Ksp-cadherin was detected in the normal and/or malignant tissues of the breast in these cases. However, there was a correlation between increased nuclear expression of E2F-4 and tumours with higher histological grade (p = 0.04) and positive lymph node disease (p = 0.02), suggesting that it may have an oncogenic rather than a tumour suppressor role. The malignant breast tissues also showed abnormal cytoplasmic cellular localisation of CTCF, compared to its expression in the normal parenchymal cells. In conclusion, we have demonstrated that MAPH is a potential technique for assessment of genomic imbalances in malignant tissues. Although our results support E-cadherin as the

  17. Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2014-12-01

    Full Text Available Cervical cancer caused by Human papillomavirus (HPV is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG, Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

  18. PTPN13, a Fas-associated protein tyrosine phosphatase, is located on the long arm of chromosome 4 at band q21.3

    Energy Technology Data Exchange (ETDEWEB)

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo [Kyoto Prefectural Univ. of Medicine (Japan)] [and others

    1996-01-15

    PTPN13 is a protein tyrosine phosphatase that associates with the C-terminal negative regulatory domain in the Fas (APO-1/CD95) receptor. The PTPN13 protein contains six GLGF repeats that have been found in the rat postsynaptic density protein (PSD-95) and the Drosophila tumor suppressor protein, lethal-(1)-disclarge-1 (dlg-1). The localization of the PTPN13 gene to human chromosome 4q21.3 was determined by both FISH and PCR analysis of somatic cell hybrids. This 4q21.3 chromosomal region contains a gene for autosomal dominant polycystic kidney disease as well as the region frequently deleted in liver and ovarian cancers, suggesting that PTPN13 is a candidate for one of the putative tumor suppressor genes on the long arm of chromosome 4. 21 refs., 1 fig.

  19. Drying characteristics of hui ink at 25 °C and 35 °C

    Science.gov (United States)

    Fu, Yang; Yao, Yao; Liu, Le; Wang, Fengwen; Yang, Shuyun

    2018-05-01

    Temperature and humidity are the main factors affecting the drying of Hui ink. For the experiment, fresh Hui ink billets from two big ink industries were selected. We tried to find the fast and efficient drying conditions of Hui ink and calculate effective diffusion coefficient by performing manual control of temperature and relative humidity (RH). Several dry kinetic models were fitted. A constant temperature incubator was utilized for temperature control, while humidification and dehumidification were implemented accordingly for RH control. Setups of 25 °C and 35 °C were designed, and a relative humidity of 60%, 65%, 70%, and 75% was applied for each temperature. The process of ink drying was recorded, and the drying effect of Hui ink was estimated through expert decision. The appropriate drying temperature and humidity of the Jinbuhuan(J) and Huangshansongyan(H) ink billets from Lao Hu Kai Wen Ink Industry are at (31.99 ± 1.41) °C and (55.84 ± 10.38)% RH, whereas those of the Songyantanhei(ST), Chunyouyan(CY), and Quansongyan(QS) ink billets from Ju Mo Tang Ink Industry are at (23.70 ± 2.19) °C and (60.56 ± 2.16)% RH or (34.56 ± 2.37) °C and (59.16 ± 6.38)% RH; Initial moisture content of Hui ink has great influence on the water loss in the drying process; The effective diffusion coefficient of the ink lump ranges from 8.41538E-07 to 1.95891E-06 m2·s-1, and increases mainly with the temperature's rising; Logarithmic model fits best of the chosen models.

  20. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Directory of Open Access Journals (Sweden)

    Arnouk Hilal

    2009-08-01

    Full Text Available Abstract Background Infection with high-risk type human papilloma viruses (HPVs is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE. The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23% of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2% were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1; and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27. Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.

  1. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.

    1995-12-01

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  2. The change of p16 gene expression in glioma cell line C6 after radiation with gamma knife

    International Nuclear Information System (INIS)

    Zhao Xingli; Zhao Conghai; Tian Yu

    2002-01-01

    Objective: T observe the change of expression of p16 gene product, P16 protein, after treated by gamma knife on glioma cell line C6. Methods: Glioma C6 cells proliferated in vitro, treated by γ-knife in dose of 5.00 and 6.22 Gy, respectively. P16 protein was detected by immunohistochemical technique and image analysis. Results: The P16 protein in glioma C6 cells was notably increased after treatment with γ knife (P < 0.01). The grey number in C6 group (control group) was 167.1 +- 6.2 and was 155.4 +- 2.0 and 124.9 +- 7.1, respectively, in 5.00 Gy and 6.22 Gy gamma knife treated group. Conclusion: It is suggests that one of the mechanisms of glioma cell C6 apoptosis induced by γ-knife radiation may be associated with activation of p16 gene and increase of P16 protein expression

  3. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  4. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  5. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  6. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    SI-JU GAO

    abnormality or family history of congenital heart disease, as well as the exclusion of ... Germany) according to the manufacture's protocol. A total of. 45 μL of DNA was ... islands and the primer sites are illustrated in figure 1. Detection of p16 ...

  7. Cloning of pCDNA3-IgG4 and pQE-2-IgG4 human hinge region ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... diseases and in allergy-related immunoassays, thus, anti-hIgG4 antibody is of interest in the development of ... pQE-2-. IgG4 will be used for protein expression in M15 prokaryotic .... Solution conformation of wild-type and ...

  8. Emerging differential roles of the pRb tumor suppressor in trichodysplasia spinulosa-associated polyomavirus and Merkel cell polyomavirus pathogeneses.

    Science.gov (United States)

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Doan, Hung Q; Rady, Peter L; Tyring, Stephen K

    2016-03-01

    Merkel cell carcinoma (MCC) and trichodysplasia spinulosa (TS) are two proliferative cutaneous diseases caused by the Merkel cell polyomavirus (MCPyV) and trichodysplasia spinulosa-associated polyomavirus (TSPyV) respectively. Recently, studies have elucidated a key role of the small tumor (sT) antigen in the proliferative pathogenic mechanisms of MCPyV and likely TSPyV. While both sT antigens have demonstrated a capacity in regulating cellular pathways, it remains unknown whether MCPyV and TSPyV sT antigens contribute similarly or differentially to cell proliferation. The present study aims to explore the proliferative potential of MCPyV and TSPyV sT antigens by investigating their regulatory effects on the retinoblastoma protein (pRb) tumor suppressor. Inducible cell lines expressing MCPyV sT or TSPyV sT were created using a lentiviral packaging system. Cellular proteins were extracted and subjected to SDS-PAGE followed by Western blot detection and densitometric analysis. Expression of TSPyV sT markedly enhanced the phosphorylation of pRb in Western blot experiments. In contrast, expression of MCPyV sT did not alter pRb phosphorylation under the same experimental conditions. Densitometric analysis revealed that TSPyV sT antigen expression nearly doubled the ratio of phosphorylated to total pRb (P<0.001, Student's T-test), while MCPyV sT antigen expression did not cause significant change in pRb phosphorylation status. Given that hyperphosphorylation of pRb is associated with dysregulation of the cell cycle, S-phase induction, and increased cell proliferation, our findings support an important role of TSPyV-mediated pRb deactivation in the development of TS. The observation that the pRb tumor suppressor is inactivated by TSPyV sT but not MCPyV sT provides further insights into the distinct pathobiological mechanisms of MCC and TS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.

    Science.gov (United States)

    Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.

  10. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres

    International Nuclear Information System (INIS)

    Ji, Qing; Hao, Xinbao; Meng, Yang; Zhang, Min; DeSano, Jeffrey; Fan, Daiming; Xu, Liang

    2008-01-01

    MicroRNAs (miRNAs), some of which function as oncogenes or tumor suppressor genes, are involved in carcinogenesis via regulating cell proliferation and/or cell death. MicroRNA miR-34 was recently found to be a direct target of p53, functioning downstream of the p53 pathway as a tumor suppressor. miR-34 targets Notch, HMGA2, and Bcl-2, genes involved in the self-renewal and survival of cancer stem cells. The role of miR-34 in gastric cancer has not been reported previously. In this study, we examined the effects of miR-34 restoration on p53-mutant human gastric cancer cells and potential target gene expression. Human gastric cancer cells were transfected with miR-34 mimics or infected with the lentiviral miR-34-MIF expression system, and validated by miR-34 reporter assay using Bcl-2 3'UTR reporter. Potential target gene expression was assessed by Western blot for proteins, and by quantitative real-time RT-PCR for mRNAs. The effects of miR-34 restoration were assessed by cell growth assay, cell cycle analysis, caspase-3 activation, and cytotoxicity assay, as well as by tumorsphere formation and growth. Human gastric cancer Kato III cells with miR-34 restoration reduced the expression of target genes Bcl-2, Notch, and HMGA2. Bcl-2 3'UTR reporter assay showed that the transfected miR-34s were functional and confirmed that Bcl-2 is a direct target of miR-34. Restoration of miR-34 chemosensitized Kato III cells with a high level of Bcl-2, but not MKN-45 cells with a low level of Bcl-2. miR-34 impaired cell growth, accumulated the cells in G1 phase, increased caspase-3 activation, and, more significantly, inhibited tumorsphere formation and growth. Our results demonstrate that in p53-deficient human gastric cancer cells, restoration of functional miR-34 inhibits cell growth and induces chemosensitization and apoptosis, indicating that miR-34 may restore p53 function. Restoration of miR-34 inhibits tumorsphere formation and growth, which is reported to be

  11. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Deregulation of the RB pathway in human testicular germ cell tumours

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Lukas, Claudia; Sørensen, Claus S

    2003-01-01

    Deregulation of the RB pathway is shared by most human malignancies. Components upstream of the retinoblastoma tumour suppressor (pRB), namely the INK4 family of cyclin-dependent kinase (CDK) inhibitors, the D-type cyclins, their partner kinases CDK4/CDK6, and pRB as their critical substrate...

  13. Sonoporation delivery of monoclonal antibodies against human papillomavirus 16 E6 restores p53 expression in transformed cervical keratinocytes.

    Directory of Open Access Journals (Sweden)

    Melissa Togtema

    Full Text Available High-risk types of human papillomavirus (HPV, such as HPV16, have been found in nearly all cases of cervical cancer. Therapies targeted at blocking the HPV16 E6 protein and its deleterious effects on the tumour suppressor pathways of the cell can reverse the malignant phenotype of affected keratinocytes while sparing uninfected cells. Through a strong interdisciplinary collaboration between engineering and biology, a novel, non-invasive intracellular delivery method for the HPV16 E6 antibody, F127-6G6, was developed. The method employs high intensity focused ultrasound (HIFU in combination with microbubbles, in a process known as sonoporation. In this proof of principle study, it was first demonstrated that sonoporation antibody delivery into the HPV16 positive cervical carcinoma derived cell lines CaSki and SiHa was possible, using chemical transfection as a baseline for comparison. Delivery of the E6 antibody using sonoporation significantly restored p53 expression in these cells, indicating the antibody is able to enter the cells and remains active. This delivery method is targeted, non-cytotoxic, and non-invasive, making it more easily translatable for in vivo experiments than other transfection methods.

  14. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ehresmann, B.; Backendorf, C.; Ehresmann, C.; Ebel, J.P.

    1977-01-01

    The use of ultraviolet irradiation to form photochemical covalent bonds between the 16 S RNA and a ribosomal protein is a reliable method to check RNA regions which are interacting with the protein. This technique was successfully used to covalently link RNA or DNA and specific proteins in several cases. In the case of ribosome, it has been shown that the irradiation of 30 S and 50 S subunits using high doses of ultraviolet light allowed the covalent binding of almost all of the ribosomal proteins to the 16 S or 23 S RNAs. Using mild conditions, only proteins S7 and L4 could be covalently linked to the 16 S and 23 S RNAs, respectively, and the 16 S RNA region linked to protein S7 has now been characterized. The specificity of the photoreaction was demonstrated earlier and the tryptic peptides from proteins S4 and S7, photochemically linked to the 16 S RNA complexes, were identified. A report is presented on the sequences of the RNA regions which can be photochemically linked to proteins S4 and S7 after ultraviolet irradiation of the specific S4-16 S RNA and 20 S-16 S RNA complexes

  15. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  16. p16 expression in follicular dendritic cell sarcoma: a potential mimicker of human papillomavirus-related oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D

    2017-08-01

    Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner.

    Science.gov (United States)

    Carbonell, Alberto; Dujovny, Gabriela; García, Juan Antonio; Valli, Adrian

    2012-02-01

    Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.

  18. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast

    DEFF Research Database (Denmark)

    Kleinow, T.; Bhalerao, R.; Breuer, F.

    2000-01-01

    Yeast Snf4 is a prototype of activating gamma-subunits of conserved Snf1/AMPK-related protein kinases (SnRKs) controlling glucose and stress signaling in eukaryotes. The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with Snf4 and suppress the snf1 and snf4 mutations in yeast....... By expression of an Arabidopsis cDNA library in yeast, heterologous multicopy snf4 suppressors were isolated. In addition to AKIN10 and AKIN11, the deficiency of yeast snf4 mutant to grown on non-fermentable carbon source was suppressed by Arabidopsis Myb30, CAAT-binding factor Hap3b, casein kinase I, zinc......-finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain...

  19. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    Science.gov (United States)

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  20. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  1. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells.

    Science.gov (United States)

    Kim, Myeong-Ok; Choe, Min Ho; Yoon, Yi Na; Ahn, Jiyeon; Yoo, Minjin; Jung, Kwan-Young; An, Sungkwan; Hwang, Sang-Gu; Oh, Jeong Su; Kim, Jae-Sung

    2017-11-15

    Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rave-Fraenk, Margret; Tehrany, Narges; Leu, Martin; Weber, Hanne Elisabeth; Wolff, Hendrik Andreas [University Medical Center Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Kitz, Julia [University Medical Center Goettingen, Department of Pathology, Goettingen (Germany); Burfeind, Peter [University Medical Center Goettingen, Department of Human Genetics, Goettingen (Germany); Schliephake, Henning [University Medical Center Goettingen, Department of Oral and Maxillofacial Surgery, Goettingen (Germany); Canis, Martin [University Medical Center Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Beissbarth, Tim [University Medical Center Goettingen, Institute of Medical Statistics, Goettingen (Germany); Reichardt, Holger Michael [University Medical Center Goettingen, Institute for Cellular and Molecular Immunology, Goettingen (Germany)

    2016-01-15

    The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16{sup INK4A} status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16{sup INK4A} positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis. (orig.) [German] Das Chemokin CXCL12 und sein Rezeptor CXCR4 beeinflussen Tumorwachstum, Auftreten von Rezidiven und Metastasierung. Es wurde die Hypothese geprueft, dass ein Zusammenhang der CXCL12- und CXCR4-Expression mit der Prognose von Patienten bestehe, die wegen eines inoperablen Kopf-Hals-Tumors eine primaere Radio- oder Radiochemotherapie erhielten. Dabei wurde auch der HPV-Status der Patienten beruecksichtigt. Formalinfixierte Proben aus unbehandelten Tumoren von 233 Patienten mit bekanntem HPV/p16{sup INK4A}-Status wurden ausgewertet. Die CXCL12- und CXCR4-Expression wurde mit klinischen Parametern und Ueberlebensdaten mittels uni- und multivariater Cox Regression analysiert. CXCL12 wurde von 43,3 %, CXCR4 von 66,1 % der Tumoren exprimiert, und beide Marker korrelierten mit einer HPV/p16{sup INK4A}-Expression. Eine hohe CXCL12-Expression war mit einem verbesserten

  3. Ink dating part II: Interpretation of results in a legal perspective.

    Science.gov (United States)

    Koenig, Agnès; Weyermann, Céline

    2018-01-01

    The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the trend tests that focusing on the "ageing status" of an ink entry, and (3) the likelihood ratio calculation comparing the probabilities to observe the results under at least two alternative hypotheses. This is the first report showing ink dating interpretation results on a ballpoint be ink reference population. In the first part of this paper three ageing parameters were selected as promising from the population of 25 ink entries aged during 4 to 304days: the quantity of phenoxyethanol (PE), the difference between the PE quantities contained in a naturally aged sample and an artificially aged sample (R NORM ) and the solvent loss ratio (R%). In the current part, each model was tested using the three selected ageing parameters. Results showed that threshold definition remains a simple model easily applicable in practice, but that the risk of false positive cannot be completely avoided without reducing significantly the feasibility of the ink dating approaches. The trend tests from the literature showed unreliable results and an alternative had to be developed yielding encouraging results. The likelihood ratio calculation introduced a degree of certainty to the ink dating conclusion in comparison to the threshold approach. The proposed model remains quite simple to apply in practice, but should be further developed in order to yield reliable results in practice. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  4. Microsatellite alteration and immunohistochemical expression profile of chromosome 9p21 in patients with sporadic renal cell carcinoma following surgical resection

    International Nuclear Information System (INIS)

    El-Mokadem, Ismail; Lim, Alison; Kidd, Thomas; Garret, Katherine; Pratt, Norman; Batty, David; Fleming, Stewart; Nabi, Ghulam

    2016-01-01

    Long-term prognostic significance of loss of heterozygosity on chromosome 9p21 for localized renal cell carcinoma following surgery remains unreported. The study assessed the frequency of deletions of different loci of chromosome 9p along with immunohistochemical profile of proteins in surgically resected renal cancer tissue and correlated this with long-term outcomes. DNA was extracted from renal tumours and corresponding normal kidney tissues in prospectively collected samples of 108 patients who underwent surgical resection for clinically localized disease between January 2001 and December 2005, providing a minimum of 9 years follow-up for each participant. After checking quality of DNA, amplified by PCR, loss of heterozygosity (LOH) on chromosome 9p was assessed using 6 microsatellite markers in 77 clear cell carcinoma. Only 5 of the markers showed LOH (D9S1814, D9S916, D9S974, D9S942, and D9S171). Protein expression of p15(INK4b), p16(INK4a), p14(ARF), CAIX, and adipose related protein (ADFP) were demonstrated by immunostaining in normal and cancer tissues. Loss of heterozygosity for microsatellite analysis was correlated with tumour characteristics, recurrence free, cancer specific, and overall survival, including significance of immunohistochemical profile of protein expressions. The main deletion was found at loci telomeric to CDKN2A region at D9S916. There was a significant correlation between frequency of LOH stage (p = 0.005) and metastases (p = 0.006) suggesting a higher LOH for advanced and aggressive renal cell carcinoma. Most commonly observed LOH in the 3 markers: D9S916, D9S974, and D9S942 were associated with poor survival, and were statistically significant on multivariate analysis. Immunohistochemical expression of p14, p15, and p16 proteins were either low or absent in cancer tissue compared to normal. Loss of heterozygosity of p921 chromosome is associated with aggressive tumours, and predicts cancer specific or recurrence free survival on

  5. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Jeong, Hyung Jin

    2010-01-01

    Research highlights: → 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. → 2M4VP inhibited hyper-phosphorylation of Rb protein. → 2M4VP induced cell cycle arrest from G1 to S. → 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. → 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  6. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of); Jeong, Hyung Jin, E-mail: jhj@andong.ac.kr [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of)

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  7. A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein.

    Science.gov (United States)

    Dias, Ana Carolina M S; Gomes-Filho, Sérgio L R; Silva, Mízia M S; Dutra, Rosa F

    2013-06-15

    An immunosensor for the non-structural protein 1 (NS1) of the dengue virus based on carbon nanotube-screen printed electrodes (CNT-SPE) was successfully developed. A homogeneous mixture containing carboxylated carbon nanotubes was dispersed in carbon ink to prepare a screen printed working electrode. Anti-NS1 antibodies were covalently linked to CNT-SPE by an ethylenediamine film strategy. Amperometrical responses were generated at -0.5 V vs. Ag/AgCl by hydrogen peroxide reaction with peroxidase (HRP) conjugated to the anti-NS1. An excellent detection limit (in the order of 12 ng mL(-1)) and a sensitivity of 85.59 μA mM(-1)cm(-2) were achieved permitting dengue diagnostic according to the clinical range required. The matrix effect, as well as the performance of the assays, was successfully evaluated using spiked blood serum sample obtaining excellent recovery values in the results. Carbon nanotubes incorporated to the carbon ink improved the reproducibility and sensitivity of the CNT-SPE immunosensor. This point-of-care approach represents a great potential value for use in epidemic situations and can facilitate the early screening of patients in acute phase of dengue virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A randomized control trial evaluating fluorescent ink versus dark ink tattoos for breast radiotherapy.

    Science.gov (United States)

    Landeg, Steven J; Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A

    2016-12-01

    The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σ setup ) was no less accurate than with conventional dark ink tattoos, i.e. tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σ setup for the UV tattoo group was tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial.

  9. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    Energy Technology Data Exchange (ETDEWEB)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  10. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2014-01-01

    Full Text Available High-risk human papillomavirus (HR-HPV has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR- associated protein system (CRISPR/Cas system, a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.

  11. p53 protein expression versus micronucleus induction as an indicator of DNA damage

    International Nuclear Information System (INIS)

    Hickman, A.W.; Carpenter, T.R.; Johnson, N.F.

    1994-01-01

    In vitro assays for detecting DNA damage play an important role in evaluating the possible adverse health effects of chemical compounds. Exposure to many DNA-damaging agents in vitro has been shown to cause elevated levels of the tumor-suppressor protein p53. Work in our laboratory has shown that induction of the p53 protein is useful as a biodosimeter for determining the radiation dose to cells. The purpose of this investigation was to compare the sensitivity of this assay to that of micronucleus induction, which is commonly used as a marker of radiation-induced damage

  12. Interferon gamma-inducible protein 16 (IFI16 and anti-IFI16 antibodies in primary Sjögren’s syndrome: findings in serum and minor salivary glands

    Directory of Open Access Journals (Sweden)

    A. Alunno

    2016-02-01

    Full Text Available The interferon (IFN signature, namely the overexpression of IFN-inducible genes is a crucial aspect in the pathogenesis of primary Sjögren’s syndrome (pSS. The IFN-inducible IFI16 protein, normally expressed in cell nuclei, may be overexpressed, mislocalized in the cytoplasm and secreted in the extracellular milieu in several autoimmune disorders including pSS. This leads to tolerance breaking to this self-protein and development of anti-IFI16 antibodies. The aim of this study was to identify pathogenic and clinical significance of IFI16 and anti-IFI16 autoantibodies in pSS. IFI16 and anti-IFI16 were assessed in the serum of 30 pSS patients and one-hundred healthy donors (HD by ELISA. IFI16 was also evaluated in 5 minor salivary glands (MSGs of pSS patients and 5 MSGs of non-pSS patients with sicca symptoms by immunohistochemistry. Normal MSGs do not constitutively express IFI16. Conversely, in pSS-MSGs a marked expression and cytoplasmic mislocalization of IFI16 by epithelial cells was observed with infiltrations in lymphocytes and peri/ intra-lesional endothelium. pSS patients display higher serum levels of both IFI16 and anti-IFI16 autoantibodies compared to HD. Our data suggest that IFI16 protein may be involved in the initiation and perpetuation of glandular inflammation occurring in pSS.

  13. Imunolocalização das proteínas dos genes supressores de tumores TP53 e p16CDKN2 no front invasivo do carcinoma epidermóide de cavidade bucal Immunolocalization of TP53 and p16CDKN2 tumour suppressor genes proteins in invasive front of oral epidermoid carcinoma

    Directory of Open Access Journals (Sweden)

    Alfredo Maurício Batista De-Paula

    2006-08-01

    vias moleculares independentes.BACKGROUND: Oral carcinogenesis is a multistep process in which genetic events lead to the disruption of the normal regulatory pathways that control basic cellular functions. Epidermoid carcinoma of oral cavity (ECOC appears as a consequence of multiple molecular events induced by the effects of several carcinogens influenced by environmental factors against a background of genetic resistance or susceptibility. Consequent genetic damage affects many chromosomes and genes, and the accumulation of these changes seems to lead to ECOC. OBJECTIVES: The aim of the present study was to assess the clinical and morphological value of p53 and p16 immunolocalization at the invasive tumor front in a representative series of 35 routinely processed ECOC. MATERIAL AND METHODS: Samples of ECOC were investigated in this study. TNM system was employed for clinical staging and the invasive front grading system was employed for morphological grading of the lesions. Immunohistochemical technique in paraffin-embedded and formalin-fixed tissues was utilized to immunolocalization of p53 and p16 proteins. Counts were performed and submitted to specific statistical treatments. RESULTS: p53 and p16 immunolocalizations were detected in 63% and 66%, respectively, of 35 carcinomas studied. No correlation was found between p53 and p16 expressions and clinico-morphological parameters statistically analyzed. No correlation was found between the relationship p53/p16 expressions. CONCLUSION: p53 and p16 immunolocalization did not influence the clinico-morphological parameters analyzed in this study and apparently do not represent a molecular basis for the biologic significance of the invasive tumor front. Lack of a strong correlation between p53 and p16 immunolocalization suggests that both could participate in biological activities in the cell cycle control by independent molecular pathways.

  14. TMEM45A, SERPINB5 and p16INK4A transcript levels are predictive for development of high-grade cervical lesions

    DEFF Research Database (Denmark)

    Manawapat-Klopfer, Anna; Thomsen, Louise T; Martus, Peter

    2016-01-01

    Women persistently infected with human papillomavirus (HPV) type 16 are at high risk for development of cervical intraepithelial neoplasia grade 3 or cervical cancer (CIN3+). We aimed to identify biomarkers for progression to CIN3+ in women with persistent HPV16 infection. In this prospective study......, 11,088 women aged 20-29 years were enrolled during 1991-1993, and re-invited for a second visit two years later. Cervical cytology samples obtained at both visits were tested for HPV DNA by Hybrid Capture 2 (HC2), and HC2-positive samples were genotyped by INNO-LiPA. The cohort was followed for up...... to 19 years via a national pathology register. To identify markers for progression to CIN3+, we performed microarray analysis on RNA extracted from cervical swabs of 30 women with persistent HPV16-infection and 11 HPV-negative women. Six genes were selected and validated by quantitative PCR. Three genes...

  15. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19+rP39) against B. abortus 544 and B. melitensis 16M infection in murine model.

    Science.gov (United States)

    Tadepalli, Ganesh; Singh, Amit Kumar; Balakrishna, Konduru; Murali, Harishchandra Sripathy; Batra, Harsh Vardhan

    2016-03-01

    In this study, the immunogenicity and protective efficacy of recombinant proteins Omp19 (rO) and P39 (rP) from Brucella abortus were evaluated individually and compared with the cocktail protein (rO+rP) against B. abortus 544 and Brucella melitensis 16M infection in BALB/c mouse model. Intra-peritoneal (I.P.) immunization with rO+rP cocktail developed substantially higher antibody titers predominant with Th1 mediated isotypes (IgG2a/2b). Western blot analysis using anti-rO+rP antibodies showed specific reactivity with native Omp19 (19 kDa) and P39 (39 kDa) among whole cell proteins of B. abortus and B. melitensis. Splenocytes extracted from rO+rP immunized mice induced significantly (Pabortus 544 (72.27%) and B. melitensis 16M (68.57%). On the other hand, individual anti-rO and anti-rP polysera resulted in relatively lesser protection against the pathogens (64.79%, 54.45% and 47.13%, 45.11%, respectively). Immunized group of mice when I.P. challenged with 5 × 10(4) CFU of B. abortus 544 and B. melitensis 16M were found significantly (PBrucella vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Gao [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yeh, P Y [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Lu, Y -S [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan, ROC (China); Chang, W C [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Kuo, M -L [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Cheng, A -L [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China)], E-mail: alcheng@ntu.edu.tw

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  17. NF-κB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-01-01

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-κB controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-κB activity in response to TNF-α, an abundance of basal and TNF-α-induced NF-κB-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a κB site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells

  18. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    Science.gov (United States)

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  19. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  20. The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1

    International Nuclear Information System (INIS)

    Gupta, Sanjay; Takhar, Param Parkash S; Degenkolbe, Roland; Heng Koh, Choon; Zimmermann, Holger; Maolin Yang, Christopher; Guan Sim, Khe; I-Hong Hsu, Stephen; Bernard, Hans-Ulrich

    2003-01-01

    The genital human papillomaviruses (HPVs) are a taxonomic group including HPV types that preferentially cause genital and laryngeal warts ('low-risk types'), such as HPV-6 and HPV-11, or cancer of the cervix and its precursor lesions ('high-risk types'), such as HPV-16. The transforming processes induced by these viruses depend on the proteins E5, E6, and E7. Among these oncoproteins, the E6 protein stands out because it supports a particularly large number of functions and interactions with cellular proteins, some of which are specific for the carcinogenic HPVs, while others are shared among low- and high-risk HPVs. Here we report yeast two-hybrid screens with HPV-6 and -11 E6 proteins that identified TRIP-Br1 as a novel cellular target. TRIP-Br1 was recently detected by two research groups, which described two separate functions, namely that of a transcriptional integrator of the E2F1/DP1/RB cell-cycle regulatory pathway (and then named TRIP-Br1), and that of an antagonist of the cyclin-dependent kinase suppression of p16INK4a (and then named p34SEI-1). We observed that TRIP-Br1 interacts with low- and high-risk HPV E6 proteins in yeast, in vitro and in mammalian cell cultures. Transcription activation of a complex consisting of E2F1, DP1, and TRIP-Br1 was efficiently stimulated by both E6 proteins. TRIP-Br1 has an LLG E6 interaction motif, which contributed to the binding of E6 proteins. Apparently, E6 does not promote degradation of TRIP-Br1. Our observations imply that the cell-cycle promoting transcription factor E2F1/DP1 is dually targeted by HPV oncoproteins, namely (i) by interference of the E7 protein with repression by RB, and (ii) by the transcriptional cofactor function of the E6 protein. Our data reveal the natural context of the transcription activator function of E6, which has been predicted without knowledge of the E2F1/DP1/TRIP-Br/E6 complex by studying chimeric constructs, and add a function to the limited number of transforming properties shared

  1. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21.

    LENUS (Irish Health Repository)

    Sheedy, FJ

    2009-11-29

    The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.

  2. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.

  3. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lou, Hai-zhou; Weng, Xiao-chuan; Pan, Hong-ming; Pan, Qin; Sun, Peng; Liu, Li-li; Chen, Bin

    2014-01-01

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment

  4. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  5. Shell model description of 16O(p,γ)17F and 16O(p,p)16O reactions

    International Nuclear Information System (INIS)

    Bennaceur, K.; Michel, N.; Okolowicz, J.; Ploszajczak, M.; Bennaceur, K.; Nowacki, F.; Okolowicz, J.

    2000-01-01

    We present shell model calculations of both the structure of 17 F and the reactions 16 O(p,γ) 17 F, 16 O(p,p) 16 O. We use the ZBM interaction which provides a fair description of the properties of 16 O and neighbouring nuclei and, in particular it takes account for the complicated correlations in coexisting low-lying states of 16 O. (authors)

  6. MEKK1 is a Novel Regulator of the Dmp1-Arf-p53 Pathway and Prognostic Indicator in Breast Cancer

    Science.gov (United States)

    2012-12-01

    hDMP1, INK4a/ARF, p53 or Hdm2 amplification. Kaplan -Meier analyses have been conducted to study the impact for the impact of loss or gain of each locus on...Palma P, Pellegrini S, Fina P et al. Mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol 1995; 175: 31–38. 21 Turbin DA

  7. Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines

    Science.gov (United States)

    Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun

    2017-04-01

    Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.

  8. MiR-142-3p Functions as a Potential Tumor Suppressor in Human Osteosarcoma by Targeting HMGA1

    Directory of Open Access Journals (Sweden)

    Guoxing Xu

    2014-04-01

    Full Text Available Background/Aims: Mounting evidence has shown that aberrant expression of miRNAs correlates with human cancers, and that miRNAs can function as tumor suppressors or oncogenes. Here, we investigated the role and mechanism of miR-142-3p in human osteosarcoma. Methods: We used quantitative real-time RT-PCR to measure the expression of miR-142-3p in human osteosarcoma cell lines and tissues. The roles of miR-142-3p in osteosarcoma development were studied using cultured HOS, MG63 and Saos-2 cells and tumor xenograft analyses in nude mice; their target genes were also investigated. Results: We found that miR-142-3p was significantly downregulated in osteosarcoma cell lines and clinical specimens. Overexpression of miR-142-3p suppressed osteosarcoma cell proliferation, migration and invasion, whereas miR-142-3p knockdown increased these parameters. The xenograft mouse model also revealed the suppressive effect of miR-142-3p on tumor growth. High mobility group AT-hook 1 (HMGA1 was identified as a target of miR-142-3p. Downregulation of HMGA1 induced effects on osteosarcoma cell lines similar to those induced by miR-142-3p. In contrast, restoration of HMGA1 abrogated the effects induced by miR-142-3p up-regulation. Conclusion: These results indicated that miR-142-3p may function as a tumor suppressor by targeting HMGA1 in osteosarcoma.

  9. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    International Nuclear Information System (INIS)

    Kousparou, Christina A; Yiacoumi, Efthymia; Deonarain, Mahendra P; Epenetos, Agamemnon A

    2012-01-01

    A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp) and wild-type, full-length p21 (Antp-p21). This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model) with differing p21 or p53 status. Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology

  10. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    Directory of Open Access Journals (Sweden)

    Kousparou Christina A

    2012-08-01

    Full Text Available Abstract Background A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. Methods The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp and wild-type, full-length p21 (Antp-p21. This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model with differing p21 or p53 status. Results Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Conclusions Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology.

  11. Tumor Suppressor RARRES1 Regulates DLG2, PP2A, VCP, EB1, and Ankrd26

    Directory of Open Access Journals (Sweden)

    Ziad J. Sahab, Michael D. Hall, Lihua Zhang, Amrita K. Cheema, Stephen W. Byers

    2010-01-01

    Full Text Available Retinoic Acid Receptor Responder (RARRES1 initially identified as a novel retinoic acid receptor regulated gene in the skin is a putative tumor suppressor of unknown function. RARRES1 was knocked down in immortalized human prostatic epithelial cell line PWR-1E cells and differential protein expression was identified using differential in-gel electrophoresis (DIGE followed by matrix-assisted laser desorption ionization (MALDI mass spectrometry and western Blot analysis excluding highly abundant proteins routinely identified in almost all proteomics projects. Knock-down of RARRES1: 1- down-regulates PP2A, an enzyme involved in the negative regulation of the growth hormone-stimulated signal transduction pathways; 2- down-regulates Valosin-containing protein causing impaired autophagy; 3- up-regulates the tumor suppressor disks large 2; 4- up-regulates Ankrd26 that belongs to the POTE family of genes that are highly expressed in cancer patients with poor outcome; and 5- down-regulates EB1, a protein that is involved in spindle dynamics and chromosome alignment during mitosis.

  12. Suppressors of RNA silencing encoded by tomato leaf curl

    Indian Academy of Sciences (India)

    Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B ... In the present study suppressor function of ORF C1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl ...

  13. Identification of a maize chlorotic dwarf virus silencing suppressor protein

    Science.gov (United States)

    Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389 kDa proteolytically processed polyprotein. We show that an N-terminal 78kDa polyprotein (R78) has silencing suppressor activity, that it is cleaved by the viral...

  14. Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16

    Science.gov (United States)

    Djoussé, Luc; Knowlton, Beth; Hayden, Michael R.; Almqvist, Elisabeth W.; Brinkman, Ryan R.; Ross, Christopher A.; Margolis, Russel L.; Rosenblatt, Adam; Durr, Alexandra; Dode, Catherine; Morrison, Patrick J.; Novelletto, Andrea; Frontali, Marina; Trent, Ronald J. A.; McCusker, Elizabeth; Gómez-Tortosa, Estrella; Mayo Cabrero, David; Jones, Randi; Zanko, Andrea; Nance, Martha; Abramson, Ruth K.; Suchowersky, Oksana; Paulsen, Jane S.; Harrison, Madaline B.; Yang, Qiong; Cupples, L. Adrienne; Mysore, Jayalakshmi; Gusella, James F.; MacDonald, Marcy E.

    2007-01-01

    Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Δ2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Δ2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker. PMID:15029481

  15. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  16. Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma.

    Science.gov (United States)

    Panagopoulos, Ioannis; Gorunova, Ludmila; Viset, Trond; Heim, Sverre

    2016-11-01

    We present an angiofibroma of soft tissue with the karyotype 46,XY,t(4;5)(q24;q31),t(5;8;17)(p15;q13;q21)[8]/46,XY,t(1;14)(p31;q32)[2]/46,XY[3]. RNA‑sequencing showed that the t(4;5)(q24;q31) resulted in recombination of the genes TBCK on 4q24 and P4HA2 on 5q31.1 with generation of an in‑frame TBCK‑P4HA2 and the reciprocal but out‑of‑frame P4HA2‑TBCK fusion transcripts. The putative TBCK‑P4HA2 protein would contain the kinase, the rhodanese‑like domain, and the Tre‑2/Bub2/Cdc16 (TBC) domains of TBCK together with the P4HA2 protein which is a component of the prolyl 4‑hydroxylase. The t(5;8;17)(p15;q13;q21) three‑way chromosomal translocation targeted AHRR (on 5p15), NCOA2 (on 8q13), and ETV4 (on 17q21) generating the in‑frame fusions AHRR‑NCOA2 and NCOA2‑ETV4 as well as an out‑of‑frame ETV4‑AHRR transcript. In the AHRR‑NCOA2 protein, the C‑terminal part of AHRR is replaced by the C‑terminal part of NCOA2 which contains two activation domains. The NCOA2‑ETV4 protein would contain the helix‑loop‑helix, PAS_9 and PAS_11, CITED domains, the SRC‑1 domain of NCOA2 and the ETS DNA‑binding domain of ETV4. No fusion gene corresponding to t(1;14)(p31;q32) was found. Our findings indicate that, in spite of the recurrence of AHRR‑NCOA2 in angiofibroma of soft tissue, additional genetic events (or fusion genes) might be required for the development of this tumor.

  17. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liquan; Wang, Dan [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); Fisher, Alfred L., E-mail: fishera2@uthscsa.edu [Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229 (United States); Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States); Wang, Zhou, E-mail: wangz2@upmc.edu [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States)

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  19. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Ino, Y; Gerdes, A M

    1999-01-01

    The two gene products of the CDKN2A gene, p16 and p19ARF, have recently been linked to each of two major tumour suppressor pathways in human carcinogenesis, the RB1 pathway and the p53 pathway. p16 inhibits the phosphorylation of the retinoblastoma gene product by cyclin D-dependent kinases...

  20. pH-gradient chromatofocusing of proteins on a chip

    NARCIS (Netherlands)

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, J.G.E.

    2015-01-01

    We present a novel microfluidic system for the pH-gradient focusing of proteins with the integration of 16 parallel micro-mixers, a micro-column, and a multiplexer. In this work we successfully achieved the creation of 16 non-linear gradients and the generation of a solid-phase micro-column for the

  1. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

    Science.gov (United States)

    De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge

    2018-03-01

    The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Not all hypochondroplasia families are linked to chromosome 4p16.3

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, F.; Munnich, A.; Merrer, M.Le. [INSERM, Paris (France)] [and others

    1994-09-01

    Achondroplasia (ACH, MIM 100800) and hypochondroplasia (HCH, MIM 146000) are short limb dwarfism with enlarged head sharing some specific radiological features. Inter- and intrafamilial clinical variability and histolopathological aspects of the growth cartilage suggested that ACH and HCH are allelic disorders. Recently, the gene for achondroplasia was mapped to chromosome 4p and no recombinants were found in 9 families with hypochondroplasia between D4S111 and the telomere (Zmax=1.70, {theta}=0). By using an additional polymorphic DNA marker which detects VNTR-like polymorphism at the D4S227 locus and a new microsatellite at locus D4S? (AFM163yc1), we observed recombinant events with markers of the chromosome 4p16.3 in 3/10 hypochondroplasia families, indicating that not all hypochondroplasia families are linked to chromosome 4p. A fibroblast growth factor receptor (FGFR3) expressed in chondrocytes during endochondral ossification which is located in the 2.5 Mb candidate region for achondroplasia was regarded as a good candidate gene. No major rearrangement of the FGFR3 gene was detected by Southern blot analysis using an FGFR3 cDNA probe. Further investigations will be required to conclude as to the possible involvement of this gene in ACH.

  3. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  4. Induction of CD4 suppressor T cells with anti-Leu-8 antibody

    International Nuclear Information System (INIS)

    Kanof, M.E.; Strober, W.; James, S.P.

    1987-01-01

    To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody

  5. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A magnetic nano-particle ink for tunable microwave applications

    KAUST Repository

    Ghaffar, Farhan A.

    2016-12-19

    Inkjet printing or printing for realization of inexpensive and large area electronics has unearthed as an attractive fabrication technique. Though at present, mostly the metallic inks are printed on regular microwave substrates. In this paper, a fully printed multilayer fabrication process is demonstrated where the substrate is also realized through printing. A novel Fe2O3 based magnetic ink is used as a substrate while an in-house silver organo complex (SOC) ink is developed for metallic layers. Complete magnetostatic and microwave characterization of the ink is presented. At the end, a tunable patch antenna is shown as an application using the magnetic ink as the substrate. The antenna shows a tuning range of 12.5 % for a magnetic field strength of 3 kOe.

  7. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells

    DEFF Research Database (Denmark)

    Frankel, Lisa; Christoffersen, Nanna R; Jacobsen, Anders

    2008-01-01

    growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21......MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell...... and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells....

  8. Tumor suppressor p53 biology, its role in radioresponse and the analysis of p53 mutation/expression among Filipino breast cancers

    International Nuclear Information System (INIS)

    Deocaris, Custer C.

    2004-01-01

    Ionizing radiation remains one of the most effective tools for the treatment of breast cancer. It combines properties of a potent DNA-damaging agent and high degree of spatial specificity to the target tissue. Nonetheless, there remain considerable differences in the outcome for treatment of tumors of differing histological type treated by radiotherapy. The identification of predictive indicators of radiosensitivity is crucial for selecting patients suited for preoperative radiotherapy as well as those unwarranted for postoperative treatments. To improve prognostication, numerous genes involved in the breast carcinogenesis have been studied and thus far over the last decade several multi-center researches converge on the role of tumor suppressor p53 in tumor biology. The p53 gene is located on the short arm of chromosome 17 and encodes a 53-kd nuclear protein, p-53, also referred to as 'the guardian of the genome', it orchestrates multiple cellular processes such as cell growth control, DNA repair and programmed cell death. During radiotherapy, genotoxic damage induces p53 overexpression in order to control the rate of proliferating damaged cells, repair damage or induce the apoptotic pathway. Its molecular inactivation in a tumor cell, typically by a point mutation, leads to chemo/radio resistance due to the inability of the molecule to trigger p53-dependent programmed cell death

  9. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the

  10. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Directory of Open Access Journals (Sweden)

    Greco Sonia A

    2010-09-01

    Full Text Available Abstract Background Thrombospondin-4 (THBS4 is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Methods Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. Results THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and

  11. Expression of programmed cell death protein 4 (PDCD4) and miR-21 in urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nicolas, E-mail: simplissimus@gmx.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Goeke, Friederike, E-mail: Friederike.goeke@ukb.uni-bonn.de [Department of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Splittstoesser, Vera, E-mail: Veri.sp@web.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Lankat-Buttgereit, Brigitte, E-mail: Lankatbu@staff.uni-marburg.de [Department of Internal Medicine, Philipps-University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Mueller, Stefan C., E-mail: Stefan.mueller@ukb.uni-bonn.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Ellinger, Joerg, E-mail: Joerg.ellinger@ukb.uni-bonn.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The tumor suppressor gene PDCD4 is down-regulated in many tumorous entities. Black-Right-Pointing-Pointer We investigate the impact of PDCD4 and its regulating factor miR-21 in urothelial carcinoma. Black-Right-Pointing-Pointer We confirm PDCD4 as a tumor suppressor gene and it could be a diagnostic marker for this tumor. -- Abstract: Background: We investigated the role of the programmed cell death 4 (PDCD4) tumor suppressor gene in specimens of transitional cell carcinoma and of healthy individuals. Methods: PDCD4 immunohistochemical expression was investigated in 294 cases in histologically proven transitional cell carcinoma in different tumorous stages (28 controls, 122 non-muscle invasive urothelial carcinoma, stages Tis-T1, 119 invasive transitional cell carcinoma stages T2-T4 and 25 metastases). MiR-21 expression, an important PDCD4 regulator, was assessed with real-time PCR analysis and showed inverse correlation to tissue PDCD4 expression. Results: Nuclear and cytoplasmatic PDCD4 immunostaining decreased significantly with histopathological progression of the tumor (p < 0001). Controls showed strong nuclear and cytoplasmatic immunohistochemical staining. MiR-21 up regulation in tissue corresponded to PDCD4 suppression. Conclusions: These data support a decisive role for PDCD4 down regulation in transitional cell carcinoma and confirm miR-21 as a negative regulator for PDCD4. Additionally, PDCD4 immunohistochemical staining turns out to be a possible diagnostic marker for transitional cell carcinoma.

  12. Expression of programmed cell death protein 4 (PDCD4) and miR-21 in urothelial carcinoma

    International Nuclear Information System (INIS)

    Fischer, Nicolas; Göke, Friederike; Splittstößer, Vera; Lankat-Buttgereit, Brigitte; Müller, Stefan C.; Ellinger, Jörg

    2012-01-01

    Highlights: ► The tumor suppressor gene PDCD4 is down-regulated in many tumorous entities. ► We investigate the impact of PDCD4 and its regulating factor miR-21 in urothelial carcinoma. ► We confirm PDCD4 as a tumor suppressor gene and it could be a diagnostic marker for this tumor. -- Abstract: Background: We investigated the role of the programmed cell death 4 (PDCD4) tumor suppressor gene in specimens of transitional cell carcinoma and of healthy individuals. Methods: PDCD4 immunohistochemical expression was investigated in 294 cases in histologically proven transitional cell carcinoma in different tumorous stages (28 controls, 122 non-muscle invasive urothelial carcinoma, stages Tis-T1, 119 invasive transitional cell carcinoma stages T2–T4 and 25 metastases). MiR-21 expression, an important PDCD4 regulator, was assessed with real-time PCR analysis and showed inverse correlation to tissue PDCD4 expression. Results: Nuclear and cytoplasmatic PDCD4 immunostaining decreased significantly with histopathological progression of the tumor (p < 0001). Controls showed strong nuclear and cytoplasmatic immunohistochemical staining. MiR-21 up regulation in tissue corresponded to PDCD4 suppression. Conclusions: These data support a decisive role for PDCD4 down regulation in transitional cell carcinoma and confirm miR-21 as a negative regulator for PDCD4. Additionally, PDCD4 immunohistochemical staining turns out to be a possible diagnostic marker for transitional cell carcinoma.

  13. A mechanism misregulating p27 in tumors discovered in a functional genomic screen.

    Directory of Open Access Journals (Sweden)

    Carrie M Garrett-Engele

    2007-12-01

    Full Text Available The cyclin-dependent kinase inhibitor p27(KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/- mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3 was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.

  14. Preliminary researches regarding edible jet printing inks

    International Nuclear Information System (INIS)

    Nemtanu, M. R.; Brasoveanu, M.

    2002-01-01

    The automatic reproduction of images with edible materials is a new method used lately to decorate cakes. An important component of this technology is the ink. The paper presents the results obtained by using different physical methods for analysis of some jet printing inks types. The analysed inks were the Canon inks and edible inks from Thailand. The main considered methods were the spectrocolourymetrical, rheological, electrochemical. Choosing as a chromatic standard the Canon inks and for the physicochemical properties the edible inks from Thailand, it was prepared a yellow edible printing ink which was characterized by same methods

  15. How to measure RNA expression in rare senescent cells expressing any specific protein such as p16Ink4a.

    Science.gov (United States)

    Jeyapalan, Jessie C; Sedivy, John M

    2013-02-01

    Here we describe a carefully optimized method for the preparation of high quality RNA by flow sorting of formaldehyde fixed senescent cells immunostained for any intracellular antigen. Replicative cellular senescence is a phenomenon of irreversible growth arrest triggered by the accumulation of a discrete number of cell divisions. The underlying cause of senescence due to replicative exhaustion is telomere shortening. We document here a spontaneous and apparently stochastic process that continuously generates senescent cells in cultures fully immortalized with telomerase. In the course of studying this phenomenon we developed a preparative fluorescence activated flow sorting method based on immunofluorescent staining of intracellular antigens that can also deliver RNA suitable for quantitative analysis of global gene expression. The protocols were developed using normal human diploid fibroblasts (HDF) and up to 5x107 cells could be conveniently processed in a single experiment. The methodology is based on formaldehyde crosslinking of cells, followed by permeabilization, antibody staining, flow sorting, reversal of the crosslinks, and recovery of the RNA. We explored key parameters such as crosslink reversal that affect the fragmentation of RNA. The recovered RNA is of high quality for downstream molecular applications based on short range sequence analysis, such qPCR, hybridization microarrays, and next generation sequencing. The RNA was analyzed by Affymetrix Gene Chip expression profiling and compared to RNA prepared by the direct lysis of cells. The correlation between the data sets was very high, indicating that the procedure does not introduce systematic changes in the mRNA transcriptome. The methods presented in this communication should be of interest to many investigators working in diverse model systems.

  16. Radiation curable inks

    International Nuclear Information System (INIS)

    Bolon, D.A.; Lucas, G.M.

    1976-01-01

    A radiation curable ink is provided which is convertible to a conductive coating when cured on the surface of a substrate. When used as a printing ink, improved results are achieved if a minor amount of a blend of paraffin waxes is employed to control solvent evaporation

  17. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging.

    Science.gov (United States)

    Frontini, Mattia; Proietti-De-Santis, Luca

    2012-02-01

    The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.

  18. Dopant ink composition and method of fabricating a solar cell there from

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2017-10-25

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  19. Dopant ink composition and method of fabricating a solar cell there from

    Science.gov (United States)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  20. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  1. Notch1/3 and p53/p21 are a potential therapeutic target for APS-induced apoptosis in non-small cell lung carcinoma cell lines.

    Science.gov (United States)

    Zhang, Jing-Xi; Han, Yi-Ping; Bai, Chong; Li, Qiang

    2015-01-01

    Previous studies have shown that Astragalus polysaccharide (APS) can be applied to anti-cancer. However, the mechanism by which APS mediate this effect is unclear. In the present study, APS-mediated NSCLC cell apoptosis was investigated through the regulation of the notch signaling pathway. The cell viability was detected by the CCK8 assay. The mRNA and protein expression of notch1/3 and tumor suppressors were analyzed by RT-PCR and western blotting, respectively. The mRNA and protein of notch1 and notch3 were significantly up-regulated in tumor tissues as compared to non-tumor adjacent tissues. Treatment of human NSCLC cells with APS induced cell death in a dose-and time-dependent manner by using CCK8 assay. The mRNA and protein expression of notch1 and notch3 were significantly lower in NSCLC cells with APS treatment than that in control group. Moreover, western blotting analysis showed that treatment of H460 cells with APS significantly increased the pro-apoptotic Bax and caspase 8 levels, decreased the anti-apoptotic Bcl-2 level. Furthermore, p53, p21 and p16 were obviously up-regulated by APS treatment in H460 cell. This study demonstrated that APS-treated could inhibit proliferation and promote cell apoptosis, at least partially, through suppressing the expression of notch1 and notch3 and up-regulating the expression of tumor suppressors in H460 NSCLC cell lines.

  2. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer.

    Science.gov (United States)

    Wang, Qi; Li, Juanjuan; Wu, Wei; Shen, Ruizhe; Jiang, He; Qian, Yuting; Tang, Yanping; Bai, Tingting; Wu, Sheng; Wei, Lumin; Zang, Yi; Zhang, Ji; Wang, Lifu

    2016-03-08

    The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.

  3. Alteration of keratinocyte differentiation and senescence by the tumor promoter dioxin

    International Nuclear Information System (INIS)

    Ray, Soma S.; Swanson, Hollie I.

    2003-01-01

    Exposure to the environmental contaminant dioxin, elicits a variety of responses, which includes tumor promotion, embryotoxicity/teratogenesis, and carcinogenesis in both animals and humans. Many of the effects of dioxin are mediated by the aryl hydrocarbon receptor (AHR), a ligand-activated bHLH (basic helix-loop-helix)/PAS transcription factor. We initiated this study to determine whether dioxin's tumor-promoting activities may lie in its ability to alter proliferation, differentiation, and/or senescence using normal human epidermal keratinocytes (HEKs). Here, we report that dioxin appears to accelerate differentiation as measured by flow cytometry and by increased expression of the differentiation markers involucrin and filaggrin. In addition, dioxin appears to increase proliferation as indicated by an increase in NADH/NADPH production and changes in cell cycle. Finally, dioxin decreases SA (senescence associated) β-galactosidase staining, an indicator of senescence, in the differentiating keratinocytes. These changes were accompanied by decreases in the expression levels of key cell cycle regulatory proteins p53, p16 INK4a , and p14 ARF . Our findings support the idea that dioxin may exert its tumor-promoting actions, in part, by downregulating the expression levels of key tumor suppressor proteins, which may impair the cell's ability to maintain its appropriate cellular status

  4. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  5. The expression patterns of p53 and p16 and an analysis of a possible role of HPV in primary adenocarcinoma of the urinary bladder.

    Directory of Open Access Journals (Sweden)

    Riley E Alexander

    Full Text Available BACKGROUND: Primary adenocarcinoma of the urinary bladder is rare. The molecular and cellular events leading to its pathogenesis are not well delineated. The goal of this study was to investigate p53 and p16 expression, as well as HPV status, in a relatively large series of primary bladder adenocarcinomas. MATERIALS AND METHODS: Thirty six cases of urinary bladder adenocarcinoma were chosen from participating institutions. The diagnosis and available clinical history were reviewed in each case. Immunostains for p53, p16 and HPV and high-risk and low-risk HPV-ISH were performed on all tumors. RESULTS: Patients had an average age of 61 years with a male predominance (1.5 ∶ 1 male ∶ female ratio. The average tumor size in cystectomy specimens was 4.3 cm. Of the cases managed by transurethral resection, 40% were pT2 at the time of diagnosis. In cystectomy specimens, 77% were either pT3 or pT4. Strong nuclear p16 expression was seen in 67% of all cases and p53 expression was present in 58% of the cases. Expression of both markers was seen in 33% of cases. Expression of p16 or p53 alone was present in 12 (33% and 9 (25% cases, respectively. Neither marker was expressed in only 3 (8% of the tumors. No significant correlation between clinical variables and any of the markers we studied was identified. No HPV infection was detected in any case. CONCLUSIONS: Expression of p53 and/or p16 is very common in urinary bladder adenocarcinoma. These findings implicate a high likelihood that alterations in these cell cycle proteins contribute to the pathogenesis of these tumors. Despite frequent immunohistochemical labeling for p16, no evidence of HPV infection was found.

  6. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  7. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level.

    Directory of Open Access Journals (Sweden)

    Evgeny Kuznetsov

    Full Text Available The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.

  8. Human Papillomavirus and Oropharyngeal Squamous Cell Carcinoma: A Case-Control Study regarding Tobacco and Alcohol Consumption

    Directory of Open Access Journals (Sweden)

    F. Farshadpour

    2011-01-01

    Full Text Available We aimed to determine the role of HPV in the pathogenesis and outcome of oropharyngeal squamous cell carcinoma (OSCC in lifelong nonsmoking and nondrinking patients. A case-case analysis was performed to compare the presence of HPV-DNA in tumor cells of 16 nonsmoking and nondrinking with 16 matched smoking and drinking patients (matching criteria: age at incidence, gender, tumor sublocation, tumor stage. HPV was detected using 2 PCR tests, FISH analysis, and p16INK4A immunostaining. Nonsmoking and nondrinking patients had more HPV-positive tumors than smoking and drinking patients (n=12; 75% versus n=2; 13%; P<0.001. All HPV-positive tumors showed p16INK4A overexpression, and 1 HPV-negative tumor had p16INK4A overexpression, (P<0.001. Overall survival and disease-specific survival were higher for HPV-positive compared to HPV-negative cases (P=0.027, P=0.039, resp.. In conclusion, HPV is strongly associated with OSCC of nonsmoking and nondrinking patients. Specific diagnostic and therapeutic actions should be considered for these patients to achieve a better prognosis.

  9. Analytical evidences of the use of iron-gall ink as a pigment on miniature paintings

    Science.gov (United States)

    Aceto, Maurizio; Calà, Elisa

    2017-12-01

    Iron-gall ink (IGI) has been used by scribes for writing since at least the 4th century CE. Another typical use of this ink was for drawing: many Old Masters created beautiful sketches in brown-black hues. Despite its widespread use to draw lines, it seems like IGI was hardly used for painting as well. In fact, the number of identification on manuscripts is very low at present. This could be partially due to a lack of reliable diagnostic information. In this work we tried to better define the possibility of identifying IGI as a pigment on illuminate manuscripts, evaluating the pros and cons of three different techniques: UV-visible diffuse reflectance spectrophotometry with optic fibres (FORS), Raman spectroscopy and XRF spectrometry. With concern to in situ non-invasive analysis, Raman spectroscopy has the best diagnostic power but FORS seems to provide the better compromise between selectivity and ease of application. Moreover, new analytical evidences was given on the particular use of IGI by ancient illuminators: a non-invasive and micro-invasive diagnostic survey on Western manuscripts datable in the range 6-16th centuries was carried out showing that, apart from its widespread use as an ink for writing and drawing, IGI was largely used as a pigment too. The large number of identification obtained allows us to hypothesise that this pigment was used all through medieval Europe up to at least the Renaissance, where its use is already documented in drawing. The occurrence of IGI in miniature paintings older than 6th century or more recent than 16th century cannot be excluded, as is its use beyond Europe; further measurements could instead widen the time range and the geographic area. Nevertheless, the present study allows shedding a new light on the use of this colourant all along the period of medieval and Renaissance miniature painting art.

  10. The effect of solar ultraviolet radiation (UVR on induction of skin cancers

    Directory of Open Access Journals (Sweden)

    Marta Pacholczyk

    2016-04-01

    Full Text Available Ultraviolet radiation is a physical mutagenic and cancerogenic factor. About 95% of ultraviolet A (UVA (320–400 nm and 5% of UVB (280–320 nm reach the Earth’s surface. Melanin is a natural skin protective factor against UV radiation. Skin cancers associated with long-term exposure to UV radiation are: basal cell carcinoma (BCC, squamous cell carcinoma (SCC and cutaneous malignant melanoma (CMM. The high risk of BCC development is related to acute and repeated exposure to UV causing sunburn. Molecular studies of BBC demonstrated disorders in sonic hedgehog (SHH cell signaling regulation pathway, associated with the suppressor protein patched homolog 1 gene (PTCH1 mutations. The risk of the BCC development is related to the polymorphism of melanokortin-1 receptor gene (MC1R. Tumor P53 gene mutations observed in BCC cells has been classified as secondary genetic changes. In SCC cells UV-induced mutations were mostly related to P53 gene. Increased expression of cyclooxigenase- 2 gene (COX-2 plays a significant role in the development of SCC. Other pathogenetic factors include intensification of the synthesis of pro-inflammatory cytokines (tumor necrosis factor α (TNF-α, interleukin-1 α (IL-1α, IL-1β and IL-6. Currently, the role of UVB has been recognized in the pathogenesis of CMM. In CMM cells the following gene mutations were noted: cyclindependent kinase inhibitor 2A INK4A (p16INK4A, cyclin-dependent kinase 4 (CDK4, Ras, phosphatase and tensin homolog deleted on chromosome 10 (PTEN and proto-oncogene B-Raf (BRAF. The BRAF gene mutations were observed in ~50% of CMM cases. Mutations of P53 gene are not characteristic of CMM cells. Med Pr 2016;67(2:255–266

  11. Segregation of a 4p16.3 duplication with a characteristic appearance, macrocephaly, speech delay and mild intellectual disability in a 3-generation family

    DEFF Research Database (Denmark)

    Schönewolf-Greulich, Bitten; Ravn, Kirstine; Hamborg-Petersen, Bente

    2013-01-01

    delay/intellectual disability. In contrast small duplications of 4p are rare but with the advent of microarray techniques a few cases have been reported in recent years. Here we describe a 3 Mb duplication at 4p16.3 segregating with a characteristic phenotype, macrocephaly, speech delay and mild...

  12. Correlation of serum cartilage oligomeric matrix protein (COMP) and interleukin-16 (IL-16) levels with disease severity in primary knee osteoarthritis: A pilot study in a Malaysian population.

    Science.gov (United States)

    Das Gupta, Esha; Ng, Wei Ren; Wong, Shew Fung; Bhurhanudeen, Abdul Kareem; Yeap, Swan Sim

    2017-01-01

    The aim of this study was to investigate the correlations between serum cartilage oligomeric matrix protein (COMP), interleukin-16 (IL-16) and different grades of knee osteoarthritis (KOA) in Malaysian subjects. Ninety subjects were recruited comprising 30 with Kellgren-Lawrence (K-L) grade 2 KOA, 27 with K-L grade 3 KOA, 7 with grade 4 KOA, and 30 healthy controls. All subjects completed the Western Ontario and McMaster Universities Arthritis Index (WOMAC) questionnaire. Serum COMP and IL-16 levels were measured using ELISA and their values log transformed to ensure a normal distribution. There was no significant differences in levels of log serum COMP and IL-16 between healthy controls and KOA patients. There were no significant differences in the log serum COMP and IL-16 levels within the different K-L grades in the KOA patients. In KOA patients, log serum IL-16 levels significantly correlated with the WOMAC score (p = 0.001) and its subscales, pain (p = 0.005), stiffness (p = 0.019) and physical function (p<0.0001). Serum IL-16 levels were significantly higher in Malaysian Indians compared to Malays and Chinese (p = 0.024). In this multi-ethnic Malaysian population, there was no difference in serum COMP and IL-16 levels between healthy controls and patients with KOA, nor was there any difference in serum COMP or IL-16 levels across the various K-L grades of KOA. However, there were significant inter-racial differences in serum IL-16 levels.

  13. Wolf-Hirschhorn (4p-) syndrome: prenatal diagnosis, molecular cytogenetic characterization and association with a 1.2-Mb microduplication at 8p22-p21.3 and a 1.1-Mb microduplication at 10p15.3 in a fetus with an apparently pure 4p deletion.

    Science.gov (United States)

    Chen, Chih-Ping; Su, Yi-Ning; Chen, Yi-Yung; Su, Jun-Wei; Chern, Schu-Rern; Chen, Yu-Ting; Chen, Wen-Lin; Chen, Li-Feng; Wang, Wayseen

    2011-12-01

    To present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) associated with microduplications at 8p and 10p in a fetus with an apparently pure 4p deletion. A 35-year-old gravida 2, para 1 woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Her husband was 38 years of age. There was no family history of congenital malformations. Amniocentesis revealed a karyotype of 46,XY,del(4p16.1). The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 6.5-Mb deletion at 4p16.3-p16.1, a 1.2-Mb microduplication at 8p22-p21.3, and a 1.1-Mb microduplication at 10p15.3, or arr cgh 4p16.3p16.1 (0-6,531,998 bp)×1, 8p22p21.3 (18,705,388-19,940,445 bp)×3, 10p15.3 (0-1,105,065 bp)×3. Polymorphic DNA marker analysis confirmed a paternal origin of 4p deletion. Prenatal ultrasound revealed facial dysmorphism and hypospadias. The aCGH analysis of the parents revealed no genomic imbalance. Fluorescence in situ hybridization study showed an unbalanced reciprocal translocation between chromosomes 4 and 10 at bands 4p16.1 and 10p15.3. The cytogenetic result, thus, was 46,XY,der(4)t(4;10)(p16.1;p15.3),dup(8)(p21.3p22). The parents elected to terminate the pregnancy, and a 470-g malformed fetus was delivered. The present case provides evidence that an apparently pure 4p deletion can be associated with subtle chromosome imbalances in other chromosomes. Copyright © 2011. Published by Elsevier B.V.

  14. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome

    International Nuclear Information System (INIS)

    Nunez, María I; Mills, Gordon B; Aldaz, C Marcelo; Rosen, Daniel G; Ludes-Meyers, John H; Abba, Martín C; Kil, Hyunsuk; Page, Robert; Klein-Szanto, Andres JP; Godwin, Andrew K; Liu, Jinsong

    2005-01-01

    The putative tumor suppressor WWOX gene spans the common chromosomal fragile site 16D (FRA16D) at chromosome area 16q23.3-24.1. This region is a frequent target for loss of heterozygosity and chromosomal rearrangement in ovarian, breast, hepatocellular, prostate carcinomas and other neoplasias. The goal of these studies was to evaluate WWOX protein expression levels in ovarian carcinomas to determine if they correlated with clinico-pathological parameters, thus providing additional support for WWOX functioning as a tumor suppressor. We performed WWOX protein expression analyses by means of immunobloting and immunohistochemistry on normal ovaries and specific human ovarian carcinoma Tissue Microarrays (n = 444). Univariate analysis of clinical-pathological parameters based on WWOX staining was determined by χ 2 test with Yates' correction. The basic significance level was fixed at p < 0.05. Immunoblotting analysis from normal ovarian samples demonstrated consistently strong WWOX expression while 37% ovarian carcinomas showed reduced or undetectable WWOX protein expression levels. The immunohistochemistry of normal human ovarian tissue sections confirmed strong WWOX expression in ovarian surface epithelial cells and in epithelial inclusion cysts within the cortex. Out of 444 ovarian carcinoma samples analyzed 30% of tumors showed lack of or barely detectable WWOX expression. The remaining ovarian carcinomas (70%) stained moderately to strongly positive for this protein. The two histotypes showing significant loss of WWOX expression were of the Mucinous (70%) and Clear Cell (42%) types. Reduced WWOX expression demonstrated a significant association with clinical Stage IV (FIGO) (p = 0.007), negative Progesterone Receptor (PR) status (p = 0.008) and shorter overall survival (p = 0.03). These data indicate that WWOX protein expression is highly variable among ovarian carcinoma histotypes. It was also observed that subsets of ovarian tumors demonstrated loss of

  15. Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity.

    Science.gov (United States)

    Ip, Jacque P K; Nagakura, Ikue; Petravicz, Jeremy; Li, Keji; Wiemer, Erik A C; Sur, Mriganka

    2018-04-18

    Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans five genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP , which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP +/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP +/- mice may serve as a model of MVP function in 16p11.2 microdeletion. Here we show that MVP regulates the homeostatic component of ocular dominance (OD) plasticity in primary visual cortex. MVP +/- mice of both sexes show impairment in strengthening of open-eye responses after several days of monocular deprivation (MD), whereas closed-eye responses are weakened as normal, resulting in reduced overall OD plasticity. The frequency of miniature EPSCs (mEPSCs) in pyramidal neurons is decreased in MVP +/- mice after extended MD, suggesting a reduction of functional synapses. Correspondingly, upregulation of surface GluA1 AMPA receptors is reduced in MVP +/- mice after extended MD, and is accompanied by altered expression of STAT1 and phosphorylated ERK, which have been previously implicated in OD plasticity. Normalization of STAT1 levels by introducing STAT1 shRNA rescues surface GluA1 and open-eye responses, implicating STAT1 as a downstream effector of MVP. These findings demonstrate a specific role for MVP as a key molecule influencing the homeostatic component of activity-dependent synaptic plasticity, and potentially the corresponding phenotypes of 16p11.2 microdeletion syndrome. SIGNIFICANCE STATEMENT Major vault protein (MVP), a candidate gene in 16p11.2 microdeletion syndrome, has been implicated in the regulation of several cellular processes including transport mechanisms and scaffold signaling. However, its role in brain function and

  16. Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block

    DEFF Research Database (Denmark)

    Hansen, Klaus; Farkas, T; Lukas, J

    2001-01-01

    The retinoblastoma (pRb)-related p130 pocket protein is a regulator of cell growth and differentiation, and a candidate tumour suppressor. Both pRb and p130 operate through interactions with cellular proteins, including the E2F transcription factors. While such interactions are controlled...

  17. Facile Synthesis of Highly Water-Soluble Lanthanide-Doped t-LaVO4 NPs for Antifake Ink and Latent Fingermark Detection

    KAUST Repository

    Chen, Cailing

    2017-11-08

    In the information age, it is important to protect the security and integrity of the information. As a result, the fluorescent ink as an antifake technology and the fingermark as an information carrier have aroused great interest. In this work, highly water-soluble lanthanide (Ln3+ )-doped tetragonal phase (t-) LaVO4 nanoparticles (NPs) are successfully obtained via a simple, fast, and green microwave-assisted hydrothermal method. The average size of t-LaVO4 NPs is about 43 nm. The aqueous solutions of Ln3+ -doped t-LaVO4 exhibit excellent fluorescence properties under ultraviolet light (UV) excitation (t-LaVO4 :10%Eu is bright red and t-LaVO4 :0.5%Dy is close to white). Some superb antifake fluorescent patterns are printed using Ln3+ -doped t-LaVO4 aqueous solution as ink, which indicates the as-prepared Ln3+ -doped t-LaVO4 NPs as fluorescent ink can meet the various antifake requirements. Notably, the designed convenient antifake fluorescent codes with improved security could be directly scanned and decoded by a smart phone. What\\'s more, the as-prepared NPs can be used for the development of latent fingermark on various substrates and the second-level detail information can be clearly obtained from the magnification of a fingermark. These results indicate that the as-prepared Ln3+ -doped t-LaVO4 fluorescent NPs have great potential in security application.

  18. Facile Synthesis of Highly Water-Soluble Lanthanide-Doped t-LaVO4 NPs for Antifake Ink and Latent Fingermark Detection

    KAUST Repository

    Chen, Cailing; Yu, Ying; Li, Chunguang; Liu, Dan; Huang, He; Liang, Chen; Lou, Yue; Han, Yu; Shi, Zhan; Feng, Shouhua

    2017-01-01

    In the information age, it is important to protect the security and integrity of the information. As a result, the fluorescent ink as an antifake technology and the fingermark as an information carrier have aroused great interest. In this work, highly water-soluble lanthanide (Ln3+ )-doped tetragonal phase (t-) LaVO4 nanoparticles (NPs) are successfully obtained via a simple, fast, and green microwave-assisted hydrothermal method. The average size of t-LaVO4 NPs is about 43 nm. The aqueous solutions of Ln3+ -doped t-LaVO4 exhibit excellent fluorescence properties under ultraviolet light (UV) excitation (t-LaVO4 :10%Eu is bright red and t-LaVO4 :0.5%Dy is close to white). Some superb antifake fluorescent patterns are printed using Ln3+ -doped t-LaVO4 aqueous solution as ink, which indicates the as-prepared Ln3+ -doped t-LaVO4 NPs as fluorescent ink can meet the various antifake requirements. Notably, the designed convenient antifake fluorescent codes with improved security could be directly scanned and decoded by a smart phone. What's more, the as-prepared NPs can be used for the development of latent fingermark on various substrates and the second-level detail information can be clearly obtained from the magnification of a fingermark. These results indicate that the as-prepared Ln3+ -doped t-LaVO4 fluorescent NPs have great potential in security application.

  19. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2017-02-01

    Full Text Available Summary: Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1, suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs and ribosomal RNAs as well as the cyclin-dependent kinase (CDK inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling. : Tanaka et al. show that SETD8/PR-Set7 methyltransferase represses senescence-associated genes including ribosomal proteins, ribosomal RNAs, and p16INK4A by catalyzing mono-methylation of histone H4 at lysine 20. Depletion of SETD8 derepresses these genes, resulting in nucleolar and mitochondrial coactivation characteristic of senescence-associated metabolic remodeling. Keywords: SETD8/PR-Set7, H4K20 methylation, senescence-associated metabolic remodeling, nucleolus, mitochondria

  20. Effect of Melanin Free Ink Extracted From Squid (Loligo sp.) on Proximate and Sensory Characteristics of Soft-Bone Milkfish (Chanos chanos) During Storage

    Science.gov (United States)

    Winarni Agustini, Tri; Hadiyanto; Wijayanti, Ima; Amalia, Ulfah; Benjakul, Soottawat

    2018-02-01

    Antioxidant could be extracted and isolated from squid inks. Squid ink in the form of melanin free ink (MFI) could be act as an electron donor which can stabilize free radicals in lipid oxidation. This study was carried out to assess the antioxidant activity of squid inks converted into MFI in different dilution and to optimize the extraction conditions for the application of MFI as an antioxidative agent on fish product. Three different types of MFI extracts i.e : pure squid ink, squid ink with 5 times dilution and squid ink with 10 times dilutions by using cooled ionized water (4°C). The ink was then centrifuged at 18.000 x g for 30 minutes at cooled centrifuge (4°C) followed by DPPH analysis. The results showed that the IC50 of MFI extracts were 2.84 ppm; 1.11 ppm and 0.34 ppm, respectively (p squid ink with 10 times dilution in extraction of MFI had the highest value in free radical inhibitory. Although the IC50 of three different dilutions are equally low, and are considered as very strong antioxidative agent, however, it showed that the MFI extracted from squid ink had the ability to prevent free radical

  1. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    International Nuclear Information System (INIS)

    Zhang, Jing; Shen, Chengwu; Wang, Lin; Ma, Quanping; Xia, Pingtian; Qi, Mei; Yang, Muyi; Han, Bo

    2014-01-01

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4

  2. Ink dating part II: Interpretation of results in a legal perspective

    OpenAIRE

    Koenig, Agnès; Weyermann, Céline

    2018-01-01

    The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the tre...

  3. Functional Analysis of In-frame Indel ARID1A Mutations Reveals New Regulatory Mechanisms of Its Tumor Suppressor Functions

    Directory of Open Access Journals (Sweden)

    Bin Guan

    2012-10-01

    Full Text Available AT-rich interactive domain 1A (ARID1A has emerged as a new tumor suppressor in which frequent somatic mutations have been identified in several types of human cancers. Although most ARID1A somatic mutations are frame-shift or nonsense mutations that contribute to mRNA decay and loss of protein expression, 5% of ARID1A mutations are in-frame insertions or deletions (indels that involve only a small stretch of peptides. Naturally occurring in-frame indel mutations provide unique and useful models to explore the biology and regulatory role of ARID1A. In this study, we analyzed indel mutations identified in gynecological cancers to determine how these mutations affect the tumor suppressor function of ARID1A. Our results demonstrate that all in-frame mutants analyzed lost their ability to inhibit cellular proliferation or activate transcription of CDKN1A, which encodes p21, a downstream effector of ARID1A. We also showed that ARID1A is a nucleocytoplasmic protein whose stability depends on its subcellular localization. Nuclear ARID1A is less stable than cytoplasmic ARID1A because ARID1A is rapidly degraded by the ubiquitin-proteasome system in the nucleus. In-frame deletions affecting the consensus nuclear export signal reduce steady-state protein levels of ARID1A. This defect in nuclear exportation leads to nuclear retention and subsequent degradation. Our findings delineate a mechanism underlying the regulation of ARID1A subcellular distribution and protein stability and suggest that targeting the nuclear ubiquitin-proteasome system can increase the amount of the ARID1A protein in the nucleus and restore its tumor suppressor functions.

  4. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens

    Directory of Open Access Journals (Sweden)

    Luke A. Wiley

    2011-07-01

    We previously found that lenses lacking the Acvr1 gene, which encodes a bone morphogenetic protein (BMP receptor, had abnormal proliferation and cell death in epithelial and cortical fiber cells. We tested whether the tumor suppressor protein p53 (encoded by Trp53 affected this phenotype. Acvr1 conditional knockout (Acvr1CKO mouse fiber cells had increased numbers of nuclei that stained for p53 phosphorylated on serine 15, an indicator of p53 stabilization and activation. Deletion of Trp53 rescued the Acvr1CKO cell death phenotype in embryos and reduced Acvr1-dependent apoptosis in postnatal lenses. However, deletion of Trp53 alone increased the number of fiber cells that failed to withdraw from the cell cycle. Trp53CKO and Acvr1;Trp53DCKO (double conditional knockout, but not Acvr1CKO, lenses developed abnormal collections of cells at the posterior of the lens that resembled posterior subcapsular cataracts. Cells from human posterior subcapsular cataracts had morphological and molecular characteristics similar to the cells at the posterior of mouse lenses lacking Trp53. In Trp53CKO lenses, cells in the posterior plaques did not proliferate but, in Acvr1;Trp53DCKO lenses, many cells in the posterior plaques continued to proliferate, eventually forming vascularized tumor-like masses at the posterior of the lens. We conclude that p53 protects the lens against posterior subcapsular cataract formation by suppressing the proliferation of fiber cells and promoting the death of any fiber cells that enter the cell cycle. Acvr1 acts as a tumor suppressor in the lens. Enhancing p53 function in the lens could contribute to the prevention of steroid- and radiation-induced posterior subcapsular cataracts.

  5. Recurrent pregnancy failure is associated with a polymorphism in the p53 tumour suppressor gene.

    Science.gov (United States)

    Pietrowski, Detlef; Bettendorf, Hertha; Riener, Eva-Katrin; Keck, Christoph; Hefler, Lukas A; Huber, Johannes C; Tempfer, Clemens

    2005-04-01

    The p53 tumour suppressor gene is a well-known factor regulating apoptosis in a wide variety of cells and tissues. Alterations in the p53 gene are among the most common genetic changes in human cancers. In addition, recent data provide evidence that p53 plays a critical role in mediating pregnancy by regulating steroid hormone activation. In idiopathic recurrent miscarriages (IRM), causes and associations are much debated as the exact pathophysiological mechanisms are unknown. In this study, we assess whether an established polymorphism in the p53 gene is associated with the occurrence of IRM. Genotyping was performed by PCR-based amplification of the p53 Arg and Pro variants at codon 72 in 175 cases of IRM and 143 controls. We observed a statistically significant association between carriage of the Pro allele and the occurrence of IRM (P = 0.03, odds ratio 1.49, confidence interval 1.04-2.14). Distribution of genotypes was in Hardy-Weinberg equilibrium. Our results indicate an over-representation of the Pro allele of the p53 gene in women with IRM, giving support to the theory that p53 has a potential role during pregnancy.

  6. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.

    Science.gov (United States)

    Kell, Arnold J; Paquet, Chantal; Mozenson, Olga; Djavani-Tabrizi, Iden; Deore, Bhavana; Liu, Xiangyang; Lopinski, Gregory P; James, Robert; Hettak, Khelifa; Shaker, Jafar; Momciu, Adrian; Ferrigno, Julie; Ferrand, Olivier; Hu, Jian Xiong; Lafrenière, Sylvie; Malenfant, Patrick R L

    2017-05-24

    A silver molecular ink platform formulated for screen, inkjet, and aerosol jet printing is presented. A simple formulation comprising silver neodecanoate, ethyl cellulose, and solvent provides improved performance versus that of established inks, yet with improved economics. Thin, screen-printed traces with exceptional electrical (molecular ink platform enables an aerosol jet-compatible ink that yields conductive features on glass with 2× bulk resistivity and strong adhesion to various plastic substrates. An inkjet formulation is also used to print top source/drain contacts and demonstrate printed high-mobility thin film transistors (TFTs) based on semiconducting single-walled carbon nanotubes. TFTs with mobility values of ∼25 cm 2 V -1 s -1 and current on/off ratios >10 4 were obtained, performance similar to that of evaporated metal contacts in analogous devices.

  7. Mitofusin-2 is a novel direct target of p53

    International Nuclear Information System (INIS)

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng; Fu, Guanghou; Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang; Zheng, Shusen

    2010-01-01

    Research highlights: → Mfn2 is a novel target gene of p53. → Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. → Mfn2 promoter activity can be elevated by the p53 protein. → P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  8. UV curable palm oil based ink

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2002-01-01

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil urethane acrylate (POBUA) as a prepolymer in the UV ink system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  9. UV curable palm oil based inks

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Hilmi Mahmood

    2002-01-01

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  10. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  11. Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 4: Sandwich panel decorative ink development

    Science.gov (United States)

    Jayarajan, A.; Johnson, G. A.; Korver, G. L.; Anderson, R. A.

    1983-01-01

    Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity.

  12. Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations

    Science.gov (United States)

    Shen, Y. K.; Liu, Z.; Wang, X. L.; Ma, W. K.; Chen, Z. H.; Chen, T. P.; Zhang, H. Y.

    2017-12-01

    By dissolving gallium chloride (GaCl3), indium chloride (InCl3), zinc acetate dihydrate [Zn(OAc)2·2H2O] and monoethanolamine (MEA) into a solvent of 2-methoxyethanol, the IGZO ink was synthesized. Five types of IGZO ink were prepared with different molar ratios of In:Ga:Zn, which can be used for ink-jet printing process. The thermal behaviors of IGZO ink with different formulas were investigated and the ideal annealing temperature for film formation was found to be ∼450 °C. Based on the prepared ink, amorphous IGZO thin films were directly printed on the glass substrate with a FujiFilm Dimatix ink-jet printer, followed by a thermal annealing at 450 °C for 1 h. The surface morphology, crystal structure, optical transmittance, electron mobility and carrier concentration were characterized and investigated. The ink-jet printed amorphous IGZO thin films fabricated in this work can be used as switching medium in flexible resistive random access memory devices.

  13. HAT-P-16b: A Bayesian Atmospheric Retrieval

    Science.gov (United States)

    McIntyre, Kathleen; Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Challener, Ryan; Bakos, Gaspar

    2017-10-01

    HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). We observed two secondary eclipses of HAT-P-16b using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the planet. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  14. LOH at 16p13 is a novel chromosomal alteration detected in benign and malignant microdissected papillary neoplasms of the breast.

    Science.gov (United States)

    Lininger, R A; Park, W S; Man, Y G; Pham, T; MacGrogan, G; Zhuang, Z; Tavassoli, F A

    1998-10-01

    Papillary carcinoma of the breast is a variant of predominantly intraductal carcinoma characterized by a papillary growth pattern with fibrovascular support. Loss of heterozygosity (LOH) was evaluated at multiple chromosomal loci (including loci reported to show frequent genetic alterations in breast cancer) to determine the frequency of genetic mutations in these tumors and their precursors. Thirty-three papillary lesions of the breast (6 papillary carcinomas, 12 carcinomas arising in a papilloma, and 15 intraductal papillomas with florid epithelial hyperplasia) were retrieved from the files of the Armed Forces Institute of Pathology (AFIP). Tumor cells and normal tissue were microdissected in each case and screened for LOH at INT-2 and p53 as well as several loci on chromosome 16p13 in the TSC2/PKD1 gene region (D16S423, D16S663, D16S665). LOH on chromosome 16p13 was present in 10 of 16 (63%) informative cases of either papillary carcinoma or carcinoma arising in a papilloma as well as in 6 of 10 (60%) informative cases of intraductal papilloma with florid epithelial hyperplasia (IDH). One case showed simultaneous LOH in both the florid IDH and carcinoma components of a papilloma. LOH was not observed at either INT-2 or p53 in any of the papillary carcinomas or papillomas with florid IDH. In conclusion, a high frequency of LOH at chromosome 16p13 (the TSC2/PKD1 gene region) is in both papillary carcinomas of the breast as well as in papillomas with florid IDH, including a case with LOH present simultaneously in both components. These findings suggest that chromosome 16p contains a tumor suppressor gene that frequently is mutated early in papillary neoplasia.

  15. Proinflammatory cytokines and bile acids upregulate ΔNp73 protein, an inhibitor of p53 and p73 tumor suppressors.

    Directory of Open Access Journals (Sweden)

    Elena Zaika

    Full Text Available Gastroesophageal reflux disease (GERD is the main etiological factor behind the recent rapid increase in the incidence of esophageal adenocarcinoma. During reflux, esophageal cells are exposed to bile at low pH resulting in cellular damage and inflammation, which are known to facilitate cancer development. In this study, we investigated the regulation of p73 isoform, ΔNp73α, in the reflux condition. Previous studies have reported that ΔNp73 exhibits anti-apoptotic and oncogenic properties through inhibition of p53 and p73 proteins. We found that direct exposure of esophageal cells to bile acids in an acidic environment alters the phosphorylation of ΔNp73, its subcellular localization and increases ΔNp73 protein levels. Upregulation of ΔNp73 was also observed in esophageal tissues collected from patients with GERD and Barrett's metaplasia, a precancerous lesion in the esophagus associated with gastric reflux. c-Abl, p38 MAPK, and IKK protein kinases were identified to interact in the regulation of ΔNp73. Their inhibition with chemotherapeutic agents and siRNA suppresses ΔNp73. We also found that pro-inflammatory cytokines, IL-1β and TNFα, are potent inducers of ΔNp73α, which further enhance the bile acids/acid effect. Combined, our studies provide evidence that gastroesophageal reflux alters the regulation of oncogenic ΔNp73 isoform that may facilitate tumorigenic transformation of esophageal metaplastic epithelium.

  16. Human Papillomavirus 16 Infection and TP53 Mutation: Two Distinct Pathogeneses for Oropharyngeal Squamous Cell Carcinoma in an Eastern Chinese Population

    OpenAIRE

    Wang, Zhen; Xia, Rong-Hui; Ye, Dong-Xia; Li, Jiang

    2016-01-01

    Objectives To investigate the clinicopathological characteristics, human papillomavirus (HPV) infection, p53 expression, and TP53 mutations in oropharyngeal squamous cell carcinoma (OPSCC) and determine their utility as prognostic predictors in a primarily eastern Chinese population. Methods The HPV infection status was tested via p16INK4A immunohistochemistry and validated using PCR, reverse blot hybridization and in situ hybridization (ISH) in 188 OPSCC samples. p53 expression levels and TP...

  17. Cell Cycle Inhibitors and Outcome after Radiotherapy in Bladder Cancer Patients

    International Nuclear Information System (INIS)

    Roetterud, Ranveig; Pettersen, Erik O.; Berner, Aasmund; Holm, Ruth; Olsen, Dag Rune; Fossaa, Sophie D.

    2002-01-01

    The aim of this study was to correlate the expression of cell cycle inhibitors with outcome of patients with muscle-invasive bladder cancer treated with preoperative radiotherapy (46 Gy/4-5 weeks or 20 Gy/1 week) and cystectomy. Patients with pT3b (n=42) or pT0 (n=17) were included in the study. Expression of p16INK4a and p27KIP1 was assessed immunohistochemically in pre-radiotherapy biopsies and cystectomy specimens. Previously reported results of p21CIP1 expression were also included. No difference in pretreatment protein expression was found between patients with pT0 and pT3b. Expression of p21CIP1 and p27KIP1 was lower in cystectomy specimens than in pretreatment biopsies. None of the proteins showed significant impact on survival when analysed separately. However, patients with tumours showing > 50% expression of p16INK4a, p21CIP1, or p27KIP1 displayed poorer cancer-specific survival rates compared with the remaining patients (p=0.025). This effect was more pronounced in patients receiving 46 Gy than in those receiving 20 Gy. In conclusion, low expression of cell cycle inhibitors is related to favourable survival after precystectomy radiotherapy

  18. Prognostic value of tumor suppressors in osteosarcoma before and after neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Robl, Bernhard; Pauli, Chantal; Botter, Sander Martijn; Bode-Lesniewska, Beata; Fuchs, Bruno

    2015-01-01

    Primary bone cancers are among the deadliest cancer types in adolescents, with osteosarcomas being the most prevalent form. Osteosarcomas are commonly treated with multi-drug neoadjuvant chemotherapy and therapy success as well as patient survival is affected by the presence of tumor suppressors. In order to assess the prognostic value of tumor-suppressive biomarkers, primary osteosarcoma tissues were analyzed prior to and after neoadjuvant chemotherapy. We constructed a tissue microarray from high grade osteosarcoma samples, consisting of 48 chemotherapy naïve biopsies (BXs) and 47 tumor resections (RXs) after neoadjuvant chemotherapy. We performed immunohistochemical stainings of P53, P16, maspin, PTEN, BMI1 and Ki67, characterized the subcellular localization and related staining outcome with chemotherapy response and overall survival. Binary logistic regression analysis was used to analyze chemotherapy response and Kaplan-Meier-analysis as well as the Cox proportional hazards model was applied for analysis of patient survival. No significant associations between biomarker expression in BXs and patient survival or chemotherapy response were detected. In univariate analysis, positive immunohistochemistry of P53 (P = 0.008) and P16 (P16; P = 0.033) in RXs was significantly associated with poor survival prognosis. In addition, presence of P16 in RXs was associated with poor survival in multivariate regression analysis (P = 0.003; HR = 0.067) while absence of P16 was associated with good chemotherapy response (P = 0.004; OR = 74.076). Presence of PTEN on tumor RXs was significantly associated with an improved survival prognosis (P = 0.022). Positive immunohistochemistry (IHC) of P16 and P53 in RXs was indicative for poor overall patient survival whereas positive IHC of PTEN was prognostic for good overall patient survival. In addition, we found that P16 might be a marker of osteosarcoma chemotherapy resistance. Therefore, our study supports the use of tumor RXs to

  19. Genomic instability--an evolving hallmark of cancer.

    Science.gov (United States)

    Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D

    2010-03-01

    Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.

  20. Cancer Chemoprevention by Resveratrol: The p53 Tumor Suppressor Protein as a Promising Molecular Target

    Directory of Open Access Journals (Sweden)

    Danielly C. Ferraz da Costa

    2017-06-01

    Full Text Available Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein, and therapeutic perspectives with an emphasis on clinical trial results to date.

  1. Durability of ink jet prints

    International Nuclear Information System (INIS)

    Dobric, E; Mirkovic, I Bolanca; Bolanca, Z

    2010-01-01

    The aim of this paper is the result presentation of some optical properties research for ink jet prints after: exposing the prints to the mixed daylight and artificial light, exposing of prints to the sun-light through the glass window, and exposing of prints to outdoor conditions during the summer months. The prints obtained by piezoelectric and thermal ink jet technologies were used in the researches. The dye-based inks and the pigmented inks based on water and the low solvent inks were used. The results of these researches, except the scientific contribution in the domain of understanding and explaining the environmental conditions on the gamut size, i.e. the range of color tonality, colorimetric stability and print quality, can be used by the ink and paper manufacturers in new formulations, offer data for the printer producers for further production and evaluation of the position of their products.

  2. The retinoblastoma protein as a transcriptional repressor

    DEFF Research Database (Denmark)

    Helin, K; Ed, H

    1993-01-01

    The retinoblastoma protein (pRB) is one of the best-studied tumour suppressor gene products. Its loss during the genesis of many human tumours, its inactivation by several DNA tumour virus oncoproteins, and its ability to inhibit cell growth when introduced into dividing cells all suggest that p...

  3. Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by fasting and refeeding in rats.

    Science.gov (United States)

    Zargar, Sana; Moreira, Tracy S; Samimi-Seisan, Helena; Jeganathan, Senthure; Kakade, Dhanshri; Islam, Nushaba; Campbell, Jonathan; Adegoke, Olasunkanmi A J

    2011-06-01

    Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.

  4. Ballpoint pen inks: characterization by positive and negative ion-electrospray ionization mass spectrometry for the forensic examination of writing inks.

    Science.gov (United States)

    Ng, Lay-Keow; Lafontaine, Pierre; Brazeau, Luc

    2002-11-01

    A method based on profiling of dye components by electrospray ionization mass spectrometry (ESI/MS) is described for the characterization of ballpoint pen inks. The method involves benzyl alcohol (30 microL) extraction of ink from paper. The extracts of ink lines 1 and 5 mm in length are used for direct ESI/MS analysis in positive and negative modes, respectively. The instrumental analysis takes 3 min. Basic and acid dyes in the inks are detected in the positive and negative modes, respectively, with each dye yielding one or two characteristic ion peaks. The mass spectrum, which is mainly a compositional signature of the dyes in the ink, was not affected by the type of paper from which the ink was extracted, or by natural ageing of the ink on document in the absence of light. However, exposure to fluorescent illumination caused dealkylation of polyalkylated basic dyes and resulted in changes in the homologous distribution of the dyes. In this study, a total of 44 blue inks, 23 black inks, and 10 red inks have been analyzed, and the mass spectra were used to establish a searchable library. ESI/MS analysis provides a simple and fast way to compare ink specimens and in combination with on-line library search permits rapid screening of inks for forensic document investigations.

  5. De novo case of a partial trisomy 4p and a partial monosomy 8p.

    Science.gov (United States)

    Skrlec, Ivana; Wagner, Jasenka; Pubeljić, Silvija; Heffer, Marija; Stipoljev, Feodora

    2014-03-01

    The extent of clinical expression in cases of segmental aneuploidy often varies depending on the size of the chromosomal region involved. Here we present clinical and cytogenetic findings in a 5-month old boy with a duplication of a chromosomal segment 4p16.1-->4pter and a deletion of a chromosomal segment 8p23.1-->8pter. His karyotype was determined by applying classical GTG banding and FISH method (WHCR region, centromere 4, centromere 8, telomere 8p) as 46,XY,der(8)t(4;8)(p16.1;p23.1).ish der(8)t(4;8)(D8S504-,WHCR+,D8Z2+)dn. Parents are not related and have normal karyotypes, indicating de novo origin. We have compared similarity of the clinical features in our proband to other patients carrying only a duplication of the distal part of 4p or a deletion of distal part of 8p or similar combination described in the literature.

  6. Tintas Ink-Jet para Decoracion 3D

    Directory of Open Access Journals (Sweden)

    Spain S.A., Ferro

    2011-04-01

    Full Text Available A new set of different ink-jet inks to be apply as a 3D object and extrafine layers to protect the decoration made by ink-jet technology. These new inks are obtained through the development of new frits based on monophasic crystal vitro structures that allows ceramic effects obtained via digital decoration. The new inks improve the ability of application by ink-jet heads in order to achieve aesthetics and decorative effects than those obtained with conventional decoration.

    Se han desarrollado un conjunto de diferentes tintas ink-jet, para aplicar como objeto 3D y capas extrafinas con el fin de proteger la decoración realizada mediante tecnología ink-jet. Estas nuevas tintas se obtienen a través del desarrollo de nuevas fritas basadas en estructuras vitro cristalinas monofásicas que permiten obtener efectos cerámicos mediante decoración digital. Las nuevas tintas mejoran la capacidad de aplicación mediante cabezales ink-jet con el fin de conseguir efectos estéticos y decorativos superiores a los obtenidos con la decoración convencional.

  7. Differential Salt-Induced Dissociation of the p53 Protein Complexes with Circular and Linear Plasmid DNA Substrates Suggest Involvement of a Sliding Mechanism

    Czech Academy of Sciences Publication Activity Database

    Šebest, Peter; Brázdová, Marie; Fojta, Miroslav; Pivoňková, Hana

    2015-01-01

    Roč. 16, č. 2 (2015), s. 3163-3177 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GAP301/11/2076; GA ČR(CZ) GBP206/12/G151 Institutional support: RVO:68081707 Keywords : TUMOR-SUPPRESSOR P53 * CISPLATIN -DAMAGED DNA * SUPERCOILED DNA Subject RIV: BO - Biophysics Impact factor: 3.257, year: 2015

  8. Diagnostic yield of ink-jet prints from digital radiographs for the assessment of approximal carious lesions: ROC-analysis

    International Nuclear Information System (INIS)

    Schulze, Ralf K.W.; Grimm, Stefanie; Schulze, Dirk; Voss, Kai; Keller, Hans-Peter; Wedel, Matthias

    2011-01-01

    Aims: To investigate the diagnostic quality of different quality, individually calibrated ink-jet printers for the very challenging dental radiographic task of approximal carious lesion detection. Materials and methods: A test-pattern evaluating resolution, contrast and homogeneity of the ink-jet prints was developed. 50 standardized dental radiographs each showing two neighbouring teeth in natural contact were printed on glossy paper with calibrated, randomly selected ink-jet printers (Canon S520 and iP4500, Epson Stylus Photo R2400). Printing size equalled the viewing size on a 17'' cathode-ray-tube monitor daily quality-tested according to German regulations. The true caries status was determined from serial sectioning and microscopic evaluation. 16 experienced observers evaluated the radiographs on a five-point confidence scale on all prints plus the viewing monitor with respect to the visibility of a carious lesion. A non-parametric Receiver-Operating Characteristics (ROC-) analysis was performed explicitly designed for the evaluation of readings stemming from identical samples but different modality. Significant differences are expressed by a critical ratio z exceeding ±2. Diagnostic accuracy was determined by the area (Az) underneath the ROC-curves. Results: Average Az-values ranged between 0.62 (S520 and R2400) and 0.64 (monitor, iP4500), with no significant difference between modalities (P = 0.172). Neither significant (range mean z: -0.40 (S520) and -0.11 (iP4500)) nor clinically relevant differences were found between printers and viewing monitor. Conclusions: Our results for a challenging task in dental radiography indicate that calibrated, off-the-shelf ink-jet printers are able to reproduce (dental) radiographs at quality levels sufficient for radiographic diagnosis in a typical dental working environment.

  9. Diagnostic yield of ink-jet prints from digital radiographs for the assessment of approximal carious lesions: ROC-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Ralf K.W., E-mail: rschulze@mail.uni-mainz.de [Poliklinik fuer Zahnaerztliche Chirurgie, University Medical Center of the Johannes Gutenberg-University, Augustusplatz 2, D-55131 Mainz (Germany); Grimm, Stefanie, E-mail: StefanieGrimm@gmx.de [Poliklinik fuer Zahnaerztliche Chirurgie, University Medical Center of the Johannes Gutenberg-University, Augustusplatz 2, D-55131 Mainz (Germany); Schulze, Dirk, E-mail: dirk.schulze@uniklinik-freiburg.de [Klinik fuer Mund,- Kiefer- und Gesichtschirurgie, Sektion Roentgen, Universitaetsklinikum Freiburg, Hugstetterstr. 55, D-79106 Freiburg (Germany); Voss, Kai, E-mail: zahnarzt@drvoss.eu [Zahnaerztekammer Schleswig-Holstein, Vorstand fuer Praxisfuehrung, Westring 496, D- 24106 Kiel (Germany); Keller, Hans-Peter, E-mail: hans-peter.keller@din.de [NA Dental (NADENT) im DIN, Alexander-Wellendorff-Str. 2, D-75172 Pforzheim (Germany); Wedel, Matthias, E-mail: matthias.wedel@siemens.com [Siemens AG, Medical Solutions, Postfach 32 60, D-91050 Erlangen (Germany)

    2011-08-15

    Aims: To investigate the diagnostic quality of different quality, individually calibrated ink-jet printers for the very challenging dental radiographic task of approximal carious lesion detection. Materials and methods: A test-pattern evaluating resolution, contrast and homogeneity of the ink-jet prints was developed. 50 standardized dental radiographs each showing two neighbouring teeth in natural contact were printed on glossy paper with calibrated, randomly selected ink-jet printers (Canon S520 and iP4500, Epson Stylus Photo R2400). Printing size equalled the viewing size on a 17'' cathode-ray-tube monitor daily quality-tested according to German regulations. The true caries status was determined from serial sectioning and microscopic evaluation. 16 experienced observers evaluated the radiographs on a five-point confidence scale on all prints plus the viewing monitor with respect to the visibility of a carious lesion. A non-parametric Receiver-Operating Characteristics (ROC-) analysis was performed explicitly designed for the evaluation of readings stemming from identical samples but different modality. Significant differences are expressed by a critical ratio z exceeding {+-}2. Diagnostic accuracy was determined by the area (Az) underneath the ROC-curves. Results: Average Az-values ranged between 0.62 (S520 and R2400) and 0.64 (monitor, iP4500), with no significant difference between modalities (P = 0.172). Neither significant (range mean z: -0.40 (S520) and -0.11 (iP4500)) nor clinically relevant differences were found between printers and viewing monitor. Conclusions: Our results for a challenging task in dental radiography indicate that calibrated, off-the-shelf ink-jet printers are able to reproduce (dental) radiographs at quality levels sufficient for radiographic diagnosis in a typical dental working environment.

  10. INHIBITION OF THE DNA-BINDING ACTIVITY OF DROSOPHILA SUPPRESSOR OF HAIRLESS AND OF ITS HUMAN HOMOLOG, KBF2/RBP-J-KAPPA, BY DIRECT PROTEIN-PROTEIN INTERACTION WITH DROSOPHILA HAIRLESS

    NARCIS (Netherlands)

    BROU, C; LOGEAT, F; LECOURTOIS, M; VANDEKERCKHOVE, Joël; KOURILSKY, P; SCHWEISGUTH, F; ISRAEL, A

    1994-01-01

    We have purified the sequence-specific DNA-binding protein KBF2 and cloned the corresponding cDNA, which is derived from the previously described RBP-J kappa gene, the human homolog of the Drosophila Suppressor of Hairless [Su(H)] gene. Deletion studies of the RBP-J kappa and Su(H) proteins allowed

  11. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  12. N -Ink Printer Characterization With Barycentric Subdivision.

    Science.gov (United States)

    Babaei, Vahid; Hersch, Roger D

    2016-07-01

    Printing with a large number of inks, also called N -ink printing, is a challenging task. The challenges comprise spectral modeling of the printer, color separation, halftoning, and limitations of the amount of inks. Juxtaposed halftoning, a perfectly dot-off-dot halftoning method, has proved to be useful to address some of these challenges. However, for juxtaposed halftones, prediction of colors as a function of ink area coverages has not yet been fully investigated. The goal of this paper is to introduce a spectral prediction model for N -ink juxtaposed-halftone prints. As the area-coverage domain of juxtaposed inks forms a simplex, we propose a cellular subdivision of the area-coverage domain using the barycentric subdivision of simplexes. The barycentric subdivision provides algorithmically straightforward means to design and implement an N -ink color prediction model. Within the subdomain cells, the Yule-Nielsen spectral Neugebauer model is used for the spectral prediction. Our proposed model is highly accurate for prints with a large number of inks while requiring a relatively low number of calibration samples.

  13. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking

    NARCIS (Netherlands)

    Westra, W. H.; Offerhaus, G. J.; Goodman, S. N.; Slebos, R. J.; Polak, M.; Baas, I. O.; Rodenhuis, S.; Hruban, R. H.

    1993-01-01

    Mutations in the p53 tumor suppressor gene are frequently observed in primary lung adenocarcinomas, suggesting that these mutations are critical events in the malignant transformation of airway cells. These mutations are often associated with stabilization of the p53 gene product, resulting in the

  14. Suppressor Analysis of the Fusogenic Lambda Spanins.

    Science.gov (United States)

    Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry

    2017-07-15

    The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such

  15. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    Science.gov (United States)

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  16. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer

    International Nuclear Information System (INIS)

    Sharma, Pankaj; Chinaranagari, Swathi; Patel, Divya; Carey, Jason; Chaudhary, Jaideep

    2012-01-01

    The inhibitor of DNA-binding (Id) proteins, Id1–4 are negative regulators of basic helix-loop-helix (bHLH) transcription factors. As key regulators of cell cycle and differentiation, expression of Id proteins are increasingly observed in many cancers and associated with aggressiveness of the disease. Of all the four Id proteins, the expression of Id1, Id2, and to a lesser extent, Id3 in prostate cancer and the underlying molecular mechanism is relatively well known. On the contrary, our previous results demonstrated that Id4 acts as a potential tumor suppressor in prostate cancer. In the present study, we extend these observations and demonstrate that Id4 is down-regulated in prostate cancer due to promoter hypermethylation. We used prostate cancer tissue microarrays to investigate Id4 expression. Methylation specific PCR on bisulfite treated DNA was used to determine methylation status of Id4 promoter in laser capture micro-dissected normal, stroma and prostate cancer regions. High Id4 expression was observed in the normal prostate epithelial cells. In prostate cancer, a stage-dependent decrease in Id4 expression was observed with majority of high grade cancers showing no Id4 expression. Furthermore, Id4 expression progressively decreased in prostate cancer cell line LNCaP and with no expression in androgen-insensitive LNCaP-C81 cell line. Conversely, Id4 promoter hypermethylation increased in LNCaP-C81 cells suggesting epigenetic silencing. In prostate cancer samples, loss of Id4 expression was also associated with promoter hypermethylation. Our results demonstrate loss of Id4 expression in prostate cancer due to promoter hypermethylation. The data strongly support the role of Id4 as a tumor suppressor

  17. BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer.

    Science.gov (United States)

    Zhang, Xiao-Wei; Sheng, Ya-Ping; Li, Qian; Qin, Wei; Lu, You-Wei; Cheng, Yu-Fan; Liu, Bing-Ya; Zhang, Feng-Chun; Li, Jin; Dimri, Goberdhan P; Guo, Wei-Jian

    2010-02-21

    The BMI1 oncogene is overexpressed in several human malignancies including gastric cancer. In addition to BMI1, mammalian cells also express Mel-18, which is closely related to BMI1. We have reported that Mel-18 functions as a potential tumor suppressor by repressing the expression of BMI1 and consequent downregulation of activated AKT in breast cancer cells. However, the mechanisms of BMI1 overexpression and the role of Mel-18 in other cancers are still not clear. The purpose of this study is to investigate the role of BMI1 and Mel-18 in gastric cancer. BMI1 was found to be overexpressed in gastric cancer cell lines and gastric tumors. Overexpression of BMI1 correlated with advanced clinical stage and lymph node metastasis; while the expression of Mel-18 negatively correlated with BMI1. BMI1 but not Mel-18 was found to be an independent prognostic factor. Downregulation of BMI1 by Mel-18 overexpression or knockdown of BMI1 expression in gastric cancer cell lines led to upregulation of p16 (p16INK4a or CDKN2A) in p16 positive cell lines and reduction of phospho-AKT in both p16-positive and p16-negative cell lines. Downregulation of BMI1 was also accompanied by decreased transformed phenotype and migration in both p16- positive and p16-negative gastric cancer cell lines. In the context of gastric cancer, BMI1 acts as an oncogene and Mel-18 functions as a tumor suppressor via downregulation of BMI1. Mel-18 and BMI1 may regulate tumorigenesis, cell migration and cancer metastasis via both p16- and AKT-dependent growth regulatory pathways.

  18. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  19. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384 ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  20. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane.

    Science.gov (United States)

    Baskin, Jeremy M; Wu, Xudong; Christiano, Romain; Oh, Michael S; Schauder, Curtis M; Gazzerro, Elisabetta; Messa, Mirko; Baldassari, Simona; Assereto, Stefania; Biancheri, Roberta; Zara, Federico; Minetti, Carlo; Raimondi, Andrea; Simons, Mikael; Walther, Tobias C; Reinisch, Karin M; De Camilli, Pietro

    2016-01-01

    Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.

  1. Myxovirus resistance, osteopontin and suppressor of cytokine signaling 3 polymorphisms predict hepatitis C virus therapy response in an admixed patient population: comparison with IL28B.

    Science.gov (United States)

    Angelo, Ana Luiza Dias; Cavalcante, Lourianne Nascimento; Abe-Sandes, Kiyoko; Machado, Taísa Bonfim; Lemaire, Denise Carneiro; Malta, Fernanda; Pinho, João Renato; Lyra, Luiz Guilherme Costa; Lyra, Andre Castro

    2013-10-01

    Suppressor of cytokine signaling 3, myxovirus resistance protein and osteopontin gene polymorphisms may influence the therapeutic response in patients with chronic hepatitis C, and an association with IL28 might increase the power to predict sustained virologic response. Our aims were to evaluate the association between myxovirus resistance protein, osteopontin and suppressor of cytokine signaling 3 gene polymorphisms in combination with IL28B and to assess the therapy response in hepatitis C patients treated with pegylated-interferon plus ribavirin. Myxovirus resistance protein, osteopontin, suppressor of cytokine signaling 3 and IL28B polymorphisms were analyzed by PCR-restriction fragment length polymorphism, direct sequencing and real-time PCR. Ancestry was determined using genetic markers. We analyzed 181 individuals, including 52 who were sustained virologic responders. The protective genotype frequencies among the sustained virologic response group were as follows: the G/G suppressor of cytokine signaling 3 (rs4969170) (62.2%); T/T osteopontin (rs2853744) (60%); T/T osteopontin (rs11730582) (64.3%); and the G/T myxovirus resistance protein (rs2071430) genotype (54%). The patients who had ≥3 of the protective genotypes from the myxovirus resistance protein, the suppressor of cytokine signaling 3 and osteopontin had a greater than 90% probability of achieving a sustained response (pC/C IL28B genotype was present in 58.8% of the subjects in this group. The sustained virological response rates increased to 85.7% and 91.7% by analyzing C/C IL28B with the T/T osteopontin genotype at rs11730582 and the G/G suppressor of cytokine signaling 3 genotype, respectively. Genetic ancestry analysis revealed an admixed population. Hepatitis C genotype 1 patients who were responders to interferon-based therapy had a high frequency of multiple protective polymorphisms in the myxovirus resistance protein, osteopontin and suppressor of cytokine signaling 3 genes. The combined

  2. Development of a New Stretchable and Screen Printable Conductive Ink

    Science.gov (United States)

    Mohammed, Anwar A.

    Stretchable conductive ink is a key enabler for stretchable electronics. This thesis research focuses on the development of a new stretchable and screen printable conductive ink. After print and cure, this ink would be capable of being stretched by at least 500 cycles at 20% strain without increasing its resistance by more than 30 times the original resistance, while maintaining electrical and mechanical integrity. For a stretchable and screen-printable conductive ink, the correct morphology of the metal powder selected and the ability of the binder to be stretched after the sintering process, are both indispensable. This research has shown that a bi-modal mixture of fine and large-diameter silver flakes will improve stretchability. While the smaller flakes increase the conductivity and lower the sintering temperature, the larger flake particles promote ohmic connectivity during stretching. The bi-modal flake distribution increases connection points while enhancing packing density and lowering the thermal activation barrier. The polymer binder phase plays a crucial role in offering stretchability to the stretchable conductive inks. The silver flakes by themselves are not stretchable but they are contained within a stretchable binder system. The research demonstrates that commonly used printable ink binder when combined with large-chain polymers through a process known as 'elastomeric chain polymerization' will enable the conductive ink to become more stretchable. This research has shown that the new stretchable and screen printable silver conductive ink developed based upon the two insights mentioned above; (1) bi modal flakes to improve ohmic connectivity during stretching and (2) elastomeric chain polymerized binder system which could stretch even after the ink is sintered to the substrate, can exhibit an ink stretchability of at least 500 cycles at 20% strain while increasing the resistance by less than 30 times the original resistance. Wavy print patterns can

  3. Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells

    International Nuclear Information System (INIS)

    Atluru, D.; Goodwin, J.S.

    1984-01-01

    We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4

  4. Different types of inks having certain medicolegal importance: Deciphering the faded and physically erased handwriting

    Directory of Open Access Journals (Sweden)

    Manal Abd-ElAziz Abd-ElZaher

    2014-06-01

    Full Text Available Disappearing ink is a type of ink which could be used to forge documents as it will fade away without any trace within 40–65 h. Erasable ink is another type of ink easily removed by certain rubbers incorporated in each pen. Both types of inks were applied separately on different types of papers (checks, standard white foolscap, and plain white A4 paper. For vanishing ink, it was observed visually in the first 6 h and then every 6 h. It was found that the vanishing ink disappeared completely within 2 h on checks, 36 h on standard white foolscap paper, and 40 h on plain white A4 paper. For erasable ink, the written strokes were manipulated manually using the incorporated eraser. Deciphering the faded writing failed by the conventional methods, but oblique light can reveal the indentation marks. The faded writing became visible when treated with weak alkaline (NaOH solutions. Erasable ink was deciphered with the aid of infra-red radiation combined with VSC-6000 as clear white traces against red fluorescence. It was concluded that the use of a weak (NaOH solution is an effective method for revealing the faded writing, and the infra-red illumination is also effective.

  5. p16/ki-67 dual-stain cytology in the triage of ASCUS and LSIL papanicolaou cytology: results from the European equivocal or mildly abnormal Papanicolaou cytology study.

    Science.gov (United States)

    Schmidt, Dietmar; Bergeron, Christine; Denton, Karin J; Ridder, Ruediger

    2011-06-25

    The objective of this study was to analyze the diagnostic performance of a newly established immunocytochemical dual-stain protocol, which simultaneously detects p16(INK4a) and Ki-67 expression in cervical cytology samples, for identifying high-grade cervical intraepithelial neoplasia (CIN2+) in women with Papanicolaou (Pap) cytology results categorized as atypical squamous cells of undetermined significance (ASCUS) or low-grade squamous intraepithelial lesions (LSIL). Residual liquid-based cytology material from 776 retrospectively collected ASCUS/LSIL cases that were available from a recent study evaluating p16 cytology and HPV testing were subjected to p16/Ki-67 dual staining. The presence of 1 or more double-immunoreactive cell(s) was regarded as a positive test outcome, irrespective of morphology. Test results were correlated to histology follow-up. Sensitivity of p16/Ki-67 dual-stain cytology for biopsy-confirmed CIN2+ was 92.2% (ASCUS) and 94.2% (LSIL), while specificity rates were 80.6% (ASCUS) and 68.0% (LSIL), respectively. Similar sensitivity/specificity profiles were found for both age groups of women aged aged ≥30 years. Dual-stain cytology showed comparable sensitivity, but significantly higher specificity, when compared with human papillomavirus (HPV) testing. The results of this study show that p16/Ki-67 dual-stain cytology provided a high sensitivity for the detection of underlying CIN2+ in women with ASCUS or LSIL Pap cytology results, comparable to the rates previously reported for HPV testing and p16 single-stain cytology. However, the specificity of this morphology-independent interpretation of p16/Ki-67 dual-stain cytology testing was further improved compared with the earlier p16 single-stain cytology approach, which required morphology interpretation, and it is significantly higher when compared with HPV testing. Copyright © 2011 American Cancer Society.

  6. Reductive photocatalysis and smart inks.

    Science.gov (United States)

    Mills, Andrew; Wells, Nathan

    2015-05-21

    Semiconductor-sensitised photocatalysis is a well-established and growing area of research, innovation and commercialisation; the latter being mostly limited to the use of TiO2 as the semiconductor. Most of the work on semiconductor photocatalytic systems uses oxygen as the electron acceptor and explores a wide range of electron donors; such systems can be considered to be examples of oxidative photocatalysis, OP. OP underpins most current examples of commercial self-cleaning materials, such as: glass, tiles, concrete, paint and fabrics. OP, and its myriad of applications, have been reviewed extensively over the years both in this journal and elsewhere. However, the ability of TiO2, and other semiconductor sensitisers, to promote reductive photocatalysis, RP, especially of dyes, is significant and, although less well-known, is of growing importance. In such systems, the source of the electrons is some easily oxidised species, such as glycerol. One recent, significant example of a RP process is with respect to photocatalyst activity indicator inks. paiis, which provide a measure of the activity of a photocatalytic film under test via the rate of change of colour of the dye in the ink coating due to irreversible RP. In contrast, by incorporating the semiconductor sensitiser in the ink, rather than outside it, it is possible to create an effective UV dosimeter, based on RP, which can be used as a sun-burn warning indicator. In the above examples the dye is reduced irreversibly, but when the photocatalyst in an ink is used to reversibly photoreduce a dye, a novel, colourimetric oxygen-sensitive indicator ink can be created, which has commercial potential in the food packaging industry. Finally, if no dye is present in the ink, and the semiconductor photocatalyst-loaded ink film coats an easily reduced substrate, such as a metal oxide film, then it can be used to reduce the latter and so, for example, clean up tarnished steel. The above are examples of smart inks, i

  7. p16 gene methylation in colorectal cancer patients with long-term follow-up Metilación de p16 en pacientes intervenidos de cáncer colorrectal tras un largo periodo de seguimiento

    Directory of Open Access Journals (Sweden)

    Silvia Veganzones-de-Castro

    2012-03-01

    Full Text Available Introduction: p16 gene plays an important role in the cell cycle regulation and is considered an important tumor suppressor gene. Several mechanisms of gene inactivation have been described; in this study we have focused on p16 gene promoter methylation. In colorectal cancer p16 gene methylation is a frequent event. Methods: 326 patients with sporadic colorectal cancer were included. DNA was extracted from tumor tissue samples obtained during the surgical procedure. Promoter methylation was analyzed using bisulfite modification and was detected by quantitative methylation-specific PCR. Frequency of p16 methylation was analyzed and compared with other clinicopathological variables. Results: p16 gene methylation was detected in 24,8% of patients. Methylation was associated with differentiation grade and with tumor location: methylation was frequent in poorly differentiated tumors and had low frequency in distal colon. The p16 promoter methylation discriminated a subgroup of patients with better prognosis in poorly differentiated tumors. Conclusions: p16 methylation was a frequent event in our population and was able to induce differences in the overall survival of patients with poorly differentiated tumors.Introducción: el gen p16 está implicado en la regulación del ciclo celular y se considera un importante gen supresor de tumores. Objetivos: se han descrito diferentes mecanismos de inactivación génica, en este estudio nos hemos centrado en la metilación del promotor del gen p16. En el cáncer colorrectal la metilación de p16 es una alteración frecuente. Material y métodos: se incluyeron 326 pacientes con cáncer colorrectal esporádico. El ADN se extrajo de muestras tumorales obtenidas durante la cirugía. La metilación del promotor se analizó mediante un proceso de modificación con bisulfito y posterior PCR cuantitativa especifica para metilación. Se analizó la frecuencia de la metilación de p16 y se comparó con las variables

  8. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells

    International Nuclear Information System (INIS)

    Cardoso, F.M.; Kato, Sayuri E.M.; Huang Wenying; Flint, S. Jane; Gonzalez, Ramon A.

    2008-01-01

    It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells

  9. Screen-printable sol-gel enzyme-containing carbon inks.

    Science.gov (United States)

    Wang, J; Pamidi, P V; Park, D S

    1996-08-01

    Enzymes usually cannot withstand the high-temperature curing associated with the thick-film fabrication process and require a separate immobilization step in connection with the production of single-use biosensors. We report on the development of sol-gel-derived enzyme-containing carbon inks that display compatibility with the screen-printing process. Such coupling of sol-gel and thick-film technologies offers a one-step fabrication of disposable enzyme electrodes, as it obviates the need for thermal curing. The enzyme-containing sol-gel carbon ink, prepared by dispersing the biocatalyst, along with the graphite powder and a binder, within the sol-gel precursors, is cured very rapidly (10 min) at low temperature (4 °C). The influence of the ink preparation conditions is explored, and the sensor performance is evaluated in connection with the incorporation of glucose oxidase or horseradish peroxidase. The resulting strips are stable for at least 3 months. Such sol-gel-derived carbon inks should serve as hosts for other heat-sensitive biomaterials in connection with the microfabrication of various thick-film biosensors.

  10. The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity.

    Science.gov (United States)

    Tena Fernández, Fátima; González, Inmaculada; Doblas, Paula; Rodríguez, César; Sahana, Nandita; Kaur, Harpreet; Tenllado, Francisco; Praveen, Shelly; Canto, Tomas

    2013-06-01

    In the Potyvirus genus, the P1 protein is the first N-terminal product processed from the viral polyprotein, followed by the helper-component proteinase (HCPro). In silencing suppression patch assays, we found that Potato virus Y (PVY) HCPro expressed from a P1-HCPro sequence increased the accumulation of a reporter gene, whereas protein expressed from an HCPro sequence did not, even with P1 supplied in trans. This enhancing effect of P1 has been noted in other potyviruses, but has remained unexplained. We analysed the accumulation of PVY HCPro in infiltrated tissues and found that it was higher when expressed from P1-HCPro than from HCPro sequences. Co-expression of heterologous suppressors increased the steady-state level of mRNA expressed from the HCPro sequence, but not that of protein. This suggests that, in the absence of P1 upstream, either HCPro acquires a conformation that affects negatively its activity or stability, or that its translation is reduced. To test these options, we purified HCPro expressed in the presence or absence of upstream P1, and found no difference in purification pattern and final soluble state. By contrast, alteration of the Kozak context in the HCPro mRNA sequence to favour translation increased partially suppressor accumulation and activity. Furthermore, protein activity was not lower than in protein expressed from P1-HCPro sequences. Thus, a direct role for P1 on HCPro suppressor activity or stability, by influencing its conformation during translation, can be excluded. However, P1 could still have an indirect effect favouring HCPro accumulation. Our data highlight the relevance of cis-acting translational elements in the heterologous expression of HCPro. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  11. Recombinant CC16 protein inhibits the production of pro-inflammatory cytokines via NF-κB and p38 MAPK pathways in LPS-activated RAW264.7 macrophages

    Institute of Scientific and Technical Information of China (English)

    Min Pang; Guoping Zheng; Baofeng Yu; Hailong Wang; Yangyang Yuan; Dong Wang; Ting Li; Dan Wang; Xiaohong Shi; Min Guo; Chunfang Wang; Xinri Zhang

    2017-01-01

    Accumulating evidence indicates that Clara cell protein-16 (CC16) has anti-inflammatory functions,although the involved molecular pathways have not been completely elucidated.Here,we evaluated the effect of recombinant rat CC16 (rCC16) on the expression of tumor necrosis factor alpha (TNF-α),interleukin-6 (IL-6),and IL-8 in lipopolysaccharide (LPS)-stimulated mouse macrophages (RAW264.7 cells) and explored the underlying molecular mechanisms.It was found that rCC16 inhibited LPS-induced TNF-α,IL-6,and IL-8 expression at both the messenger ribonucleicacid (mRNA) level and protein level in a concentration-dependent manner,as demonstrated by realtime reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay.Such suppressive effects were accompanied by the inhibition of transcriptional activity and the deoxyribonucleic acid binding activity of nuclear factor (NF)-κB but not activator protein (AP)-1.Western blot analysis further revealed that rCC16 inhibited the increase of nuclear NF-κB and the reduction of cytosolic NF-κB,the phosphorylation and reduction of NF-κB inhibitory protein IκBα,and the p38 mitogen-activated protein kinase (MAPK)-dependent NF-κB activation by phosphoryl-ation at Ser276 of its p65 subunit.Furthermore,rCC16 was found to have no effect on the phosphorylation of c-Jun N-terminal kinase,c-Jun,or the nuclear translocation of c-Jun.In addition,reduction of TNF-α,IL-6,and IL-8 were reversed when the level of endogenous uteroglobin-binding protein was reduced by RNA interference in rCC16-and LPS-treated RAW264.7 cells.Our data suggest that rCC16 suppresses LPS-mediated inflammatory mediator TNF-α,IL-6,and IL-8 production by inactivating NF-κB and p38 MAPK but not AP-1 in RAW264.7 cells.

  12. Hexavalent Chromium (Cr(VI Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1.

    Directory of Open Access Journals (Sweden)

    Danqi Chen

    Full Text Available The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1 is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI through epigenetic mechanisms. Interestingly, Cr(VI exposure also results in the loss of acetylation at histone H4K16, which is considered a 'hallmark' of human cancer. Cr(VI-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1, which specifically acetylates H4K16; (b the loss of acetylation of H4K16 upon Cr(VI exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI-induced cell transformation. We propose that Cr(VI induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI-induced carcinogenesis.

  13. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    International Nuclear Information System (INIS)

    Nakamura, M.; Ogawa, H.; Tsunematsu, T.

    1990-01-01

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125 I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125 I-MNSF. 125 I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF

  14. Analyzing power for the 16O(p,n)16F (4-, 6.37 MeV) reaction at 134 MeV

    International Nuclear Information System (INIS)

    Madey, R.; Fazely, A.; Anderson, B.D.; Baldwin, A.R.; Kalenda, A.M.; McCarthy, R.J.; Tandy, P.C.; Watson, J.W.; Bertozzi, W.; Buti, T.; Finn, M.; Kovash, M.; Pugh, B.; Foster, C.C.

    1982-01-01

    We measured the analyzing power for the 16 O(p,n) 16 F (4 - , 6.37 MeV) reaction at 134.0 MeV and the differential cross section for the same reaction at 135.2 MeV. The shape of the cross section for the transition to this unnatural parity stretched state is described well by a distorted-wave impulse-approximation calculation using a (πd/sub 5/2/, νp/sub 3/2//sup ts-1/) 4 /sub -/ configuration and the effective interaction derived by Love and Franey from nucleon-nucleon phase shifts. The analyzing power from this calculation reproduces all of the qualitative features of the data and supports the use of the impulse approximation as an excellent starting point for describing the reaction mechanism. Quantitative agreement between the experimental and theoretical analyzing power can be improved by eliminating the imaginary tensor term of this interaction and taking the real part to be that derived by Love from the Sussex matrix elements. The sensitivity of the calculations to the choice of optical potentials and the importance of spin-orbit distortion is explored

  15. SINTESIS 4,10,16,22-TETRAMETOKSIKALIKS[4] ARENA DARI MINYAK ADAS (SYNTHESIS OF 4,10,16,22-TETRAMETHOXYCALIX [4] ARENE FROM ANISE OIL

    Directory of Open Access Journals (Sweden)

    Ratna Ningsih S

    2015-01-01

    Full Text Available One kind of calixarenes, i.e. 4,10,16,22-tetramethoxycalix[4]arene (4, has been synthesized from anethole (1, which was isolated from anise oil. The synthesis of 4 was carried out via acid-catalyzed procedure. The reaction route consists of three stages, i.e. (i oxidation of 1 with KMnO4 at 40oC for 15 minutes, (ii reduction p-anisaldehyde (2 with NaBH4 at 76oC for 3 hours, and  (iii cyclotetramerization of p-anisilalcohol (3 with AlCl3 at 20oC for 2 hours. Oxidation of 1 produced 2 in 77%, whereas reduction of 2 gave 3 in 55 %. The cyclotetramerization of 3 yielded 4 in 95 %.  Key Words: 4,10,16,22-tetramethoxycalix[4]arene, Anise Oil, Anethole

  16. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells.

    Science.gov (United States)

    Hepp, Matías I; Escobar, David; Farkas, Carlos; Hermosilla, Viviana; Álvarez, Claudia; Amigo, Roberto; Gutiérrez, José L; Castro, Ariel F; Pincheira, Roxana

    2018-05-17

    SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi. Copyright © 2018. Published by Elsevier B.V.

  17. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Microcell-mediated chromosome transfer identifies EPB41L3 as a functional suppressor of epithelial ovarian cancers

    DEFF Research Database (Denmark)

    Dafou, Dimitra; Grun, Barbara; Sinclair, John

    2010-01-01

    lines. Using immunohistochemistry, 66% of 794 invasive ovarian tumors showed no EPB41L3 expression compared with only 24% of benign ovarian tumors and 0% of normal ovarian epithelial tissues. EPB41L3 was extensively methylated in ovarian cancer cell lines and primary ovarian tumors compared with normal...... (erythrocyte membrane protein band 4.1-like 3, alternative names DAL-1 and 4.1B) was a candidate ovarian cancer-suppressor gene. Immunoblot analysis showed that EPB41L3 was activated in TOV21G(+18) hybrids, expressed in normal ovarian epithelial cell lines, but was absent in 15 (78%) of 19 ovarian cancer cell...... tissues (P = .00004), suggesting this may be the mechanism of gene inactivation in ovarian cancers. Constitutive reexpression of EPB41L3 in a three-dimensional multicellular spheroid model of ovarian cancer caused significant growth suppression and induced apoptosis. Transmission and scanning electron...

  19. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus.

    Science.gov (United States)

    Zouk, H; D'Hennezel, E; Du, X; Ounissi-Benkalha, H; Piccirillo, C A; Polychronakos, C

    2014-03-01

    The type 1 diabetes-associated 16p13 locus contains the CLEC16A gene. Its preferential immune cell expression suggests involvement in autoimmunity. Given its elevated expression in dendritic and B cells - known professional antigen-presenting cells (APCs) - we hypothesize that C-type lectin domain family 16 member A (CLEC16A) may be involved in T cell co-stimulation and consequent activation and proliferation. We also sought to identify CLEC16A's subcellular localization. The effect of the CLEC16A knock-down (KD) on B cell co-stimulation and activation of T cells was tested in human lymphoblastoid cell lines (LCLs) by co-culture with CD4(+) T cells. T cell activation and proliferation were determined by flow-cytometric analysis of CD69 and CD25 expression and carboxyfluorescein succinimidyl ester (CFSE) dilution, respectively. CLEC16A subcellular localization in K562 cells was examined by immunofluorescence. We show that the CLEC16A KD did not affect the tested indices of lymphoblastoid cell line (LCL) APC capacity. Additionally, the percentage of activated T cells following LCL co-culture was not affected significantly by the CLEC16A KD. T cells co-cultured with KD or control LCLs also exhibited similar cell division profiles. CLEC16A co-localized with an endoplasmic reticulum (ER) marker, suggesting that it may be an ER protein. In conclusion, CLEC16A may not be involved in T cell co-stimulation. Additional studies on CLEC16A, accounting for its ER localization, are needed to uncover its biological role. © 2013 British Society for Immunology.

  20. A magnetic nano-particle ink for tunable microwave applications

    KAUST Repository

    Ghaffar, Farhan A.; Vaseem, Mohammad; Shamim, Atif

    2016-01-01

    fully printed multilayer fabrication process is demonstrated where the substrate is also realized through printing. A novel Fe2O3 based magnetic ink is used as a substrate while an in-house silver organo complex (SOC) ink is developed for metallic layers

  1. INK128 Exhibits Synergy with Azoles against Exophiala spp. and Fusarium spp.

    Science.gov (United States)

    Gao, Lujuan; Sun, Yi; He, Chengyan; Li, Ming; Zeng, Tongxiang; Lu, Qiaoyun

    2016-01-01

    Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR) orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from Clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4-8 μg/ml) against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125-2 μg/ml and 1-4 μg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a potential strategy to

  2. Molecular screening of compounds to the predicted Protein-Protein Interaction site of Rb1-E7 with p53- E6 in HPV

    Science.gov (United States)

    Shaikh, Faraz; Sanehi, Parvish; Rawal, Rakesh

    2012-01-01

    Cervical cancer is malignant neoplasm of the cervix uteri or cervical area. Human Papillomaviruses (HPVs) which are heterogeneous groups of small double stranded DNA viruses are considered as the primary cause of cervical cancer, involved in 90% of all Cervical Cancers. Two early HPV genes, E6 and E7, are known to play crucial role in tumor formation. E6 binds with p53 and prevents its translocation and thereby inhibit the ability of p53 to activate or repress target genes. E7 binds to hypophosphorylated Rb and thereby induces cells to enter into premature S-phase by disrupting Rb-E2F complexes. The strategy of the research work was to target the site of interaction of Rb1 -E7 & p53-E6. A total of 88 compounds were selected for molecular screening, based on comprehensive literature survey for natural compounds with anti-cancer activity. Molecular docking analysis was carried out with Molegro Virtual Docker, to screen the 88 chosen compounds and rank them according to their binding affinity towards the site of interaction of the viral oncoproteins and human tumor suppressor proteins. The docking result revealed that Nicandrenone a member of Withanolides family of chemical compounds as the most likely molecule that can be used as a candidate drug against HPV induced cervical cancer. Abbreviations HPV - Human Papiloma Virus, HTSP - Human Tumor Suppressor Proteins, VOP - Viral oncoproteins. PMID:22829740

  3. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    Science.gov (United States)

    2008-06-01

    senescence: Putting the brakes on tumor develop- ment. Cancer Res 2006; 66:2881-4. 17. Jones CJ, Kipling D, Morris M, Hepburn P, Skinner J, Bounacer A...A, Bonner-Weir S, Sharpless NE. P16ink4a induces an age-dependent decline in islet regenerative potential. Nature 2006; 443:453-7. 67...195L HMEC (Group A) fall into two categories : genes previously iden- tified as cancer-associated (including several antigens pro- posed as cancer

  4. A diffusive ink transport model for lipid dip-pen nanolithography

    Science.gov (United States)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus

  5. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  6. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma

    Science.gov (United States)

    Wilson, C. L.; Jurk, D.; Fullard, N.; Banks, P.; Page, A.; Luli, S.; Elsharkawy, A. M.; Gieling, R. G.; Chakraborty, J. Bagchi; Fox, C.; Richardson, C.; Callaghan, K.; Blair, G. E.; Fox, N.; Lagnado, A.; Passos, J. F.; Moore, A. J.; Smith, G. R.; Tiniakos, D. G.; Mann, J.; Oakley, F.; Mann, D. A.

    2015-04-01

    Hepatocellular carcinoma (HCC) develops on the background of chronic hepatitis. Leukocytes found within the HCC microenvironment are implicated as regulators of tumour growth. We show that diethylnitrosamine (DEN)-induced murine HCC is attenuated by antibody-mediated depletion of hepatic neutrophils, the latter stimulating hepatocellular ROS and telomere DNA damage. We additionally report a previously unappreciated tumour suppressor function for hepatocellular nfkb1 operating via p50:p50 dimers and the co-repressor HDAC1. These anti-inflammatory proteins combine to transcriptionally repress hepatic expression of a S100A8/9, CXCL1 and CXCL2 neutrophil chemokine network. Loss of nfkb1 promotes ageing-associated chronic liver disease (CLD), characterized by steatosis, neutrophillia, fibrosis, hepatocyte telomere damage and HCC. Nfkb1S340A/S340Amice carrying a mutation designed to selectively disrupt p50:p50:HDAC1 complexes are more susceptible to HCC; by contrast, mice lacking S100A9 express reduced neutrophil chemokines and are protected from HCC. Inhibiting neutrophil accumulation in CLD or targeting their tumour-promoting activities may offer therapeutic opportunities in HCC.

  7. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    Science.gov (United States)

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.

  8. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Krystyna Mazan-Mamczarz

    2014-01-01

    Full Text Available Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.

  9. Hyperspectral imaging technology for revealing the original handwritings covered by the same inks

    Directory of Open Access Journals (Sweden)

    Yuanyuan Lian

    2017-01-01

    Full Text Available This manuscript presents a preliminary investigation on the applicability of hyperspectral imaging technology for nondestructive and rapid analysis to reveal covered original handwritings. The hyperspectral imager Nuance-Macro was used to collect the reflected light signature of inks from the overlapping parts. The software Nuance1p46 was used to analyze the reflected light signature of inks which shows the covered original handwritings. Different types of black/blue ballpoint pen inks and black/blue gel pen inks were chosen for sample preparation. From the hyperspectral images examined, the covered original handwritings of application were revealed in 90.5%, 69.1%, 49.5%, and 78.6% of the cases. Further, the correlation between the revealing effect and spectral characteristics of the reflected light of inks at the overlapping parts was interpreted through theoretical analysis and experimental verification. The results indicated that when the spectral characteristics of the reflected light of inks at the overlapping parts were the same or very similar to that of the ink that was used to cover the original handwriting, the original handwriting could not be shown. On the contrary, when the spectral characteristics of the reflected light of inks at the overlapping parts were different to that of the ink that was used to cover the original handwriting, the original handwriting was revealed.

  10. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Inkjet printing or printing in general has emerged as a very attractive method for the fabrication of low cost and large size electronic systems. However, most of the printed designs rely on nano-particle based metallic inks which are printed on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink is demonstrated for tunable antennas applications. The ink has been characterized for high frequency and magnetostatic properties. Finally as a proof of concept, a microstrip patch antenna is realized using the proposed fabrication technique which shows a tuning range of 12.5 %.

  11. Expressão de p53, p16 E COX-2 em carcinoma escamoso de esôfago e associação histopatológica p53, p16 E COX-2 expression in esophageal squamous cell carcinoma and histopathological association

    Directory of Open Access Journals (Sweden)

    Izabella Paz Danezi Felin

    2008-12-01

    Full Text Available RACIONAL: O câncer de esôfago representa cerca de 2% dos tumores malignos e a terceira causa mais comum de câncer do trato gastrointestinal. A associação do prognóstico do câncer de esôfago com alguns marcadores imunoistoquímicos, como as proteínas p53, p16 e a ciclooxigenase 2 (COX-2 tem sido relatada. A detecção de marcadores moleculares através de imunoistoquímica pode ser utilizada para avaliação prognóstica. OBJETIVOS: Investigar a associação entre a expressão das proteínas p53, p16 e a COX-2 com o estádio do carcinoma escamoso de esôfago. MÉTODOS: Foram analisadas 31 amostras de ressecção cirúrgica por esofagectomia diagnosticadas como carcinoma de células escamosas de esôfago e 31 amostras não-tumorais referentes a cada caso. Realizou-se a revisão histopatológica e o estádio pTNM. Amostras tumorais e não-tumorais adjacentes foram submetidas a análise imunoistoquímica para avaliar o conteúdo das proteínas p53, p16 e COX-2. Foi considerada positiva a expressão nuclear para p53 em quantidade igual ou superior a 10,00% das células e presença da expressão citoplasmática de acordo com três escores (1, 2, 3 de intensidade (leve, moderada, acentuada de imunocoloração para COX-2. RESULTADOS: Em área tumoral, as análises revelaram 48,38% de positividade para p53, 16,12% de positividade para p16, e 100,00% de positividade escores 1+, 2+ ou 3+ para COX-2. No entanto, quando se avaliou possível relação da expressão destes marcadores com o estádio, apenas a COX-2, escore 3+ intensidade acentuada mostraram associação significativa. CONCLUSÃO: O presente estudo demonstrou que existe relação positiva entre a expressão de COX-2, escore 3+ e estádio mais avançado no carcinoma de esôfago.BACKGROUND: The esophageal carcinoma represents about 2% of malignant tumors and is the third most common cause of gastrointestinal cancer. The correlation between immunohistochemistry markers, such as p53, p16

  12. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    Bermúdez-Humarán Luis G

    2009-08-01

    Full Text Available Abstract Background The expression of vaccine antigens in lactic acid bacteria (LAB is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i the expression of Human papillomavirus type 16 (HPV-16 L1 major capsid protein in the model LAB Lactococcus lactis and ii the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs. Results and conclusion HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.

  13. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing.

    Science.gov (United States)

    Delfosse, Verónica C; Agrofoglio, Yamila C; Casse, María F; Kresic, Iván Bonacic; Hopp, H Esteban; Ziegler-Graff, Véronique; Distéfano, Ana J

    2014-02-13

    Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Immunohistochemical study of p53, pRb, p16 in esophageal cancer

    International Nuclear Information System (INIS)

    Zo, Jae Ill; Zo, Kyung Ja; Park, Jong Ho; Kim, Mi Hee

    1998-01-01

    To confirm the expression of molecular genetic alterations of p53, pRb, p16 in esophageal cancer and to investigate the expression of p53, pRb, p16 in esophageal cancer according to the pathologic steps of carcinogenesis, immuno-histochemistry was performed in 15 resected esophageal cancer specimens with multiple separated lesions after pathologic mapping. The accumulation of mutant p53 was observed in 60 % of dysplasia and 47 % of invasive cancer, while pRb was not detected in 91 % of dysplasia and 72.7 % of invasive cancer. But p16 was not observed in 0 % in dysplasia and 7 % of invasive cancer. But p16 was not observed in 0 % in dysplasia and 28.6 % in invasive cancer. There was no simultaneous negative pRb and p16 expression. There was no relations between p53 and p16, pRb. As a results, the expression of p53, pRb, p16 was co-related well with molecular genetic changes and inactivation of p53, pRb, p16 was co-related well with molecular genetic changes and inactivation of p53 and pRb was common and early event in esophageal carcinogenesis in Korea, but inactivation of p16 was a infrequent change. (author). 17 refs., 2 tabs., 7 figs

  15. Ink jet assisted metallization for low cost flat plate solar cells

    Science.gov (United States)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  16. Absent/weak CD44 intensity and positive human papillomavirus (HPV) status in oropharyngeal squamous cell carcinoma indicates a very high survival

    International Nuclear Information System (INIS)

    Näsman, Anders; Nordfors, Cecilia; Grün, Nathalie; Munck-Wikland, Eva; Ramqvist, Torbjörn; Marklund, Linda; Lindquist, David; Dalianis, Tina

    2013-01-01

    Patients with human papillomavirus DNA positive (HPV DNA +) oropharyngeal squamous cell carcinoma (OSCC) have better clinical outcome than those with HPV DNA negative (HPV DNA −) OSCC upon intensive oncological treatment. All HPV DNA + OSCC patients may not require intensive treatment, however, but before potentially deintensifying treatment, additional predictive markers are needed. Here, we examined HPV, p16 INK4a , and CD44 in OSCC in correlation to clinical outcome. Pretreatment tumors from 290 OSCC patients, the majority not receiving chemotherapy, were analyzed for HPV DNA by Luminex and for p16 INK4a and CD44 by immunohistochemistry. 225/290 (78%) tumors were HPV DNA + and 211/290 (73%) overexpressed p16 INK4a , which correlated to presence of HPV (P < 0.0001). Presence of HPV DNA, absent/weak CD44 intensity staining correlated to favorable 3-year disease-free survival (DFS) and overall survival (OS) by univariate and multivariate analysis, and likewise for p16 INK4a by univariate analysis. Upon stratification for HPV, HPV DNA + OSCC with absent/weak CD44 intensity presented the significantly best 3-year DFS and OS, with >95% 3-year DFS and OS. Furthermore, in HPV DNA + OSCC, p16 INK4a + overexpression correlated to a favorable 3-year OS. In conclusion, patients with HPV DNA + and absent/weak CD44 intensity OSCC presented the best survival and this marker combination could possibly be used for selecting patients for tailored deintensified treatment in prospective clinical trials. Absence of/weak CD44 or presence of human papillomavirus (HPV) DNA was shown as a favorable prognostic factors in tonsillar and tongue base cancer. Moreover, patients with the combination of absence of/weak CD44 and presence of HPV DNA presented a very favorable outcome. Therefore, we suggest that this marker combination could potentially be used to single out patients with a high survival that could benefit from a de-escalated oncological treatment

  17. Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma.

    Science.gov (United States)

    Bhagat, Rahul; Kumar, Sandeep Sriram; Vaderhobli, Shilpa; Premalata, Chennagiri S; Pallavi, Venkateshaiah Reddihalli; Ramesh, Gawari; Krishnamoorthy, Lakshmi

    2014-09-01

    Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.

  18. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    Science.gov (United States)

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  19. A stretchable and screen-printable conductive ink for stretchable electronics

    Science.gov (United States)

    Mohammed, Anwar; Pecht, Michael

    2016-10-01

    Stretchable electronics can offer an added degree of design freedom and generate products with unprecedented capabilities. Stretchable conductive ink serving as interconnect, is a key enabler for stretchable electronics. This paper focuses on the development of a stretchable and screen printable conductive ink which could be stretched more than 500 cycles at 20% strain while maintaining electrical and mechanical integrity. The screen printable and stretchable conductive ink developed in this paper marks an important milestone for this nascent technology.

  20. MCT4 surpasses the prognostic relevance of the ancillary protein CD147 in clear cell renal cell carcinoma.

    Science.gov (United States)

    Fisel, Pascale; Stühler, Viktoria; Bedke, Jens; Winter, Stefan; Rausch, Steffen; Hennenlotter, Jörg; Nies, Anne T; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Kruck, Stephan; Schwab, Matthias; Schaeffeler, Elke

    2015-10-13

    Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation. CD147 protein expression was assessed in two independent ccRCC-cohorts (n = 186, n = 59) by immunohistochemical staining of tissue microarrays and subsequent manual as well as automated software-supported scoring (Tissue Studio, Definien sAG). Epigenetic regulation of CD147 was investigated using RNAseq and DNA methylation data of The Cancer Genome Atlas. These results were validated in our cohort. Relevance of prognostic models for cancer-specific survival, comprising CD147 and MCT4 expression or SLC16A3 DNA methylation, was compared using chi-square statistics. CD147 protein expression generated with Tissue Studio correlated significantly with those from manual scoring (P CD147 in ccRCC. Association of CD147 expression with patient outcome differed between cohorts. DNA methylation in the CD147/BSG promoter was not associated with expression. Comparison of prognostic relevance of CD147/BSG and MCT4/SLC16A3, showed higher significance for MCT4 expression and superior prognostic power for DNA methylation at specific CpG-sites in the SLC16A3 promoter (e.g. CD147 protein: P = 0.7780,Harrell's c-index = 53.7% vs. DNA methylation: P = 0.0076, Harrell's c-index = 80.0%). Prognostic significance of CD147 protein expression could not surpass that of MCT4, especially of SLC16A3 DNA methylation, corroborating the role of MCT4 as prognostic biomarker for ccRCC.