WorldWideScience

Sample records for suppressor glycine trnas

  1. Analysis of genetic code ambiguity arising from nematode-specific misacylated tRNAs.

    Directory of Open Access Journals (Sweden)

    Kiyofumi Hamashima

    Full Text Available The faithful translation of the genetic code requires the highly accurate aminoacylation of transfer RNAs (tRNAs. However, it has been shown that nematode-specific V-arm-containing tRNAs (nev-tRNAs are misacylated with leucine in vitro in a manner that transgresses the genetic code. nev-tRNA(Gly (CCC and nev-tRNA(Ile (UAU, which are the major nev-tRNA isotypes, could theoretically decode the glycine (GGG codon and isoleucine (AUA codon as leucine, causing GGG and AUA codon ambiguity in nematode cells. To test this hypothesis, we investigated the functionality of nev-tRNAs and their impact on the proteome of Caenorhabditis elegans. Analysis of the nucleotide sequences in the 3' end regions of the nev-tRNAs showed that they had matured correctly, with the addition of CCA, which is a crucial posttranscriptional modification required for tRNA aminoacylation. The nuclear export of nev-tRNAs was confirmed with an analysis of their subcellular localization. These results show that nev-tRNAs are processed to their mature forms like common tRNAs and are available for translation. However, a whole-cell proteome analysis found no detectable level of nev-tRNA-induced mistranslation in C. elegans cells, suggesting that the genetic code is not ambiguous, at least under normal growth conditions. Our findings indicate that the translational fidelity of the nematode genetic code is strictly maintained, contrary to our expectations, although deviant tRNAs with misacylation properties are highly conserved in the nematode genome.

  2. Exploiting tRNAs to Boost Virulence

    Directory of Open Access Journals (Sweden)

    Suki Albers

    2016-01-01

    Full Text Available Transfer RNAs (tRNAs are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.

  3. A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization.

    Directory of Open Access Journals (Sweden)

    Suchandra DebRoy

    Full Text Available Glycine N-methyltransferase (GNMT, an abundant cytosolic enzyme, catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM to glycine generating S-adenosylhomocysteine and sarcosine (N-methylglycine. This reaction is regulated by 5-methyltetrahydrofolate, which inhibits the enzyme catalysis. In the present study, we observed that GNMT is strongly down regulated in human cancers and is undetectable in cancer cell lines while the transient expression of the protein in cancer cells induces apoptosis and results in the activation of ERK1/2 as an early pro-survival response. The antiproliferative effect of GNMT can be partially reversed by treatment with the pan-caspase inhibitor zVAD-fmk but not by supplementation with high folate or SAM. GNMT exerts the suppressor effect primarily in cells originated from malignant tumors: transformed cell line of non-cancer origin, HEK293, was insensitive to GNMT. Of note, high levels of GNMT, detected in regenerating liver and in NIH3T3 mouse fibroblasts, do not produce cytotoxic effects. Importantly, GNMT, a predominantly cytoplasmic protein, was translocated into nuclei upon transfection of cancer cells. The presence of GNMT in the nuclei was also observed in normal human tissues by immunohistochemical staining. We further demonstrated that the induction of apoptosis is associated with the GNMT nuclear localization but is independent of its catalytic activity or folate binding. GNMT targeted to nuclei, through the fusion with nuclear localization signal, still exerts strong antiproliferative effects while its restriction to cytoplasm, through the fusion with nuclear export signal, prevents these effects (in each case the protein was excluded from cytosol or nuclei, respectively. Overall, our study indicates that GNMT has a secondary function, as a regulator of cellular proliferation, which is independent of its catalytic role.

  4. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    Science.gov (United States)

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.

  5. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications.

    Science.gov (United States)

    Dewe, Joshua M; Whipple, Joseph M; Chernyakov, Irina; Jaramillo, Laura N; Phizicky, Eric M

    2012-10-01

    The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.

  6. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  7. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    Science.gov (United States)

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  8. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    Science.gov (United States)

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  9. Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases

    International Nuclear Information System (INIS)

    Carre, D.S.; Thomas, G.; Favre, A.

    1974-01-01

    The behavior of mixed E. coli tRNAs ''cross-linked'' by irradiation with near ultraviolet light (310-400 nm) has been compared to that of the intact molecules in two enzymatic processes. No change in the rate and extent of the repair of the pCpCpA 3' terminus of tRNA by purified E. coli tRNA nucleotidyltransferase can be detected. In contrast, complex data were obtained in the acylation reaction. They can be understood using other tRNA specific modifications as well as our present knowledge of E. coli tRNA sequences and rare base content [fr

  10. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  11. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  12. tRNAs: cellular barcodes for amino acids

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Chen, Shawn; Dare, Kiley

    2010-01-01

    The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has...... also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond...... translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis....

  13. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  14. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  15. Synthesis and distribution of N-benzyloxycarbonyl-[14C]-glycine, a lipophilic derivative of glycine

    International Nuclear Information System (INIS)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H.

    1995-01-01

    N-benzyloxycarbonyl[ 14 C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U- 14 C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author)

  16. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  17. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  18. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  19. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis

    International Nuclear Information System (INIS)

    Castric, P.A.

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [ 14 C]threonine to [ 14 C]glycine. H14CN is produced with low dilution of label from either [1- 14 C]glycine or [2- 14 C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2- 14 C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed

  1. Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs.

    Science.gov (United States)

    Wurm, Jan Philip; Griese, Marco; Bahr, Ute; Held, Martin; Heckel, Alexander; Karas, Michael; Soppa, Jörg; Wöhnert, Jens

    2012-03-01

    tRNAs from all three kingdoms of life contain a variety of modified nucleotides required for their stability, proper folding, and accurate decoding. One prominent example is the eponymous ribothymidine (rT) modification at position 54 in the T-arm of eukaryotic and bacterial tRNAs. In contrast, in most archaea this position is occupied by another hypermodified nucleotide: the isosteric N1-methylated pseudouridine. While the enzyme catalyzing pseudouridine formation at this position is known, the pseudouridine N1-specific methyltransferase responsible for this modification has not yet been experimentally identified. Here, we present biochemical and genetic evidence that the two homologous proteins, Mja_1640 (COG 1901, Pfam DUF358) and Hvo_1989 (Pfam DUF358) from Methanocaldococcus jannaschii and Haloferax volcanii, respectively, are representatives of the methyltransferase responsible for this modification. However, the in-frame deletion of the pseudouridine N1-methyltransferase gene in H. volcanii did not result in a discernable phenotype in line with similar observations for knockouts of other T-arm methylating enzymes.

  2. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes.

    Directory of Open Access Journals (Sweden)

    Rodolfo García-Contreras

    2008-06-01

    Full Text Available We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB that attenuates Hha toxicity.

  3. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... order on glycine from China. SUMMARY: The Commission hereby gives notice that it will proceed with a... determine whether revocation of the antidumping duty order on glycine from China would be likely to lead to...

  4. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... U.S.C. 1675(c)), that revocation of the antidumping duty order on glycine from China would be likely... contained in USITC Publication 4255 (August 2011), entitled Glycine from China: Investigation No. 731-TA-718...

  5. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  6. Glycine serine interconversion in the rooster

    International Nuclear Information System (INIS)

    Sugahara, Michihiro; Kandatsu, Makoto

    1976-01-01

    Serine was isolated by the column chromatography from the hydrolyzates of proteins of the serum, the liver and the pectoral muscle which were obtained from the roosters fed a diet containing 2- 14 C glycine for 16 - 17 days. The carbon chain of serine was cut off by treating with sodium periodate. The specific activity of each carbon (as barium carbonate) was estimated. Carboxyl carbon had little radioactivity. The specific activity of hydroxymethyl carbon was 10 - 19% of that of methylene carbon. Glycine isolated from the same hydrolyzates was degraded by ninhydrin oxidation. Formaldehyde produced from 2-C was oxidized to carbon dioxide by treating with mercuric chloride. Carboxyl carbon had little radioactivity. The specific activities of 2-C of glycine and 2-C of serine in the same tissue protein were compared. The ratio of serine 2-C/glycine 2-C was between 0.7 - 1.5. These results seem to indicate that glycine directly converts to serine in the rooster. The quantitative significance of the pathways of glycine (serine) biosynthesis is discussed. (auth.)

  7. The complete mitochondrial genome sequence of the spider habronattus oregonensis reveals rearranged and extremely truncated tRNAs

    International Nuclear Information System (INIS)

    Masta, Susan E.; Boore, Jeffrey L.

    2004-01-01

    We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs appear to be lacking, because fully paired acceptor stems are not possible and because the downstream sequences instead encode adjacent genes. Hence, these appear to be among the smallest known tRNA genes. We postulate that an RNA editing mechanism must exist to restore the 3' aminoacyl acceptor stems in order to allow the tRNAs to function. At least seven tRN As are rearranged with respect to the chelicerate Limulus polyphemus, although the arrangement of the protein-coding genes is identical. Most mitochondrial protein-coding genes of H. oregonensis have ATN as initiation codons, as commonly found in arthropod mtDNAs, but cytochrome oxidase subunit 2 and 3 genes apparently use UUG as an initiation codon. Finally, many of the gene sequences overlap one another and are truncated. This 14,381 bp genome, the first mitochondrial genome of a spider yet sequenced, is one of the smallest arthropod mitochondrial genomes known. We suggest that post transcriptional RNA editing can likely maintain function of the tRNAs while permitting the accumulation of mutations that would otherwise be deleterious. Such mechanisms may have allowed for the minimization of the spider mitochondrial genome

  8. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  9. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  10. Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases

    Directory of Open Access Journals (Sweden)

    Tukalo M. A.

    2013-07-01

    Full Text Available In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nucleotides (type 2 tRNA rather than usual 4 or 5 nucleotides (type 1 tRNA. In this review we have summarized the results of our research on the structural basis for recognition and discrimination of type 2 tRNAs by Thermus thermophilus seryl-, tyrosyl- and leucyl-tRNA synthetases (SerRS, TyrRS and LeuRS obtained by X-ray crystallography and chemical probing tRNA in solution. Crystal structures are now known of all three aminoacyl-tRNA synthetases complexed with type 2 tRNAs and the different modes of tRNA recognition represented by these structures will be discussed. In particular, emphasis will be given to the results on recognition of characteristic shape of type 2 tRNAs by cognate synthetases. In tRNASer, tRNATyr and tRNALeu the orientation of the long variable arm with respect to the body of the tRNA is different and is controlled by different packing of the core. In the case of SerRS the N-terminal domain and in the case of TyrRS, the C-terminal domain, bind to the characteristic long variable arm of the cognate RNA, thus recognizing the unique shape of the tRNA. The core of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by the crystal structure of tRNALeu complexed with T. thermophilus LeuRS and by probing a ligand-free tRNA by specific chemical reagents in solution. In the crystal structure of the LeuRS-tRNALeu complex the unique D-stem structure is recognized by the C-terminal domain of LeuRS and these data are in good agreement with those obtained in solution. LeuRS has canonical class I mode of tRNA recognition, approaching the tRNA acceptor stem from the D-stem and minor groove of the acceptor stem side. SerRS also has canonical class II mode of tRNA recognition and approaches tRNASer from opposite, variable stem and major groove of acceptor stem site. And finally, TyrRS in strong

  11. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dextrose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Dextrose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b) Sponsor...

  12. Functional reconstitution of the glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr. (Universidad Autonoma de Madrid (Spain))

    1989-07-25

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of ({sup 3}H)strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.

  13. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  14. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  15. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  16. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  17. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  18. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  19. Sensitization of glycine (spectrophotometric read-out) dosimetric system using sorbitol

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2009-01-01

    Glycine spectrophotometric read-out systems have a useful dose range of 15-4000 Gy. An attempt was made to sensitize it using sorbitol as a sensitizer. Optimum compositions of aqueous acidic solutions of ferrous ammonium sulphate-xylenol orange (XO), i.e. FX and sorbitol-ferrous ammonium sulphate-xylenol orange, i.e. SFX, for 400 mg of glycine, which gives maximum dosimetric response for any given dose, were established. Molar absorption coefficient values of ferric-XO-glycine complex, i.e. ε-values, were determined for glycine system in FX and SFX. These values were found to be 8410 and 15,000 m 2 mol -1 respectively, indicating that an enhancement or sensitivity factor of about 1.78 can be achieved by sorbitol for glycine in SFX. This factor was further confirmed by measuring the gamma dose response of glycine in FX and in SFX for four different doses, viz. 37.8, 75.5, 151 and 302 Gy. It was observed that dose response of glycine in SFX is about 77% more than that of glycine in FX. The maximum variation observed in response of glycine in FX or SFX was found to be within ±1.5%.

  20. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  1. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  2. An unusual characteristic "flower-like" pattern: flash suppressor burns.

    Science.gov (United States)

    Gurcan, Altun

    2012-04-01

    The case on contact shots from firearms with a flash suppressor is rare. When a rifle fitted with a flash suppressor is fired, the emerging soot-laden gas in the barrel escapes from the slits of the flash suppressor. If the shot is contact or near contact, the flash suppressor will produce a characteristic "flower-like" pattern of seared, blackened zones around the entrance. This paper presents the injury pattern of the flash suppressor in a 29-year-old man who committed suicide with a G3 automatic infantry rifle.

  3. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  4. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  5. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, Hai-Ying; van Vliet, Erwin A.; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K.; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the

  6. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, H-Y; van Vliet, E.A.; Bright, K-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D.

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-d-aspartate receptor (NMDAR). In hippocampus, the

  7. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  8. The light activated alkylation of glycine

    International Nuclear Information System (INIS)

    Knowles, H.S.

    2001-04-01

    The work contained in this thesis focuses on the light-initiated alkylation of the α-centre of glycine compounds. The elaboration of the glycines in this manner represents a versatile, clean and cost effective alternative to ionic routes to higher α-amino acids. Preliminary investigations demonstrated that a range of nitrogen protecting groups were compatible with the radical alkylation. A variety of solvents could also be used although solvents with easily removable hydrogen atoms were found to interfere with the alkylation. Furthermore, a number of photo-initiators were investigated and the use of di-tert-butyl peroxide was found to afford the desired phenylalanine products in up to 27% yield (54% based on recovered starting material) when toluene was used as the alkylating agent. A range of different precursor concentrations was investigated and it was found that the optimum concentration of the glycine precursor was 0.13 mol dm -3 ; the phenylalanine yields were reduced when the concentration was less than this value. Owing to the poor UV absorption by di-tert-butyl peroxide, benzophenone (an effective photosensitiser) was added to the reaction mixture and this was shown to increase the alkylation yields. The ratio of reagents which produced the highest yield of phenylalanine products was found to be 1 : 5 : 5 : 10 for glycine : di-tert-butyl peroxide : benzophenone : toluene. This produced the phenylalanine product in up to 37% yield (57% based on recovered starting material). A number of substituents. (e.g. F, Cl etc.) could be attached to the aromatic ring of the toluene alkylating agent, affording substituted phenylalanines in 5 - 36% under these conditions. The formation of chiral phenylalanine products was probed by reacting glycine precursors bearing chiral auxiliaries. However, low diastereoselectivities were observed; the d.r. ranged from 1 : 1.1 to 1 : 1.5 only when chiral ester and amide protecting groups were used. In the final chapter, the

  9. Induction of suppressor cells in vitro by Candida albicans.

    Science.gov (United States)

    Cuff, C F; Rogers, C M; Lamb, B J; Rogers, T J

    1986-06-01

    Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.

  10. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  11. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  12. Glycine-U-14C metabolism in young rats fed the 10% casein diets containing excess glycine

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Wakatsuki, Tetsuo; Muramatsu, Keiichiro

    1975-01-01

    Nine hours after rats fed ad libitum for 14 days a 10% casein diet (10C), a 10% casein diet containing 7% glycine (10C7G) and a 10% casein diet containing 7% glycine with 1.4% L-arginine.HCl and 0.9% L-methionine (10C7GArgMet) were force-fed 10 ml of each diet suspension containing 5μCi of glycine-U- 14 C per 100 g of body weight, the radioactivity recoveries of 14 C in expired CO 2 , tissue components and urine were determined. The radioactivity recovery of 14 C in the expired CO 2 of the 10C7G group was generally higher than that of the 10C7GArgMet group. The recovery of 14 C in the trichloroacetic acid (TCA) soluble fraction of muscle of the 10C7G and the 10C7GArgMet groups were greater than that of the 10C group. The recoveries of 14 C in the TCA soluble fraction and protein of plasma and liver, and the muscle protein were negligible in all the groups. The amount of glycine- 14 C incorporated into the carcass lipids of the 10C7GArgMet group was larger than that of other groups. The recoveries of 14 C in the liver and muscle glycogen, and liver lipids were remarkably small in all the groups. From the above results, it was suggested that the degradation of glycine- 14 C to expiratory CO 2 was not accelerated, but the rate of incorporation of the isotope into carcass lipids was increased by the supplementation of L-arginine and L-methionine to the 10C7G diet as compared with that of rats fed the 10C7G diet. (JPN)

  13. Off and back-on again: a tumor suppressor's tale.

    Science.gov (United States)

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  14. Classification of suppressor additives based on synergistic and antagonistic ensemble effects

    Energy Technology Data Exchange (ETDEWEB)

    Broekmann, P., E-mail: peter.broekmann@iac.unibe.ch [BASF SE, Global Business Unit Electronic Materials, 67056 Ludwigshafen (Germany); Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Fluegel, A.; Emnet, C.; Arnold, M.; Roeger-Goepfert, C.; Wagner, A. [BASF SE, Global Business Unit Electronic Materials, 67056 Ludwigshafen (Germany); Hai, N.T.M. [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Mayer, D. [BASF SE, Global Business Unit Electronic Materials, 67056 Ludwigshafen (Germany)

    2011-05-01

    Highlights: > Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential transient measurements. > These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. > In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). - Abstract: Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper

  15. An unusual characteristic “flower-like” pattern: flash suppressor burns

    OpenAIRE

    Gurcan, Altun

    2012-01-01

    The case on contact shots from firearms with a flash suppressor is rare. When a rifle fitted with a flash suppressor is fired, the emerging soot-laden gas in the barrel escapes from the slits of the flash suppressor. If the shot is contact or near contact, the flash suppressor will produce a characteristic “flower-like” pattern of seared, blackened zones around the entrance. This paper presents the injury pattern of the flash suppressor in a 29-year-old man who committed suicide with a G3 aut...

  16. An unusual characteristic “flower-like” pattern: flash suppressor burns

    Science.gov (United States)

    Gurcan, Altun

    2012-01-01

    The case on contact shots from firearms with a flash suppressor is rare. When a rifle fitted with a flash suppressor is fired, the emerging soot-laden gas in the barrel escapes from the slits of the flash suppressor. If the shot is contact or near contact, the flash suppressor will produce a characteristic “flower-like” pattern of seared, blackened zones around the entrance. This paper presents the injury pattern of the flash suppressor in a 29-year-old man who committed suicide with a G3 automatic infantry rifle. PMID:23935280

  17. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors.

    Science.gov (United States)

    Alfonzo, Juan D; Lukeš, Julius

    2011-06-01

    Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.

  18. Fast heavy-ion radiation damage of glycine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryosuke [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-12-15

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  19. Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.

    Science.gov (United States)

    Dicke, J M; Verges, D; Kelley, L K; Smith, C H

    1993-01-01

    Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.

  20. Measurand transient signal suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  1. Suppressor Effects of Coping Strategies on Resilience

    Science.gov (United States)

    Yoon, Jae ho; Lee, Ji hae; Lee, Chae Yeon; Cho, Minhee; Lee, Sang Min

    2014-01-01

    The purpose of the current study is to demonstrate a significant suppressor effect among coping strategies on resilience. Two different samples were used to replicate the suppressor effect. Participants in the first example were 391 adolescents (middle school students) in Korea, and participants in the second example were 282 young adults…

  2. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  3. Production of 1-carbon units from glycine is extensive in healthy men and women.

    Science.gov (United States)

    Lamers, Yvonne; Williamson, Jerry; Theriaque, Douglas W; Shuster, Jonathan J; Gilbert, Lesa R; Keeling, Christine; Stacpoole, Peter W; Gregory, Jesse F

    2009-04-01

    Glycine undergoes decarboxylation in the glycine cleavage system (GCS) to yield CO(2), NH(3), and a 1-carbon unit. CO(2) also can be generated from the 2-carbon of glycine by 10-formyltetrahydrofolate-dehydrogenase and, after glycine-to-serine conversion by serine hydroxymethyltransferase, from the tricarboxylic acid cycle. To evaluate the relative fates of glycine carbons in CO(2) generation in healthy volunteers (3 male, 3 female, aged 21-26 y), primed, constant infusions were conducted using 9.26 micromol x h(-1) x kg(-1) of [1,2-(13)C]glycine and 1.87 micromol x h(-1) x kg(-1) of [5,5,5-(2)H(3)]leucine, followed by an infusion protocol using [1-(13)C]glycine as the glycine tracer. The time period between the infusion protocols was >6 mo. In vivo rates of whole-body glycine and leucine flux were nearly identical in protocols with [1,2-(13)C]glycine and [5,5,5-(2)H(3)]leucine and with [1-(13)C]glycine and [5,5,5-(2)H(3)]leucine tracers, which showed high reproducibility between the tracer protocols. Using the [1-(13)C]glycine tracer, breath CO(2) data showed a total rate of glycine decarboxylation of 96 +/- 8 micromol x h(-1) x kg(-1), which was 22 +/- 3% of whole-body glycine flux. In contrast, infusion of [1,2-(13)C]glycine yielded a glycine-to-CO(2) flux of 146 +/- 37 micromol x h(-1) x kg(-1) (P = 0.026). By difference, this implies a rate of CO(2) formation from the glycine 2-carbon of 51 +/- 40 micromol x h(-1) x kg(-1), which accounts for approximately 35% of the total CO(2) generated in glycine catabolism. These findings also indicate that approximately 65% of the CO(2) generation from glycine occurs by decarboxylation, primarily from the GCS. Further, these results suggest that the GCS is responsible for the entry of 5,10-methylenetetrahydrofolate into 1-carbon metabolism at a very high rate ( approximately 96 micromol x h(-1) x kg(-1)), which is approximately 20 times the demand for methyl groups for homocysteine remethylation.

  4. Genetics Home Reference: glycine encephalopathy

    Science.gov (United States)

    ... seizures. As they get older, many develop intellectual disability, abnormal movements, and behavioral problems. Other atypical types of glycine encephalopathy appear later in childhood or adulthood ...

  5. First-principles study of the formation of glycine-producing radicals from common interstellar species

    Science.gov (United States)

    Sato, Akimasa; Kitazawa, Yuya; Ochi, Toshiro; Shoji, Mitsuo; Komatsu, Yu; Kayanuma, Megumi; Aikawa, Yuri; Umemura, Masayuki; Shigeta, Yasuteru

    2018-03-01

    Glycine, the simplest amino acid, has been intensively searched for in molecular clouds, and the comprehensive clarification of the formation path of interstellar glycine is now imperative. Among all the possible glycine formation pathways, we focused on the radical pathways revealed by Garrod (2013). In the present study, we have precisely investigated all the chemical reaction steps related to the glycine formation processes based on state-of-the-art density functional theory (DFT) calculations. We found that two reaction pathways require small activation barriers (ΔE‡ ≤ 7.75 kJ mol-1), which demonstrates the possibility of glycine formation even at low temperatures in interstellar space if the radical species are generated. The origin of carbon and nitrogen in the glycine backbone and their combination patterns are further discussed in relation to the formation mechanisms. According to the clarification of the atomic correspondence between glycine and its potential parental molecules, it is shown that the nitrogen and two carbons in the glycine can originate in three common interstellar molecules, methanol, hydrogen cyanide, and ammonia, and that the source molecules of glycine can be described by any of their combinations. The glycine formation processes can be categorized into six patterns. Finally, we discussed two other glycine formation pathways expected from the present DFT calculation results.

  6. Growth and antimicrobial studies of γ-glycine crystal grown using CuSO4

    Science.gov (United States)

    Vijayalakshmi, V.; Dhanasekaran, P.

    2018-05-01

    In the current work single crystals of pure and 1M of CuSO4-added glycine were grown by slow evaporation method and its optical and antimicrobial properties were studied. The Polymorph of glycine transforms from a-glycine to γ-glycine due to the incorporation of CuSO4 on glycine was affirmed by the PXRD and FTIR studies. The impact of CuSO4 on the antimicrobial action of the grown samples was deliberate by utilizing the agar diffusion method.

  7. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs.

    Science.gov (United States)

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Babu, I Ramesh; Chan, Clement T Y; Liu, Yuchen; Söll, Dieter; Blum, Paul; Kuwahara, Masayasu; Dedon, Peter C; Rajbhandary, Uttam L

    2014-02-01

    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2(Ile)) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2(Ile) binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.

  8. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    Science.gov (United States)

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  9. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  10. A weak link in metabolism: the metabolic capacity for glycine ...

    Indian Academy of Sciences (India)

    Prakash

    2009-12-03

    Dec 3, 2009 ... glyoxylate, threonine and trimethyllysine (carnitine synthesis), most of them ...... Participation of glycine in porphyrin biosynthesis. Eight glycine ...... normal and streptozotocin-induced diabetic rats; J. Dent. Res. 63 23–27.

  11. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  12. Molecular characterisation of a recombinant bovine glycine N-acyltransferase / Christoffel Petrus Stephanus Badenhorst

    OpenAIRE

    Badenhorst, Christoffel Petrus Stephanus

    2010-01-01

    Conjugation of glycine to organic acids is an important detoxification mechanism. Metabolites of aspirin and industrial solvents, benzoic acid found in plant material and many endogenous metabolites are detoxified by conjugation to glycine. The enzyme responsible for glycine conjugation, glycine N-acyltransferase (GL YAT), is investigated in this study. The enzyme is also important for the management of organic acidemias which are inherited metabolic diseases. However, not all ...

  13. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  14. Nitrogen functionality of glucose-glycine condensate; Glucose to glycine tono shukugo hanno (shukugobutsuchu no chisso kagobutsu no keitai bunseki)

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, C.; Yoshioka, T.; Komano, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology; Sugimoto, Y.; : Miki, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    In order to clarify a humification process in the early stage of coalification, the nitrogen functionality of prepared glucose-glycine condensate was studied experimentally. In experiment, the condensate was prepared by heating the mixture of glucose, glycine and water in a autoclave at 130{degree}C for 50 hours, and furthermore heating the produced solid material in water at 300{degree}C. After the condensate was hydrocracked, the fraction, condensate and hydrocracking residue were analyzed by elementary analyzer, {sup 13}C-NMR, XPS, FT-IR, capillary GC-FID/NPD and GC-MS. As a result, the glucose-glycine condensate could be arranged on the basis of three types of nitrogen such as pyridine, pyrrole and quaternary amine type. Pyridine type nitrogen increased, while quaternary amine type one decreased with an increase in heating treatment temperature. Rich pyrrole type nitrogen and poor pyridine type one were found in light nitrogen compounds in hydrocracked products. 2 refs., 4 figs., 2 tabs.

  15. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  16. Glycine facilitates gamma-glutamylcysteinylethyl ester-mediated increase in liver glutathione level.

    Science.gov (United States)

    Nishida, K; Ohta, Y; Ishiguro, I

    1997-08-27

    gamma-Glutamylcysteinylethyl ester (gamma-GCE) increases reduced glutathione (GSH) levels in GSH-depleted rat hepatocytes. Because glycine, a constituent of GSH, exists at 0.3 to 0.4 mM in rat plasma, we examined the influence of glycine added to the medium on the action of gamma-GCE to increase GSH levels in the rat hepatocytes. Glycine (0.2-0.8 mM) dose-dependently enhanced gamma-GCE-mediated increase in intracellular GSH levels with an increase in intracellular gamma-GCE levels. These results indicate that exogenous glycine facilitates gamma-GCE-mediated increase in intracellular GSH levels in rat hepatocytes possibly by enhancing the uptake of gamma-GCE into the cells.

  17. Impaired absorption of marked oligopeptide Glycine-I Tyrosine-Glycine after successful autologous-allotopic ileal mucosa transplantation in beagles.

    Science.gov (United States)

    Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z

    2004-10-01

    After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.

  18. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2.

    Science.gov (United States)

    Mostyn, Shannon N; Carland, Jane E; Shimmon, Susan; Ryan, Renae M; Rawling, Tristan; Vandenberg, Robert J

    2017-09-20

    It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC 50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.

  19. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  20. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  1. Rapid Methods to Distinguish Heterodera schachtii from Heterodera glycines Using PCR Technique

    Directory of Open Access Journals (Sweden)

    Hyoung Rai Ko

    2017-09-01

    Full Text Available The purpose of this study was to develop rapid methods for distinguishing between Heterodera schachtii and H. glycines detected from chinese cabbage fields of highland in Gangwon, Korea. To do this, we performed PCR-RFLP and PCR with the primers set developed in this study for GC147, GC408 and PM001 population, H. schachtii, and YS224, DA142 and BC115 population, H. glycines. Eight restriction enzymes generated RFLP profiles of mtDNA COI region for populations of H. schachtii and H. glycines, repectively. As a result, treatment of two restriction enzymes, RsaI and HinfI, were allowed to distinguish H. schachtii from H. glycines based on the differences of DNA band patterns. The primer set, #JBS1, #JBG1 and #JB3R, amplified specific fragments with 277 and 339 bp of H. schachtii, 339 bp of H. glycines, respectively, while it did not amplify fragments from three root-knot nematodes and two root-lesion nematodes. Thus, the primer set developed in this study could be a good method, which is used to distinguish between H. schachtii and H. glycines.

  2. A DFT study of adsorption of glycine onto the surface of BC_2N nanotube

    International Nuclear Information System (INIS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-01-01

    Highlights: • Glycine adsorption over the pristine BC_2N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH_2CH_2COOH) with BC_2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC_2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC_2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  3. Induction of specific suppressor T cells in vitro

    International Nuclear Information System (INIS)

    Eardley, D.D.; Gershon, R.K.

    1976-01-01

    We describe conditions for generating sheep red blood cell-specific suppressor T cells in Mishell-Dutton cultures. The production of specific suppressor cells is favored by increasing antigen dose in the initial culture but can be produced by transferring more cells when lower doses of antigen are used. Transfer of small numbers of cells cultured with low doses of antigen leads to a specific helper effect. Transfer of large numbers of educated cells leads to nonspecific suppression. Suppression can be effected by the effluent cells from nylon wool columns which do not make detectable PFC. A fraction of these cells become resistant to treatment with anti-T cell sera and complement after culture. The suppressor cells are radiation sensitive and must be able to synthesize protein to suppress. They take 2 to 3 days of education to reach maximum suppressive efficiency and will not suppress cultures if added 2 to 3 days after culture initiation. Their production is favored by the absence of mercaptoethanol, suggesting that the observed suppression is not ''too much help.'' The ability to generate specific suppressor cells in vitro should be of great benefit in determining the factors that regulate their appearance in vivo

  4. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures

    Science.gov (United States)

    Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C.

    2018-01-01

    At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.

  5. A critical role for glycine transporters in hyperexcitability disorders

    Directory of Open Access Journals (Sweden)

    Robert J Harvey

    2008-03-01

    Full Text Available Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle refl ex, known as hyperekplexia (OMIM 149400. This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and nonsense mutations in the glycine receptor (GlyR α1 subunit gene (GLRA1 on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB and the GlyR clustering proteins gephyrin (GPNH and collybistin (ARHGEF9. Recent studies of the Na+ /Cl--dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899. These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

  6. Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. Characterization of a soluble suppressor of B cell immunoglobulin production

    International Nuclear Information System (INIS)

    Fleisher, T.A.; Greene, W.C.; Blaese, R.M.; Waldmann, T.A.

    1981-01-01

    Human peripheral blood mononuclear cells (PBMC) activated with the mitogenic lectin concanavalin A (Con A) elaborate a soluble immune suppressor supernatant (SISS) that contains at least 2 distinct suppressor factors. One of these, SISS-B, inhibits polyclonal B cell immunoglobulin production, whereas the other, SISS-T, suppresses T cell proliferation to both mitogens and antigens. The latter mediator is discussed in the companion paper. Characteristics of the human soluble suppressor of B cell immunoglobulin production (SISS-B) include: 1) inhibition by a noncytotoxic mechanism, 2) loss of activity in the presence of the monosaccharide L-rhamnose, 3) appearance within 8 to 16 hr after the addition of Con A, 4) elaboration by cells irradiated with 500 or 2000 rads, 5) production by highly purified T cells, 6) stability at pH 2.5 but instability at 56/sup o/C, and 7) m.w. of 60 to 80,000. These data indicate that after Con A activation, selected T cells not only become potent suppressor cells, but also generate a soluble saccharide-specific factor(s) that inhibits polyclonal immunoglobulin production by human B cells

  7. Infrared suppressor effect on T63 turboshaft engine performance

    Science.gov (United States)

    Bailey, E. E.; Civinskas, K. C.; Walker, C. L.

    1978-01-01

    Tests were conducted to determine if there are performance penalties associated with the installation of infrared (IR) suppressors on the T63-A-700 turboshaft engine. The testing was done in a sea-level, static test cell. The same engine (A-E402808 B) was run with the standard OH-58 aircraft exhaust stacks and with the ejector-type IR suppressors in order to make a valid comparison. Repeatability of the test results for the two configurations was verified by rerunning the conditions over a period of days. Test results showed no measurable difference in performance between the standard exhaust stacks and the IR suppressors.

  8. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  9. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    Science.gov (United States)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  10. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  11. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  12. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers

    Directory of Open Access Journals (Sweden)

    Makoto eBannai

    2012-04-01

    Full Text Available Approximately 30% of the general population suffers from insomnia. Given that insomnia causes many problems, amelioration of the symptoms is crucial. Recently, we found that a nonessential amino acid, glycine subjectively and objectively improves sleep quality in humans who have difficulty sleeping. We evaluated the effects of glycine on daytime sleepiness, fatigue and performances in sleep-restricted healthy subjects. Sleep was restricted to 25% less than the usual sleep time for three consecutive nights. Before bedtime, 3 g of glycine or placebo were ingested, sleepiness and fatigue were evaluated using the visual analogue scale (VAS and a questionnaire, and performance were estimated by personal computer (PC performance test program on the following day. In subjects given glycine, the VAS data showed a significant reduction in fatigue and a tendency toward reduced sleepiness. These observations were also found via the questionnaire, indicating that glycine improves daytime sleepiness and fatigue induced by acute sleep restriction. PC performance test revealed significant improvement in psychomotor vigilance test. We also measured plasma melatonin and the expression of circadian-modulated genes expression in the rat suprachiasmatic nucleus (SCN to evaluate the effects of glycine on circadian rhythms. Glycine did not show significant effects on plasma melatonin concentrations during either the dark or light period. Moreover, the expression levels of clock genes such as Bmal1 and Per2 remained unchanged. However, we observed a glycine-induced increase in the neuropeptides arginine vasopressin and vasoactive intestinal polypeptide in the light period. Although no alterations in the circadian clock itself were observed, our results indicate that glycine modulated SCN function. Thus, glycine modulates certain neuropeptides in the SCN and this phenomenon may indirectly contribute to improving the occasional sleepiness and fatigue induced by sleep

  13. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  14. Effect of Glycine on Lead Mobilization, Lead-Induced Oxidative Stress, and Hepatic Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Yolanda Alcaraz-Contreras

    2011-01-01

    Full Text Available The effectiveness of glycine in treating experimental lead intoxication was examined in rats. Male Wistar rats were exposed to 3 g/L lead acetate in drinking water for 5 weeks and treated thereafter with glycine (100 and 500 mg/kg, orally once daily for 5 days or glycine (1000 mg/kg, orally once daily for 28 days. The effect of these treatments on parameters indicative of oxidative stress (glutathione and malondialdehyde levels, the activity of blood -aminolevulinic acid dehydratase, and lead concentration in blood, liver, kidney, brain, and bone were investigated. Liver samples were observed for histopathological changes. Glycine was found to be effective in (1 increasing glutathione levels; (2 reducing malondialdehyde levels; (3 decreasing lead levels in bone with the highest dose. However, glycine had no effect on lead mobilization when 100 and 500 mg/kg glycine were administered. In microscopic examination, glycine showed a protective effect against lead intoxication.

  15. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  16. The Quest for the 1p36 Tumor Suppressor

    Science.gov (United States)

    Bagchi, Anindya; Mills, Alea A.

    2010-01-01

    Genomic analyses of late-stage human cancers have uncovered deletions encompassing 1p36, thereby providing an extensive body of literature supporting the idea that a potent tumor suppressor resides in this interval. Although a number of genes have been proposed as 1p36 candidate tumor suppressors, convincing evidence that their encoded products protect from cancer has been scanty. A recent functional study identified CHD5 as a novel tumor suppressor mapping to 1p36. Here we discuss evidence supporting CHD5’s tumor suppressive role. Together, these findings suggest that strategies designed to enhance CHD5 activity could provide novel approaches for treating a broad range of human malignancies. PMID:18413720

  17. Equilibria in aqueous cadmium-chloroacetate-glycinate systems. A convolution-deconvolution cyclic voltammetric study

    International Nuclear Information System (INIS)

    Abdel-Hamid, R.; Rabia, M.K.M.

    1994-01-01

    Stability constants and composition of cadmium-glycinate binary complexes were determined using cyclic voltammetry. Furthermore, binary and ternary complex equilibria for chloroacetates and glycinate with cadmium in 0.1 M aqueous KNO 3 at pH 10.4 and 298 K were investigated. Cadmium forms binary complexes with chloroacetates of low stability and ternary ones with chloroacetate-glycinate of significant stability. (author)

  18. Secondary Emission From Synthetic Opal Infiltrated by Colloidal Gold and Glycine

    International Nuclear Information System (INIS)

    Dovbeshko, G.I.; Fesenko, O.M.; Boyko, V.V.; Romanyuk, V.R.; Gorelik, V.S.; Moiseyenko, V.N.; Sobolev, V.B.; Shvalagin, V.V.

    2012-01-01

    A comparison of the secondary emission (photoluminescence) and Bragg reflection spectra of photonic crystals (PC), namely, synthetic opals, opals infiltrated by colloidal gold, glycine, and a complex of colloidal gold with glycine is performed. The infiltration of colloidal gold and a complex of colloidal gold with glycine into the pores of PC causes a short-wavelength shift (about 5-15 nm) of the Bragg reflection and increases the intensity of this band by 1.5-3 times. In photoluminescence, the infiltration of PC by colloidal gold and colloidal gold with glycine suppresses the PC emission band near 375-450 nm and enhances the shoulder of the stop-zone band of PC in the region of 470-510 nm. The shape of the observed PC emission band connected with defects in synthetic opal is determined by the type of infiltrates and the excitation wavelength. Possible mechanisms of the effects are discussed.

  19. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    Science.gov (United States)

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  20. Crystal lattice dependency of the free radicals found in irradiated glycine

    NARCIS (Netherlands)

    Bie, M.J.A. de; Braams, R.

    1969-01-01

    The EPR spectra, and hence the stable free radicals, are different for the - or γ-irradiated α-, β- and γ-crystal forms of polycrystalline glycone. Therefore comparisons of the trideutero-glycine EPR spectrum with the EPR spectra of non-deuterated glycine are open to question

  1. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    Science.gov (United States)

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  2. Photoreactivation of conversion and de novo suppressor mutation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, R C; Plamer, J E [Indiana Univ., Indianapolis (USA). Dept. of Microbiology

    1977-04-01

    Studies of mutagenesis and photoreactivation in various E.coli strains have shown that conversion mutation of a mutant containing an amber suppressor to one containing an ochre suppressor is sensitive to photoreactivation. Direct photoreactivation by photoreactivating light (PRL) after uv mutagenesis reduced mutation frequencies by a factor of about 2 for each minute of exposure during the first 5 to 8 min of exposure for cells with normal repair capacity. Conversion and potential de novo suppressor mutations were about equally sensitive. For conversion, the sensitivities to PRL were identical in the repair-normal and excisions-repair-deficient strains. For de novo suppressor mutation, the rate of mutation frequency reduction by PRL in the repair-deficient strain was about one-half that in the other strains. The results suggest that ultraviolet radiation produces both de novo suppressor mutation and conversion at the sup(E,B) locus by photoreversible pyrimidine dimers in the DNA. The causative dimers could be Thy()Cyt dimers in the transcribed strand or the non-transcribed strand, respectively.

  3. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

    Directory of Open Access Journals (Sweden)

    Aneeshkumar G Arimbasseri

    2015-12-01

    Full Text Available Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(22G26 modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(22G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(22G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(22G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(22G26 modification and that this response is conserved among highly divergent yeasts and human cells.

  4. Preferential Pathway for Glycine Formation in Star-Forming Regions

    Science.gov (United States)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  5. A DFT study of adsorption of glycine onto the surface of BC{sub 2}N nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Alireza, E-mail: Alireza.soltani46@yahoo.com [Joints, Bones and Connective Tissue Research Center, Golestan University of Medical Sciences, Gorgan (Iran, Islamic Republic of); Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Azmoodeh, Zivar [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Javan, Masoud Bezi [Physics Department, Faculty of Sciences, Golestan University, Gorgan (Iran, Islamic Republic of); Lemeski, E. Tazikeh [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Karami, Leila [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Glycine adsorption over the pristine BC{sub 2}N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH{sub 2}CH{sub 2}COOH) with BC{sub 2}N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC{sub 2}N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC{sub 2}N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  6. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  7. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1981-01-01

    Glycine receptors have been localized by autoradiography in the rat central nervous system (CNS) using [ 3 H]strychnine. The gross distribution of receptors is in excellent accord with the distribution determined by filtration binding assays. Specifically, the density of glycine receptors is greatest in the gray matter of the spinal cord and decreases progressively in regions more rostral in the neuraxis. Glycine receptors were found to be associated with both sensory and motor systems in the CNS. Moreover, there is a striking correlation between areas of high strychnine binding site density and areas in which glycine has been found to be electrophysiologically active. Finally, the anatomic localization of strychnine binding sites may help explain many of the signs and symptoms of strychnine ingestion. For example, individuals consuming subconvulsive doses of strychnine frequently experience altered cutaneous and auditory sensation. We have localized strychnine receptors in areas of the acoustic system known to influence discriminative aspects of audition and in areas of the spinal cord and trigeminal nuclei which modulate discriminative aspects of cutaneous sensation. The alteration of visceral functions (e.g., blood pressure and respiratory rate) associated with strychnine ingestion may be accounted for in a similar manner

  9. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    OpenAIRE

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corr?, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation t...

  10. In vitro X-ray irradiation of human peripheral blood T lymphocytes enhances suppressor function

    International Nuclear Information System (INIS)

    Ogawa, H.; Tsunematsu, T.

    1983-01-01

    The effect of in vitro X-ray irradiation on human peripheral blood T lymphocytes was studied with regard to their suppressor activity related to the concanavalin A (Con A)-induced suppressor system. To generate suppressor T lymphocytes, purified human T lymphocytes were incubated for 3 days in the first culture, with or without Con A. These lymphocytes were irradiated with various doses of X-ray before, mid or after the culture. After doing a second culture for 6 days, the suppressive influence of these cells on T lymphocyte proliferation rates stimulated with allogeneic mononuclear cells, and B lymphocyte proliferation rates stimulated with pokeweed mitogen was measured. Irradiation of cultures to which Con A had not been added induced much the same level of suppressor activity as seen in the cultures with Con A. The suppressor activity gradually increased with time from the irradiation to the suppressor cell assay. Suppressor T lymphocytes were resistant to X-ray irradiation and independent of DNA synthesis. However, irradiation-induced enhancement was minimal in cultures incubated with con A, regardless of the irradiation time. (author)

  11. Affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine.

    Science.gov (United States)

    Nordbö, H; Eriksen, H M; Rölla, G

    1979-10-01

    The affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine was studied. A series of mixtures containing 1 M furfural and 0.25-2.0 M glycine were incubated at 37 degrees C and aliquots of hydroxyapatite added. The apatite showed a strong affinity for the brown pigment formed, and an excess of glycine in the mixtures appeared to enhance the binding. The adsorption of furfural to hydroxyapatite was estimated by a spectrophotometric method. The data revealed that pretreatment with CaCl2 and glycine significantly increased the adsorption of furfural.

  12. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  13. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  14. Regulatory role for the memory B cell as suppressor-inducer of feedback control

    International Nuclear Information System (INIS)

    Kennedy, M.W.; Thomas, D.B.

    1983-01-01

    A regulatory role is proposed for the antigen-responsive B cell, as suppressor-inducer of feedback control during the secondary response in vivo. In a double adoptive transfer of memory cells primed to a thymus-dependent antigen from one irradiated host to another, antigen-specific suppressors are generated after a critical time in the primary recipient, able to entirely ablate a secondary anti-hapten response. Positive cell selection in the fluorescence-activated cell sorter confirmed that suppression was mediated by an Lyt-2+ T cell; however, positively selected B cells were also inhibitory and able to induce suppressors in a carrier-specific manner: B hapten induced suppressors in a carrier-primed population, and B carrier induced suppressors in a hapten-carrier population. At the peak of the antibody response in the primary host, memory B cells and their progeny were unable to differentiate further to plasma cells due to their intrinsic suppressor-inducer activity, but this autoregulatory circuit could be severed by adoptive transfer to carrier-primed, X-irradiated recipients

  15. Suppressor Analysis of the Fusogenic Lambda Spanins.

    Science.gov (United States)

    Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry

    2017-07-15

    The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such

  16. Investigations on the nucleation kinetics of γ-glycine single crystal

    International Nuclear Information System (INIS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of γ-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (ΔG v ), interfacial tension (γ), critical free energy change of the nucleus (ΔG ⁎ ), nucleation rate (J), number of molecules in the critical nucleus (i ⁎ ) have been calculated for the aqueous solution grown γ-glycine single crystals. The second harmonic generation (SHG) of γ-glycine was confirmed by Q-switched Nd:YAG laser technique

  17. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  18. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    International Nuclear Information System (INIS)

    Cura D’Ars de Figueiredo, João; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-01-01

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  19. Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing

    Science.gov (United States)

    McDougal, Chris; Eberhart, Chad; Lee, Erik

    2016-01-01

    Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.

  20. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  1. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  2. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  3. Changes in helper and suppressor T lymphocytes following radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Newman, G.H.; Rees, G.J.G.; Jones, R.S.J.; Grove, E.A.; Preece, A.W.

    1987-01-01

    Changes in total lymphocyte, T lymphocyte, T helper and T suppressor lymphocyte numbers were studied in 22 patients with breast cancer before and after radiotherapy. T lymphocyte subsets were measured using monoclonal antibodies and fluorescence microscopy. After treatment the total lymphocyte count fell significantly and was still reduced 9 months later, but the proportion of cells labelled as T lymphocytes was unchanged during this period. The helper-suppressor ratio, which was within the normal range before radiotherapy, was significantly reduced at 3 months and 9 months after. Following treatment both T helper and T suppressor cell numbers were significantly reduced. T helper cell numbers remained reduced throughout the study period but T suppressor cell numbers showed a recovery to normal values 9 months after radiotherapy. (author)

  4. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  5. Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging

    Directory of Open Access Journals (Sweden)

    Francis Kevin P

    2011-08-01

    Full Text Available Abstract Background Transient expression of proteins in plants has become a favoured method over the production of stably transformed plants because, in addition to enabling high protein yields, it is both fast and easy to apply. An enhancement of transient protein expression can be achieved by plant virus-encoded RNA silencing suppressor proteins. Since viral suppressor proteins differ in their efficiency to enhance transient protein expression in plants, we developed a whole-leaf green fluorescent protein (GFP-based imaging assay to quantitatively assess suppressor protein activity. Results In a transient GFP-expression assay using wild-type and GFP-transgenic N. benthamiana, addition of the plant viral suppressors Beet mild yellowing virus (BMYV-IPP P0 or Plum pox virus (PPV HC-Pro was shown to increase fluorescent protein expression 3-4-fold, 7 days post inoculation (dpi when compared to control plants. In contrast, in agroinfiltrated patches without suppressor activity, near complete silencing of the GFP transgene was observed in the transgenic N. benthamiana at 21 dpi. Both co-infiltrated suppressors significantly enhanced GFP expression over time, with HC-Pro co-infiltrations leading to higher short term GFP fluorescence (at 7 dpi and P0 giving higher long term GFP fluorescence (at 21 dpi. Additionally, in contrast to HC-Pro co-infiltrations, an area of complete GFP silencing was observed at the edge of P0 co-infiltrated areas. Conclusions Fluorescence imaging of whole intact leaves proved to be an easy and effective method for spatially and quantitatively observing viral suppressor efficiency in plants. This suppressor assay demonstrates that plant viral suppressors greatly enhanced transient GFP expression, with P0 showing a more prolonged suppressor activity over time than HC-Pro. Both suppressors could prove to be ideal candidates for enhancing target protein expression in plants.

  6. Human cord blood suppressor T lymphocytes. II. Characterization of inducer of suppressor cells

    International Nuclear Information System (INIS)

    Cheng, H.; Delespesse, G.

    1986-01-01

    Previously, we reported an antigen nonspecific inducer of T suppressor cell factor (TisF) produced by cord blood mononuclear cells (MNC) in 48-hr, two-way mixed lymphocyte cultures (MLC). The target of this factor was a radiosensitive, T4+ (T8-) adult suppressor T cell subset. The cellular origin of this TisF was examined in the present study. IgG production by pokeweed mitogen (PWM)-stimulated adult MNC was used as an assay for TisF activity. It was found that TisF-producing cells formed rosettes with sheep erythrocytes (E+) and were independent of adherent cells (AC) in the production of TisF. They were resistant to irradiation (2500 rads) and phenotypic characterization with T cell reactive monoclonal antibodies indicated that they resided in the T8- (T4+) population. Furthermore, both TQ1- and TQ1+ cells were required for the production of TisF activity and such activity could not be reconstituted by supernatants from TQ1- MLC and TQ1+ MLC. These results indicate that the production of TisF is dependent upon interactions between radioresistant E+, T8-, TQ1- and radioresistant E+, T8-, TQ1+ cells

  7. Power consumption in positive ion beam converter with electrostatic electron suppressor

    International Nuclear Information System (INIS)

    Hashimoto, Kiyoshi; Sugawara, Tohru

    1985-01-01

    The power recovery characteristics of an in-line direct beam converter provided with electrostatic electron suppressor were studied numerically by tracing the orbits of fast primary ions and secondary charged particles generated along their beam path by collision with background gas molecules. It is shown that, in reference to the electrostatic field potential at the point of impact, the energy distribution of secondary ions impinging on the suppressor has two peaks-one corresponding to a zone of high positive potential surrounding the collector and the other to one of slightly negative potential around the electron suppressor. Secondary electron emission from the suppressor is ascribed mainly to the latter peak, associated with impingement of slower secondary ions. Far much power consumed in secondary particle acceleration is spent for emitting electrons from the suppressor than for secondary ions generated by beam-gas collision. The upper limit of background pressure is discussed on the basis of criteria prescribed for restricting the power consumed in this secondary particle acceleration, as for practical convenience of electrode cooling. Numerical examples are given of calculations based on particle trajectory analysis of both primary ions and secondary particles, for the case of a 100 keV-proton sheet beam 10 cm thick of 35 mA/cm 2 current density. (author)

  8. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  9. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  10. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  11. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  12. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  13. Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-09

    Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies

  14. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  15. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  16. Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose

    Science.gov (United States)

    Aboelezz, E.; Hassan, G. M.

    2018-04-01

    The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.

  17. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  18. Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.

    2007-01-01

    The objective of the present investigation was to develop a technique to synthesize submicronic particles of Nb-doped strontium titanate with a homogeneous composition. This was achieved by a modified glycine-nitrate process, using Ti-lactate, Nb-oxalate, and Sr(NO3)(2) as starting materials....... A combination of both citric acid and glycine was needed in order to integrate the useful features of both complexation and combustion natures of citric acid and glycine, respectively. The amount of citric acid, glycine, and nitrates in the starting solution, as well as the source for extra nitrates...

  19. Effect of amount of glycine as fuel in obtaining nanocomposite Ni/NiO

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Quirino, M.R.; Vieira, D.A.; Gama, L.

    2010-01-01

    This paper proposes to investigate the effect of the amount of glycine in obtaining nanocomposite Ni/NiO synthesized by combustion reaction technique. The amount of glycine used was calculated on the stoichiometric composition of 50% and 100%. Characterizations by X-ray diffraction (XRD), N2 adsorption by the BET method and scanning electron microscopy (SEM) were performed with powder of Ni/NiO result. The analysis of X-ray diffraction showed the presence of crystalline NiO phase in the presence of nickel as a secondary phase, whose amount increased with the amount of glycine. Increasing the concentration of glycine also caused an increase in surface area, which ranged from 1.1 to 1.4 m 2 /g. The micrographs revealed the formation of soft agglomerates with porous appearance and easy dispersions. It can be concluded that the synthesis is effective to obtain nanosized powders. (author)

  20. Metabolism of L-leucine-U-14C in young rats fed excess glycine diets

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Tadauchi, Nobuo; Muramatsu, Keiichiro

    1975-01-01

    As reported previously, while the growth-depressing effect of excess glycine was prevented by supplementing L-arginine and L-methionine, the degradation of glycine-U-(SUP 14)C into expired carbon dioxide was not accelerated by the supplement of both amino acids. However, it was found that the incorporation of the isotope into the lipids of livers and carcasses increased in the rats fed the excess glycine diet containing both amino acids. The lipid synthesis utilizing excess glycine may be accelerated by adding both amino acids to the 10% casein diet containing excess glycine. In the present experiment, the metabolic fate of L-leucine-U-(SUP 14)C was studied with the rats fed the excess glycine diet with or without L-arginine and L-methionine. 10% casein (10C), 10% casein diet containing 7% glycine (10C7G), or 10C7G Supplemented with 1.4% L-arginine-HCL and 0.9% L-methionine (10C7GArgMet) was fed to each rat, and the diet suspension containing 4 sup(μ)Ci of L-leucine-U-(SUP 14)C per 100 g of body weight was fed forcibly after 12 hr fast. The radioactivity in expired carbon dioxide, TCA soluble fraction, protein, glycogen, lipids and urine, and the concentration of free amino acids in blood plasma, livers and urine were measured. The body weight gain and food intake of the 10C7G group were much smaller than those of the other groups. The recovery of (SUP 14)C-radioactivity in expired carbon dioxide was much lower in the 10C7GArgMet group than that of the other groups. (Kako, I.)

  1. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    Science.gov (United States)

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  2. [3H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    International Nuclear Information System (INIS)

    Benke, D.; Honer, M.; Mohler, H.; Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C.

    1999-01-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [ 3 H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [ 3 H]CGP 61594 labeled with high affinity (K D =23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [ 3 H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [ 3 H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [ 3 H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification

    Directory of Open Access Journals (Sweden)

    Christian Madry

    2010-03-01

    Full Text Available Glycine has diverse functions within the mammalian central nervous system. It inhibits postsynaptic neurons via strychnine-sensitive glycine receptors (GlyRs and enhances neuronal excitation through co-activation of N-methyl-D-aspartate (NMDA receptors. Classical Ca2+-permeable NMDA receptors are composed of glycine-binding NR1 and glutamate-binding NR2 subunits, and hence require both glutamate and glycine for efficient activation. In contrast, recombinant receptors composed of NR1 and the glycine binding NR3A and/or NR3B subunits lack glutamate binding sites and can be activated by glycine alone. Therefore these receptors are also named excitatory glycine receptors. Co-application of antagonists of the NR1 glycine-binding site or of the divalent cation Zn2+ markedly enhances the glycine responses of these receptors. To gain further insight into the properties of these glycine-gated NMDA receptors, we investigated their current-voltage (I-V dependence. Whole-cell current-voltage relations of glycine currents recorded from NR1/NR3B and NR1/NR3A/NR3B expressing oocytes were found to be linear under our recording conditions. In contrast, NR1/NR3A receptors displayed a strong outwardly rectifying I-V relation. Interestingly, the voltage-dependent inward current block was abolished in the presence of NR1 antagonists, Zn2+ or a combination of both. Further analysis revealed that Ca2+ (1.8 mM present in our recording solutions was responsible for the voltage-dependent inhibition of ion flux through NR1/NR3A receptors. Since physiological concentrations of the divalent cation Mg2+ did not affect the I-V dependence, our data suggest that relief of the voltage-dependent Ca2+ block of NR1/NR3A receptors by Zn2+ may be important for the regulation of excitatory glycinergic transmission, according to the Mg2+-block of conventional NR1/NR2 NMDA receptors.

  4. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  5. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  6. Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 mol . kg-1, and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate

    International Nuclear Information System (INIS)

    Ziemer, S.P.; Niederhauser, T.L.; Merkley, E.D.; Price, J.L.; Sorenson, E.C.; McRae, B.R.; Patterson, B.A.; Origlia-Luster, M.L.; Woolley, E.M.

    2006-01-01

    We have measured the densities of aqueous solutions of glycine, glycine plus equimolal HCl, and glycine plus equimolal NaOH at temperatures 278.15 ≤ T/K ≤ 368.15, molalities 0.01 ≤ m/mol . kg -1 ≤ 1.0, and at p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 ≤ T/K ≤ 393.15 and at the same m and p using a fixed-cell differential scanning calorimeter. We used the densities to calculate apparent molar volumes V φ and the heat capacities to calculate apparent molar heat capacities C p,φ for these solutions. We used our results and values of V φ (T, m) and C p,φ (T, m) for HCl(aq), NaOH(aq), NaCl(aq) from the literature to calculate parameters for Δ r C p,m (T, m) for the first and second proton dissociations from protonated aqueous cationic glycine. We then integrated this value of Δ r C p,m (T, m) in an iterative algorithm, using Young's Rule to account for the effects of speciation and chemical relaxation on the observed V φ and C p,φ of the solutions. This procedure yielded parameters for V φ (T, m) and C p,φ (T, m) for glycinium chloride {H 2 Gly + Cl - (aq)} and sodium glycinate {Na + Gly - (aq)} which successfully modeled our observed results. We have then calculated values of Δ r C p,m , Δ r H m , Δ r V m , and pQ a for the first and second proton dissociations from protonated aqueous glycine as functions of T and m

  7. THE INCORPORATION OF RADIOACTIVITY FROM GLYCINE-C$sup 14$ BY MAMMALIAN SPERMATOZOA

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C. N.

    1962-05-15

    The metabolic pathways of glycine incorporation were investigated by biochemical and radibautographic methods. Results show that glycine is utilized hy bovine spermatoza and is incorporated into all fractions of the sperm cell. Incorporation into the nucleic acid fraction and especially into thymine indicates that there is a turnover in the desoxyribenucleic acid during storage of bovine spermatoza. (C.H.)

  8. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  9. About hidden influence of predictor variables: Suppressor and mediator variables

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2013-01-01

    Full Text Available In this paper procedure for researching hidden influence of predictor variables in regression models and depicting suppressor variables and mediator variables is shown. It is also shown that detection of suppressor variables and mediator variables could provide refined information about the research problem. As an example for applying this procedure, relation between Atlantic atmospheric centers and air temperature and precipitation amount in Serbia is chosen. [Projekat Ministarstva nauke Republike Srbije, br. 47007

  10. Over Expression of a tRNALeu Isoacceptor Changes Charging Pattern of Leucine tRNAs and Reveals New Codon Reading

    DEFF Research Database (Denmark)

    Sørensen, Michael Askvad; Elf, J.; Bouakaz, E.

    2005-01-01

    During mRNA translation, synonymous codons for one amino acid are often read by different isoaccepting tRNAs. The theory of selective tRNA charging predicts greatly varying percentages of aminoacylation among isoacceptors in cells starved for their common amino acid. It also predicts major changes...... in tRNA charging patterns upon concentration changes of single isoacceptors, which suggests a novel type of translational control of gene expression. We therefore tested the theory by measuring with Northern blots the charging of Leu-tRNAs in Escherichia coli under Leu limitation in response to over...... postulated a previously unknown common codon for tRNALeu GAG and tRNALeu UAG. Subsequently, we demonstrated that the tRNALeu GAG codon CUU is, in fact, read also by tRNALeu UAG, due to a uridine-5-oxyacetic acid modification....

  11. [Contact shot from infantry weapons with a flash-suppressor].

    Science.gov (United States)

    Perdekamp, Markus Grosse; Braunwarth, Roland; Schmidt, Ulrike; Schmidt, Wolfgang; Pollak, Stefan

    2003-01-01

    The number of reports on contact shots from firearms with a flash suppressor attached to the muzzle is small. On the basis of a case report (suicidal shot to the forehead with a Kalschnikow AKMS 47 assault rifle) the morphological peculiarities (characteristics soot pattern, relatively small powder cavity and only minor skin tears in the presence of a bony support) are presented and the conclusions to be drawn from the findings regarding the flash-suppressor, the shot distance, the angle of the shot and the way of holding the weapon are discussed.

  12. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine.

    Science.gov (United States)

    Hsu, Jean W; Thame, Minerva M; Gibson, Raquel; Baker, Tameka M; Tang, Grace J; Chacko, Shaji K; Jackson, Alan A; Jahoor, Farook

    2016-03-14

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% from the first to the third trimester in pregnant adolescent girls. As serine is a primary precursor for glycine synthesis, the objective of this study was to measure and compare glycine and serine fluxes and inter-conversions in pregnant adolescent girls and adult women in the first and third trimesters. Measurements were made after an overnight fast by continuous intravenous infusions of 2H2-glycine and 15N-serine in eleven adolescent girls (17·4 (se 0·1) years of age) and in ten adult women (25·8 (se 0·5) years of age) for 4 h. Adolescent girls had significantly slower glycine flux and they made less glycine from serine in the third (Padolescent girls (P=0·04) and was significantly associated with third trimester glycine flux. These findings suggest that the pregnant adolescent cannot maintain glycine flux in late pregnancy compared with early pregnancy because of decreased synthesis from serine. It is possible that the inability to maintain glycine synthesis makes her fetus vulnerable to impaired cartilage synthesis, and thus linear growth.

  13. 15N-labelled glycine synthesis

    International Nuclear Information System (INIS)

    Tavares, Claudineia R.O.; Bendassolli, Jose A.; Sant'Ana Filho, Carlos R.; Prestes, Clelber V.; Coelho, Fernando

    2006-01-01

    This work describes a method for 15 N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of α-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia ( 15 NH 3 ). Special care was taken to avoid possible 15 NH 3 losses, since its production cost is high. In that respect, although the purchase cost of the 13 N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15 NH 3(aq) volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15 NH 3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered. (author)

  14. Modulation of allogeneic stimulation in man. I. Characterization of an in vitro induced suppressor macrophage population

    International Nuclear Information System (INIS)

    Stux, S.V.; Dubey, D.P.; Yunis, E.J.

    1981-01-01

    Cultured human peripheral blood mononuclear cells suppressed the allogeneic response of fresh autologous lymphocytes. This suppressor activity developed gradually over a period of one week. The cells primarily responsible for this effect were enriched by Ficoll density gradient centrifugation. It was found that the suppressor cell is a large, low density nylon wool adherent, radioresistant, phagocytic, and nonspecific esterase positive mononuclear cell. Moreover, these cells did not form E rosettes and were Fc positive. Electron microscopy confirmed that suppressor cells were macrophage like. Suppressor activity was not due to cytotoxicity, crowding, or steric hinderance by the cultured cells. The suppressor macrophage population did not appear to inhibit the allogeneic response via prostaglandin or arginase release, or interfere with the tritiated thymidine uptake by release of endogenous thymidine. The above system is viewed as an in vitro model of immune regulation by suppressor macrophages, in the context of allogeneic response

  15. Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition

    International Nuclear Information System (INIS)

    Esteves, Marcos C.; Sumodjo, Paulo T.A.; Podlaha, Elizabeth J.

    2011-01-01

    Highlights: → Mixed/induced codeposition of CoNiMo from a glycine containing bath. → Deposition in a rotating cylinder Hull cell. → The mechanism is explained in term of the complex species that can be formed. - Abstract: The present study focuses on the behavior of the CoNiMo mixed anomalous/induced codeposition process, using glycine as a probe to influence the coverage of adsorbed intermediates. In order to facilitate the investigation of a wide variation of parameters the electrodeposition of the alloy films was performed using a rotating cylinder Hull cell. Alloy composition, current efficiency and partial currents of each metal were analyzed. The partial current densities and hence alloy composition was affected by the amount of glycine in the electrolyte: increasing glycine enhanced both cobalt and molybdenum deposition rates and hindered nickel deposition. It is suggested that the glycine facilitates the adsorption of M(I) adsorbed intermediates that control the anomalous and induced codeposition behavior. The current efficiency ranged from 30 up to 75% and was only slightly affected by glycine at high applied current densities. Films with a tridimensional porous structure were obtained applying current densities higher than 200 mA cm -2 , formed as a consequence of the large hydrogen evolution side reaction, presenting conditions for a novel Mo-alloy electrode structure.

  16. [{sup 3}H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Benke, D.; Honer, M.; Mohler, H. [Institute of Pharmacology, ETH and University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Heckendorn, R.; Pozza, M.F.; Allgeier, H.; Angst, C. [NS Research, Novartis Pharma AG, CH-4002 Basle (Switzerland)

    1999-02-01

    Activation of NMDA receptors requires the presence of glycine as a coagonist which binds to a site that is allosterically linked to the glutamate binding site. To identify the protein constituents of the glycine binding site in situ the photoaffinity label [{sup 3}H]CGP 61594 was synthesized. In reversible binding assays using crude rat brain membranes, [{sup 3}H]CGP 61594 labeled with high affinity (K{sub D}=23 nM) the glycine site of the NMDA receptor. This was evident from the Scatchard analysis, the displacing potencies of various glycine site ligands and the allosteric modulation of [{sup 3}H]CGP 61594 binding by ligands of the glutamate and polyamine sites. Electrophysiological experiments in a neocortical slice preparation identified CGP 61594 as a glycine antagonist. Upon UV-irradiation, a protein band of 115 kDa was specifically photolabeled by [{sup 3}H]CGP 61594 in brain membrane preparations. The photolabeled protein was identified as the NR1 subunit of the NMDA receptor by NR1 subunit-specific immunoaffinity chromatography. Thus, [{sup 3}H]CGP 61594 is the first photoaffinity label for the glycine site of NMDA receptors. It will serve as a tool for the identification of structural elements that are involved in the formation of the glycine binding domain of NMDA receptors in situ and will thereby complement the mutational analysis of recombinant receptors. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level....... Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter...

  18. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine

    Science.gov (United States)

    Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.

    2017-01-01

    We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526

  19. High efficient removal of chromium (VI) using glycine doped polypyrrole adsorbent from aqueous solution

    CSIR Research Space (South Africa)

    Ballav, N

    2012-08-01

    Full Text Available Glycine doped polypyrrole (PPy-gly) adsorbent was prepared via in situ polymerization of pyrrole (Py) monomer in the presence of glycine (gly) for the removal of Cr(VI). Formation of PPy homopolymer and inclusion of gly in the PPy matrix were...

  20. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Lynch, Joseph W.

    2010-01-01

    Ivermectin exerts its anthelmintic effect by activating nematode Cys-loop glutamate-gated receptors. Here we show that a glycine residue at a specific transmembrane domain location is essential for high ivermectin sensitivity in both glycine- and glutamate-gated Cys-loop receptors. We also show...

  1. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  2. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  3. New insights into the catalytic mechanism of human glycine N-acyltransferase.

    Science.gov (United States)

    van der Sluis, Rencia; Ungerer, Vida; Nortje, Carla; A van Dijk, Alberdina; Erasmus, Elardus

    2017-11-01

    Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi-substrate kinetic parameters of a recombinant human glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC-ESI-MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi-Bi and/or ping-pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl-CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis-Menten reaction mechanism. © 2017 Wiley Periodicals, Inc.

  4. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  5. Isolation, Characterization, and Distribution of a Biocontrol Fungus from Cysts of Heterodera glycines.

    Science.gov (United States)

    Kim, D G; Riggs, R D; Correll, J C

    1998-05-01

    ABSTRACT Seventy-six populations of Heterodera glycines were collected from 33 counties in 10 states of the United States along the Mississippi and Missouri Rivers in 1992 and 1993. A sterile hyphomycete fungus of an unnamed taxon, designated ARF18 and shown to be a parasite of eggs of H. glycines, was isolated from eggs and cysts of 10 of the populations from Kentucky, Louisiana, Mississippi, and Tennessee. Ten isolates of ARF18 obtained in this study and seven isolates obtained in earlier studies were characterized for cultural morphology on several growth media, the ability to produce sclerotium-like structures (SLS) on cornmeal agar, growth rates, pathogenicity to eggs of H. glycines in vitro, and mitochondrial (mt) DNA restriction fragment length polymorphisms (RFLPs). All 17 isolates of ARF18 readily grew on potato dextrose agar, cornmeal agar, and nutrient agar. Based on colony morphology and SLS appearance on cornmeal agar, the isolates could be grouped into two morphological phenotypes. Isolates that produced SLS that were composed of a compact mass of hyphae were designated ARF18-C, whereas isolates that produced SLS composed of a mass of loosely clumped hyphae were designated ARF18-L. Only minor differences in growth rates were detected among the ARF18-C and ARF18-L isolates. All 10 ARF18-C isolates, which were from Arkansas, Louisiana, Mississippi, and Tennessee, belonged to a single mtDNA RFLP haplotype. The seven ARF18-L isolates shared many comigrating mtDNA restriction fragments with one another, but belonged to three distinct mtDNA RFLP haplotypes. Ability to infect eggs of H. glycines in vitro varied considerably among the various isolates of ARF18. In particular, several of the ARF18-C isolates were consistently able to infect over 50% (mean = 70.0%, standard deviation = 16%) of the eggs of H. glycines, whereas ARF18-L infected eggs to a lesser degree (mean = 25%, standard deviation = 27%). ARF18-C was isolated only from H. glycines populations

  6. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    Science.gov (United States)

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Nonspecific suppressor T cells cause decreased mixed lymphocyte culture reactivity in bone marrow transplant patients

    International Nuclear Information System (INIS)

    Harada, M.; Ueda, M.; Nakao, S.; Kondo, K.; Odaka, K.; Shiobara, S.; Matsue, K.; Mori, T.; Matsuda, T.

    1986-01-01

    Decreased reactivity in mixed lymphocyte culture (MLC) was observed in patients within 1 yr after allogeneic and autologous bone marrow transplantation. Suppressor activity of peripheral blood mononuclear cells (PBMC) from transplant patients was studied by adding these cells as modulator cells to a bidirectional MLC with cells from normal individuals. PBMC from transplant patients markedly suppressed MLC reactivity in a dose-dependent manner. Suppressor activity was present in cells forming rosettes with sheep erythrocytes. Treatment of modulator cells with monoclonal antibodies against T cell differentiation antigens (OKT8, OKIa1) and complement completely abolished suppression of MLC. Suppressor activity was unaffected by 30 Gy irradiation. Suppressor activity declined gradually after transplantation and was inversely correlated with MLC reactivity of each patient at a significant level (p less than 0.01). These observations suggest that OKT8+ Ia+ radioresistant suppressor T cells play a role in the development of decreased MLC reactivity observed during the early post-transplant period

  8. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    Science.gov (United States)

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.

  9. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  10. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    Full Text Available MicroRNAs (miRNAs are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

  11. The discovery of glycine and related amino acid-based factor Xa inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kohrt, Jeffrey T.; Filipski, Kevin J.; Cody, Wayne L.; Bigge, Christopher F.; La, Frances; Welch, Kathleen; Dahring, Tawny; Bryant, John W.; Leonard, Daniele; Bolton, Gary; Narasimhan, Lakshmi; Zhang, Erli; Peterson, J. Thomas; Haarer, Staci; Sahasrabudhe, Vaishali; Janiczek, Nancy; Desiraju, Shrilakshmi; Hena, Mostofa; Fiakpui, Charles; Saraswat, Neerja; Sharma, Raman; Sun, Shaoyi; Maiti, Samarendra N.; Leadley, Robert; Edmunds, Jeremy J. (Naeja); (Pfizer)

    2010-12-03

    Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.

  12. Kinetics and mechanism of oxidation of glycine by iron(III)–1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. ... bon dioxide and ammonia with K2S2O8, KMnO4, po- ... 2. Experimental. A 1⋅0 mol dm–3 solution of glycine is prepared afresh by dissolving glycine (E-Merck) in water and its strength is determined by the acetuous perchloric.

  13. ERF is a Potential ERK Modulated Tumor Suppressor in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    6/27/2016 - 6/27/2019 1.20 calendar Prostate Cancer Foundation (formerly CaP CURE) $ 75,000 Epigenetic ...AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rohit...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277

  14. ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr...Rohit Bose CONTRACTING ORGANIZATION: Sloan Kettering Institute for Cancer Research New York NY 10065 REPORT DATE: October 2017 TYPE OF REPORT...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277 5c

  15. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  16. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  17. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    International Nuclear Information System (INIS)

    Bunaciu, Rodica Petruta; Tharappel, Job C.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela; Robertson, Larry W.; Srinivasan, Cidambi; Spear, Brett T.; Glauert, Howard P.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  18. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  19. Multielement suppressor nozzles for thrust augmentation systems.

    Science.gov (United States)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  20. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  2. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  3. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    Science.gov (United States)

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins.

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-11-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.

  5. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  6. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  7. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard L; Chudnovsky, Yakov; Pacold, Michael E; Chen, Walter W; Cantor, Jason R; Shelton, Laura M; Gui, Dan Y; Kwon, Manjae; Ramkissoon, Shakti H; Ligon, Keith L; Kang, Seong Woo; Snuderl, Matija; Vander Heiden, Matthew G; Sabatini, David M

    2015-04-16

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.

  8. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults.

    Directory of Open Access Journals (Sweden)

    Michael S Lustgarten

    Full Text Available Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance.The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respectively and, abdominal adiposity with the serum metabolite profile, to identify significant metabolites as further associated with the homeostasis model assessment of insulin resistance (HOMA-IR, and, to develop a HOMA-IR associated metabolite predictor set representative of regional adiposity, in 73 functionally-limited (short physical performance battery ≤10; SPPB older adults (age range, 70-85 y.Fasting levels of 181 total metabolites, including amino acids, fatty acids and acylcarnitines were measured with use of an untargeted mass spectrometry-based metabolomic approach. Multivariable-adjusted linear regression was used in all analyses.Thirty-two, seven and one metabolite(s were found to be associated with IMAT, abdominal adiposity and, SCAT, respectively, including the amino acid glycine, which was positively associated with SCAT and, negatively associated with both IMAT and abdominal adiposity. Glycine and four metabolites found to be significantly associated with regional adiposity were additionally associated with HOMA-IR. Separate stepwise regression models identified glycine as a HOMA-IR associated marker of both IMAT (model R(2 = 0.51, p<0.0001 and abdominal adiposity (model R(2 = 0.41, p<0.0001.Our findings for a positive association between glycine with SCAT but, a negative association between glycine with IMAT and abdominal adiposity supports the hypothesis that SCAT metabolic processes are different from that found in other fat depots. In addition, because of the significant associations found between glycine with HOMA-IR, IMAT, SCAT and abdominal adiposity, our results suggest glycine as a serum biomarker of both insulin sensitivity

  9. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  10. Suppressor Effects of Positive and Negative Religious Coping on Academic Burnout Among Korean Middle School Students.

    Science.gov (United States)

    Noh, Hyunkyung; Chang, Eunbi; Jang, Yoojin; Lee, Ji Hae; Lee, Sang Min

    2016-02-01

    Statistical suppressor effects in prediction models can provide evidence of the interdependent relationship of independent variables. In this study, the suppressor effects of positive and negative religious coping on academic burnout were examined using longitudinal data. First, 388 middle school students reported their type of religion and use of positive and negative religious coping strategies. Four months later, they also reported their level of academic burnout. From structural equation modeling, significant suppressor effects were found among religious students. That is, the coefficients became larger when both positive and negative religious coping predicted academic burnout simultaneously, compared to when each religious coping predicted academic burnout alone. However, suppressor effects were not found among non-religious students.

  11. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  12. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Dibas, Mohammed I; Lester, Henry A

    2007-01-01

    change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine...... and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus...

  13. Glycine as Alternative Fuel in Making Hydrotalcite Compound by Means of Combustion Method

    International Nuclear Information System (INIS)

    Shamsudin, I.K.; Helwani, Z.; Abdullah, A.Z.

    2013-01-01

    Hydrotalcite is anion compound capable of exchanging ions; it has the potential as a catalyst and adsorbent for variety of applications. Hydrotalcite can be prepared through several approaches, depending on the specific need and the characteristics of the compound. In this study, hydrotalcite was prepared through combustion method using glycine as fuel for the first time. Glycine was selected as opposed to urea so that hydrotalcite is safe for use in food processing or health. Hydrotalcite that was successfully obtained via combustion technique using glycine as fuel showed interesting characteristics. The compound demonstrated high thermal endurance and highest alkalinity, which suited the application for bio diesel production from vegetable oil and hydrogenation in the making of fats. However, the surface area was low in comparison with the same compound obtained from co-precipitation and sol-gel techniques. (author)

  14. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  15. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  16. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  17. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  18. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    Science.gov (United States)

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  19. Suppressor cells in transplantation tolerance. III. The role of antigen in the maintenance of transplantation tolerance

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Hess, A.D.; Beschorner, W.E.; Santos, G.W.

    1982-01-01

    Suppressor cells, which in an alloantigen-specific manner inhibit proliferation of donor cells to host antigens in a mixed lymphocyte culture and adoptively transfer the suppression of graft-versus-host disease (GVHD), undergo a gradual clonal reduction in long-term, allogeneic, histoincompatible rat radiation chimeras until they can no longer be measured in an in vitro suppressor cell assay. When lymphohematopoietic cells from these chimeras are transferred into lethally irradiated secondary recipients of original donor strain, the suppressor cells, now in a target antigen-free environment, undergo a further clonal reduction. After parking for 120 days, the chimeric cells are specifically tolerant to original host antigens, but cannot adoptively transfer suppression of GVHD. When chimeric cells, parked for 120 days in secondary recipients of original donor strain, are stimulated with original host-type antigen repeatedly during or once at the end of the parking period, the suppressor cell clone is expanded, suppressor cells can be identified in vitro, and suppression of GVHD can adoptively be transferred to tertiary recipients

  20. Melanoidins extinction coefficient in the glucose/glycine Maillard reaction

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2003-01-01

    Melanoidins (brown, nitrogenous polymers and co-polymers) are the final products of the Maillard reaction. The glucose/glycine melanoidins extinction coefficient was determined using C-14-labelled glucose at three different reaction conditions. The absorbance was measured at different wavelengths

  1. Single Channel Analysis of Isoflurane and Ethanol Enhancement of Taurine-Activated Glycine Receptors.

    Science.gov (United States)

    Kirson, Dean; Todorovic, Jelena; Mihic, S John

    2018-01-01

    The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein.

    Science.gov (United States)

    Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin

    2010-10-10

    Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    Science.gov (United States)

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    Science.gov (United States)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  5. A Rice gid1 Suppressor Mutant Reveals That Gibberellin Is Not Always Required for Interaction between Its Receptor, GID1, and DELLA Proteins[W][OA

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-01-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1P99S interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1P99A has smaller Ka (association) and Kd (dissociation) values for GA4 than does wild-type GID1. This suggests that the GID1P99A lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1P99A. Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants. PMID:21098733

  6. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Science.gov (United States)

    2010-10-28

    ..., submission at 5 and 6. Domestic interested parties argue that an analysis of the relevant statutory factors... merchandise imported into the United States. The domestic interested parties' analysis of these factors... sieve and then repackage the processed PRC-origin glycine for export as Indian glycine. Id at 9-10...

  7. The critical mission of glycine as a surfactant in the improvement of structural, morphological and optoelectronic features of CdO films

    Science.gov (United States)

    Aydin, Raşit

    2018-05-01

    The main aim of this study is to examine the effect of glycine as a surfactant agent on the physical properties of CdO films. For this purpose nanostructured CdO films with and without different glycine aggregations (0.5, 1.0 and 2.0 M %) were synthesized on glass bases by SILAR technique. The morphological, structural and optical characteristics of these films have been investigated using MM, SEM, XRD and UV-visible spectroscopy respectively. The MM results showed homogeneous and smooth all films. The SEM graphs showed that by using different glycine concentrations as surfactant, the particle thickness decreased from 366.25 nm to 241.10 nm. XRD results showed that the all CdO films with glycine display a (111) and (200) preferential orientations similar to that of the CdO film without glycine. The direct band gap energy of these films is found to increase from 2.05 to 2.35 eV with increasing the glycine concentration in the bath solution.

  8. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  9. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing.

    Science.gov (United States)

    Dong, Wenfei; Yang, Liaoyuan; Huang, Yuming

    2017-05-15

    A facile and rapid post-synthetic strategy was proposed to prepare a glycine functionalized MIL-53(Fe), namely glycine-MIL-53(Fe), by a simple mixing of water dispersible MIL-53(Fe) and glycine. The FT-IR, SEM, XRD and zeta potential were used to characterize the glycine-MIL-53(Fe). The result showed that glycine post-synthetic modification of MIL-53(Fe) did not change in the morphology and crystal structure of MIL-53(Fe). Interestingly, compared with MIL-53(Fe), the glycine-MIL-53(Fe) exhibits an enhanced peroxidase-like activity, which could catalyze the oxidation of TMB by H 2 O 2 to produce an intensive color reaction. Kinetic analysis indicated that the K m of glycine-MIL-53(Fe) for TMB was one-tenth of that of MIL-53(Fe). The glycine-MIL-53(Fe) as peroxidase mimetic displays better stability under alkaline or acidic conditions than MIL-53(Fe). The good performance of glycine-MIL-53(Fe) over MIL-53(Fe) may be attributed to the increase of affinity between TMB and the glycine-MIL-53(Fe). With these characteristics, a simple and sensitive method was developed for the detection of H 2 O 2 and glucose. The linear detection range for H 2 O 2 is 0.10-10μM with a detection limit of 49nM, and glucose could be linearly detected in the range from 0.25 to 10μM with a detection limit of 0.13μM. The proposed method was successfully used for glucose detection in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    Science.gov (United States)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml-1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml-1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml-1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity, wide

  11. In vivo NMR analysis of incorporation of [2-13C] glycine into silk fibroin

    International Nuclear Information System (INIS)

    Asakura, Tetsuo; Nagashima, Mariko; Demura, Makoto; Osanai, Minoru.

    1990-01-01

    The biosynthetic mechanism of silk fibroin in silkworms, Bombyx mori, is unique because this fibrous protein composed mainly of glycine, alanine and serine is produced very rapidly in large quantity in the posterior silk glands. It is very meaningful to investigate into the biosynthesis of silk protein under nondestructive condition by in vivo NMR and C-13 labeling techniques. The sugar metabolism related to the production of silk fibroin was analyzed by monitoring the change in the C-13 labeled peaks in the NMR spectra for silkworms. In this paper, the monitoring of the 2-(C-13) glycine metabolism in Bombyx mori by the C-13 NMR in vivo is reported. In particular, the in vivo transport of glycine from the midgut to the posterior silk gland was measured, and the rate constants were determined with the course of the peak intensity in the C-13 NMR spectra. It is possible to discuss quantitatively the in vivo production of silk fibroin with these rate constants. The experiment and the results are reported. The in vivo C-13 NMR spectra of a 5 day old, 5th instar larva of Bombyx mori after the oral administration of 2-(C-13) glycine are shown. The significant increase of the peak intensity occurred. (K.I.)

  12. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    Directory of Open Access Journals (Sweden)

    Donna Vanhauteghem

    Full Text Available Our previous work described a clear loss of Escherichia coli (E. coli membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine and N,N-dimethylglycine (DMG, but not N,N,N-trimethylglycine (betaine, under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  13. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    Science.gov (United States)

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  14. Effect of hemopoietic microenvironment on splenic suppressor macrophages in congenitally anemic mice of genotype Sl/Sld

    International Nuclear Information System (INIS)

    Shibata, Y.; Volkman, A.

    1985-01-01

    Mechanisms underlying mononuclear phagocyte specialization are being probed by studying suppressor macrophages (M phi) as a reference population in mouse models with impaired blood monocyte formation. Splenic suppressor M phi, defined by PGE-mediated inhibition of Con A-induced T lymphocyte proliferation are induced by the i.p. administration of Corynebacterium parvum (CP). Mice severely depleted of bone marrow and blood monocytes by treatment with 89Sr fail to show this suppressor M phi response to CP, although M phi-forming stem cells, assessed as splenic M-CFC in vitro, are increased 20-fold. These observations suggest that radiosensitive bone marrow stem cells are necessary for the generation of both suppressor M phi and monocytes and that one such stem cell may be common to both types of mononuclear phagocytes. This notion was explored further by employing congenitally anemic mice of the genotype S1/S1d in which the hemopoietic microenvironment is genetically defective and thus unable to support the proliferation, differentiation, and function of stem cells. The congenital defect was found to be additionally expressed in the S1/S1d mouse by a monocytopenia of less than 10% of the values in normal congenic littermate controls and by the failure of splenic M-CFC to increase in response to CP. PGE-producing suppressor M phi expressing Fc gamma 2b receptors, however, were induced by CP in S1/S1d mice with no significant diminution of suppressor activity. These data establish the fact that significant impairment of the formation of monocytes is part of the overall hemopoietic defect in S1/S1d mice. PGE-producing suppressor M phi, however, were inducible at normal functional levels in the presence of a profound monocytopenia, and therefore appear to be independent of the mechanisms that regulate blood monocyte formation

  15. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis

    International Nuclear Information System (INIS)

    Tao, Yu-gui; Xu, Yan-qiu; Pan, Jun; Gu, Hao; Qin, Chang-yun; Zhou, Peng

    2012-01-01

    Graphical abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. The obtained TiO 2 sample showed good photocatalytic activity of decomposition of methyl orange under sunlight. Highlights: ► Flower-like TiO 2 hierarchical spheres were synthesized by glycine assistant. ► Reaction time, temperature, solution pH and glycine dosage were studied. ► The formation of the flower-like TiO 2 spheres is an Ostwald ripening process. ► Flower-like TiO 2 showed high photocatalytic activity under sunlight. - Abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2 O 2 ). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2 .

  16. The ribose and glycine Maillard reaction in the interstellar medium ...

    Indian Academy of Sciences (India)

    WINTEC

    mechanics are briefly addressed in this work. Keywords. Density functional computational study; ribose; glycine; Maillard reaction; gaseous phase .... following the total mass balance of the reaction. Thus, ..... Jalbout A F Origin Life Evol. Biosph ...

  17. MK-801, but not drugs acting at strychnine-insensitive glycine receptors, attenuate methamphetamine nigrostriatal toxicity.

    Science.gov (United States)

    Layer, R T; Bland, L R; Skolnick, P

    1993-10-15

    Repeated administration of methamphetamine (METH) results in damage to nigrostriatal dopaminergic neurons. Both competitive N-methyl-D-aspartate (NMDA) receptor antagonists and use-dependent cation channel blockers attenuate METH-induced damage. The objectives of the present study were to examine whether comparable reductions in METH-induced damage could be obtained by compounds acting at strychnine-insensitive glycine receptors on the NMDA receptor complex. Four injections of METH (5 mg/kg i.p.) resulted in a approximately 70.9% depletion of striatal dopamine (DA) and approximately 62.7% depletion of dihydroxyphenylacetic acid (DOPAC) content, respectively. A significant protection against METH-induced DA and DOPAC depletion was afforded by the use-dependent channel blocker, MK-801. The competitive glycine antagonist 7-chlorokynurenic acid (7-Cl-KA), the low efficacy glycine partial agonist (+)-3-amino-1-hydroxy-2-pyrrolidone ((+)-HA-966), and the high efficacy partial glycine agonist 1-aminocyclopropane-carboxylic acid (ACPC) were ineffective against METH-induced toxicity despite their abilities to attenuate glutamate-induced neurotoxicity under both in vivo and in vitro conditions. These results indicate that glycinergic ligands do not possess the same broad neuroprotective spectrum as other classes of NMDA antagonists.

  18. Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion

    Science.gov (United States)

    2016-06-13

    Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion Ashley L. Ruth, Paula C. Latorre, and...sites as well as the formation of Mn3+ ions via the Jahn- Teller effect. The use of the glycine nitrate combustion synthesis produces small particles at...advantage of submicron ceramic synthesis, namely the glycine nitrate combustion process (GNP), we propose the capability for in-situ B-site doping

  19. Synthetic and mechanistic insight into nosylation of glycine residues

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Sølling, Theis Ivan; Strømgaard, Kristian

    2013-01-01

    The Fukuyama-Mitsunobu alkylation procedure is widely used to introduce alkyl substituents to amino groups in general and N-alkylation of peptides in particular. Here we have investigated the procedure in detail for N-alkylation of peptides with N-terminal glycine residues, based on the observati...

  20. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  1. Suppressors of RNA silencing encoded by tomato leaf curl ...

    Indian Academy of Sciences (India)

    2013-01-06

    Jan 6, 2013 ... Virus encoded RNA-silencing suppressors (RSSs) are the key components evolved by the viruses to ... severe disease symptom in the host (Briddon et al. ..... Voinnet O 2001 RNA silencing as a plant immune system against.

  2. Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat

    International Nuclear Information System (INIS)

    Takada, M.; Hattori, T.

    1987-01-01

    Autoradiographic retrograde tracing techniques with radioactive transmitters were used to analyse the identity of a putative transmitter in the rat pallidosubthalamic (GP-STN) pathway. One to 2 hours after the stereotaxic injection of 3 H-glycine restricted to the STN, a large number of neuronal somata were radiolabeled in the GP. No comparable labeling was observed following the injection of 3 H-gamma-aminobutyric acid ( 3 H-GABA) into the same nucleus even with survival times as long as 6 hours. Specifically, no significant somatic labeling was detected either in the GP or in the caudoputamen (CPU). Only when 3 H-GABA was injected into the substantia nigra did CPU and GP neurons become labeled. On the contrary, STN neuronal somata were invariably labeled 6 hours after the intrapallidal injection of 3 H-GABA, whereas no perikaryal labeling was observed in the STN after 3 H-glycine injection into the GP. The perikaryal labeling was prevented in all cases by intraventricular administration of colchicine 1 day before the isotope injections. The observations suggest that 3 H-glycine was preferentially transported retrogradely through the GP-STN pathway, and 3 H-GABA through the STN-GP projection. In view of the recent controversy on the role of GABA as a putative transmitter of the GP-STN projection, we now propose glycine as an alternative transmitter candidate of these critically situated neurons in the basal ganglia

  3. L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats.

    Science.gov (United States)

    de Aguiar Picanço, Etiene; Lopes-Paulo, Francisco; Marques, Ruy G; Diestel, Cristina F; Caetano, Carlos Eduardo R; de Souza, Mônica Vieira Mano; Moscoso, Gabriela Mendes; Pazos, Helena Maria F

    2011-05-01

    Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.

  4. Influence of foliar application of glycine betaine on gas exchange characteristics of cotton (gossypium Hirsutum L.)

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Din, S.U.

    2007-01-01

    Water is the most limiting factor in cotton production and numerous efforts are being made to improve crop drought tolerance. A field study was conducted with the objectives to determine the effects of different application rates of glycine betaine in field grown cotton at Central Cotton Research Institute, Multan. Four levels of glycine betaine (0.0, 1.0, 3.0 and 6.0 kg ha-1) were applied at three physiological growth stages i.e. at squaring, first flower and peak flowering. Cotton cultivar CIM-448 was used as test crop. Results showed that crop sprayed with glycine betaine at the rate of 6.0 kg ha-1 maintained 120.0, 62.1, 69.7 and 35.5 percent higher net CO/sub 2/ assimilation rate (PN), transpiration rate (E), stomatal resistance (gs) and water use efficiency (PN/E), respectively over that of untreated crop. Crop spayed with glycine betaine at peak flowering stage maintained higher PN, E, gs and PN/E compared to at other stages of growth. (author)

  5. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and LCysteine

    OpenAIRE

    Kun Sri Budiasih; Chairil Anwar; Sri Juari Santosa; Hilda Ismail

    2013-01-01

    Some Chromium (III) complexes were synthesized with three amino acids: L Glutamic Acid, Glycine, and L-cysteine as the ligands, in order to provide a new supplement containing Cr(III) for patients with type 2 diabetes mellitus. The complexes have been prepared by refluxing a mixture of Chromium(III) chloride in aqueous solution with L-glutamic acid, Glycine, and L-cysteine after pH adjustment by sodium hydroxide. These complexes were characterized by Infrared and Uv-Vis s...

  6. An improved synthesis of α-13C glycine and heteronuclear NMR studies of its incorporation into thioredoxin

    International Nuclear Information System (INIS)

    Wishart, D.S.; Sykes, B.D.; Richards, F.M.

    1992-01-01

    We present an improved method to easily prepare gram quantities of α- 13 C glycine beginning from K 13 CN. The four step synthesis involves the production of an N, N-diphenyl-cyanoformamidine intermediate through the coupling of cyanide to N, N-diphenylcarbodiimide. Subsequent reduction by LiAlH 4 and hydrolysis of the resulting amidine produces fully enriched α- 13 C labelled glycine with a 45-50% yield. This relatively fast and simple synthesis uses only commonly available compounds and requires no special equipment, making the process easy to perform in any well equipped biochemistry laboratory. We further demonstrate that the product may be used, without extensive purification, to specifically label bacterially expressed proteins (E. coli thioredoxin) through standard biosynthetic procedures. We also show that the 13 C glycine-labelled protein may be readily analyzed using commonly available heteronuclear NMR techniques. Complete assignments for all 9 glycines of native E. coli thoredoxin are presented. (Author)

  7. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  8. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B

    1981-11-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked inhibition of many non-Legionellaceae bacteria. The selectivity of the medium was subsequently improved by the incorporation of vancomycin (5 microgram/ml) and polymyxin B (100 U/ml). This selective medium, glycine-vancomycin-polymyxin B agar, should facilitate the recovery of Legionellaceae from environmental sources.

  9. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation.

    Science.gov (United States)

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Bussell, John Desmond; Schwambach, Joseli; Pop, Tiberia Ioana; Kowalczyk, Mariusz; Gutierrez, Laurent; Cavel, Emilie; Chaabouni, Salma; Ljung, Karin; Fett-Neto, Arthur Germano; Pamfil, Doru; Bellini, Catherine

    2014-04-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.

  10. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  11. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  12. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  13. The radiation stability of glycine in solid CO2 - In situ laboratory measurements with applications to Mars

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-05-01

    The detection of biologically important, organic molecules on Mars is an important goal that may soon be reached. However, the current small number of organic detections at the martian surface may be due to the harsh UV and radiation conditions there. It seems likely that a successful search will require probing the subsurface of Mars, where penetrating cosmic rays and solar energetic particles dominate the radiation environment, with an influence that weakens with depth. Toward the goal of understanding the survival of organic molecules in cold radiation-rich environments on Mars, we present new kinetics data on the radiolytic destruction of glycine diluted in frozen carbon dioxide. Rate constants were measured in situ with infrared spectroscopy, without additional sample manipulation, for irradiations at 25, 50, and 75 K with 0.8-MeV protons. The resulting half-lives for glycine in CO2-ice are compared to previous results for glycine in H2O-ice and show that glycine in CO2-ice is much less stable in a radiation environment, with destruction rate constants ∼20-40 times higher than glycine in H2O-ice. Extrapolation of these results to conditions in the martian subsurface results in half-lives estimated to be less than 100-200 Myr even at depths of a few meters.

  14. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  15. Transonic Performance Characteristics of Several Jet Noise Suppressors

    Science.gov (United States)

    Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.

  16. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-01-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another

  17. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  18. Concanavalin A-induced and spontaneous suppressor cell activities in peripheral blood lymphocytes and spleen cells from gastric cancer patients.

    Science.gov (United States)

    Toge, T; Hamamoto, S; Itagaki, E; Yajima, K; Tanada, M; Nakane, H; Kohno, H; Nakanishi, K; Hattori, T

    1983-11-01

    In 173 gastric cancer patients, activities of Concanavalin-A-induced suppressor cells (Con-AS) and spontaneous suppressor cells (SpS) in peripheral blood lymphocytes (PBL), splenic vein lymphocytes (SVL), and spleen cells (SCs) were investigated. Suppressions by Con-AS in PBL were significantly effective in patients of Stages III and IV, while suppressions by SpS were effective in patients with recurrent tumors. Thus, in PBLs of cancer patients, suppressor precursors, which are considered to be activated in vitro by Concanavalin-A, seemed to appear with the advances of the disease, and SpS activities, which could be already activated in vivo, seemed to increase in the terminal stage. In SCs, increased activities of Con-AS, but normal activities of SpS, were observed, and these suppressor-cell populations consisted of glass nonadherent cells. Suppressor activities of SCs would be due to suppressor T-cells, not to other types of cells. Furthermore, Con-AS existed in the medium-sized lymphocytes, which were fractionated on the basis of cell size, while SpS in the large-sized lymphocytes. A higher proportion of T-cells, bearing Fc receptors for IgG, was observed in the larger-sized lymphocyte fractions. Cell numbers in the large-sized lymphocyte fraction tended to increase with the advances of tumors. From these results, it is suggested that higher presence of suppressor precursors and the increase of SpS activities may occur in cancer patients, depending on the tumor advancing.

  19. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  20. Characteristics of DTH suppressor cells in mice infected with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, O E; Sirena, A; de Alderete, N G

    1987-05-01

    Inoculation of 10(8) C. albicans intraperitoneally into Balb/c mice at given dosage was reported to induce suppression of antigen-specific delayed-type hypersensitivity. Adoptive transfer of spleen cells into normal syngeneic mice pre-treated with Cyclophosphamide confirmed the existence of suppressor cells in mice. Such cells were sensitive to treatment with anti-theta serum and complement, non-adherent to Sephadex G-10. A pretreatment of the mice with Cyclophosphamide eliminated DTH suppression. Treatment with antimacrophage agents via intraperitoneal abrogated suppression only if being effected before inoculation of alive 10(8) Candida albicans. It is concluded that the spleen suppressor cell is a T-lymphocyte whose precursor is Cyclophosphamide-sensitive, requiring the macrophage to be induced.

  1. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  2. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  3. SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P.; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard; Chudnovsky, Yakov; Pacold, Michael E.; Chen, Walter W.; Cantor, Jason R.; Shelton, Laura M.; Gui, Dan Y.; Kwon, Manjae; Ramkissoon, Shakti H.; Ligon, Keith L.; Kang, Seong Woo; Snuderl, Matija; Heiden, Matthew G. Vander; Sabatini, David M.

    2015-01-01

    SUMMARY Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumor microenvironment1–3. Here, we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischemic zones of gliomas. In human glioblastoma multiforme (GBM), mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumor regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumor environment, but also renders these cells sensitive to glycine cleavage system inhibition. PMID:25855294

  4. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    Science.gov (United States)

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  5. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    International Nuclear Information System (INIS)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-01-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH . radical and H 3 O + surface defects. The coupling of incoming CO molecules with the surface OH . radicals on the ice clusters yields the formation of the COOH . radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol –1 and –22 kcal mol –1 , respectively. The COOH . radicals couple with incoming NH=CH 2 molecules (experimentally detected in the ISM) to form the NHCH 2 COOH . radical glycine through energy barriers of 12 kcal mol –1 , exceedingly high at ISM cryogenic temperatures. Nonetheless, when H 3 O + is present, one proton may be barrierless transferred to NH=CH 2 to give NH 2 =CH 2 + . This latter may react with the COOH . radical to give the NH 2 CH 2 COOH +. glycine radical cation which can then be transformed into the NH 2 CHC(OH) 2 +. species (the most stable form of glycine in its radical cation state) or into the NH 2 CHCOOH . neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H 3 O

  6. Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-ice Dust Particles

    Science.gov (United States)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical

  7. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  8. Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, M.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ; Modarress, H. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ]. E-mail: hmodares@aut.ac.ir; Monirfar, M. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-08-15

    Electrochemical measurements were made on (H{sub 2}O + NaBr + K{sub 3}PO{sub 4} + glycine) mixtures at T = 298.15 K by using ion selective electrodes. The mean ionic activity coefficients of NaBr at molality 0.1 were determined at five K{sub 3}PO{sub 4} molalities (0.01, 0.03, 0.05, 0.07, and 0.1) mol . kg{sup -1}. The activity coefficients of glycine were evaluated from mean ionic activity coefficients of NaBr. The modified Pitzer equation was used to model the experimental data.

  9. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    Science.gov (United States)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  10. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    associated with the closed-flip transition in the alpha1-glycine receptor. We employed voltage-clamp fluorometry to compare ligand-binding domain conformational changes induced by the following agonists, listed from highest to lowest affinity and efficacy: glycine > beta-alanine > taurine. Voltage...

  11. Alloantigen-specific suppressor T cells are not inhibited by cyclosporin A, but do require IL 2 for activation

    International Nuclear Information System (INIS)

    Bucy, R.P.

    1986-01-01

    Alloantigen-specific suppressor T cells are activated from normal murine spleen cells in mixed lymphocyte reactions (MLR). These T cells are radioresistant and suppress the activation of cytotoxic T lymphocytes (CTL) in second primary MLR cultures. This report demonstrates that cyclosporin A (CsA) blocks the activation of these suppressor cells at a dose of 1 microgram/ml. However, reconstitution of CsA blocked cultures with IL 2 restores the activation of the suppressor T cells, but fails to significantly restore the activation of CTL in these same cultures. This differential activation requirement was used to establish T cell lines that demonstrate enriched suppressor cell activity but depletion of CTL activity. These findings are discussed in terms of the mechanism of action of CsA in these distinct T cell subsets and the relevance to models of allograft unresponsiveness

  12. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  13. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways.

    Science.gov (United States)

    Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J

    2014-12-18

    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix

    DEFF Research Database (Denmark)

    Högel, Philipp; Götz, Alexander; Kuhne, Felix

    2018-01-01

    Flexible transmembrane helices frequently support the conformational transitions between different functional states of membrane proteins. While proline is well known to distort and destabilize transmembrane helices, the role of glycine is still debated. Here, we systematically investigated the e...

  15. The Ras suppressor-1 (RSU-1 in cancer

    Directory of Open Access Journals (Sweden)

    Lefteris C Zacharia

    2017-04-01

    Full Text Available Primary tumors are seldom the cause of death for cancer patients as most patients die from metastatic disease. Thus, deciphering metastatic mechanisms and key molecules involved is of utmost importance for the improved survival of cancer patients. Metastasis is a complex process in which cancer cells dissociate from the original tumor and spread to distant sites of the body. During the metastatic process, cancer cells lose contact both with the extracellular matrix (ECM and the neighboring cells within the primary tumor, thus invading though surrounding tissues. Therefore, ECM, and ECM-related adhesion proteins play a critical role in the metastatic process. Ras suppressor-1 (RSU-1 was first identified as a suppressor of Ras-dependent oncogenic transformation and is localized to cell-ECM adhesions where it is known to interact with the pro-survival adhesion protein PINCH-1. Although the connection to cancer is obvious, little is known regarding its expression in various cancer types. This opinion piece is focusing on recent literature regarding the expression of RSU-1 in various cancer types and the possible molecular mechanism of its action, pointing towards questions that need still to be addressed in this research field.

  16. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  17. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    International Nuclear Information System (INIS)

    Liao Maofu; Kielian, Margaret

    2005-01-01

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion

  18. The Value of Suppressor Effects in Explicating the Construct Validity of Symptom Measures

    Science.gov (United States)

    Watson, David; Clark, Lee Anna; Chmielewski, Michael; Kotov, Roman

    2013-01-01

    Suppressor effects are operating when the addition of a predictor increases the predictive power of another variable. We argue that suppressor effects can play a valuable role in explicating the construct validity of symptom measures by bringing into clearer focus opposing elements that are inherent—but largely hidden—in the measure’s overall score. We illustrate this point using theoretically grounded, replicated suppressor effects that have emerged in analyses of the original Inventory of Depression and Anxiety Symptoms (IDAS; Watson et al., 2007) and its expanded second version (IDAS-II; Watson et al., 2012). In Study 1, we demonstrate that the IDAS-II Appetite Gain and Appetite Loss scales contain both (a) a shared distress component that creates a positive correlation between them and (b) a specific symptom component that produces a natural negative association between them (i.e., people who recently have experienced decreased interest in food/loss of appetite are less likely to report a concomitant increase in appetite/weight). In Study 2, we establish that mania scales also contain two distinct elements—namely, high energy/positive emotionality and general distress/dysfunction—that oppose each another in many instances. In both studies, we obtained evidence of suppression effects that were highly robust across different types of respondents (e.g., clinical outpatients, community adults, college students) and using both self-report and interview-based measures. These replicable suppressor effects establish that many homogeneous, unidimensional symptom scales actually contain distinguishable components with distinct—at times, even antagonistic—properties. PMID:23795886

  19. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  20. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    Science.gov (United States)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2017-06-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  1. DMPD: Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17070092 Suppressor of cytokine signaling (SOCS) 2, a protein with multiple function...Epub 2006 Oct 27. (.png) (.svg) (.html) (.csml) Show Suppressor of cytokine signaling (SOCS) 2, a protein with multiple function...SOCS) 2, a protein with multiple functions. Authors Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Pu

  2. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Rimola, Albert; Sodupe, Mariona [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ugliengo, Piero, E-mail: albert.rimola@uab.cat [Dipartimento di Chimica, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR Torino, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  3. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  4. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    Science.gov (United States)

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  5. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  6. Suppressors of RNA silencing encoded by tomato leaf curl

    Indian Academy of Sciences (India)

    Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B ... In the present study suppressor function of ORF C1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl ...

  7. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  8. The comparative analysis of antiparkinsonian activity of glycine combined with amantadine in conditions of changing neurosynaptic transmission

    Directory of Open Access Journals (Sweden)

    Mamchur V.I.

    2017-10-01

    Full Text Available Parkinson's disease is traditionally viewed as a disease which affects the human motor sphere. Besides motor manifestations in the clinical picture of the disease, non-motor manifestations with dementia as the most common are present. The purpose of the work – experimental evaluation of the possible antiparkinsonian action of glycine in terms of experimental models of Parkinson's disease equivalents (akinetic-rigid and tremor forms on the background of antiparkinsonian correction by amantadine. Methods: catalepsy model (inhibition of dopaminergic transmission, equivalents of hypokinesia and rigidity states and model of arekolyn tremor (activation of cholinergic transmission that corresponds to parkinsonian tremor on the background of amantadine administration (50 mg/kg, glycine (100 mg/kg and 200 mg/kg and their combined introduction. The research results show a positive dynamic in combined using of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg, which was is determined by the low percentage of animals with symptoms of catalepsy (50-70% with evaluation criteria of 0.5-1.8 points with maximum possible 6 points. Similar results were obtained in terms of activation of the cholinergic system (arekolyn tremor. Glycine at a dose of 100 mg/kg and 200 mg/kg facilitated to optimization of antitremor action of amantadine, that is registered in increased latent period of tremor, reduction of its duration and intensity attenuation almost by 2,1 times in comparison with indicators of the control group. Thus, studied combinations of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg are promising in studying of their influence on dementia in Parkinson's syndrome, and this study will be continued.

  9. Effect of surface structure and wettability of DLC and N-DLC thin films on adsorption of glycine

    International Nuclear Information System (INIS)

    Ahmed, Mukhtar H.; Byrne, John A.

    2012-01-01

    Diamond-like carbon (DLC) is known to have excellent biocompatibility. Various samples of DLC and nitrogen-doped DLC thin films (N-DLC) were deposited onto silicon substrates using plasma-enhanced chemical vapour deposition (PECVD). Subsequently, the adsorption of amino acid glycine onto the surfaces of the thin films was investigated to elucidate the mechanisms involved in protein adhesion. The physicochemical characteristics of the surfaces, before and after adsorption of glycine, were investigated using Fourier transfer infrared (FTIR), Raman spectroscopy, spectroscopic ellipsometry (SE) and contact angle (θ). The Raman study highlighted decrease slightly in the ID/IG ratio at low levels of N (5.4 at.%), whilst increasing the nitrogen dopant level (>5.4 at.%) resulted in a increase of the ID/IG ratio, and the FTIR band at related to C=N. Following exposure to glycine solutions, the presence of Raman bands at 1727 cm -1 and 1200 cm -1 , and FTIR bands at 1735 cm -1 indicates that the adsorption of glycine onto the surfaces has taken place. These results which obtained from SE and surface free energy, show that low levels of nitrogen doping in DLC enhances the adsorption of the amino acid, while, increased doping led to a reduced adsorption, as compared to undoped DLC. Glycine is bound to the surface of the DLC films via both de-protonated carboxyl and protonated amino groups while, in the case of N-DLC gylcine was bound to the surface via anionic carboxyl groups and the amino group did not interact strongly with the surface. Doping of DLC may allow control of protein adsorption to the surface.

  10. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  11. Effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen

    International Nuclear Information System (INIS)

    Shibata, Y.; Volkman, A.

    1985-01-01

    The i.p. injection of Corynebacterium parvum (CP) into CBA/J mice effected increases in macrophage colony-forming cells (M-CFC) when spleen cells were cultured with L cell culture filtrate as a source of colony-stimulating factor. Significant increases in phagocytic macrophages (M phi) with Fc receptors for IgG2a and IgG2b immune complexes were additionally noted among the spleen cells in these mice. These M phi effectively inhibited Con A-induced lymphocyte proliferation, probably reflecting a 10-fold increase above normal controls in prostaglandin E to 47 ng/3 X 10(6) spleen cells/ml. To determine whether the suppressor M phi are immediate derivatives of splenic M-CFC, we tried to induce suppressor M phi by the injection of CP into mice depleted of bone marrow M-CFC by the earlier administration of the bone-seeking isotope, 89Sr. This procedure reduced M-CFC in the bone marrow to less than 1% of normal for more than 30 days. Monocytes in the blood fell to 5% of normal by day 10 and were 30% on day 30. Levels of resident peritoneal M phi showed relatively little change in this period. By contrast, splenic M-CFC increased to 20-fold higher than the cold 88Sr controls. CP-induced suppressor M phi activity, however, was sharply reduced in 89Sr marrow-depleted mice on day 10, despite the striking increase in M-CFC. There was a threefold increase in the number of phagocytic M phi binding IgG2a immune complexes, with no significant increase in IgG2b binding M phi. The kinetics of recovery of suppressor M phi activity showed that on days 20, 30, and 50 after 89Sr injection the activities reached 20%, 30%, and 70% of the cold control, respectively, and correlated with the recovery of significant levels of M-CFC in the bone marrow. Taken together, these observations suggest that splenic M-CFC are not an immediate source of PGE-suppressor M phi in vivo

  12. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  13. Subpopulation of human helper and suppressor T lymphocytes

    International Nuclear Information System (INIS)

    Venkataraman, M.; Levin, R.D.; Westerman, M.P.

    1983-01-01

    Mitogen driven differentiation of normal human mononuclear cells is a well-established model for the study of antibody synthesis in man. In certain rare individuals who are clinically normal, unfractionated mononuclear cells or a mixture of purified B plus T lymphocytes differentiate into immunoglobulin producing cells in response to purified protein derivative of tuberculin (PPD) but not in response to pokeweed mitogen (PWM). To evaluate this observation we have irradiated T cells from such individuals to eliminate naturally occurring suppressor T cell activity and then added the irradiated T cells back to autologous B cells before culture. The B cells then responded to PWM. The original PPD responses of cells from these individuals were now significantly reduced. Although, there was no difference between PWM nonresponders and responders in the number of OKT-8 positive cells, elimination of OKT-8 positive cells in the PWM nonresponders with OKT-8 monoclonal antibody and complement resulted in a significantly increased response to PWM. This study indicates that there are suppressor T cells which specifically inhibit B cell response to PWM without affecting the PPD response. These results also show that the helper T cells involved in the PWM response are radioresistant and those involved in the PPD response are radiosensitive

  14. Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Yu Omori

    2015-03-01

    Full Text Available This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2 in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain.

  15. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis, Crystal Structure of a Novel Mn Complex with Nicotinoyl-Glycine

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-12-01

    Full Text Available A novel manganese complex, C16H26MnN4O12, was synthesized by the reaction of nicotinoyl-glycine and NaOH in an ethanol/water solution and structurally characterized by elemental analysis, UV-vis spectrum, IR spectrum and single-crystal X-ray diffraction analysis. The crystal of the complex belongs to the triclinic space group P1 with a = 7.8192(16 Å, b = 8.8800(18 Å, c = 9.0142(18 Å, α = 83.14(3°, β = 65.27(3°, γ = 81.67(3°, V = 516.3(2 Å3, Z = 1, Dx = 1.542 mg·m−3, μ = 0.66 mm−1, F(000 = 271, and final R1 = 0.0381, ωR2 = 0.0964. The nicotinoyl-glycine ligand acts as a bridging ligand to connect the manganese ions by the hydrogen interactions; thus, the complex expands into a 3D supramolecular net structure.

  17. Thermal and Electrical Properties of Polyaniline-glycine Composites

    Science.gov (United States)

    Mathavan, T.; Umapathy, S.; Jothirajan, M. A.; Vivekanandam, T. S.; Okram, G. S.

    2011-07-01

    Polymer-amino acid composites were prepared by combining the synthesized polyaniline and glycine in solid state. The samples were characterized by modulated DSC and AFM. Modulated DSC thermogram showed the structural changes occurred while composite formation. D.C electrical conductivity measurements were carried out on the samples in the temperature range of 310 K-85 K by using two-probe method. Analysis of D.C conductivity results revealed that the conductivity was governed by Mott's 2-dimensional variable range hopping.

  18. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wang, Shumin; Ma, Ning; Murata, Mariko; Huang, Guangwu; Zhang, Zhe; Xiao, Xue; Zhou, Xiaoying; Huang, Tingting; Du, Chunping; Yu, Nana; Mo, Yingxi; Lin, Longde; Zhang, Jinyan

    2010-01-01

    Epigenetic silencing of tumor suppressor genes play important roles in NPC tumorgenesis. Tissue factor pathway inhibitor-2 (TFPI-2), is a protease inhibitor. Recently, TFPI-2 was suggested to be a tumor suppressor gene involved in tumorigenesis and metastasis in some cancers. In this study, we investigated whether TFPI-2 was inactivated epigenetically in nasopharyngeal carcinoma (NPC). Transcriptional expression levels of TFPI-2 was evaluated by RT-PCR. Methylation status were investigated by methylation specific PCR and bisulfate genomic sequencing. The role of TFPI-2 as a tumor suppressor gene in NPC was addressed by re-introducing TFPI-2 expression into the NPC cell line CNE2. TFPI-2 mRNA transcription was inactivated in NPC cell lines. TFPI-2 was aberrantly methylated in 66.7% (4/6) NPC cell lines and 88.6% (62/70) of NPC primary tumors, but not in normal nasopharyngeal epithelia. TFPI-2 expression could be restored in NPC cells after demethylation treatment. Ectopic expression of TFPI-2 in NPC cells induced apoptosis and inhibited cell proliferation, colony formation and cell migration. Epigenetic inactivation of TFPI-2 by promoter hypermethylation is a frequent and tumor specific event in NPC. TFPI-2 might be considering as a putative tumor suppressor gene in NPC

  19. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans

    DEFF Research Database (Denmark)

    Orskov, C; Rabenhøj, L; Wettergren, A

    1994-01-01

    Using specific radioimmunoassays, we studied the occurrence of amidated and glycine-extended glucagon-like peptide I (GLP-I) molecules in the human small intestine and pancreas and in the circulation system in response to a breakfast meal. Through gel permeation chromatography of extracts...... plasma were 7 +/- 1 and 6 +/- 1 pM, respectively (n = 6). In response to a breakfast meal, the concentration of amidated GLP-I rose significantly amounting to 41 +/- 5 pM 90 min after the meal ingestion, whereas the concentration of glycine-extended GLP-I only rose slightly to a maximum of 10 +/- 1 p...

  20. History of myeloid-derived suppressor cells.

    Science.gov (United States)

    Talmadge, James E; Gabrilovich, Dmitry I

    2013-10-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.

  1. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. ..... rangement of the EGF receptor gene in primary human brain tumors ... the INK4A gene in superficial bladder tumors.

  2. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective.

    Science.gov (United States)

    Lee, Hun Seok; Kundu, Juthika; Kim, Ryong Nam; Shin, Young Kee

    2015-12-15

    Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.

  3. Transducer of ERBB2.1 (TOB1 as a Tumor Suppressor: A Mechanistic Perspective

    Directory of Open Access Journals (Sweden)

    Hun Seok Lee

    2015-12-01

    Full Text Available Transducer of ERBB2.1 (TOB1 is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4 and phosphatase and tensin homolog-10 (PTEN, and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.

  4. Heat Effect of the Protonation of Glycine and the Enthalpies of Resolvation of Participating Chemical Species in Water-Dimethylsulfoxide Solvent Mixtures

    Science.gov (United States)

    Isaeva, V. A.; Sharnin, V. A.

    2018-02-01

    Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.

  5. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  6. Bioanalytical method development and validation for the determination of glycine in human cerebrospinal fluid by ion-pair reversed-phase liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Jian; James, Christopher A; Wong, Philip

    2016-09-05

    A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Glycine Transporter Inhibitor Attenuates the Psychotomimetic Effects of Ketamine in Healthy Males: Preliminary Evidence

    Science.gov (United States)

    D'Souza, Deepak Cyril; Singh, Nagendra; Elander, Jacqueline; Carbuto, Michelle; Pittman, Brian; de Haes, Joanna Udo; Sjogren, Magnus; Peeters, Pierre; Ranganathan, Mohini; Schipper, Jacques

    2012-01-01

    Enhancing glutamate function by stimulating the glycine site of the NMDA receptor with glycine, -serine, or with drugs that inhibit glycine reuptake may have therapeutic potential in schizophrenia. The effects of a single oral dose of cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl) amino-methylcarboxylic acid hydrochloride (Org 25935), a glycine transporter-1 (GlyT1) inhibitor, and placebo pretreatment on ketamine-induced schizophrenia-like psychotic symptoms, perceptual alterations, and subjective effects were evaluated in 12 healthy male subjects in a randomized, counter-balanced, within-subjects, crossover design. At 2.5 h after administration of the Org 25935 or placebo, subjects received a ketamine bolus and constant infusion lasting 100 min. Psychotic symptoms, perceptual, and a number of subjective effects were assessed repeatedly before, several times during, and after completion of ketamine administration. A cognitive battery was administered once per test day. Ketamine produced behavioral, subjective, and cognitive effects consistent with its known effects. Org 25935 reduced the ketamine-induced increases in measures of psychosis (Positive and Negative Syndrome Scale (PANSS)) and perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)). The magnitude of the effect of Org 25935 on ketamine-induced increases in Total PANSS and CADSS Clinician-rated scores was 0.71 and 0.98 (SD units), respectively. None of the behavioral effects of ketamine were increased by Org 25935 pretreatment. Org 25935 worsened some aspects of learning and delayed recall, and trended to improve choice reaction time. This study demonstrates for the first time in humans that a GlyT1 inhibitor reduces the effects induced by NMDA receptor antagonism. These findings provide preliminary support for further study of the antipsychotic potential of GlyT1 inhibitors. PMID:22113087

  8. Clinical impact of the immunome in lymphoid malignancies: the role of Myeloid-Derived Suppressor Cells

    Directory of Open Access Journals (Sweden)

    Calogero eVetro

    2015-05-01

    Full Text Available The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of myeloid-derived suppressor cells in the settings of lymphoid malignancies.

  9. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B 2 ...

    African Journals Online (AJOL)

    The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software. Five parameters ...

  10. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Koike, Hiroyuki; Kinoshita, Kohnosuke; Kambe, Daiji; Kaku, Ayaka; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2015-02-01

    Glutamatergic dysfunction, particularly the hypofunction of N-methyl-D-aspartate (NMDA) receptors, is involved in the pathophysiology of schizophrenia. The positive modulation of the glycine site on the NMDA receptor has been proposed as a novel therapeutic approach for schizophrenia. However, its efficacy against negative symptoms, which are poorly managed by current medications, has not been fully addressed. In the present study, the effects of the positive modulation of the glycine site on the NMDA receptor were investigated in an animal model of negative symptoms of schizophrenia. The subchronic administration of MK-801 increased immobility in the forced swimming test in rats without affecting spontaneous locomotor activity. The increased immobility induced by MK-801 was attenuated by the atypical antipsychotic clozapine but not by either the typical antipsychotic haloperidol or the antidepressant imipramine, indicating that the increased immobility induced by subchronic treatment with MK-801 in the forced swimming test may represent a negative symptom of schizophrenia. Likewise, positive modulation of the glycine sites on the NMDA receptor using an agonist for the glycine site, D-serine, and a glycine transporter-1 inhibitor, N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride (NFPS), significantly reversed the increase in immobility in MK-801-treated rats without reducing the immobility time in vehicle-treated rats. The present results show that the stimulation of the NMDA receptor through the glycine site on the receptor either directly with D-serine or by blocking glycine transporter-1 attenuates the immobility elicited by the subchronic administration of MK-801 and may be potentially useful for the treatment of negative symptoms of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Kuzmin, Mikhail; Lahtonen, Kimmo; Vuori, Leena; Sánchez-de-Armas, Rocío; Hirsimäki, Mika; Valden, Mika

    2017-07-01

    Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH2(CH2)COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH2(CH2)COO-]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  12. Identification of a maize chlorotic dwarf virus silencing suppressor protein

    Science.gov (United States)

    Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389 kDa proteolytically processed polyprotein. We show that an N-terminal 78kDa polyprotein (R78) has silencing suppressor activity, that it is cleaved by the viral...

  13. Collagen VI glycine mutations : Perturbed assembly and a spectrum of clinical severity

    NARCIS (Netherlands)

    Pace, Rishika A.; Peat, Rachel A.; Baker, Naomi L.; Zamurs, Laura; Moergelin, Matthias; Irving, Melita; Adams, Naomi E.; Bateman, John F.; Mowat, David; Smith, Nicholas J. C.; Lamont, Phillipa J.; Moore, Steven A.; Mathews, Katherine D.; North, Kathryn N.; Lamande, Shireen R.

    Objective: The collagen VI muscular dystrophies, Bethlem myopathy and Ullrich congenital muscular dystrophy, form a continuum of clinical phenotypes. Glycine mutations in the triple helix have been identified in both Bethlem and Ullrich congenital muscular dystrophy, but it is not known why they

  14. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations

    DEFF Research Database (Denmark)

    Aslan, Derya; Garde, Christian; Nygaard, Mette Katrine

    2016-01-01

    Spliceosome mutations are frequently observed in patients with myelodysplastic syndromes (MDS). However, it is largely unknown how these mutations contribute to the disease. MicroRNAs (miRNAs) are small noncoding RNAs, which have been implicated in most human cancers due to their role in post...... the most downregulated miRNAs were several tumor-suppressor miRNAs, including several let-7 family members, miR-423, and miR-103a. Finally, we observed that the predicted targets of the most downregulated miRNAs were involved in apoptosis, hematopoiesis, and acute myeloid leukemia among other cancer......- and metabolic pathways. Our data indicate that spliceosome mutations may play an important role in MDS pathophysiology by affecting the expression of tumor suppressor miRNA genes involved in the development and progression of MDS....

  15. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  16. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  17. A novel liquid chromatography/tandem mass spectrometry method for the quantification of glycine as biomarker in brain microdialysis and cerebrospinal fluid samples within 5min.

    Science.gov (United States)

    Voehringer, Patrizia; Fuertig, René; Ferger, Boris

    2013-11-15

    Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  19. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  20. Hydrophobic radical influence on structure and vibration spectra of zwitter-ionic forms of glycine and alanine in condensed state

    International Nuclear Information System (INIS)

    Ten, G.N.; Kadrov, D.M.; Baranov, V.I.

    2014-01-01

    Structure and vibrational spectra of the zwitter-ionic forms of glycine and alanine in water solution and solid state have been calculated in the B3LYP/6-311++G(d,p) approximation. The environment influence has been taken into account by two methods: the self-consistent reaction field (SCRF) method and one of modeling the glycine and alanine complexes with molecules of water. The structure, energy and spectral properties have been determined which allow establishing an influence of the hydrophobic radical on the glycine and alanine ability to form the hydrogen bonds. It is shown by comparison with experiment that for the calculation of vibrational (IR and Raman) spectra of the zwitter-ionic forms of glycine and alanine in the condensed states they must be surrounded with three molecules of water, one of which is located between the N + H 3 and COO - ionic groups. The value of energy necessary to form the Ala complexes with water compared to Gly ones is 56.47 and 12.55 kcal/mol higher in the case of the complex formation with 1and 3 molecules of water, respectively, located between bipolar groups. (authors)

  1. Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Webb, Timothy I.; Dixon, Christine L.

    2011-01-01

    Ivermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated...

  2. NdFeO3 nanocrystals under glycine nitrate combustion formation

    Science.gov (United States)

    Tugova, Ekaterina; Yastrebov, Sergey; Karpov, Oleg; Smith, Roger

    2017-06-01

    Nanocrystalline perovskite NdFeO3 with the orthorhombic structure was prepared by a glycine nitrate combustion method under different technological conditions. The starting materials Fe(NO3)3 · 9H2O,Nd(NO3)3 · 6H2O in stoichiometric amounts and H2NCH2COOH were used. These quantities were varied by changing the ratio of glycine moles to metal nitrate moles (G/N) in the range between 0.25 and 0.75. The prepared NdFeO3 nanocrystals were characterised by X-ray diffraction (XRD) and electron microscopy. Decomposition of the XRD diffraction profile using Voigt contours was exploited for analysis of the pattern in the area where the most prominent diffraction peak was situated. We demonstrate that Voigt functions reduce to Lorentzians for G / N = 0.75 and 0.55 . A volume-weighted diameter distribution function was derived using the width of the Lorentzians. The log-normal shape of the distribution is discussed in terms of the model, assuming exponential growth of cluster size in the time available for the NdFeO3 nanograin to grow.

  3. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  4. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  5. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  6. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Pasquale, Elena B

    2007-01-01

    Mutations have been recently identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor suppressor in prostate cancer...

  7. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Pasquale, Elena B

    2006-01-01

    Mutations have been recently identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor suppressor in prostate cancer...

  8. Enhanced attachment and growth of periodontal cells on glycine-arginine-glycine-aspartic modified chitosan membranes

    Directory of Open Access Journals (Sweden)

    Hsiao-Pei Tu

    2016-01-01

    Full Text Available Background: Chitosan, a polymeric carbohydrate derived from the exoskeleton of arthropod, has been suggested to be an excellent biomaterial for improving wound healing, especially for bones. To improve the periodontal cell attachment and growth, the cell adhesive peptide glycine-arginine-glycine-aspartic acid (Gly-Arg-Gly-Asp, GRGD grafted chitosan membrane was introduced in this study. Materials and Methods: Two types of commercial chitosan, three types of primary cultured cells, and two established cell lines were used. Human gingival and periodontal fibroblasts (hGF and hPDL, human root derived cell (hRDC, and rat calvaria bone cell (rCalB were cultured on the GRGD-fixed by ultraviolet light photochemical method on the chitosan membrane. With (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium assay and propidium iodine (PI staining, the cell adhesion and growth on GRGD-grafted chitosan were examined. Basal mRNA expressions of the receptors for GRGD, integrin αv (ITG αv and ITG β3, in the human gingival fibroblast cell line and mouse osteoblast cell line (MC3T3-E1 were examined with real-time polymerase chain reaction. Results: Because the cell adhesion/growth patterns on two chitosan membranes were similar, the GRGD modification was performed on one membrane (Primex only. For periodontal cells (hGFs, hPDLs, and hRDCs, the number of attached cells were increased on the membrane with the high concentration of GRGD than those on the membrane unmodified or modified with low concentration GRGD. For rCalBs cells, a different pattern was noted: GRGD modification did not enhance the calvaria cells attachment or growth. Moreover, mRNA expressions of ITG αv and β3 in AG09319 cells were significantly higher than those in MC3T3-E1 cells. Conclusions: With the limitation of this study, we suggested that GRGD-modified chitosan, especially at high concentration, could enhance the growth of various periodontal

  9. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    International Nuclear Information System (INIS)

    Mack, Hildegard I.D.; Munger, Karl

    2013-01-01

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer

  10. Fate of [15N]glycine in peat as determined by 13C and 15N CP-MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Benzing-Purdie, L.M.; Cheshire, M.V.; Williams, B.L.; Sparling, G.P.; Ratcliffe, C.I.; Ripmeester, J.A.

    1986-01-01

    Peat samples, nonsterile, sterilized by γ irradiation or autoclaving, were incubated with [ 15 N]glycine for a period of 6 months. The 13 C NMR data showed the established trend of increased humification with decreasing particle size and that autoclaving had significantly disturbed the humification-particle size distribution. The 15 N CP-MAS NMR spectra showed the presence of [ 15 N]glycine in all fractions after incubation. 15 NH 4 + , a result of either biological or chemical deamination, was one of the main products in the nonsterile peat series. The 15 N spectra also showed resonances corresponding to amine, secondary amide, and pyrrole-type nitrogen and the presence of glycine derivatives and melanoidins. The results presented give the first spectroscopic evidence of the possible involvement of the Maillard reaction in the humification process

  11. Potassium-stimulated release of radiolabelled taurine and glycine from the isolated rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.F.; Pycock, C.J.

    1982-09-01

    The release of preloaded (/sup 3/H)glycine and (/sup 3/H)taurine in response to a depolarising stimulus (12.5-50 mM KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of (/sup 3/H)glycine, the effect of 50 mM K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous efflux of (/sup 3/H)taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this late release of (/sup 3/H)taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 mM)-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p less than 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both (/sup 3/H)glycine and (/sup 3/H)taurine were demonstrated in the rat retina in vitro (Km values, 1.67 microM and 2.97 microM; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neurotransmitter roles of both amino acids in the rat retina.

  12. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  13. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Science.gov (United States)

    2010-04-01

    ... consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine (aminoacetic acid) in food for human consumption. (a) Heretofore, the...

  14. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids

    NARCIS (Netherlands)

    Lozovaya, N.; Yatsenko, N.; Beketov, A.; Tsintsadze, T.; Burnashev, N.

    2005-01-01

    At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR)

  15. The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens.

    Science.gov (United States)

    Lidö, Helga Höifödt; Stomberg, Rosita; Fagerberg, Anne; Ericson, Mia; Söderpalm, Bo

    2009-07-01

    The mesolimbic dopamine (DA) projection from the ventral tegmental area to nucleus accumbens (nAc), a central part of the reward system, is activated by ethanol (EtOH) and other drugs of abuse. We have previously demonstrated that the glycine receptor in the nAc and its amino acid agonists may be implicated in the DA activation and reinforcing properties of EtOH. We have also reported that the glycine transporter 1 inhibitor, Org 25935, produces a robust and dose-dependent decrease in EtOH consumption in Wistar rats. The present study explores the interaction between EtOH and Org 25935 with respect to DA levels in the rat nAc. The effects of Org 25935 (6 mg/kg, i.p.) and/or EtOH (2.5 g/kg, i.p.) on accumbal DA levels were examined by means of in vivo microdialysis (coupled to HPLC-ED) in freely moving male Wistar rats. The effect of Org 25935 on accumbal glycine output was also investigated. Systemic Org 25935 increased DA output in a subpopulation of rats (52% in Experiment 1 and 38% in Experiment 2). In Experiment 2, EtOH produced a significant increase in DA levels in vehicles (35%) and in Org 25935 nonresponders (19%), whereas EtOH did not further increase the DA level in rats responding to Org 25935 (2%). The same dose of Org 25935 increased glycine levels by 87% in nAc. This study demonstrates that Org 25935, probably via increased glycine levels, (i) counteracts EtOH-induced increases of accumbal DA levels and (ii) increases basal DA levels in a subpopulation of rats. The results are in line with previous findings and it is suggested that the effects observed involve interference with accumbal GlyRs and are related to the alcohol consumption modulating effect of Org 25935.

  16. Growth of glycine ethyl ester hydrochloride and its characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, G.; Pari, S., E-mail: sparimyur@gmail.com

    2016-11-15

    Single crystal of glycine ethyl ester hydrochloride by slow evaporation method is reported. The grown crystal characterized by single crystal X-ray diffraction, FT-IR, UV–Vis–NIR and fluorescence spectroscopy. It is established that the crystal falls under the monoclinic system and space group P21/c with the cell parameters as: a=8.565 Å, b=12.943 Å, c=6.272 Å, α=γ=90°, β=103.630º. UV–Vis–NIR spectrum shows indirect allowed transition with a band gap of 5.21 eV and other optical properties are measured. The crystal is also shown to have a high transmittance in the visible region. The third order nonlinear property and optical limiting have been investigated using Z-Scan technique. Complex impedance spectrum measured at the dc conductivity. Dependence of dielectric constant, dielectric loss and ac conductivity on frequency at different temperature of applied ac field is analyzed. The mechanical behavior has been assessed by Vickers microhardness indenter. The thermal behavior of glycine ethyl ester hydrochloride was analyzed using TG/DTA thermal curves. From the thermal study, the material was found to possess thermal stability up to 174 °C. The predicted NLO properties, UV–Vis transmittance and Z-scan studies indicate that is an attractive material for photonics optical limiting applications.

  17. Dietary intakes of glutamic acid and glycine are associated with stroke mortality in Japanese adults.

    Science.gov (United States)

    Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Kawachi, Toshiaki; Konishi, Kie; Tsuji, Michiko; Nakamura, Kozue

    2015-04-01

    Dietary intakes of glutamic acid and glycine have been reported to be associated with blood pressure. However, the link between intakes of these amino acids and stroke has not been studied. We aimed to examine the association between glutamic acid and glycine intakes and the risk of mortality from stroke in a population-based cohort study in Japan. The analyses included 29,079 residents (13,355 men and 15,724 women) of Takayama City, Japan, who were aged 35-101 y and enrolled in 1992. Their body mass index ranged from 9.9 to 57.4 kg/m(2). Their diets were assessed by a validated food frequency questionnaire. Deaths from stroke were ascertained over 16 y. During follow-up, 677 deaths from stroke (328 men and 349 women) were identified. A high intake of glutamic acid in terms of a percentage of total protein was significantly associated with a decreased risk of mortality from total stroke in women after controlling for covariates; the HR (95% CI) for the highest vs. lowest quartile was 0.72 (0.53, 0.98; P-trend: 0.03). Glycine intake was significantly associated with an increased risk of mortality from total and ischemic stroke in men without history of hypertension at baseline; the HRs (95% CIs) for the highest vs. lowest tertile were 1.60 (0.97, 2.51; P-trend: 0.03) and 1.88 (1.01, 3.52; P-trend: 0.02), respectively. There was no association between animal or vegetable protein intake and mortality from total and any subtype of stroke. The data suggest that glutamic acid and glycine intakes may be associated with risk of stroke mortality. Given that this is an initial observation, our results need to be confirmed. © 2015 American Society for Nutrition.

  18. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  19. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Rodionov, N.S.; Molodkin, A.K.; Fedorov, Yu.A.; Tsekhanskij, R.S.

    1985-01-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid

  20. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Rodionov, N S; Molodkin, A K; Fedorov, Yu A; Tsekhanskij, R S

    1985-07-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid.

  1. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  2. Glycine transporter GlyT1, but not GlyT2, is expressed in rat dorsal root ganglion--Possible implications for neuropathic pain

    NARCIS (Netherlands)

    Schlösser, Lukas; Barthel, Franziska; Brandenburger, Timo; Neumann, Elena; Bauer, Inge; Eulenburg, Volker; Werdehausen, Robert; Hermanns, Henning

    2015-01-01

    Glycinergic inhibitory neurotransmission plays a pivotal role in the development of neuropathic pain. The glycine concentration in the synaptic cleft is controlled by the glycine transporters GlyT1 and GlyT2. GlyT1 is expressed throughout the central nervous system, while GlyT2 is exclusively

  3. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    Science.gov (United States)

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  4. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

    DEFF Research Database (Denmark)

    Jansson, M D; Djodji Damas, Nkerorema; Lees, M

    2014-01-01

    MicroRNAs (miRNAs) regulate many key cancer-relevant pathways and may themselves possess oncogenic or tumor-suppressor functions. Consequently, miRNA dysregulation has been shown to be a prominent feature in many human cancers. The p53 tumor suppressor acts as a negative regulator of cell prolife...... tumor cells. Furthermore, we show that a negative correlation between miR-339-5p and MDM2 expression exists in human cancer, implying that the interaction is important for cancer development.Oncogene advance online publication, 2 June 2014; doi:10.1038/onc.2014.130....

  5. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  6. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  7. SYNTHESIS OF SOME PROLINE DERIVATIVES BY MEANS OF MICHAEL ADDITIONS OF GLYCINE ESTERS

    NARCIS (Netherlands)

    VANDERWERF, A; KELLOGG, RM

    1991-01-01

    Addition of the Schiff bases derived from reaction of glycine alkyl esters with benzophenoneimine to alpha,beta-unsaturated ketones, followed by hydrogenation of the addition products, leads to 5- or 3,5-substituted prolines. Hydrolysis of the Michael adducts rather than hydrogenation allows

  8. Murine neonatal spleen contains natural T and non-T suppressor cells capable of inhibiting adult alloreactive and newborn autoreactive T-cell proliferation.

    Science.gov (United States)

    Hooper, D C; Hoskin, D W; Gronvik, K O; Murgita, R A

    1986-05-01

    The spleen of neonatal mice is known to be a rich source of cells capable of suppressing a variety of immune functions of adult lymphocytes in vitro. From such observations has emerged the concept that the gradual development in ability to express immune functions after birth is due in part to the parallel normal physiological decay of naturally occurring regulatory suppressor cells. There is, however, some confusion in the literature as to the exact nature of the newborn of the newborn inhibitory cell type(s). In contrast to most previous reports which detect only a single type of neonatal suppressor cell, usually a T cell, we show here that newborn spleen harbors both T and non-T inhibitory cells. Both types of suppressor cells could be shown to suppress the proliferative response of adult spleen to alloantigens as well as newborn T cells reacting against self-Ia antigen in the autologous mixed lymphocyte reaction (AMLR). Newborn suppressor T cells were characterized as being non-adherent to Ig-anti-Ig affinity columns, soybean agglutinin receptor negative (SBA-), and susceptible to lysis by anti-T-cell specific antiserum plus complement. Non-T suppressor cells were identified as non-phagocytic, SBA receptor positive (SBA+), and resistant to cytotoxic treatment with anti-T-cell antibodies and complement. The apparent controversy surrounding previous reports as to the T versus non-T nature of newborn suppressor cells can be reconciled by the present observation that both types of inhibitory cells coexist in the spleen. Furthermore, the demonstration that newborn suppressor cells can effectively regulate T-cell proliferative activity mediated by other newborn cells provides more direct support for the contention that such inhibitory cells play a physiological role in controlling immune responsiveness during early ontogeny.

  9. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  10. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    Science.gov (United States)

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  11. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  12. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  13. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  14. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  15. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Directory of Open Access Journals (Sweden)

    Lijie Yang

    Full Text Available This study investigated the influence of nitrogen (N fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK, N fertilizer (NF and N fertilizer plus rice straw (NS. We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  16. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    Science.gov (United States)

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters

    International Nuclear Information System (INIS)

    Sener, A.; Dunlop, M.E.; Gomis, R.; Mathias, P.C.; Malaisse-Lagae, F.; Malaisse, W.J.

    1985-01-01

    The Ca2+-responsive enzyme transglutaminase, which catalyzes the cross-bridging of proteins, is present in pancreatic islet cells, but its participation in the process of insulin release remains to be documented. Glycine methylester (1.0-10.0 mM) inhibited, in a dose-related manner, transglutaminase activity in rat pancreatic islet homogenates, decreased [ 14 C]methylamine incorporation into endogenous proteins of intact islets, and caused a rapid and reversible inhibition of insulin release evoked by D-glucose, while failing to affect D-[U- 14 C]glucose oxidation. Glycine methylester also inhibited insulin release induced by other nutrient or nonnutrient secretagogues. Sarcosine methylester failed to affect transglutaminase activity, [ 14 C]methylamine incorporation, and insulin release. Both methylesters mobilized 45 Ca from prelabeled intact islets, from membranes of islet cells, liver or brain, and from artificial lipid multilayers, this Ca mobilization being apparently unrelated to changes in transglutaminase activity. It is proposed that, in the pancreatic B cell, transglutaminase participates in the machinery controlling the access of secretory granules to the exocytotic sites

  18. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  19. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens

    International Nuclear Information System (INIS)

    Pruss, Gail J.; Lawrence, Christopher B.; Bass, Troy; Li Qingshun Q.; Bowman, Lewis H.; Vance, Vicki

    2004-01-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms

  20. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens.

    Science.gov (United States)

    Pruss, Gail J; Lawrence, Christopher B; Bass, Troy; Li, Qingshun Q; Bowman, Lewis H; Vance, Vicki

    2004-03-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms.

  1. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  2. Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor

    Science.gov (United States)

    Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi

    2018-05-01

    This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.

  3. Identification and Functional Analysis of Gene Regulatory Sequences Interacting with Colorectal Tumor Suppressors

    DEFF Research Database (Denmark)

    Dahlgaard, Katja; Troelsen, Jesper

    2018-01-01

    Several tumor suppressors possess gene regulatory activity. Here, we describe how promoter and promoter/enhancer reporter assays can be used to characterize a colorectal tumor suppressor proteins’ gene regulatory activity of possible target genes. In the first part, a bioinformatic approach...... of the quick and efficient In-Fusion cloning method, and how to carry out transient transfections of Caco-2 colon cancer cells with the produced luciferase reporter plasmids using polyethyleneimine (PEI). A plan describing how to set up and carry out the luciferase expression assay is presented. The luciferase...... to identify relevant gene regulatory regions of potential target genes is presented. In the second part, it is demonstrated how to prepare and carry out the functional assay. We explain how to clone the bioinformatically identified gene regulatory regions into luciferase reporter plasmids by the use...

  4. An autoradiographic study on the distribution of 14C-glycine in clonorchis sinensis

    International Nuclear Information System (INIS)

    Lee, S.H.; Song, C.Y.

    1977-01-01

    To study an aspect of protein metabolism in chinese liverfluke, Clonorchis sinensis, an autoradiographic study was performed. A batch of 25 ml erlenmeyer flasks, each flask containing 10 worms of C. sinensis and 10 ml of Tyrode medium with 2.5 μCi/ml of 14 C-glycine, was incubated for 1 hour in Dubnoff metabolic shaking incubator at 37 0 C. Those worms were processed for microautoradiography immediately after the incubation, and following results were obtained from the autoradiographs. The densities of black silver grains derived from 14 C-glycine were the most apparent in the subparenchymal cells, intestinal epithelium, vitelline gland cells, ovary and the wall of the seminal vesicle. Moderate grade of densities were observed in the tegument, oral sucker, pharynx, intestinal content and in the testes. The reticular tissue, ventral sucker, uterus with eggs, seminal receptacle and the content of seminal vesicle showed trace amount of silver grains. (author)

  5. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Sugio, Kenji; Kuwabara, Yasuo

    2003-01-01

    The FDG uptake in lung cancer is considered to reflect the degree of malignancy, while alterations of some tumor suppressor genes are considered to be related to the malignant biological behavior of tumors. The aim of this study is to examine the relationship between FDG-PET and alterations in the tumor suppression genes of lung cancer. We examined 28 patients with primary lung cancer who underwent FDG-PET before surgery consisting of 17 patients with adenocarcinoma, 10 with squamous cell carcinoma and 1 with large cell carcinoma. The FDG-PET findings were evaluated based on the standardized uptake value (SUV). Alterations in the tumor suppressor genes, Rb, p16, p27 and p53, were evaluated immunohistochemically. The FDG uptake in lung cancer with alteration in each tumor suppressor gene tended to be higher than in those genes without alterations, although the differences were not significant. In 15 tumors with alterations in either tumor suppressor genes, the FDG uptake was 6.83±3.21. On the other hand, the mean FDG uptake was 1.95 in 2 tumors without alterations in any genes. The difference in the FDG uptake between the 2 groups was statistically significant (p<0.001). In conclusion, the presence of abnormalities in the tumor suppressor genes, which results in an accelerated cell proliferation, is thus considered to increase the FDG uptake in lung cancer. (author)

  6. Immunoregulatory changes induced by total lymphoid irradiation. II. Development of thymus-leukemia antigen-positive and -negative suppressor T cells that differ in their regulatory function

    International Nuclear Information System (INIS)

    King, D.P.; Strober, S.

    1981-01-01

    BALB/c mice treated with total lymphoid irradiation (TLI) develop non-antigen-specific suppressor cells of the adoptive secondary antibody response and of the mixed leukocyte reaction. Suppressors of the adoptive anti-DNP response were eliminated by incubation of spleen cells with anti-Thy-1.2 or anti-thymus-leukemia (TL) antiserum and complement before cell transfer. Thymectomy before TLI prevented the appearance of the latter suppressor cells. On the other hand, suppressors of the MLR were eliminated by incubation of spleen cells with anti-Thy-1.2 but not anti-TL antiserum and complement. Thymectomy before TLI did not prevent their subsequent development. Thus, two subpopulations of suppressor T cells that differ in the expression of the TL surface antigen, dependence on the presence of the thymus, and in regulatory functions develop after TLI. The TL+, thymus-dependent cell suppresses the adoptive antibody response, and the TL-, thymus-independent cell suppresses the MLR

  7. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2 BC3 and fertile soybean plants

    Science.gov (United States)

    The genetic resources of the 26 species of the subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). Initially, we hybridized eight soybean cultivars with six accessions of 78- and one accession of 40-chromosome G. tomentella. One accession of G. arg...

  8. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei; Kuo, Wen-Lin; Lie, Daniel K.H.; Chua, Constance L.M.; Wong, Chow Yin; Hong, Ga Sze; Gray, Joe; Lee, Ann S.G.

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30 primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.

  9. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo

    2016-06-15

    Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.

  10. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  11. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    International Nuclear Information System (INIS)

    Gualde, N.; Goodwin, J.S.

    1984-01-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [ 3 H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [ 3 H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset

  12. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system

    Czech Academy of Sciences Publication Activity Database

    Zubáčová, Z.; Novák, L.; Bublíková, J.; Vacek, V.; Fousek, Jan; Rídl, Jakub; Tachezy, J.; Doležal, P.; Vlček, Čestmír; Hampl, V.

    2013-01-01

    Roč. 8, č. 3 (2013), e55417 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : transcriptome sequencing * Trimastix * mitochondrion -like organelle * glycine cleavage complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  13. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    Ligand binding to Cys-loop receptors produces either global conformational changes that lead to activation or local conformational changes that do not. We found that the fluorescence of a fluorophore tethered to R271C in the extracellular M2 region of the alpha1 glycine receptor increases during ...

  14. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  15. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  16. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  17. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  18. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  19. Glycine reduces tissue lipid peroxidation in hypoxia-reoxygenation-induced necrotizing enterocolitis in rats

    Directory of Open Access Journals (Sweden)

    Meyer Karine Furtado

    2006-01-01

    Full Text Available PURPOSE: To assess the protective effect of glycine in an experimental model of Neonatal Necrotizing Enterocolitis (NEC. METHODS: Fifty (50 neonatal Wistar rats, from a litter of six female rats and weighing 4 to 6 grams, were used. Five animals were cannibalized and the 45 remaining were distributed into three groups: the G1 normal control group (n=12; the G2 Group (n=16, of animals that underwent hypoxia-reoxygenation (HR; the G3 Group of animals (n=17 that underwent HR following a 5% intraperitoneal glycine infusion. The animals underwent hypoxia in a CO2 chamber receiving an air flow of 100% CO2 for 5 minutes and reoxygenation receiving an O2 flow at 100% for 5 minutes. One centimeter long small bowel and colon segments were prepared for histological analysis. The rest of the bowel was removed in a block and frozen at minus 80degreesC for homogenization and determination of tissue malondialdehyde (MDA. Tissue lesions were classified as Grade 0 to Grade 5, according to the level of damaged mucosa. RESULTS: The animals in Group G1 had levels of small bowel and colon lesion significantly smaller as compared to the animals in Groups G2 and G3. The G2 group had mean MDA values significantly higher than the animals in the G1 (p = .015 and G3 (p=0.021 groups. MDA values did not differ significantly (p = 0.992 for the animals in groups G1 and G3. CONCLUSION: Glycine reduces tissue MDA levels (a measurement of lipid peroxidation following HR in neonatal rats.

  20. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384 ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  1. Direct growth of vertically aligned carbon nanotubes on silicon substrate by spray pyrolysis of Glycine max oil

    Directory of Open Access Journals (Sweden)

    K. T. Karthikeyan

    2017-11-01

    Full Text Available Vertically aligned carbon nanotubes have been synthesized by spray pyrolysis from Glycine max oil on silicon substrate using ferrocene as catalyst at 650 °C. Glycine max oil, a plant-based hydrocarbon precursor was used as a source of carbon and argon as a carrier gas. The as-grown vertically aligned carbon nanotubes were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. Scanning electron microscopic images reveal that the dense bundles of aligned carbon nanotubes. High resolution transmission electron microscopy and Raman spectroscopy observations indicate that as-grown aligned carbon nanotubes are well graphitized.

  2. Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer

    International Nuclear Information System (INIS)

    Carey, Jason PW; Asirvatham, Ananthi J; Galm, Oliver; Ghogomu, Tandeih A; Chaudhary, Jaideep

    2009-01-01

    Inhibitor of differentiation 4 (Id4), a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH) transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP) analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS), expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR), p21, p27 and p53 expression in DU145 cells. The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously silenced tumor suppressors

  3. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.; Chaki, S. H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat (India)

    2016-05-06

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field, UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.

  4. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  5. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  6. System and method for multi-stage bypass, low operating temperature suppressor for automatic weapons

    Science.gov (United States)

    Moss, William C.; Anderson, Andrew T.

    2015-06-09

    The present disclosure relates to a suppressor for use with a weapon. The suppressor may be formed to have a body portion having a bore extending concentric with a bore axis of the weapon barrel. An opening in the bore extends at least substantially circumferentially around the bore. A flow path communicates with the opening and defines a channel for redirecting gasses flowing in the bore out from the bore, through the opening, into a rearward direction in the flow path. The flow path raises a pressure at the opening to generate a Mach disk within the bore at a location approximately coincident with the opening. The Mach disk forms as a virtual baffle to divert at least a portion of the gasses into the opening and into the flow path.

  7. Proton cross-talk and losses in the dispersion suppressor regions at the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2100784; Appleby, Robert Barrie; Krainer, Alexander; Langner, Andy Sven; Abelleira, Jose

    2017-01-01

    Protons that collide at the interaction points of the FCC-hh may contribute to the background in the subsequent detector. Due to the high luminosity of the proton beams this may be of concern. Using DPMJET-III to model 50 TeV proton-proton collisions, tracking studies have been performed with PTC and MERLIN in order to gauge the elastic and inelastic proton cross-talk. High arc losses, particularly in the dispersion suppressor regions, have been revealed. These losses originate mainly from particles with a momentum deviation, either from interaction with a primary collimator in the betatron cleaning insertion, or from the proton-proton collisions. This issue can be mitigated by introducing additional collimators in the dispersion suppressor region. The specific design, lattice integration, and the effect of these collimators on cross-talk is assessed.

  8. A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand

    Directory of Open Access Journals (Sweden)

    Edward Loukopoulos

    2018-01-01

    Full Text Available We report the synthesis and characterization of a 3D Cu(II coordination polymer, [Cu3(L12(H2O8]·8H2O (1, with the use of a glycine-based tripodal pseudopeptidic ligand (H3L1 = N,N′,N″-tris(carboxymethyl-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine. This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths net. We attempt to justify the unique topology of 1 through a systematic comparison of the synthetic parameters in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines. The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low as 3 mol %.

  9. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  10. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo, E-mail: yutsudo@biken.osaka-u.ac.jp

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  11. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  12. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui; Xu, Yanqiu; Pan, Jun; Gu, Hao; Qin, Changyun; Zhou, Peng

    2012-01-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  13. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui

    2012-11-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  14. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  15. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  16. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  17. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    Science.gov (United States)

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future

  18. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2.

    Directory of Open Access Journals (Sweden)

    Louise C Andresen

    Full Text Available It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1 soil of (13C-labeled glycine ((13C2, 99 atom % to soils in situ. Plots were treated with elevated temperature (+1°C, T, summer drought (D and elevated atmospheric carbon dioxide (510 ppm [CO2], as well as combined treatments (TD, TCO2, DCO2 and TDCO2. The (13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs was determined after 24 h. (13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS. Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13C in all treatments, whereas fungi had minor or no glycine derived (13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13C-depleted (δ(13C = 12.2‰ compared to ambient (δ(13C = ∼-8‰, and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to

  19. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  20. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W

    2009-03-01

    Full Text Available Abstract Background A single Glycine max (soybean genotype (Peking reacts differently to two different populations of Heterodera glycines (soybean cyst nematode within the first twelve hours of infection during resistant (R and susceptible (S reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix® soybean GeneChip® were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2 prior to their infection of Peking. Other analyses focused on the infective L2 at 12hours post infection (i-L212h, and the infective sedentary stages at 3days post infection (i-L23d and 8days post infection (i-L2/L38d. Results Differential expression and false discovery rate (FDR analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8 identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and β-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein. Conclusion These analyses identify a genetic expression signature for these two populations both prior to and subsequently

  1. Effect of Hydroxylamine Sulfate on Volumetric Behavior of Glycine, L-Alanine, and L-Arginine in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-01-01

    Full Text Available The apparent molar volumes of glycine, L-alanine, and L-arginine in aqueous hydroxylamine sulfate solutions have been determined at T=298.15 K and atmospheric pressure. The standard partial molar volumes, V20, corresponding partial molar volumes of transfer, ΔtrV20, and hydration numbers, NH, have been calculated for these α-amino acids from the experimental data. The ΔtrV20 values are positive for glycine, L-alanine, and L-arginine and are all increased with the increase in the concentration of hydroxylamine ions. These parameters obtained from the volumetric data are interpreted in terms of various mixing effects between amino acids and hydroxylamine sulfate in aqueous solutions.

  2. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System

    Directory of Open Access Journals (Sweden)

    Stephen R. Armstrong

    2016-12-01

    Full Text Available The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.

  3. Functional characterisation of human glycine receptors in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.

    2005-01-01

    The human glycine receptor subtypes alpha1beta and alpha2 have been expressed stably in HEK293 cells, and the functional characteristics of the receptors have been characterised in the FLIPR Membrane Potential Assay. The pharmacological properties obtained for nine standard ligands at the two rec...

  4. N-alylated mercaptoacetyl glycine derivatives as multipurpose ligands in radio tracer design. Pt. 2

    International Nuclear Information System (INIS)

    Noll, B.; Semmler, W.

    1994-01-01

    N 1 -alkylated mercaptoacetyl glycine ligands were labelled with technetium-99m and the formed products analyzed by chromatographic methods. Biodistribution patterns of the resulting species were determined in Wistar rats. The compounds were tested with regard to their ability to be accumulated in arterioclerotic plaques. (orig.)

  5. Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine.

    Science.gov (United States)

    Seyedhosseini, Ensieh; Romanyuk, Konstantin; Vasileva, Daria; Vasilev, Semen; Nuraeva, Alla; Zelenovskiy, Pavel; Ivanov, Maxim; Morozovska, Anna N; Shur, Vladimir Ya; Lu, Haidong; Gruverman, Alexei; Kholkin, Andrei L

    2017-06-14

    Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t -1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism.

  6. Comparison of the suppressor cells found in the spleens of 89Sr-treated mice and in normal murine bone marrow

    International Nuclear Information System (INIS)

    Levy, E.M.; Corvese, J.S.; Bennett, M.

    1981-01-01

    Normal murine bone marrow cells and spleen cells of mice treated with 89 Sr both have suppressive activity. These nonspecific suppressor cells inhibit the ability of normal spleen cells to undergo antibody responses in vitro. After being precultured for 24 hr, these cells will also suppress antibody responses in vivo and the responses of normal spleen cells to T and B cell mitogens in vitro. These cells have previously been shown not to be mature T or B lymphocytes or macrophages. Velocity sedimentation and cell-size analysis indicated that both suppressor cells are large (approx. =206 μ 3 ). Mitomycin C treatment eliminated the ability of both suppressor cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to suppress a mitogenic response. Irradiation (1000 R) was also ineffective in eliminating the ability of either cell to suppress a mitogenic response. We conclude that the 2 suppressor cells are closely related if not identical, and we speculate that these cells may function in vivo to suppress immune reactivity in areas of intense hematopoiesis

  7. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    Science.gov (United States)

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  8. Leucine insertion caused by a yeast amber suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Liebman, S W [Univ. of Rochester School of Medicine and Dentistry, NY; Stewart, J W; Parker, J H; Sherman, F

    1977-01-01

    The amber suppressor SUP52 can cause the production of approximately 15 to 20% of the normal amount of iso-l-cytochrome c when coupled to the amber (UAG) mutant cyc1-76. The suppressed iso-l-cytochrome c contains a residue of leucine at the position corresponding to the site of the amber codon. SUP52 also supresses another amber allele cyc1-179, but only with a low efficiency of approximately 2%. It does not appear to act at all on ochre (UAA) mutants. SUP52 was found to be on the left arm of chromosome X closely linked to the centromere.

  9. Effect of epileptogenic agents on the incorporation of /sup 3/H-glycine into proteins in the cat's cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Rojik, I.; Feher, O.

    1982-06-01

    Filter paper strips soaked in /sup 3/H-glycine solution were applied to acoustic cortex of cats, anaesthetized with Nembutal and pretreated with epileptogenic agents (Metrazol, G-penicillin, and 3-amino-pyridine) and cycloheximide. The untreated contralateral hemisphere served as control. After 1 h incubation, both cortical samples were excised simultaneously and fixed in Bouin solution for autoradiography. Incorporation was blocked by cycloheximide. There was no glycine incorporation on the penicillin-treated side, while pyramidal cells were intensively labelled in layers II-V of the mirror focus. 3-Aminopyridine produced the same result. Metrazol as convulsant proved to be far weaker than the previous two. The intensity of incorporation was significantly more intensive in the mirror focus than in the primary one. Penicillin and 3-aminopyridine, while provoking cortical seizures, seem to inhibit glycine incorporation into a neuron-specific, function-dependent protein contained by the labelled cells in the autoradiogram.

  10. KLF10, transforming growth factor-{beta}-inducible early gene 1, acts as a tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Duk [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Duk-Jung [The Institute of Hankook Life Science, 7-9 Myungryun-dong, Jongno-gu, Seoul 110-521 (Korea, Republic of); Lee, Jong Eun [Department of Anatomy, College of Medicine, Yonsei University, Seoul 120-752 (Korea, Republic of); Yun, Cheol-Heui [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Woon Kyu, E-mail: wklee@inha.ac.kr [Laboratory of Developmental Genetics, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of); Brain Korea 21 Center for Advanced Medical Education, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer KLF10{sup -/-} mice exhibited accelerated papilloma development after DMBA/TPA treatment. Black-Right-Pointing-Pointer KLF10{sup -/-} keratinocytes showed increased proliferation and apoptosis. Black-Right-Pointing-Pointer KLF10{sup -/-} MEFs yielded more colonies than wild-type one with H-Ras transfection. Black-Right-Pointing-Pointer KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription. Black-Right-Pointing-Pointer KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription. -- Abstract: Krueppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription, which was independent of p53 and Sp1 binding sites in p21{sup WAF1/CIP1} promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription.

  11. Immunoregulatory T cells in man. Histamine-induced suppressor T cells are derived from a Leu 2+ (T8+) subpopulation distinct from that which gives rise to cytotoxic T cells

    International Nuclear Information System (INIS)

    Sansoni, P.; Silverman, E.D.; Khan, M.M.; Melmon, K.L.; Engleman, E.G.

    1985-01-01

    One mechanism of histamine-mediated inhibition of the immune response in man is to activate T suppressor cells that bear the Leu 2 (OKT8) marker. The current study was undertaken to characterize the histamine-induced suppressor cell using a monoclonal antibody (9.3) shown previously to distinguish cytotoxic T cells from antigen-specific suppressor T cells. Leu 2+ cells isolated from peripheral blood were further separated with antibody 9.3 into Leu 2+, 9.3+, and Leu 2+, 9.3- subsets and each subset was incubated with different concentrations of histamine before determining their ability to suppress immune responses in vitro. The results indicate that the Leu 2+, 9.3- subpopulation includes all histamine-induced suppressor cells, that 10(-4) M histamine is the optimal concentration for suppressor cell induction, and that exposure of Leu 2+, 9.3- cells to histamine for 30 s is sufficient to initiate the induction process. After treatment with histamine these cells inhibit both phytohemagglutinin-induced T cell proliferation and pokeweed mitogen-induced B cell differentiation. The suppression of phytohemagglutinin-induced proliferation was resistant to x-irradiation with 1,200 rad, either before or after histamine exposure, suggesting that Leu 2+, 9.3- cells need not proliferate to become suppressor cells or exert suppression. Moreover, suppression by these cells was not due to altered kinetics of the response. Finally, a histamine type 2 receptor antagonist (cimetidine) but not a type 1 receptor antagonist (mepyramine) blocked the induction of suppressor cells. On the basis of these results and our previous studies of antigen specific suppressor cells, we conclude that Leu 2+ suppressor cells in man are derived from a precursor pool that is phenotypically distinct from cells that can differentiate into cytotoxic T cells

  12. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    Science.gov (United States)

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  13. Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines

    Science.gov (United States)

    The secreted proteins encoded by “parasitism genes” expressed within the esophageal glands cells of cyst nematodes play important roles in plant parasitism. Homologous transcripts and encoded proteins of the Heterodera glycines pioneer parasitism genes Hgsyv46, Hg4e02 and Hg5d08 were identified and ...

  14. Insulin induces suppressor of cytokine signaling-3 tyrosine phosphorylation through janus-activated kinase

    NARCIS (Netherlands)

    Peraldi, P; Filloux, C; Emanuelli, B; Hilton, DJ; Van Obberghen, E

    2001-01-01

    Suppressor of cytokine signaling (SOCS) proteins were originally described as cytokine-induced molecules involved in negative feedback loops. We have shown that SOCS-3 is also a component of the insulin signaling network (1), Indeed, insulin leads to SOCS-3 expression in 3T3-L1 adipocytes. Once

  15. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  16. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    OpenAIRE

    Wadowsky, R M; Yee, R B

    1981-01-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked i...

  17. Nature of the suppressor cells mediating prolonged graft survival after administration of extracted histocompatibility antigen and cyclosporine

    International Nuclear Information System (INIS)

    Yoshimura, N.; Kahan, B.D.

    1985-01-01

    Antigen-specific suppressor T cells are induced by donor histocompatibility antigen extracted from spleen cells with 3M KCl combined with cyclosporine (Ag-CsA). A single i.v. injection of 5 mg 3M-KCl-extracted donor Buffalo (Buf, RT1b) antigen (Ag) combined with a three day course of CsA prolonged renal allograft survival in Wistar-Furth (WFu, RT1u) hosts to a greater extent (MST 26.5 days) than CsA alone (MST 11.8 days). Peripheral blood lymphocytes (PBL) or spleen cells harvested from Ag-CsA-treated recipients ten days after transplantation inhibited the mixed lymphocyte reaction (MLR) between normal responder WFu cells and irradiated Buf cells (55.6% and 64.4% suppression, respectively, P less than 0.025), but not third-party Brown-Norway (BN, RT1n) stimulator cells (13.6% and -18.3% suppression, respectively, NS). The suppressor effect was not mediated by cytolytic cells; there was neither primary nor secondary cytolytic activity against 51 Cr-labeled Con-A blastoid Buf cells. The suppressor cells were neither adherent to plastic dishes nor to nylon-wool columns. PBL irradiated with 800 rads, but not 1500 rads, suppressed the MLR. A single injection of cyclophosphamide (CY, 25 mg/kg) seven days after transplantation abrogated the suppression induced by Ag-CsA treatment. Moreover, PBL from Ag-CsA recipients failed to suppress the MLR, if depleted either of all T cells by treatment with monoclonal antibody (Mab) W3/13 HLK (pan T cells; % suppression -15.8), or of cytotoxic/suppressor cells with Mab OX-8 (-19.3% suppression) together with rabbit antimouse immunoglobulin and complement

  18. Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells

    International Nuclear Information System (INIS)

    Atluru, D.; Goodwin, J.S.

    1984-01-01

    We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4

  19. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

    Directory of Open Access Journals (Sweden)

    Misa Oyama

    2017-03-01

    Full Text Available To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.

  20. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  1. Inhibitor of differentiation 4 (Id4 is a potential tumor suppressor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Carey Jason PW

    2009-06-01

    Full Text Available Abstract Background Inhibitor of differentiation 4 (Id4, a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS, expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR, p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously

  2. Myxovirus resistance, osteopontin and suppressor of cytokine signaling 3 polymorphisms predict hepatitis C virus therapy response in an admixed patient population: comparison with IL28B.

    Science.gov (United States)

    Angelo, Ana Luiza Dias; Cavalcante, Lourianne Nascimento; Abe-Sandes, Kiyoko; Machado, Taísa Bonfim; Lemaire, Denise Carneiro; Malta, Fernanda; Pinho, João Renato; Lyra, Luiz Guilherme Costa; Lyra, Andre Castro

    2013-10-01

    Suppressor of cytokine signaling 3, myxovirus resistance protein and osteopontin gene polymorphisms may influence the therapeutic response in patients with chronic hepatitis C, and an association with IL28 might increase the power to predict sustained virologic response. Our aims were to evaluate the association between myxovirus resistance protein, osteopontin and suppressor of cytokine signaling 3 gene polymorphisms in combination with IL28B and to assess the therapy response in hepatitis C patients treated with pegylated-interferon plus ribavirin. Myxovirus resistance protein, osteopontin, suppressor of cytokine signaling 3 and IL28B polymorphisms were analyzed by PCR-restriction fragment length polymorphism, direct sequencing and real-time PCR. Ancestry was determined using genetic markers. We analyzed 181 individuals, including 52 who were sustained virologic responders. The protective genotype frequencies among the sustained virologic response group were as follows: the G/G suppressor of cytokine signaling 3 (rs4969170) (62.2%); T/T osteopontin (rs2853744) (60%); T/T osteopontin (rs11730582) (64.3%); and the G/T myxovirus resistance protein (rs2071430) genotype (54%). The patients who had ≥3 of the protective genotypes from the myxovirus resistance protein, the suppressor of cytokine signaling 3 and osteopontin had a greater than 90% probability of achieving a sustained response (pC/C IL28B genotype was present in 58.8% of the subjects in this group. The sustained virological response rates increased to 85.7% and 91.7% by analyzing C/C IL28B with the T/T osteopontin genotype at rs11730582 and the G/G suppressor of cytokine signaling 3 genotype, respectively. Genetic ancestry analysis revealed an admixed population. Hepatitis C genotype 1 patients who were responders to interferon-based therapy had a high frequency of multiple protective polymorphisms in the myxovirus resistance protein, osteopontin and suppressor of cytokine signaling 3 genes. The combined

  3. A storage-protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat.

    Science.gov (United States)

    Ren, S X; McIntosh, R A; Sharp, P J; The, T T

    1996-11-01

    A suppressor of resistance to powdery mildew conferred by Pm8 showed complete association with the presence of a storage-protein marker resolved by electrophoresis on SDS-PAGE gels. This marker was identified as the product of the gliadin allele Gli-A1a. The mildewresponse phenotypes of wheats possessing the 1BL.1RS translocation were completely predictable from electrophoretograms. The suppressor, designated SuPm8, was located on chromosome 1AS. It was specific in its suppression of Pm8, and did not affect the rye-derived resistance phenotypes of wheat lines with Pm17, also located in 1RS, or of lines with Pm7.

  4. Isolation of Fungi from Heterodera glycines and in vitro Bioassays for Their Antagonism to Eggs.

    Science.gov (United States)

    Meyer, S L; Huettel, R N; Sayre, R M

    1990-10-01

    Twenty fungi were assayed in vitro for antagonism to eggs of Heterodera glycines. Eight of the fungi were isolated from cysts or eggs of H. glycines during the current study, one was isolated from Panagrellus redivivus, and eleven were obtained from other researchers or collections. The bioassays were conducted on eggs from nematodes that had been grown monoxenically on excised root tips. Phoma chrysanthemicola, one strain of Verticillium chlamydosporium, and one strain of V. lecanii caused a decrease (P Trichoderma polysporum infected live eggs but enhanced (P Fusarium sp., Neocosmospora vasinfecta, Scytalidium fulvum, Trichoderma harzianum (two strains), V. chlamydosporium (one strain), V. lecanii (three strains), and an unidentified fungus did not measurably affect egg viability, even though hyphae of five of these fungi were seen in live eggs. The bioassay provides a useful step in the selection of a biological control agent for this major nematode pest.

  5. Ciprofibrate, clofibric acid and respective glycinate derivatives. Effects of a four-week treatment on male lean and obese Zucker rats.

    Science.gov (United States)

    Lupp, Amelie; Karge, Elke; Deufel, Thomas; Oelschlägers, Herbert; Fleck, Christian

    2008-01-01

    Fibrates are widely prescribed in hyperlpidemic patients to prevent atherosclerosis. Their therapeutic use, however, can be associated with adverse effects like gastrointestinal disorders, myalgia, myositis and hepatotoxicity. In rodents large doses can even cause hepatocellular carcinoma. Additionally, interactions with the biotransformation of other compounds at the cytochrome P450 (CYP) system have been observed. Thus, the discovery of new substances or derivatives with less side effects is of great interest. In the present study the influence of a four-week daily oral administration of 2 mg/kg body weight ciprofibrate (CAS 52214-84-3) or of 100 mg/kg body weight clofibric acid (CAS 882-09-7) was compared to that of the respective doses of their newly synthesized glycine conjugates in adult male lean and obese Zucker rats. Although obese rats displayed distinctly higher serum lipid concentrations, after fibrate treatment values were significantly lowered in lean animals only. Livers of obese rats were significantly enlarged, histologically showing a fine-droplet like fatty degeneration and an increase in glycogen content, but no signs of inflammation. After fibrate administration histologically a hypertrophy, an eosinophilia, a reduced glycogen content and also hepatocyteapoptosis were observed. Livers of obese rats displayed higher CYP1A1 andCYP2E1 expression, but lower immunostaining for CYP2B1 and CYP3A2. No differences between the two groups of rats were seen with respect to CYP4A1 expression. Due to fibrate treatment especially CYP2E1 and CYP4A1, but also CYP1A1, 2B1 and 3A2 were induced. Resulting CYP mediated monooxygenase activities were also elevated in most cases. In general, effects of clofibric acid and clofibric acid glycinate (CAS 4896-55-3) were less distinct than those of ciprofibrate and its glycinate (CAS 640772-36-7). With no parameterinvestigated major differences were seen between the parent fibrates and their glycine conjugates. Thus, the

  6. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  7. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  9. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  10. 77 FR 72817 - Glycine From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-12-06

    ... Republic of China: Preliminary Results of Antidumping Duty Administrative Review and Preliminary Partial... conducting an administrative review of the antidumping duty order on glycine from the People's Republic of... covers one exporter of subject merchandise, Baoding Mantong Fine Chemistry Co. Ltd. (Baoding Mantong). We...

  11. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    International Nuclear Information System (INIS)

    Arkowitz, R.A.; Abeles, R.H.

    1991-01-01

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P i + 2e - → acetyl phosphate + NH 4 + . Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of [ 32 P]P i into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P i to give acetyl phosphate. When [ 14 C]acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH 4 removes all the radioactivity associated with protein C, resulting in the formation of [ 14 C]ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from [ 3 H]H 2 O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence

  12. Application of Glycine, Tufool and Salicylic Acid in Sugar beet (Beta vulgaris L. under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Kheirkhah

    2016-03-01

    Full Text Available Sugar beet is one of strategic products to supply sugar in water limited areas of Iran. Thus, proper managements to supply enouph water in production of sugar beet is very important. To evaluate the effects of some anti stress substances like salicylic acid, tyuful and glycine to irritigate the effect of early water deficit on suger beet, an experiment based on randomized complete block design with three replications was carried out at the Research Farm of Fariman Sugar Factory in 2013. Treatments consisted of control (without using anti stress substances, with three concentration of salicylic acid (0.1, 0.5, and 1 mM, tyuful with three concentration (0.5, 1 and 1.5 liter per thousand and glycine with three concentration (1, 2 and 3 liters per thousand. The results showed that the effects of anti-stress materials significantly affected the sugar content, root yield, white sugar yield and harmful nitrogen. Highest sugar content (15.65%, root yield (83.82 t.ha-1 and white sugar percentage (11.15% were obtained by using tyuful 1.5 lit/1000. While, the lowest levels of these characters were obtained from control (not using anti stress substances. Maximum harmful nitrogen was produced in control treatment (4.38 and highest level of alkalinity with mean of 3.49 was observed by using 3 lit/1000 of glycine. Our results showed that all of the anti stress substances had positive effects on sugar beet under drought stress condition.

  13. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  14. Structure of choline oxidase in complex with the reaction product glycine betaine.

    Science.gov (United States)

    Salvi, Francesca; Wang, Yuan-Fang; Weber, Irene T; Gadda, Giovanni

    2014-02-01

    Choline oxidase from Arthrobacter globiformis, which is involved in the biosynthesis of glycine betaine from choline, has been extensively characterized in its mechanistic and structural properties. Despite the knowledge gained on the enzyme, the details of substrate access to the active site are not fully understood. The `loop-and-lid' mechanism described for the glucose-methanol-choline enzyme superfamily has not been confirmed for choline oxidase. Instead, a hydrophobic cluster on the solvent-accessible surface of the enzyme has been proposed by molecular dynamics to control substrate access to the active site. Here, the crystal structure of the enzyme was solved in complex with glycine betaine at pH 6.0 at 1.95 Å resolution, allowing a structural description of the ligand-enzyme interactions in the active site. This structure is the first of choline oxidase in complex with a physiologically relevant ligand. The protein structures with and without ligand are virtually identical, with the exception of a loop at the dimer interface, which assumes two distinct conformations. The different conformations of loop 250-255 define different accessibilities of the proposed active-site entrance delimited by the hydrophobic cluster on the other subunit of the dimer, suggesting a role in regulating substrate access to the active site.

  15. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  16. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    Science.gov (United States)

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  17. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    NARCIS (Netherlands)

    Kim, D.; Fiske, B.P.; Birsoy, K.; Freinkman, E.; Kami, K.; Possemato, R.L.; Chudnovsky, Y.; Pacold, M.E.; Chen, W.W.; Cantor, J.R.; Shelton, L.M.; Gui, D.Y.; Kwon, M.; Ramkissoon, S.H.; Ligon, K.L.; Kang, S.W.; Snuderl, M.; der Heiden, M.G. Van; Sabatini, D.M.

    2015-01-01

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain

  18. The Hepatoprotection Provided by Taurine and Glycine against Antineoplastic Drugs Induced Liver Injury in an Ex Vivo Model of Normothermic Recirculating Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2016-03-01

    Full Text Available Taurine (2-aminoethane sulfonic acid is a non-protein amino acid found in high concentration in different tissues. Glycine (Amino acetic acid is the simplest amino acid incorporated in the structure of proteins. Several investigations indicate the hepatoprotective properties of these amino acids. On the other hand, antineoplastic agents-induced serum transaminase elevation and liver injury is a clinical complication. The current investigation was designed to screen the possible hepatoprotective properties of taurine and glycine against antineoplastic drugs-induced hepatic injury in an ex vivo model of isolated perfused rat liver. Rat liver was perfused with different concentration (10 μM, 100 μM and 1000 μM of antineoplastic drugs (Mitoxantrone, Cyclophosphamide, Cisplatin, 5 Fluorouracil, Doxorubicin and Dacarbazine via portal vein. Taurine and glycine were administered to drug-treated livers and liver perfusate samples were collected for biochemical measurements (ALT, LDH, AST, and K+. Markers of oxidative stress (reactive oxygen species formation, lipid peroxidation, total antioxidant capacity and glutathione were also assessed in liver tissue. Antineoplastic drugs caused significant pathological changes in perfusate biochemistry. Furthermore, markers of oxidative stress were significantly elevated in drug treated livers. It was found that taurine (5 and 10 mM and glycine (5 and 10 mM administration significantly mitigated the biomarkers of liver injury and attenuated drug induced oxidative stress. Our data indicate that taurine and glycine supplementation might help as potential therapeutic options to encounter anticancer drugs-induced liver injury.

  19. Asparagine and glycine metabolism in rat liver mitochondria and in mouse L5178Y lymphoma cells resistant or sensitive to the anticancer drug L-asparaginase

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, J.F. Jr.

    1986-01-01

    Rat liver mitochondrial asparagine was found to be degraded via an aminotransferase and omega-amidase. Evidence includes oxaloacetate production from asparagine only when glyoxylate was added and production of radiolabeled ..cap alpha..-ketosuccinamate via metabolism of (U-/sup 14/C)asparagine. In the cytosol, asparagine is degraded primarily via asparaginase and subsequent transamination. A new HPLC technique for separation of citric acid cycle intermediates was developed using: ion pairing with 20 mM each to tetrabutylammonium hydroxide and Na/sub 2/SO/sub 4/; pH 7.0; isocratic elution; and detection at 210 nm. Amino acid content of mouse lymphoma cells either sensitive (L5178Y) or resistant (L5178Y/L-ASE) to the anticancer drug L-asparaginase was studied. The concentration of asparagine was 1.5 times higher and the concentrations of the essential amino acids histidine, methionine, valine and phenylalanine were two times higher in asparaginase-resistant than sensitive cells. In vivo but not in vitro studies indicated that glucine decreases in sensitive but not resistant cells upon asparaginase treatment. Asparagine and glycine metabolism was further studied using /sup 14/C radiolabel conversion of asparagine, glyoxylate, glycine and serine. Glycine metabolism is especially important in lymphomas and leukemias because these cells contain higher concentrations of glycine that other cancer and normal cells. Therefore, glycine levels were studied and were found to decrease in sensitive but not resistant cells upon asparaginase administration.

  20. Suppressor Effects in Coping Research with African American Adolescents from Low-Income Communities

    Science.gov (United States)

    Gaylord-Harden, Noni K.; Cunningham, Jamila A.; Holmbeck, Grayson N.; Grant, Kathryn E.

    2010-01-01

    Objective: The purpose of the current study was to demonstrate the replicable nature of statistical suppressor effects in coping research through 2 examples with African American adolescents from low-income communities. Method: Participants in the 1st example included 497 African American adolescents (mean age = 12.61 years, SD = 0.99; 57% female)…

  1. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    International Nuclear Information System (INIS)

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-01-01

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0 PE , in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0 PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0 PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  2. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fusaro, Adriana F. [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Correa, Regis L. [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Nakasugi, Kenlee; Jackson, Craig [University of Sydney, NSW 2006 (Australia); Kawchuk, Lawrence [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada); Vaslin, Maite F.S. [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Waterhouse, Peter M., E-mail: peter.waterhouse@sydney.edu.au [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia)

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  3. Polysaccharide from Lentinus edodes inhibits the immunosuppressive function of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs. MPSSS is composed of glucose (75.0%, galactose (11.7%, mannose (7.8%, and xylose (0.4%. In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4(+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs.

  4. The uptake of 14C-glycine to Bufo vulgaris formosus (Boulenger) larva at metamorphosis

    International Nuclear Information System (INIS)

    Hasegawa, Hitoshi; Tanaka, Haruo; Ishiguro, Shigeru; Nonoyama, Kiyoshi; Nakagawa, Harumi.

    1981-01-01

    With the eggs of Bufo vulgaris formosus (Boulenger) immediately after fertilization, the larvae in the 50 ml solution containing 1 ml of 14 C-glycine were developed to the end of metamorphosis. Measurements were made on the length of body, tail, fore limb and hind leg through the stages of tail degeneration and vestige. The radioactivity of the cut off fore limbs, hind legs, tails and head trunks was measured with a scintillation counter, and the 10 μ sections of the samples were used for autoradiography. The larvae uptook orally 14 C-glycine to the organs of cell tissues. On the basis of the reports of the autolysis of tails and the activation of lysosome enzyme in metamorphosis and on the uptake of 14 C-leucine and 14 C-proline to four legs by other workers, and on the present results, the free amino acids formed from the autolysis of tails were utilized for the recomposition of organ protein synthesis in the metamorphosis of the amphibians. (J.P.N.)

  5. Sleep quality and methylation status of selected tumor suppressor genes among nurses and midwives.

    Science.gov (United States)

    Bukowska-Damska, Agnieszka; Reszka, Edyta; Kaluzny, Pawel; Wieczorek, Edyta; Przybek, Monika; Zienolddiny, Shanbeh; Peplonska, Beata

    2018-01-01

    Chronic sleep restriction may affect metabolism, hormone secretion patterns and inflammatory responses. Limited reports suggest also epigenetic effects, such as changes in DNA methylation profiles. The study aims to assess the potential association between poor sleep quality or sleep duration and the levels of 5-methylcytosine in the promoter regions of selected tumor suppressor genes. A cross-sectional study was conducted on 710 nurses and midwives aged 40-60 years. Data from interviews regarding sleep habits and potential confounders were used. The methylation status of tumor suppressor genes was determined via qMSP reactions using DNA samples derived from leucocytes. No significant findings were observed in the total study population or in the two subgroups of women stratified by the current system of work. A borderline significance association was observed between a shorter duration of sleep and an increased methylation level in CDKN2A among day working nurses and midwives. Further studies are warranted to explore this under-investigated topic.

  6. Mechanisms of cross-suppression of TNP-specific plaque forming cell responses by TMA-specific first-order T suppressor factor

    Energy Technology Data Exchange (ETDEWEB)

    Jendrisak, G.S.; Bellone, C.J.

    1986-03-05

    The addition of hybridoma-derived phenyltrimethylammonium (TMA)-specific first-order T suppressor factor (TsF/sub 1/) into cultures containing Brucella abortus coupled with the TMA and trinitrophenol haptens (TMA-BA-TNP) results in the cross-suppression of TNP-specific plaque forming cell (PFC) responses. The suppression mediated by TMA-TsF/sub 1/ is dependent on the presence of T cells and specific antigen (TMA). Subculturing of whole spleen cells with TMA-TsF/sub 1/ and specific soluble antigen (TMA-BSA) is able to induce suppressor T cells which cross-suppress the TNP-specific PFC of spleen cell cultures stimulated with TMA-BA-TNP in an antigen (TMA)-dependent manner at the effector phase of the response. The effector acting T suppressor cells (Tse) are nylon wool nonadherent and appears to require whole spleen cells in responding cultures for suppression, suggesting that the target of the Tse is not the TNP-specific B cell. The authors are presently characterizing the mechanisms of cross-suppression by TMA-TsF/sub 1/ and Tse utilizing the described primary in vitro antibody assay.

  7. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  8. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  9. 77 FR 21738 - Glycine From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-04-11

    ... contracts and other agreements; (3) whether the respondent has autonomy from the government in making... authority to negotiate and sign contracts and other agreements; (3) the respondent has autonomy from the... glycine but argued that there were no publicly available data upon which to base the financial-ratio...

  10. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  11. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  12. Inhibition of tumor growth in syngenetic chimeric mice mediated by a depletion of suppressor T cells

    International Nuclear Information System (INIS)

    Rotter, V.; Trainin, N.

    1975-01-01

    Syngeneic chimeric (lethally irradiated and reconstituted with syngeneic bone marrow cells) mice manifested an increased resistance to the development of Lewis lung carcinoma. In addition, these mice had a higher response to polyvinylpyrrolidone and a reduced reactivity to T mitogens. The present findings suggest that syngeneic chimeric mice lack suppressor T cells shown to regulate the development of Lewis lung tumor and the response to polyvinylpyrrolidone. Other components of the T cell population, such as helper cells responding to sheep red blood cells or cells involved in allograft rejection, assayed in these syngeneic chimeras were found unaffected. The fact that chimeric mice are deficient in a certain suppressor T cell population whereas other T activities are normal suggests the existence of different cell lines within the T cell population. (U.S.)

  13. Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs.

    Science.gov (United States)

    Daugeron, Marie-Claire; Lenstra, Tineke L; Frizzarin, Martina; El Yacoubi, Basma; Liu, Xipeng; Baudin-Baillieu, Agnès; Lijnzaad, Philip; Decourty, Laurence; Saveanu, Cosmin; Jacquier, Alain; Holstege, Frank C P; de Crécy-Lagard, Valérie; van Tilbeurgh, Herman; Libri, Domenico

    2011-08-01

    The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t(6)A(37)) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t(6)A(37) formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.

  14. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought

    DEFF Research Database (Denmark)

    Andresen, Luise C.; Michelsen, Anders; Jonasson, Sven

    2009-01-01

    the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87...... here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather (Calluna vulgaris) and wavy hair-grass (Deschampsia flexuosa). Climate induced increases in plant production...... may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated...

  15. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway

    International Nuclear Information System (INIS)

    Schiestl, R.H.; Prakash, S.; Prakash, L.

    1990-01-01

    rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, the authors have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6Δ) mutations and show that they also suppress the γ-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of γ-ray sensitivity. The six suppressor mutations they isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. They show that suppression of rad6Δ is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6Δ SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed

  16. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins

    DEFF Research Database (Denmark)

    Hansen, J A; Lindberg, K; Hilton, D J

    1999-01-01

    In this study we have investigated the role of suppressor of cytokine signaling (SOCS) proteins in GH receptor-mediated signaling. GH-induced transcription was inhibited by SOCS-1 and SOCS-3, while SOCS-2 and cytokine inducible SH2-containing protein (CIS) had no effect By using chimeric SOCS pro...

  17. Study by electron spin resonance of the free radicals created under irradiation in glycine; Etude par la technique de resonance paramagnetique electronique des radicaux crees sous irradiation dans la glycine

    Energy Technology Data Exchange (ETDEWEB)

    Thomet, P; Rassat, A; Servoz-Gavin, P; Choudens, H de [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    The free radicals created by different radiations in glycine are measured by electron spin resonance and their number is evaluated in function of the absorbed dose. This number decreases when the LET of the radiations increases ; in other words,high LET radiations gives less radiochemical effects; in contrary with the fact that high LET radiations creates more damage in biological materials. The decreasing with time of the number of free radicals and the speed of this decrease is a function of temperature; by the study of the kinetics of this decrease, an attempt has been made to prove the presence of three radicals. (authors) [French] Les radicaux crees par divers rayonnements dans la glycine sont detectes par resonance paramagnetique electronique et leur nombre est evalue en fonction de la dose. Ce nombre varie dans le sens inverse du T.E.L moyen, c'est-a-dire que les rayonnements de T.E.L eleves donnent des effets radiochimiques plus petits alors que les effets radiobiologiques sont importants avec des T.E.L eleves. La decroissance dans le temps du nombre de radicaux est observee et la vitesse de diminution des radicaux est liee a la temperature. Etudiant la cinetique de recombinaison, on peut faire l'hypothese de l'existence de 3 radicaux. (auteurs)

  18. NMDA receptor glycine modulatory site in the ventral tegmental area regulates the acquisition, retrieval, and reconsolidation of cocaine reward memory.

    Science.gov (United States)

    Zhou, Shuang-jiang; Xue, Li-fen; Wang, Xue-yi; Jiang, Wen-gao; Xue, Yan-xue; Liu, Jian-feng; He, Yin-yin; Luo, Yi-xiao; Lu, Lin

    2012-05-01

    Accumulating clinical and preclinical studies have shown that the memories of the rewarding effects of drugs and their paired cues may contribute to relapse and persistent cocaine use. Glutaminergic actions in the ventral tegmental area (VTA) have been shown to regulate the rewarding effect of drugs and conditioned responses to drug-associated cues, but the role of the VTA in the acquisition, retrieval, and reconsolidation of cocaine cues is not yet known. In the present study, we used 7-chlorothiokynurenic acid (7-CTKA), an N-methyl-D-aspartate (NMDA) receptor glycine modulatory site antagonist with no rewarding effects, to examine the role of the NMDA receptor glycine modulatory site in the acquisition, retrieval, and reconsolidation of cocaine-related reward memory using the conditioned place preference (CPP) paradigm. Separate groups of Sprague-Dawley rats were trained to acquire cocaine-induced CPP. Vehicle or 7-CTKA was microinjected into the VTA or substantia nigra (SN) (5 μg/μl) at different time points: 10 min before each CPP training session (acquisition), 10 min before the reactivation of CPP (retrieval), and immediately after the reactivation of CPP (reconsolidation). Cocaine-induced CPP was retested 24 h and 1 and 2 weeks after 7-CTKA administration. 7-CTKA microinjected into the VTA, but not SN, significantly impaired the acquisition, retrieval, and reconsolidation of cocaine-induced CPP without affecting cocaine-induced locomotion. Our findings suggest that the NMDA receptor glycine modulatory site in the VTA plays a major role in cocaine reward memory, and NMDA receptor glycine site antagonists may be potential pharmacotherapies for the management of relapse.

  19. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.

    Science.gov (United States)

    Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.

  20. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    International Nuclear Information System (INIS)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce 3+ , Li + phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO 2 for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce 3+ peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce 3+ , Li + powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  1. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    Science.gov (United States)

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  2. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  3. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine

    NARCIS (Netherlands)

    Kumar Paramasivam Senthil, P.S.; Hogendoorn, Kees; Versteeg, Geert; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  4. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    2014-09-13

    and My Abdelmajid Kassem. Effect of Two Row Spaces on Several Agronomic Traits in Soy - bean [Glycine max (L.) Merr.], Atlas Journal of Plant Biology... SoyS - NP6K Illumina Infinium BeadChip Genotyping Array , Journal of Plant Genome Sciences (09 2013) Masum Akond1, Shiming Liu2, Melanie Boney1

  5. Effects of atomic bomb radiation on differentiation of B lymphocytes and on the function of concanavalin A-induced suppressor T lymphocytes

    International Nuclear Information System (INIS)

    Yamada, Y.; Neriishi, S.; Ishimaru, T.; Shimba, N.; Hamilton, H.B.; Ohgushi, Y.; Koyanagi, M.; Ichimaru, M.

    1985-01-01

    The differentiation of peripheral blood B lymphocytes into immunoglobulin-producing cells (Ig-PC) by pokeweed mitogen (PWM) and the function of concanavalin A (Con A)-induced suppressor T lymphocytes were examined to elucidate the late effects of atomic bomb radiation. A total of 140 individuals, 70 with an exposure dose of 100 rad or more and an equal number with an exposure dose of 0 rad matched by sex and age, were selected from the Nagasaki Adult Health Study (AHS) sample. Both the differentiation of peripheral blood B lymphocytes into Ig-PC by PWM and the function of Con A-induced suppressor T lymphocytes tended to be more depressed in the exposed group than in the control group, but a statistically significant difference could not be observed between the two groups. The function of Con A-induced suppressor T lymphocytes tended to decrease with age, but a statistical significance was detected only for percentage suppression against IgM-PC

  6. Induction of CD4 suppressor T cells with anti-Leu-8 antibody

    International Nuclear Information System (INIS)

    Kanof, M.E.; Strober, W.; James, S.P.

    1987-01-01

    To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody

  7. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes

    DEFF Research Database (Denmark)

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya

    2013-01-01

    . The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we...

  8. Reduced-Capacity Inrush Current Suppressor Using a Matrix Converter in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2016-03-01

    Full Text Available This paper describes the reduced capacity of the inrush current suppressor using a matrix converter (MC in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs. These SCIMs are switched over depending on the wind speed. The input side of the MC is connected to the source in parallel. The output side of the MC is connected in series with the SCIM through matching transformers. The modulation method of the MC used is direct duty ratio pulse width modulation. The reference output voltage of the MC is decided by multiplying the SCIM current with the variable control gain. Therefore, the MC performs as resistors for the inrush current. Digital computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using PSCAD/EMTDC (power system computer-aided design/electromagnetic transients including DC. Furthermore, the equivalent resistance of the MC is decided by the relationship between the equivalent resistance and the capacity of the MC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current perfectly.

  9. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  10. Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations

    International Nuclear Information System (INIS)

    Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny

    2005-01-01

    Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering

  11. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis.

    Science.gov (United States)

    Darido, Charbel; Georgy, Smitha R; Wilanowski, Tomasz; Dworkin, Sebastian; Auden, Alana; Zhao, Quan; Rank, Gerhard; Srivastava, Seema; Finlay, Moira J; Papenfuss, Anthony T; Pandolfi, Pier Paolo; Pearson, Richard B; Jane, Stephen M

    2011-11-15

    Despite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. Here, we identify the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC in mice, and demonstrate that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Deletion of Grhl3 in adult epidermis evokes loss of expression of PTEN, a direct GRHL3 target, resulting in aggressive SCC induced by activation of PI3K/AKT/mTOR signaling. Restoration of Pten expression completely abrogates SCC formation. Reduced levels of GRHL3 and PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data define the GRHL3-PTEN axis as a critical tumor suppressor pathway in SCC. 2011 Elsevier Inc. All rights reserved.

  12. MicroRNA-103 Promotes Colorectal Cancer by Targeting Tumor Suppressor DICER and PTEN

    Directory of Open Access Journals (Sweden)

    Li Geng

    2014-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms for miRNAs in colorectal cancer remain largely unknown. Here, we found that miR-103 is up-regulated in colorectal cancer and its overexpression is closely associated with tumor proliferation and migration. In addition, repressing the expression of miR-103 apparently inhibits colorectal cancer cell proliferation and migration in vitro and HCT-116 xenograft tumor growth in vivo. Subsequent software analysis and dual-luciferase reporter assay identified two tumor suppressor genes DICER and PTEN as direct targets of miR-103, and up-regulation of DICER and PTEN obtained similar results to that occurred in the silencing of miR-103. In addition, restoration of DICER and PTEN can inhibit miR-103-induced colorectal cancer cell proliferation and migration. Our data collectively demonstrate that miR-103 is an oncogene miRNA that promotes colorectal cancer proliferation and migration through down-regulation of the tumor suppressor genes DICER and PTEN. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for colorectal cancer treatment.

  13. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    Science.gov (United States)

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  14. PML tumor suppressor protein is required for HCV production

    International Nuclear Information System (INIS)

    Kuroki, Misao; Ariumi, Yasuo; Hijikata, Makoto; Ikeda, Masanori; Dansako, Hiromichi; Wakita, Takaji; Shimotohno, Kunitada; Kato, Nobuyuki

    2013-01-01

    Highlights: ► PML tumor suppressor protein is required for HCV production. ► PML is dispensable for HCV RNA replication. ► HCV could not alter formation of PML-NBs. ► INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  15. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses.

    Directory of Open Access Journals (Sweden)

    Makoto Sumie

    Full Text Available Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord.We made patch-clamp recordings from substantia gelatinosa (SG neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli.Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine.We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous

  16. Effect of glycine and alanine supplementation on development of cattle embryos cultured in CR1aa medium with or without cumulus cells

    Directory of Open Access Journals (Sweden)

    Kr. BREDBACKA

    2008-12-01

    Full Text Available The effect of alanine (1 mM and glycine (10 mM supplementation on bovine embryo development in vitro was investigated. Presumptive bovine zygotes, produced by in vitro maturation and insemination of oocytes, were cultured for 144 h in CR1aa medium in the absence (Experiments 1 and 2 or presence of cumulus cells (Experiment 3. In Experiment 1, the proportion of morulae and blastocysts of cleaved embryos in glycine-supplemented medium was not different from that of the control medium (34% in both mediaglycine-enriched medium (69.5 vs. 53.3, P = 0.016. In Experiment 2, addition of alanine did not improve the formation of morulae and blastocysts (13% vs. 21% in control medium, and the mean cell numbers in morulae and blastocysts were lower than those in the control group (34.3 vs. 68.7, P = 0.007. In the presence of cumulus cells, the combined supplementation of glycine and alanine increased the proportion of morulae and blastocysts over that in the control medium (31% vs. 14%, P = 0.003.;

  17. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L

    2011-01-01

    . In the current study, we investigated whether the lower efficacy agonists of the human GlyR β-alanine and taurine also form cation-π interactions with Phe159. By incorporating a series of unnatural amino acids, we found cation-π interactions between Phe159 and the amino groups of β-alanine and taurine....... The strengths of these interactions were significantly weaker than for glycine. Modeling studies suggest that β-alanine and taurine are orientated subtly differently in the binding pocket, with their amino groups further from Phe159 than that of glycine. These data therefore show that similar agonists can have...... similar but not identical orientations and interactions in the binding pocket and provide a possible explanation for the lower potencies of β-alanine and taurine....

  18. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    Science.gov (United States)

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species. PMID:19283127

  19. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes.

    Science.gov (United States)

    Kim, D G; Riggs, R D

    1991-07-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.

  20. Generation of two modified mouse alleles of the Hic1 tumor suppressor gene

    Czech Academy of Sciences Publication Activity Database

    Pospíchalová, Vendula; Turečková, Jolana; Fafílek, Bohumil; Vojtěchová, Martina; Krausová, Michaela; Lukáš, Jan; Šloncová, Eva; Takacova, S.; Divoký, V.; Leprince, D.; Plachý, Jiří; Kořínek, Vladimír

    2011-01-01

    Roč. 49, č. 3 (2011), s. 142-151 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA204/07/1567; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z50520514 Keywords : Hypermethylated In Cancer 1 * Hic1 tumor suppressor * gene targeting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.527, year: 2011

  1. Development of a Competent and Trouble Free DNA Isolation Protocol for Downstream Genetic Analyses in Glycine Species

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Nawaz

    2016-08-01

    Full Text Available Extraction of deoxyribose nucleic acid (DNA from plants is preliminary step in molecular biology. Fast and cost effective genomic DNA isolation from Glycine species for downstream application is a major bottleneck. Here we report a high throughput and trouble free method for genomic DNA extraction from leaf and seeds of Glycine species with high quality and quantity. Protocol reports the optimization by employing different concentrations of CTAB and PVP in extraction buffer. Efficiency of optimized protocol was compared with frequently used DNA extraction methods. Wide adoptability and utility of this protocol was confirmed by DNA extraction from leaves as well as seeds of G. max, G. soja, G. tomentella and G. latifolia. Extracted DNA was successfully subjected to PCR amplification of five microsatellite markers and four putative glycosyltransferase genes. DNA extraction protocol is reproducible, trouble free, rapid and can be adopted for plant molecular biology applications.

  2. Influence of anticancer drugs on interactions of tumor suppressor protein p53 with DNA

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Němcová, Kateřina; Brázdová, Marie; Kašpárková, Jana; Brabec, Viktor; Fojta, Miroslav

    2005-01-01

    Roč. 272, Suppl. 1 (2005), s. 562 ISSN 1474-3833. [FEBS Congress /30./ and IUBMB Conference /9./. 02.07.2005-07.07.2005, Budapest] R&D Projects: GA MZd(CZ) NC7574 Institutional research plan: CEZ:AV0Z50040507 Keywords : tumour suppressor protein p53 * anticancer drugs * interaction with DNA Subject RIV: BO - Biophysics

  3. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: flor.escobaroc@gmail.com [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce{sup 3+}, Li{sup +} phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO{sub 2} for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce{sup 3+} peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce{sup 3+}, Li{sup +} powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  4. Contributions of conserved residues at the gating interface of glycine receptors

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Leung, Ada W Y; Galpin, Jason D

    2011-01-01

    and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218......Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial...

  5. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  6. The Role of Tumor Metastases Suppressor Gene, Drg-1, in Breast Cancer

    Science.gov (United States)

    2008-03-01

    evidence to validate 14 our data of breast cancer. However, these prostate cells and reagents were existing materials in our lab or purchased by using...J. Lab . Clin. Med. 133, 265–273. Sloane, B.F., Honn, K.V., 1984. Cysteine proteinases and metastasis. Cancer Metastasis Rev. 3, 249–263. Sridhar, S.C... Beest , P. Moerer, K. van der Horn, R. Goldschmeding, T. Logtenberg and H. Clevers: Synergy between tumor suppressor APC and the beta- catenin-Tcf4

  7. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  8. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  9. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen

    Science.gov (United States)

    1987-01-01

    Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830

  10. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid

    Directory of Open Access Journals (Sweden)

    Galyna Maleeva

    2017-05-01

    Full Text Available Niflumic acid (NFA is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2′ increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.

  11. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be safely...

  13. 75 FR 63444 - Glycine From the People's Republic of China: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2010-10-15

    ... exports, sales, or entries of subject merchandise during the POR.'' See 75 FR at 22107 (emphasis added... crystalline material, like salt or sugar. Glycine is produced at varying levels of purity and is used as a... duties shall be assessed at rates equal to the cash deposit of estimated antidumping duties required at...

  14. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Science.gov (United States)

    Fang, Su-Chiung; de los Reyes, Chris; Umen, James G

    2006-10-13

    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  15. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli.

    Science.gov (United States)

    Ponmani, Thangaraj; Munavar, M Hussain

    2014-06-01

    The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28. In the fourth case, the very pheS5 lesion itself has got changed from A293 → T293 (named pheS40). Cloning of pheS(+), pheS5, pheS5-pheS19, pheS5-pheS28 alleles into pBR322 and introduction of these clones into pheS5 mutant revealed that excess of double mutant protein is not at all good for the survival of cells at 42°C. These results clearly indicate a pivotal role for Gly225 in the structural/functional integrity of alpha subunit of E. coli PheRS enzyme and it is proposed that G673 might define a hot spot for intragenic suppressors of pheS5. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. The Ebola virus VP35 protein is a suppressor of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Joost Haasnoot

    2007-06-01

    Full Text Available RNA silencing or interference (RNAi is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.

  17. Immunopurification of the suppressor tRNA dependent rabbit β-globin readthrough protein

    International Nuclear Information System (INIS)

    Hatfield, D.; Thorgeirsson, S.S.; Copeland, T.D.; Oroszlan, S.; Bustin, M.

    1988-01-01

    In mammalian cells, the rabbit β-globin readthrough protein is the only known example of a naturally occurring readthrough protein which does not involve a viral system. To provide an efficient means for its isolation, detection, and study, the authors elicited specific antibodies against this unique protein. The 22 amino acid peptide corresponding to the readthrough portion of this protein was synthesized, coupled to keyhole limpet hemocyanin, and injected into sheep. Specific antibodies to the peptide were produced as demonstrated by the enzyme-linked immunosorbent assay technique and by immunoblotting. The antibodies did not react with globin. The rabbit β-globin readthrough protein was separated from globin and other reticulocyte proteins by polyacrylamide gel electrophoresis and visualized by silver staining or by labeling with [ 35 S] methionine. Incorporation of [ 35 S] methionine into the readthrough protein was significantly enhanced upon addition of an opal suppressor tRNA to reticulocyte lysates. Immunoblotting revealed that the readthrough protein also occurs in lysates without added suppressor tRNA. The antibodies were purified on an affi-gel column which had been coupled with the peptide antigen. The readthrough protein was then purified from reticulocytes by immunoaffinity chromatography and by high-performance liquid chromatography. The results provide conclusive evidence that the β-globin readthrough protein is naturally occurring in rabbit reticulocytes

  18. Amino acids and glycine ethyl ester as new crystallization reagents for lysozyme

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    During the past two decades, amino acids and amino-acid derivatives have been applied in various fields of protein chemistry. The potential use of amino acids and their derivatives as new precipitating agents is described. Several amino acids and their derivatives are prominent additives in the field of protein chemistry. This study reports the use of charged amino acids and glycine ethyl ester as precipitants in protein crystallization, using hen egg-white lysozyme (HEWL) as a model. A discussion of the crystallization of HEWL using these reagents as precipitating agents is given

  19. Ulex europaeus I and glycine max bind to the human olfactory bulb.

    Science.gov (United States)

    Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J

    1993-12-24

    The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.

  20. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment

    Directory of Open Access Journals (Sweden)

    Wen-Fan Shen

    2017-04-01

    Conclusion: Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection.

  1. Suppressor of cytokine signaling 3 knockdown in the mediobasal hypothalamus: counterintuitive effects on energy balance

    NARCIS (Netherlands)

    de Backer, M. W. A.; Brans, M. A. D.; van Rozen, A. J.; van der Zwaal, E. M.; Luijendijk, M. C. M.; Garner, K. G.; de Krom, M.; van Beekum, O.; La Fleur, S. E.; Adan, R. A. H.

    2010-01-01

    An increase in brain suppressor of cytokine signaling 3 (SOCS3) has been implicated in the development of both leptin and insulin resistance. Socs3 mRNA is localized throughout the brain, and it remains unclear which brain areas are involved in the effect of SOCS3 levels on energy balance. We

  2. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  3. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC.

    Science.gov (United States)

    Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt

    2017-07-27

    In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  5. A Novel Glycinate-based Body Wash: Clinical Investigation Into Ultra-mildness, Effective Conditioning, and Improved Consumer Benefits.

    Science.gov (United States)

    Regan, Jamie; Mollica, Leonel-Maximo; Ananthapadmanabhan, K P

    2013-06-01

    To assess the properties of a novel body wash containing the mild surfactant glycinate. Biochemical and clinical assays. Research laboratories and clinical sites in the United States and Canada. Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores benefits.

  6. Analytical application of poly [dibenzo-18-crown-6] for chromatographic separation of thorium(IV) from uranium(VI) and other elements in glycine medium

    International Nuclear Information System (INIS)

    Kadam, R.B.; Mali, G.G.; Mohite, B.S.

    2013-01-01

    A selective and effective chromatographic separation method for thorium(IV) has been developed by using poly [dibenzo-18-crown-6] as stationary phase. The separations are carried out from glycine medium. The sorption of thorium(IV) was quantitative from 1 x 10 -2 to 1 x 10 -4 M glycine. The elution of thorium(IV) was quantitative with 2.0-8.0 M HCl, 4.0-7.0 HBr, 1.0-2.0 M HClO 4 and 5.0 M H 2 SO 4 . The capacity of poly [dibenzo-18-crown-6] for thorium(IV) was found to be 0.215 ± 0.01 mmol/g of crown polymer. The effect of concentration of glycine, metal ion, foreign ion and eluents has been studied. Thorium(IV) was separated from a number of cations in ternary as well as in multicomponent mixtures. The applicability of the proposed method was checked for the determination of thorium(IV) in real as well as geological sample. The method is simple, rapid, and selective with good reproducibility (approximately ±2 %). (author)

  7. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma [Retraction

    Directory of Open Access Journals (Sweden)

    Lin FO

    2016-10-01

    Full Text Available The Editor-in-Chief and Publisher of OncoTargets and Therapy have been alerted to unacceptable levels of duplication with another published paper: Zhang D, Ni Z, Xu X, and Xiao J. MiR-32 Functions as a Tumor Suppressor and Directly Targets EZH2 in Human Oral Squamous Cell Carcinoma. Medical Science Monitor. 20:2527–2535, 2014.Accordingly, we retract Lin FO, Yao LJ, Xiao J, Liu DF, and Ni ZY. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma. OncoTargets and Therapy. 2014;7:1583–1591.This Retraction relates to 

  8. Revision of standard molar enthalpies of formation of glycine and L-alanine in the gaseous phase on the basis of theoretical calculations

    International Nuclear Information System (INIS)

    Dorofeeva, Olga V.; Ryzhova, Oxana N.

    2009-01-01

    The standard molar enthalpies of formation of urea, glycine, and L-alanine in the gaseous phase at 298.15 K were calculated by the high-level Gaussian-3X method. The agreement with the available experimental data is very good for urea and glycine and, thus, supports the high accuracy of calculated values. A significant discrepancy between theoretical and experimental enthalpy of formation values for L-alanine provides a reason to reconsider the experimental data previously used to derive the standard molar enthalpy of formation of L-alanine in the gaseous phase at 298.15 K. To obtain a more reliable value of enthalpy of sublimation at 298.15 K, the heat capacity values of gaseous L-alanine were calculated by standard statistical thermodynamics formulae using molecular parameters determined from B3LYP/cc-pVTZ calculations. With the obtained value of C p,m 0 (L-alanine, g, 298.15 K) = 112.6 ± 4.0 J . K -1 . mol -1 the original published experimental values of enthalpy of sublimation of L-alanine were readjusted to the reference temperature: Δ cr g H m (L-alanine, 298.15 K) = 135.2 ± 2.0 kJ . mol -1 . This value, together with the experimental enthalpy of formation of solid L-alanine, Δ f H m 0 (L-alanine, cr, 298.15 K) = -560.0 ± 1.0 kJ . mol -1 [S.N. Ngauv, R. Sabbah, M. Laffitte, Thermochim. Acta 20 (1977) 371-380; I. Contineanu, D.I. Marchidan, Rev. Roum. Chim. 29 (1984) 43-48], gives a new value for the enthalpy of formation of L-alanine in the gaseous phase, Δ f H m 0 (L-alanine, g, 298.15 K) = -424.8 ± 2.0 kJ . mol -1 , which is in good agreement with our theoretical G3X result, -427.6 ± 4.0 kJ . mol -1 . The same procedure for glycine allowed us to improve the literature value of the enthalpy of formation for this compound, Δ f H m 0 (glycine, g, 298.15 K) = -393.7 ± 1.5 kJ . mol -1 . As a result a set of self-consistent thermochemical data for glycine and L-alanine is proposed

  9. Induced pluripotent stem cells-derived myeloid-derived suppressor cells regulate the CD8+ T cell response

    Directory of Open Access Journals (Sweden)

    Daniel Joyce

    2018-05-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are markedly increased in cancer patients and tumor-bearing mice and promote tumor growth and survival by inhibiting host innate and adaptive immunity. In this study, we generated and characterized MDSCs from murine-induced pluripotent stem cells (iPSCs. The iPSCs were co-cultured with OP9 cells, stimulated with GM-CSF, and became morphologically heterologous under co-culturing with hepatic stellate cells. Allogeneic and OVA-specific antigen stimulation demonstrated that iPS-MDSCs have a T-cell regulatory function. Furthermore, a popliteal lymph node assay and autoimmune hepatitis model showed that iPS-MDSCs also regulate immune responsiveness in vivo and have a therapeutic effect against hepatitis. Taken together, our results demonstrated a method of generating functional MDSCs from iPSCs and highlighted the potential of iPS-MDSCs as a key cell therapy resource for transplantation and autoimmune diseases. Keywords: Myeloid-derived suppressor cells, Induced pluripotent stem cells, T cell response

  10. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function

    Science.gov (United States)

    Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique

    2006-01-01

    Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454

  11. In Vivo Protection against Strychnine Toxicity in Mice by the Glycine Receptor Agonist Ivermectin

    Directory of Open Access Journals (Sweden)

    Ahmed Maher

    2014-01-01

    Full Text Available The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg. Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin.

  12. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities

    Czech Academy of Sciences Publication Activity Database

    Ambro, L.; Pevala, V.; Ondrovičová, G.; Bellová, J.; Kunová, N.; Kutejová, Eva; Bauer, J.

    2014-01-01

    Roč. 281, č. 7 (2014), s. 1784-1797 ISSN 1742-464X Institutional support: RVO:61388971 Keywords : ATP-dependent protease * glycine loop * human Lon protease Subject RIV: CE - Biochemistry Impact factor: 4.001, year: 2014

  13. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  14. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  16. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements

    NARCIS (Netherlands)

    Loureiro, M.D.; Kaschuk, G.; Alberton, O.; Hungria, M.

    2007-01-01

    In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of

  17. Axial-Symmetry Numerical Approaches for Noise Predicting and Attenuating of Rifle Shooting with Suppressors

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2011-01-01

    Full Text Available The moving bullet out of a rifle barrel is propelled by a fired explosive charge. Subsequently, a disturbed muzzle blast wave is initiated which lasts several milliseconds. In this study, axially symmetric, unsteady, Large Eddy Simulation (LES, and Ffowcs Williams and Hawkins (FWH equations were solved by the implicit-time formulation. For the spatial discretization, second order upwind scheme was employed. In addition, dynamic mesh model was used to where the ballistic domain changed with time due to the motion of bullet. Results obtained for muzzle flow field and for noise recorded were compared with those obtained from experimental data; these two batches of results were in agreement. Five cases of gunshot including one model of an unsuppressed rifle and four models of suppressors were simulated. Besides, serial images of species distributions and velocity vectors-pressure contours in suppressors and near muzzle field were displayed. The sound pressure levels (dB in far field that were post-processed by the fast Fourier transform (FFT were compared. The proposed physical model and the numerical simulations used in the present work are expected to be extended to solve other shooting weapon problems with three-dimensional and complex geometries.

  18. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Idit Hazan

    2016-12-01

    Full Text Available The role of common fragile sites (CFSs in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.

  19. Identification of AICP as a GluN2C-Selective N-Methyl-d-Aspartate Receptor Superagonist at the GluN1 Glycine Site

    DEFF Research Database (Denmark)

    Jessen, Maja; Frederiksen, Kristen; Yi, Feng

    2017-01-01

    N-methyl-d-aspartate (NMDA)-type ionotropic glutamate receptors mediate excitatory neurotransmission in the central nervous system and are critically involved in brain function. NMDA receptors are also implicated in psychiatric and neurological disorders and have received considerable attention....../2A-D), in which DCS is a superagonist at GluN2C-containing receptors compared with glycine and a partial agonist at GluN2B-containing receptors. Here, we identify (R)-2-amino-3-(4-(2-ethylphenyl)-1H-indole-2-carboxamido)propanoic acid (AICP) as a glycine site agonist with unique GluN2-dependent...

  20. The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity.

    Directory of Open Access Journals (Sweden)

    Chia-Sui Sun

    Full Text Available TAR DNA-binding protein (TDP-43 was identified as the major ubiquitinated component deposited in the inclusion bodies in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U in 2006. Later on, numerous ALS-related mutations were found in either the glycine or glutamine/asparagine-rich region on the TDP-43 C-terminus, which hinted on the importance of mutations on the disease pathogenesis. However, how the structural conversion was influenced by the mutations and the biological significance of these peptides remains unclear. In this work, various peptides bearing pathogenic or de novo designed mutations were synthesized and displayed their ability to form twisted amyloid fibers, cause liposome leakage, and mediate cellular toxicity as confirmed by transmission electron microscopy (TEM, circular dichroism (CD, Thioflavin T (ThT assay, Raman spectroscopy, calcein leakage assay, and cell viability assay. We have also shown that replacing glycines with prolines, known to obstruct β-sheet formation, at the different positions in these peptides may influence the amyloidogenesis process and neurotoxicity. In these cases, GGG308PPP mutant was not able to form beta-amyloid, cause liposome leakage, nor jeopardized cell survival, which hinted on the importance of the glycines (308-310 during amyloidogenesis.