WorldWideScience

Sample records for suppressor gene promoter

  1. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wang, Shumin; Ma, Ning; Murata, Mariko; Huang, Guangwu; Zhang, Zhe; Xiao, Xue; Zhou, Xiaoying; Huang, Tingting; Du, Chunping; Yu, Nana; Mo, Yingxi; Lin, Longde; Zhang, Jinyan

    2010-01-01

    Epigenetic silencing of tumor suppressor genes play important roles in NPC tumorgenesis. Tissue factor pathway inhibitor-2 (TFPI-2), is a protease inhibitor. Recently, TFPI-2 was suggested to be a tumor suppressor gene involved in tumorigenesis and metastasis in some cancers. In this study, we investigated whether TFPI-2 was inactivated epigenetically in nasopharyngeal carcinoma (NPC). Transcriptional expression levels of TFPI-2 was evaluated by RT-PCR. Methylation status were investigated by methylation specific PCR and bisulfate genomic sequencing. The role of TFPI-2 as a tumor suppressor gene in NPC was addressed by re-introducing TFPI-2 expression into the NPC cell line CNE2. TFPI-2 mRNA transcription was inactivated in NPC cell lines. TFPI-2 was aberrantly methylated in 66.7% (4/6) NPC cell lines and 88.6% (62/70) of NPC primary tumors, but not in normal nasopharyngeal epithelia. TFPI-2 expression could be restored in NPC cells after demethylation treatment. Ectopic expression of TFPI-2 in NPC cells induced apoptosis and inhibited cell proliferation, colony formation and cell migration. Epigenetic inactivation of TFPI-2 by promoter hypermethylation is a frequent and tumor specific event in NPC. TFPI-2 might be considering as a putative tumor suppressor gene in NPC

  2. Remodeling epigenetic modifications at tumor suppressor gene promoters with bovine oocyte extract.

    Science.gov (United States)

    Wang, Zhenfei; Yue, Yongli; Han, Pengyong; Sa, Rula; Ren, Xiaolv; Wang, Jie; Bai, Haidong; Yu, Haiquan

    2013-09-01

    Epigenetic silencing of tumor suppressor genes by aberrant DNA methylation and histone modifications at their promoter regions plays an important role in the initiation and progression of cancer. The therapeutic effect of the widely used epigenetic drugs, including DNA methyltransferase inhibitors and histone deacetylase inhibitors, remains unsatisfactory. One important underlying factor in the ineffectiveness of these drugs is that their actions lack specificity. To investigate whether oocyte extract can be used for epigenetic re-programming of cancer cells, H460 human lung cancer cells were reversibly permeabilized and incubated with bovine oocyte extract. Bisulfite sequencing showed that bovine oocyte extract induced significant demethylation at hypermethylated promoter CpG islands of the tumor suppressor genes RUNX3 and CDH1; however, the DNA methylation levels of repetitive sequences were not affected. Chromatin immunoprecipitation showed that bovine oocyte extract significantly reduced transcriptionally repressive histone modifications and increased transcriptionally activating histone modifications at the promoter regions of RUNX3 and CDH1. Bovine oocyte extract reactivated the expression of RUNX3 and CDH1 at both the messenger RNA and the protein levels without up-regulating the transcription of pluripotency-associated genes. At the functional level, anchorage-independent proliferation, migration and invasion of H460 cells was strongly inhibited. These results demonstrate that bovine oocyte extract reactivates epigenetically silenced tumor suppressor genes by remodeling the epigenetic modifications at their promoter regions. Bovine oocyte extract may provide a useful tool for investigating epigenetic mechanisms in cancer and a valuable source for developing novel safe therapeutic approaches that target epigenetic alterations. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Prediction of DNA methylation in the promoter of gene suppressor tumor.

    Science.gov (United States)

    Saif, Imane; Kasmi, Yassine; Allali, Karam; Ennaji, Moulay Mustapha

    2018-04-20

    The epigenetics methylation of cytosine is the most common epigenetic form in DNA sequences. It is highly concentrated in the promoter regions of the genes, leading to an inactivation of tumor suppressors regardless of their initial function. In this work, we aim to identify the highly methylated regions; the cytosine-phosphate-guanine (CpG) island located on the promoters and/or the first exon gene known for their key roles in the cell cycle, hence the need to study gene-gene interactions. The Frommer and hidden Markov model algorithms are used as computational methods to identify CpG islands with specificity and sensitivity up to 76% and 80%, respectively. The results obtained show, on the one hand, that the genes studied are suspected of developing hypermethylation in the promoter region of the gene involved in the case of a cancer. We then showed that the relative richness in CG results from a high level of methylation. On the other hand, we observe that the gene-gene interaction exhibits co-expression between the chosen genes. This let us to conclude that the hidden Markov model algorithm predicts more specific and valuable information about the hypermethylation in gene as a preventive and diagnostics tools for the personalized medicine; as that the tumor-suppresser-genes have relative co-expression and complementary relations which the hypermethylation affect in the samples studied in our work. Copyright © 2018. Published by Elsevier B.V.

  4. SERPINB5 and AKAP12 -- Expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Haier Joerg

    2010-10-01

    Full Text Available Abstract Background Early metastasis and infiltration are survival limiting characteristics of pancreatic ductal adenocarcinoma (PDAC. Thus, PDAC is likely to harbor alterations in metastasis suppressor genes that may provide novel diagnostic and therapeutic opportunities. This study investigates a panel of metastasis suppressor genes in correlation to PDAC phenotype and examines promoter methylation for regulatory influence on metastasis suppressor gene expression and for its potential as a diagnostic tool. Methods Metastatic and invasive potential of 16 PDAC cell lines were quantified in an orthotopic mouse model and mRNA expression of 11 metastasis suppressor genes determined by quantitative RT-PCR. Analysis for promoter methylation was performed using methylation specific PCR and bisulfite sequencing PCR. Protein expression was determined by Western blot. Results In general, higher metastasis suppressor gene mRNA expression was not consistent with less aggressive phenotypes of PDAC. Instead, mRNA overexpression of several metastasis suppressor genes was found in PDAC cell lines vs. normal pancreatic RNA. Of the investigated metastasis suppressor genes, only higher AKAP12 mRNA expression was correlated with decreased metastasis (P SERPINB5 mRNA expression was correlated with increased metastasis scores (P SERPINB5 methylation was associated with loss of mRNA and protein expression (P SERPINB5 methylation was also directly correlated to decreased metastasis scores (P Conclusions AKAP12 mRNA expression was correlated to attenuated invasive and metastatic potential and may be associated with less aggressive phenotypes of PDAC while no such evidence was obtained for the remaining metastasis suppressor genes. Increased SERPINB5 mRNA expression was correlated to increased metastasis and mRNA expression was regulated by methylation. Thus, SERPINB5 methylation was directly correlated to metastasis scores and may provide a diagnostic tool for PDAC.

  5. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  6. Clinical Utility of promoter methylation of the tumor suppressor genes DKK3, and RASSF1A in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Marwa H. Saied

    2018-04-01

    Full Text Available Background: DNA methylation is the commonest known epigenetic change that results in silencing of tumor suppressor genes. Promoter methylation of tumor suppressor genes has the potential for early detection of breast cancer. Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients and twenty healthy ladies as control group using MSP. Results: Methylation of DKK3 promoter was found in 22.5% of breast cancer patients, while DKK3 methylation was absent in both fibroadenoma patients and control group. Similarly, methylation of RASSF1 promoter was found in 17.5% of breast cancer patients and in none of fibroadenoma and control group. Conclusion: Promoter methylation of DKK3 and RASSF1 was found in breast cancer patients while absent in control group suggesting that tumorspecific methylation of the two genes (DKK3 and RASSF1A might be a valuable biomarker for the early detection of breast cancer. Keywords: DNA methylation, Breast cancer, DKK3, RASSF1

  7. Transcriptional regulation of teleost aicda genes. Pt 1 suppressors of promiscuous promoters

    Science.gov (United States)

    In order to better understand antibody affinity maturation in fishes we sought to identify gene regulatory elements that could drive expression of activated B-cell specific fluorescent reporter transgenes in zebrafish. Specifically the promoter and several non-coding regions of the channel catfish (...

  8. No evidence for promoter region methylation of the succinate dehydrogenase and fumarate hydratase tumour suppressor genes in breast cancer

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2009-09-01

    Full Text Available Abstract Background Succinate dehydrogenase (SDH and fumarate hydratase (FH are tricarboxylic acid (TCA cycle enzymes that are also known to act as tumour suppressor genes. Increased succinate or fumarate levels as a consequence of SDH and FH deficiency inhibit hypoxia inducible factor-1α (HIF-1α prolyl hydroxylases leading to sustained HIF-1α expression in tumours. Since HIF-1α is frequently expressed in breast carcinomas, DNA methylation at the promoter regions of the SDHA, SDHB, SDHC and SDHD and FH genes was evaluated as a possible mechanism in silencing of SDH and FH expression in breast carcinomas. Findings No DNA methylation was identified in the promoter regions of the SDHA, SDHB, SDHC, SDHD and FH genes in 72 breast carcinomas and 10 breast cancer cell lines using methylation-sensitive high resolution melting which detects both homogeneous and heterogeneous methylation. Conclusion These results show that inactivation via DNA methylation of the promoter CpG islands of SDH and FH is unlikely to play a major role in sporadic breast carcinomas.

  9. Protocadherin-10 acts as a tumor suppressor gene, and is frequently downregulated by promoter methylation in pancreatic cancer cells.

    Science.gov (United States)

    Qiu, Chan; Bu, Xiaona; Jiang, Zheng

    2016-07-01

    Protocadherin-10 (PCDH10), a member of non-clustered protocadherin family which plays important roles in calcium-dependent cell-cell signal transduction and adhesion. PCDH10 functions as a tumor suppressor gene and its expression is downregulated by promoter methylation in many malignances. In the present study, we explored PCDH10 expression and promoter methylation status, and its biological effects in pancreatic cancer cells, and furthermore, we explored the mechanism of PCDH10 preliminary in pancreatic cancer cells. the mRNA level of PCDH10 was detected by semi-quantitative reverse transcription PCR and promoter methylation status examined by methylation-specific PCR in the pancreatic cancer cells (Capan-1, Panc-1, AsPC-1 and BxPC-3) as well as the human normal pancreatic ductal epithelial cells HPDE6-C7 which was used as a control. The human pancreatic cells were transfected with plasmid pcDNA3.1-PCDH10 or pcDNA3.1 by lipofectamine 2000. The biological function of PCDH10 in pancreatic cancer cells was determined by CCK-8 assay, colony formation assay, flow cytometry, Transwell invasion assay and wound-healing assay. The levels of apoptosis related proteins were examined by western blotting. PCDH10 expression was obviously downregulated in the pancreatic cancer cells (Capan-1, Panc-1, BxPC-3) compared to the normal pancreatic ductal epithelial cells. PCDH10 promoter methylation was observed in the two pancreatic cancer cells Capan-1 and BxPC-3,and the expression of PCDH10 could be restored after treating with 5-aza-2'-deoxycytidine and trichostatin A in the two cell types. Overexpression of PCDH10 can inhibit the proliferation, migration, invasion ability of pancreatic cancer cells and induce apoptosis. Ectopic expression of PCDH10 could increase the levels of PARP, caspase-3, caspase-9 and decrease the level of bcl-2, AKT and p-AKT. PCDH10 acts as a tumor suppressor gene, and is frequently down-regulated by promoter methylation in pancreatic cancer cells. PCDH

  10. [Silencing of tumor metastasis suppressor gene 1 promotes invasion of prostate cancer cell in vitro and its molecular mechanisms].

    Science.gov (United States)

    Xu, Xiao-yan; You, Jiang-feng; Pei, Fei; Zhang, Bo

    2011-12-18

    , indicating that LASS2 is a novel tumor metastasis suppressor gene.

  11. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  12. Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer.

    Science.gov (United States)

    Chen, J-Y; Luo, C-W; Lai, Y-S; Wu, C-C; Hung, W-C

    2017-08-07

    The coupling between DNA methylation and histone modification contributes to aberrant expression of oncogenes or tumor suppressor genes that leads to tumor development. Our previous study demonstrated that lysine demethylase 2A (KDM2A) functions as an oncogene in breast cancer by promoting cancer stemness and angiogenesis via activation of the Notch signaling. Here, we demonstrate that knockdown of KDM2A significantly increases the 5'-hydroxymethylcytosine (5'-hmc) level in genomic DNA and expression of tet-eleven translocation 2 (TET2) in various breast cancer cell lines. Conversely, ectopic expression of KDM2A inhibits TET2 expression in KDM2A-depleted cells suggesting TET2 is a transcriptional repression target of KDM2A. Our results show that KDM2A interacts with RelA to co-occupy at the TET2 gene promoter to repress transcription and depletion of RelA or KDM2A restores TET2 expression. Upregulation of TET2 in the KDM2A-depleted cells induces the re-activation of two TET downstream tumor suppressor genes, epithelial cell adhesion molecule (EpCAM) and E-cadherin, and inhibits migration and invasion. On the contrary, knockdown of TET2 in these cells decreases EpCAM and E-cadherin and increases cell invasiveness. More importantly, TET2 expression is negatively associated KDM2A in triple-negative breast tumor tissues, and its expression predicts a better survival. Taken together, we demonstrate for the first time that TET2 is a direct repression target of KDM2A and reveal a novel mechanism by which KDM2A promotes DNA methylation and breast cancer progression via the inhibition of a DNA demethylase.

  13. Tumoral tissue specific promoter hypermethylation of distinct tumor suppressor genes in a case with non--small cell lung carcinoma: A case report

    Directory of Open Access Journals (Sweden)

    Arslan Sulhattin

    2008-01-01

    Full Text Available Objective: Non-small cell lung carcinoma is an aggressive phenomenon and the epigenetical alterations of some tumor supressor genes have been reported for the different tumor types. Case Presentation: It is presented a case report concerning a 43 years old male with NSCLC on the lower segment of the right lung. The patient underwent a diag-nostic excisional thin-needle biopsy and after the histological confirmation. We examined the promoter methylation status of some distinct tumor supressor genes in tumoral and blood tissues of the case after sodium bisulfite conversion and DNA amplification with methylation specific multiplex PCR technique. Both tissues were also searched for G to A transitions in codons 12 and 13 of the K-ras proto-oncogene. Results: Tumor specimen showed fully methyl pattern profiles for the SFRP2, p16, DAPK1 and partially hyper-methylated profile for the p53 and MGMT genes in this case with non-small lung carci-noma. Blood speicemen showed normal hypomethylated profiles for all studied TS genes. The K-ras proto-oncogene was in normal structure both in blood and tumoral spiecemens that examined. Conclusion: Results indicate that genes exhibit tumor suppressor activi-ties in blood, but exhibit epigenetic inactivation in carcinoma cell. These findings strongly support the hypothesis that epigenetic mechanisms may play an important role in the non-small cell lung carcinogenesis in human.

  14. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  15. Hypomethylation of tumor suppressor genes in odontogenic myxoma

    OpenAIRE

    Moreira,Paula Rocha; Cardoso,Fabiano Pereira; Brito,João Artur Ricieri; Batista,Aline Carvalho; Gomes,Carolina Cavaliéri; Gomez,Ricardo Santiago

    2011-01-01

    Odontogenic myxoma (OM) is an ectomesenchymal benign odontogenic tumor characterized by spindle or stellate-shaped cells embedded in an abundant myxoid or mucoid extracellular matrix. DNA methylation is characterized by the addition of methyl groups in cytosines within CpG islands in the promoter gene. DNA methylation can decrease the expression of tumor suppressor genes and contribute to the development of neoplastic lesions. The aim of study was to evaluate the methylation pattern of the tu...

  16. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle.

    Directory of Open Access Journals (Sweden)

    Yong-Zhen Huang

    Full Text Available Zinc finger, BED-type containing 6 (ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, rapid amplification of 5' cDNA ends (5'-RACE analysis revealed two transcription start sites (TSS for the bovine ZBED6 starting within exon 1 of the ZC3H11A gene (TSS-1 and upstream of the translation start codon of the ZBED6 gene (TSS-2. There was one SNP in the promoter and two missense mutations in the coding region of the bovine ZBED6 by sequencing of the pooled DNA samples (Pool-Seq, n = 100. The promoter and coding region are the key regions for gene function; polymorphisms in these regions can alter gene expression. Quantitative real-time PCR (qPCR analysis showed that ZBED6 has a broad tissue distribution in cattle and is highly expressed in skeletal muscle. Eleven promoter-detection vectors were constructed, which enabled the cloning of putative promoter sequences and analysis of ZBED6 transcriptional activity by luciferase reporter gene assays. The core region of the basal promoter of bovine ZBED6 is located within region -866 to -556. The activity of WT-826G-pGL3 in driving reporter gene transcription is significantly higher than that of the M-826A-pGL3 construct (P < 0.01. Analysis of gene expression patterns in homozygous full-sibling Chinese Qinchuan cattle showed that the mutant-type Hap-AGG exhibited a lower mRNA level than the wild-type Hap-GCA (P < 0.05 in longissimus dorsi muscle (LDM. Moreover, ZBED6 mRNA expression was low in C2C12 cells overexpressing the mutant-type ZBED6 (pcDNA3.1(+-Hap-GG (P < 0.01. Our results suggest that the polymorphisms in the promoter and coding regions may modulate the promoter activity and gene expression of bovine ZBED6 in the skeletal muscles of these cattle breeds.

  17. Construction of a multiplex promoter reporter platform to monitor Staphylococcus aureus virulence gene expression and the identification of usnic acid as a potent suppressor of psm gene expression

    Directory of Open Access Journals (Sweden)

    Peng GAO

    2016-08-01

    Full Text Available As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.

  18. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  19. PTEN, a Tumor Suppressor Gene for Prostate Cancer

    National Research Council Canada - National Science Library

    Ittmann, Michael

    1999-01-01

    .... The PTEN gene is a tumor suppressor gene recently cloned from human chromosome 10q23.3 that encodes a lipid phosphatase which influences a variety of cellular processes that impact on the neoplastic phenotype...

  20. Intellectual disability, oncogenes and tumour suppressor genes: the ...

    Indian Academy of Sciences (India)

    disability, the presence of CNV including gene expressed in the brain or with specific brain function is a strong argument. In contrast, CNV affecting only genes involved in oncogen- esis are mostly ignored. However, links between some onco- genes or tumour suppressor genes and intellectual disability deserve attention.

  1. Cellular senescence and tumor suppressor gene p16.

    Science.gov (United States)

    Rayess, Hani; Wang, Marilene B; Srivatsan, Eri S

    2012-04-15

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16. Copyright © 2011 UICC.

  2. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in the gene expression profile, we performed GEP and array-CGH studies on seven clinically well defined cases and eight well characterized cell lines derived from NKL patients. Methods: Array-CGH was performed on a tiling BAC array and GEP on an Affymetrix 133 plus2 array.The two data sets were correlated...... to identify functional alterations associated with the genetic abnormalities.Candidate genes on del 6q21 were identified and further studied for mutations and promoter methylation. Results: Our aCGH study identified frequent recurrent gains (> 25 %) in 1q, 2p, 7q, 13q, 17q and 20pter-qter. Regions of loss...

  3. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  4. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  5. Tumour suppressor genes in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Ganesan, Trivadi S

    2002-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies in the western world, and sporadic epithelial ovarian cancer is its most predominant form. The aetiology of sporadic ovarian cancer remains unknown. Genetic studies have enabled a better understanding...... of the evolution of tumour progression. A major focus of research has been to identify tumour suppressor genes implicated in sporadic ovarian cancer over the past decade. Several tumour suppressor genes have been identified by strategies such as positional cloning and differential expression display. Further...... research is warranted to understand fully their contribution to the pathogenesis of sporadic ovarian cancer....

  6. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers

    Directory of Open Access Journals (Sweden)

    Guzmán Leda

    2012-07-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a disorder associated to cigarette smoke and lung cancer (LC. Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23, LC (n = 26, as well as in healthy subjects (CTR (n = 33, using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP. The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR (p  Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160

  7. Intellectual disability, oncogenes and tumour suppressor genes: the ...

    Indian Academy of Sciences (India)

    associated with Van-Hippel Lindau syndrome, an inherited neoplastic disorder with retinal and central nervous haeman- gioblastomas and high risk of renal cancers (Maher et al. Keywords. array-CGH; mental retardation; oncogenes; tumour suppressor genes; intellectual disability. Journal of Genetics, Vol. 91, No.

  8. Intellectual disability, oncogenes and tumour suppressor genes: the ...

    Indian Academy of Sciences (India)

    Keywords. array-CGH; mental retardation; oncogenes; tumour suppressor genes; intellectual disability. Author Affiliations. M. Bidart1 2 3 C. Coutton4 5 3. Plateforme Protéomique et Transcriptomique Clinique, Pole Recherche, CHU Grenoble, 38043 Grenoble, France; Equipe, Nanomédecine et Cerveau, Inserm U836, ...

  9. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  10. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  11. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  12. MiR-424 Promotes Non-Small Cell Lung Cancer Progression and Metastasis through Regulating the Tumor Suppressor Gene TNFAIP1

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2017-05-01

    Full Text Available Background/Aims: This study aimed to investigate the potential roles of miR-424 expression in non-small cell lung cancer (NSCLC metastasis and growth and its underlying mechanism. Methods: The expression of miR-424 in two NSCLC cell lines (A549 and H1975 was altered by transfection with miR-424 mimic and inhibitor. Effects of miR-424 overexpression and suppression on cells migration, invasion and colony formation were analyzed. Target genes for miR-424 were predicted using bioinformatics method and then verified using luciferase assay. Effects of miR-424 expression on cell migration, invasion and proliferation were reanalyzed on the condition of TNFAIP1 was silenced. Moreover, TNFAIP1 silencing and miR-424 modified A549 cells were subcutaneous injected into node BALB/c mice to confirm the regulation of miR-424 on TNFAIP1 in regulating tumor growth. Results: Compared with the control, miR-424 overexpression significantly increased the migrated and invaded cells, as well as the proliferated colonies. TNFAIP1 was a predicted target gene for miR-424, and was negatively regulated by miR-424. TNFAIP1 silence significantly increased the migrated and invaded cells compared to that in control, while these increases were abolished by miR-424 suppression. Animal experiment further evidenced miR-424 affected tumor growth by regulating TNFAIP1. Conclusions: These data demonstrate that miR-424 may be a contributor for NSCLC progression and metastasis through involving in cell migration, invasion and proliferation via inhibiting TNFAIP1. This study may provide theoretical basis for miR-424 in NSCLC target therapeutic treatment.

  13. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  14. The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Minoru; Ishimura, Akihiko; Yoshida, Masakazu [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan); Suzuki, Yutaka; Sugano, Sumio [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba (Japan); Suzuki, Takeshi, E-mail: suzuki-t@staff.kanazawa-u.ac.jp [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan)

    2010-08-20

    Research highlights: {yields} Utx increases expression of Rb and Rbl2 genes through its demethylase activity. {yields} Utx changes histone H3 methylation on the Rb and Rbl2 promoters. {yields} Utx induces decreased cell proliferation of mammalian primary cells. -- Abstract: Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control.

  15. Clinical Utility of promoter methylation of the tumor suppressor ...

    African Journals Online (AJOL)

    Marwa H. Saied

    moter was found in 17.5% of breast cancer patients and in none of fibroadenoma and control group. Conclusion: Promoter methylation of DKK3 and RASSF1 was found in breast cancer patients while absent in control group suggesting that tumorspecific methylation of the two genes (DKK3 and RASSF1A) might.

  16. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway

    Czech Academy of Sciences Publication Activity Database

    Ullmannová-Benson, Veronika; Guan, M.; Zhou, X. G.; Tripathi, V.; Yang, V.; Zimonjic, D. B.; Popescu, C.

    2009-01-01

    Roč. 23, č. 2 (2009), s. 383-390 ISSN 0887-6924 Institutional research plan: CEZ:AV0Z50200510 Keywords : multiple myeloma * tumor suppressor gene * promoter methylation Subject RIV: EC - Immunology Impact factor: 8.296, year: 2009

  17. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    Lee, Je Ho; Park, Sang Yun

    1992-04-01

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  18. p53 tumor suppressor gene: significance in neoplasia - a review

    International Nuclear Information System (INIS)

    Alam, J.M.

    2000-01-01

    p53 is a tumor suppressor gene located on chromosome 17p13.1. Its function includes cell cycle control and apoptosis. Loss of p53 function, either due to decreased level or genetic transformation, is associated with loss of cell cycle control, decrease, apoptosis and genomic modification, such mutation of p53 gene is now assessed and the indicator of neoplasia of cancer of several organs and cell types, p53 has demonstrated to have critical role in defining various progressive stages of neoplasia, therapeutic strategies and clinical application. The present review briefly describes function of p53 in addition to its diagnostic and prognostic significance in detecting several types of neoplasia. (author)

  19. Classical Oncogenes and Tumor Suppressor Genes: A Comparative Genomics Perspective

    Directory of Open Access Journals (Sweden)

    Oxana K. Pickeral

    2000-05-01

    Full Text Available We have curated a reference set of cancer-related genes and reanalyzed their sequences in the light of molecular information and resources that have become available since they were first cloned. Homology studies were carried out for human oncogenes and tumor suppressors, compared with the complete proteome of the nematode, Caenorhabditis elegans, and partial proteomes of mouse and rat and the fruit fly, Drosophila melanogaster. Our results demonstrate that simple, semi-automated bioinformatics approaches to identifying putative functionally equivalent gene products in different organisms may often be misleading. An electronic supplement to this article1 provides an integrated view of our comparative genomics analysis as well as mapping data, physical cDNA resources and links to published literature and reviews, thus creating a “window” into the genomes of humans and other organisms for cancer biology.

  20. SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Yuen Yee Cheng

    2017-01-01

    Full Text Available Malignant pleural mesothelioma (MPM is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56% and SFRP5 (70% in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.

  1. Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress.

    Science.gov (United States)

    Tront, Jennifer S; Huang, Yajue; Fornace, Albert J; Fornace, Albert A; Hoffman, Barbara; Liebermann, Dan A

    2010-12-01

    Gadd45a plays a pivotal role as a stress sensor that modulates cellular responses to various stress stimuli including oncogenic stress. We reported that the stress sensor Gadd45a gene functions as a tumor suppressor in Ras-driven breast tumorigenesis via increasing JNK-mediated apoptosis and p38-mediated senescence. In contrast, here, we show that Gadd45a promotes Myc-driven breast cancer by negatively regulating MMP10 via GSK3 β/β-catenin signaling, resulting in increased tumor vascularization and growth. These novel findings indicate that Gadd45a functions as either tumor promoter or suppressor, is dependent on the oncogenic stress, and is mediated via distinct signaling pathways. Collectively, these novel findings highlight the significance of the type of oncogenic alteration on how stress response genes function during initiation and progression of tumorigenesis. Because Gadd45a is a target for BRCA1 and p53, these findings have implications regarding BRCA1/p53 tumor suppressor functions.

  2. Methylation of Tumor Suppressor Genes in Autoimmune Pancreatitis.

    Science.gov (United States)

    Kinugawa, Yasuhiro; Uehara, Takeshi; Sano, Kenji; Matsuda, Kazuyuki; Maruyama, Yasuhiro; Kobayashi, Yukihiro; Nakajima, Tomoyuki; Hamano, Hideaki; Kawa, Shigeyuki; Higuchi, Kayoko; Hosaka, Noriko; Shiozawa, Satoshi; Ishigame, Hiroki; Ota, Hiroyoshi

    Autoimmune pancreatitis (AIP) is a representative IgG4-related and inflammatory disease of unknown etiology. To clarify mechanisms of carcinogenesis resulting from AIP, we focused on methylation abnormalities and KRAS mutations in AIP. Six tumor suppressor genes (NPTX2, Cyclin D2, FOXE1, TFPI2, ppENK, and p16) that exhibited hypermethylation in pancreatic carcinoma were selected for quantitative SYBR green methylation-specific polymerase chain reaction in 10 AIP specimens, 10 pancreatic adenocarcinoma cases without history of AIP containing carcinoma areas (CAs) and noncarcinoma areas (NCAs), and 11 normal pancreas (NP) samples. KRAS mutation in codons 12, 13, and 61 were also investigated using direct sequencing. Hypermethylation events (≥10%) were identified in NPTX2, Cyclin D2, FOXE1, TFPI2, ppENK, and p16 in 1, 2, 2, 0, 2, and 0 CA cases, respectively, but not in these 6 candidate genes in AIP, NCA, and NP. However, the TFPI2 methylation ratio was significantly higher in AIP than NCA and NP. Direct sequencing results for KRAS showed no single-point mutations in AIP. These are the first studies characterizing methylation abnormalities in AIP. AIP's inflammatory condition may be related to carcinogenesis. Further study will elucidate methylation abnormalities associated with carcinogenesis in AIP.

  3. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential.

    Science.gov (United States)

    Kazanets, Anna; Shorstova, Tatiana; Hilmi, Khalid; Marques, Maud; Witcher, Michael

    2016-04-01

    Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The Function of PTEN Tumor Suppressor Gene in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Wu, Hong

    2001-01-01

    .... The recently identified tumor suppressor gene PTEN is a promising candidate for being involved in prostate cancer since it is frequently deleted in prostate cancer, especially in advanced or metastatic forms...

  5. The Function of PTEN Tumor Suppressor Gene in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Wu, Hong

    2002-01-01

    .... The recently identified tumor suppressor gene PTEN is a promising candidate for being involved in prostate cancer since it is frequently deleted in prostate cancer, especially in advanced or metastatic forms...

  6. Regulation of IAP (Inhibitor of Apoptosis) Gene Expression by the p53 Tumor Suppressor Protein

    National Research Council Canada - National Science Library

    Murphy, Maureen

    2003-01-01

    The goal of the work proposed in this application, which has just completed Year 1, was to analyze the ability of the p53 tumor suppressor protein to repress the anti-apoptotic genes survivin and cIAP-2...

  7. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  8. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    2009-11-01

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  9. Clinical Utility of promoter methylation of the tumor suppressor ...

    African Journals Online (AJOL)

    Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP) of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients ...

  10. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene.

    Science.gov (United States)

    Huff, Vicki

    2011-02-01

    Genes identified as being mutated in Wilms' tumour include TP53, a classic tumour suppressor gene (TSG); CTNNB1 (encoding β-catenin), a classic oncogene; WTX, which accumulating data indicate is a TSG; and WT1, which is inactivated in some Wilms' tumours, similar to a TSG. However, WT1 does not always conform to the TSG label, and some data indicate that WT1 enhances cell survival and proliferation, like an oncogene. Is WT1 a chameleon, functioning as either a TSG or an oncogene, depending on cellular context? Are these labels even appropriate for describing and understanding the function of WT1?

  11. PU.1 is a major transcriptional activator of the tumour suppressor gene LIMD1.

    Science.gov (United States)

    Foxler, Daniel E; James, Victoria; Shelton, Samuel J; Vallim, Thomas Q de A; Shaw, Peter E; Sharp, Tyson V

    2011-04-06

    LIMD1 is a tumour suppressor gene (TSG) down regulated in ∼80% of lung cancers with loss also demonstrated in breast and head and neck squamous cell carcinomas. LIMD1 is also a candidate TSG in childhood acute lymphoblastic leukaemia. Mechanistically, LIMD1 interacts with pRB, repressing E2F-driven transcription as well as being a critical component of microRNA-mediated gene silencing. In this study we show a CpG island within the LIMD1 promoter contains a conserved binding motif for the transcription factor PU.1. Mutation of the PU.1 consensus reduced promoter driven transcription by 90%. ChIP and EMSA analysis demonstrated that PU.1 specifically binds to the LIMD1 promoter. siRNA depletion of PU.1 significantly reduced endogenous LIMD1 expression, demonstrating that PU.1 is a major transcriptional activator of LIMD1. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines

    OpenAIRE

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2007-01-01

    AIM: To identify the relationship between DNA hyper-methylation and histone modification at a hyperme-thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification.

  13. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    )-expressing T-cell lymphomas. p16 gene was epigenetically silenced in all but one of the 10 malignant T-cell lines examined, p15 gene silenced in roughly half of the lines, and p14 was the least frequently affected. Extensive methylation of the p16 promoter was seen in six out of 10 cutaneous T-cell lymphoma...... promoter demethylation and required up to 3 weeks to occur, seemingly reflecting late activation of the p16 gene. These findings indicate that epigenetic silencing affects in T-cell malignancies, often simultaneously, several tumor suppressor genes that impact on key cell functions. The observed...... differential silencing of p16 and p14, and to a lesser degree p15 gene, indicates that the silencing is governed by precise, promoter region-specific mechanisms. The study provides also further rationale for treatment of at least some types of T-cell lymphomas with DNA methyltransferase inhibitors to target...

  14. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1.

    Directory of Open Access Journals (Sweden)

    Stella Marie Reamon-Buettner

    Full Text Available Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3, and opposing histone modification marks (H3K4me3 and H3K27me3 all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

  15. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order ... from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 gene by. PCR-SSCP ... function of p53 is critical to the efficiency of many cancer treatment ...

  16. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order to study the significance of the p53 gene in the genesis and development of human glioma from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 ...

  17. V2 from a curtovirus is a suppressor of post-transcriptional gene silencing.

    Science.gov (United States)

    Luna, Ana P; Rodríguez-Negrete, Edgar A; Morilla, Gabriel; Wang, Liping; Lozano-Durán, Rosa; Castillo, Araceli G; Bejarano, Eduardo R

    2017-10-01

    The suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays. Beet curly top virus (BCTV), the model species for the Curtovirus genus, is able to infect the widest range of plants among geminiviruses. In this genus, only one protein, C2/L2, has been described as inhibiting PTGS. We show here that, despite the lack of sequence homology with its begomoviral counterpart, BCTV V2 acts as a potent PTGS suppressor, possibly by impairing the RDR6 (RNA-dependent RNA polymerase 6)/suppressor of gene silencing 3 (SGS3) pathway.

  18. The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells.

    Science.gov (United States)

    Adamo, Patricia; Porazinski, Sean; Rajatileka, Shavanthi; Jumbe, Samantha; Hagen, Rachel; Cheung, Man-Kim; Wilson, Ian; Ladomery, Michael R

    2017-11-01

    The oncogene ETS-related gene (ERG) encodes a transcription factor with roles in the regulation of haematopoiesis, angiogenesis, vasculogenesis, inflammation, migration and invasion. The ERG oncogene is activated in >50% of prostate cancer cases, generally through a gene fusion with the androgen-responsive promoter of transmembrane protease serine 2. Phosphatase and tensin homologue ( PTEN ) is an important tumour suppressor gene that is often inactivated in cancer. ERG overexpression combined with PTEN inactivation or loss is often associated with aggressive prostate cancer. The present study aimed to determine whether or not ERG regulates PTEN transcription directly. ERG was demonstrated to bind to the PTEN promoter and repress its transcription. ERG overexpression reduced endogenous PTEN expression, whereas ERG knockdown increased PTEN expression. The ability of ERG to repress PTEN may contribute to a more cancer-permissive environment.

  19. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis.

    Science.gov (United States)

    Li, Jun; Zhang, Meng; An, Gang; Ma, Qingfang

    2016-03-01

    Previous studies have revealed multiple functional roles of long non-coding RNA taurine upregulated gene 1 in different types of malignant tumors, except for human glioma. Here, it was designed to study the potential function of taurine upregulated gene 1 in glioma pathogenesis focusing on its regulation on cell apoptosis. The expression of taurine upregulated gene 1 in glioma tissues was detected by quantitative RT-PCR and compared with that in adjacent normal tissues. Further correlation analysis was conducted to show the relationship between taurine upregulated gene 1 expression and different clinicopathologic parameters. Functional studies were performed to investigate the influence of taurine upregulated gene 1 on apoptosis and cell proliferation by using Annexin V/PI staining and cell counting kit-8 assays, respectively. And, caspase activation and Bcl-2 expression were analyzed to explore taurine upregulated gene 1-induced mechanism. taurine upregulated gene 1 expression was significantly inhibited in glioma and showed significant correlation with WHO Grade, tumor size and overall survival. Further experiments revealed that the dysregulation of taurine upregulated gene 1 affected the apoptosis and cell proliferation of glioma cells. Moreover, taurine upregulated gene 1 could induce the activation of caspase-3 and-9, with inhibited expression of Bcl-2, implying the mechanism in taurine upregulated gene 1-induced apoptosis. taurine upregulated gene 1 promoted cell apoptosis of glioma cells by activating caspase-3 and -9-mediated intrinsic pathways and inhibiting Bcl-2-mediated anti-apoptotic pathways, acting as a tumor suppressor in human glioma. This study provided new insights for the function of taurine upregulated gene 1 in cancer biology, and suggested a potent application of taurine upregulated gene 1 overexpression for glioma therapy. © 2016 by the Society for Experimental Biology and Medicine.

  20. Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells.

    Science.gov (United States)

    Lin, Ying-Chu; Murayama, Yoshinobu; Hashimoto, Koichiro; Nakamura, Yukio; Lin, Chang-Shin; Yokoyama, Kazunari K; Saito, Shigeo

    2014-01-01

    Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG, SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor genes such as p21CIP1 and p16INK4a through the activation of p53 to be the pre-induced pluripotent stem cells (pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their tumorigenic properties for application in stem cell therapy in the field of regenerative medicine.

  1. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Francis, R.; Schedl, T. [Washington Univ. School of Medicine, St. Louis, MO (United States); Barton, M.K.; Kimble, J. [Univ. of Wisconsin, Madison, WI (United States)

    1995-02-01

    We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1 (null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1 (null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells. 69 refs., 10 figs., 8 tabs.

  2. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  3. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  4. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    [Phatak P, Selvi S K, Divya T, Hegde A S, Hegde S and Somasundaram K 2002 Alterations in tumour suppressor gene p53 in human gliomas from Indian patients; J. Biosci. 27 673–678]. 1. Introduction. Glioma, a neoplasm of neuroglial cells, is the most common type of brain tumour, constituting more than 50% of all.

  5. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    NARCIS (Netherlands)

    Choorapoikayil, S.; Kuiper, R.V.; de Bruin, A.; den Hertog, J.

    2012-01-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/-)ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile.

  6. Analyses of tumor-suppressor genes in germline mouse models of cancer.

    Science.gov (United States)

    Wang, Jingqiang; Abate-Shen, Cory

    2014-08-01

    Tumor-suppressor genes are critical regulators of growth and functioning of cells, whose loss of function contributes to tumorigenesis. Accordingly, analyses of the consequences of their loss of function in genetically engineered mouse models have provided important insights into mechanisms of human cancer, as well as resources for preclinical analyses and biomarker discovery. Nowadays, most investigations of genetically engineered mouse models of tumor-suppressor function use conditional or inducible alleles, which enable analyses in specific cancer (tissue) types and overcome the consequences of embryonic lethality of germline loss of function of essential tumor-suppressor genes. However, historically, analyses of genetically engineered mouse models based on germline loss of function of tumor-suppressor genes were very important as these early studies established the principle that loss of function could be studied in mouse cancer models and also enabled analyses of these essential genes in an organismal context. Although the cancer phenotypes of these early germline models did not always recapitulate the expected phenotypes in human cancer, these models provided the essential foundation for the more sophisticated conditional and inducible models that are currently in use. Here, we describe these "first-generation" germline models of loss of function models, focusing on the important lessons learned from their analyses, which helped in the design and analyses of "next-generation" genetically engineered mouse models. © 2014 Cold Spring Harbor Laboratory Press.

  7. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma

    International Nuclear Information System (INIS)

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-01-01

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein–Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5′ azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL

  8. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma.

    Science.gov (United States)

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-11-07

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein-Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5' azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL.

  9. Modulation and Expression of Tumor Suppressor Genes by Environmental Agents

    National Research Council Canada - National Science Library

    Ostrander, Gary Kent

    1996-01-01

    ... in the retinoblastoma gene in retinoblastoma and hepatocarcinomas following induction with known environmental carcinogens. Studies to date suggest the retinoblastoma gene/protein may play a role in oncogenesis in the medaka.

  10. Promoter Methylation Analysis of IDH Genes in Human Gliomas.

    Science.gov (United States)

    Flanagan, Simon; Lee, Maggie; Li, Cheryl C Y; Suter, Catherine M; Buckland, Michael E

    2012-01-01

    Mutations in isocitrate dehydrogenase (IDH)-1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132) or IDH2 (R172). But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a "toxic gain-of-function" to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumor suppressor gene. As most, if not all, tumor suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumors, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumor suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumors, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumors examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumors. These findings do not support a tumor suppressor role for IDH genes in human gliomas.

  11. Promoter methylation analysis of IDH genes in human gliomas

    Directory of Open Access Journals (Sweden)

    Simon eFlanagan

    2012-12-01

    Full Text Available Mutations in isocitrate dehydrogenase (IDH -1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132 or IDH2 (R172. But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a ‘toxic gain of function’ to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumour suppressor gene. As most, if not all, tumour suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumours, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumour suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumours, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumours examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumours. These findings do not support a tumour suppressor role for IDH genes in human gliomas.

  12. Promoter Methylation Analysis of IDH Genes in Human Gliomas

    International Nuclear Information System (INIS)

    Flanagan, Simon; Lee, Maggie; Li, Cheryl C. Y.; Suter, Catherine M.; Buckland, Michael E.

    2012-01-01

    Mutations in isocitrate dehydrogenase (IDH)-1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132) or IDH2 (R172). But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a “toxic gain-of-function” to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumor suppressor gene. As most, if not all, tumor suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumors, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumor suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumors, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumors examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumors. These findings do not support a tumor suppressor role for IDH genes in human gliomas.

  13. Generation of two modified mouse alleles of the Hic1 tumor suppressor gene

    Czech Academy of Sciences Publication Activity Database

    Pospíchalová, Vendula; Turečková, Jolana; Fafílek, Bohumil; Vojtěchová, Martina; Krausová, Michaela; Lukáš, Jan; Šloncová, Eva; Takacova, S.; Divoký, V.; Leprince, D.; Plachý, Jiří; Kořínek, Vladimír

    2011-01-01

    Roč. 49, č. 3 (2011), s. 142-151 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA204/07/1567; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z50520514 Keywords : Hypermethylated In Cancer 1 * Hic1 tumor suppressor * gene targeting Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 2.527, year: 2011

  14. ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1

    Directory of Open Access Journals (Sweden)

    Hongtao Ma

    2016-01-01

    Full Text Available Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1 in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα. Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression.

  15. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  16. Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-01-01

    Full Text Available Abstract Background The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis. Results Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors. Conclusion The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes. Reviewers This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny.

  17. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  18. Hypermethylation Of The Tumor Suppressor RASSF1A Gene In ...

    African Journals Online (AJOL)

    Breast cancer is the leading cancer among females. There is a critical need for improved molecular biomarkers that are diagnostic, prognostic and also capable of predicting the progression of benign high-risk lesions to invasive carcinoma. RAS association domain family protein 1A (RASSF1A) gene, is a biologically ...

  19. Role of natural antisense transcripts pertaining to tumor suppressor genes in human carcinomas

    International Nuclear Information System (INIS)

    Pelicci, G.; Pierotti, M.

    2009-01-01

    Overlapping transcripts in opposite orientations can potentially form perfect sense-antisense duplex RNA. Recently, several studies have revealed the extent of natural antisense transcripts (NATs) and their role in important biological phenomena also in higher organisms. In order to test the hypothesis that the function of NATs in man might represent an essential element in the regulation of gene expression, especially at transcriptional level, in this study we planned to look for, systematically examine, and characterize NATs belonging in the human genome to the tumour suppressor class of genes, so to identify physiological (and potentially pathological) modulators in this gene class

  20. Molecular studies on the function of tumor suppressor gene in gastrointestinal cancer

    International Nuclear Information System (INIS)

    Kim, You Cheoul

    1993-01-01

    Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studies the alteration of tumor suppressor gene in various Gastrointestinal cancer in Korea. Results showed that genetic alteration of Rb gene was in 83% of colorectal cancer. Our results suggest that genetic alteration of Rb gene is crucially involved in the tumorigenesis of colorectum in Korea. (Author)

  1. Generation of two modified mouse alleles of the Hic1 tumor suppressor gene

    Czech Academy of Sciences Publication Activity Database

    Pospíchalová, Vendula; Turečková, Jolana; Fafílek, Bohumil; Vojtěchová, Martina; Krausová, Michaela; Lukáš, Jan; Šloncová, Eva; Takacova, S.; Divoký, V.; Leprince, D.; Plachý, Jiří; Kořínek, Vladimír

    2011-01-01

    Roč. 49, č. 3 (2011), s. 142-151 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA204/07/1567; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z50520514 Keywords : Hypermethylated In Cancer 1 * Hic1 tumor suppressor * gene targeting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.527, year: 2011

  2. The p53 tumour suppressor gene and the tobacco industry: research, debate, and conflict of interest

    OpenAIRE

    Bitton, A; Neuman, M D; Barnoya, J; Glantz, Stanton A. Ph.D.

    2005-01-01

    Mutations in the p53 tumour suppressor gene lead to uncontrolled cell division and are found in over 50% of all human tumours, including 60% of lung cancers. Research published in 1996 by Denissenko and colleagues demonstrated patterned in-vitro mutagenic effects on p53 of benzo[a]pyrene, a carcinogen present in tobacco smoke. We investigated the tobacco industry's response to p53 research linking smoking to cancer. We searched online tobacco document archives, including the Legacy Tobacco Do...

  3. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  4. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  5. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  6. MMP-8, A Breast Cancer Bone Metastasis Suppressor Gene

    Science.gov (United States)

    2006-08-01

    and RD mutations were generated using the Chameleon double- stranded site-directed mutagenesis kit (Strata- gene). The fragments were released by...receptor TβR-I, the type II receptor TβR- II, the regulatory Smads (Smad2 and Smad3), and Smad4 (8). Most of these components have mutations in several...human cancers. But, mutations in TGF-β receptors or Smads are rare in breast cancer (9, 10). Moreover, for breast cancer cells, TGF-β1 is a crucial

  7. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  8. Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?

    Science.gov (United States)

    Bayley, Jean-Pierre; Devilee, Peter

    2010-06-01

    The past decade has seen a revival of interest in the metabolic adaptations of tumours, named for their original discoverer, Otto Warburg. Warburg reported a high rate of glycolysis in tumours, and a concurrent defect in mitochondrial respiration. The rediscovery of Warburg's hypothesis coincided with the discovery of mitochondrial tumours suppressor genes that may conform to Warburg's hypothesis. Succinate dehydrogenase and fumarate hydratase are mitochondrial proteins of the TCA cycle and the respiratory chain and when mutated lead to tumours of the nervous system known as paragangliomas and pheochromocytomas, and in the case of fumarate hydratase, cutaneous and uterine leiomyomas and renal cell cancer. Recently a novel mitochondrial protein, SDHAF2 (SDH5), was also shown to be a paraganglioma-related tumour suppressor gene. Another mitochondrial and TCA cycle-related protein, isocitrate dehydrogenase 2 is, together with IDH1, frequently mutated in the brain tumour glioblastoma. There are currently many competing hypotheses on the role of these genes in tumourigenesis, but frequent themes are the stabilization of hypoxia inducible factor 1 and upregulation of genes involved in angiogenesis, glucose transport and glycolysis. Other postulated mechanisms include the inhibition of developmental apoptosis, altered gene expression due to histone deregulation and the acquisition of novel catalytic properties. Here we discuss these diverse hypotheses and highlight very recent findings on the possible effects of IDH gene mutations.

  9. PTEN functions as a melanoma tumor suppressor by promoting host immune response.

    Science.gov (United States)

    Dong, Y; Richards, J-Ae; Gupta, R; Aung, P P; Emley, A; Kluger, Y; Dogra, S K; Mahalingam, M; Wajapeyee, N

    2014-09-18

    Cancer cells acquire several traits that allow for their survival and progression, including the ability to evade the host immune response. However, the mechanisms by which cancer cells evade host immune responses remain largely elusive. Here we study the phenomena of immune evasion in malignant melanoma cells. We find that the tumor suppressor phosphatase and tensin homolog (PTEN) is an important regulator of the host immune response against melanoma cells. Mechanistically, PTEN represses the expression of immunosuppressive cytokines by blocking the phosphatidylinositide 3-kinase (PI3K) pathway. In melanoma cells lacking PTEN, signal transducer and activator of transcription 3 activates the transcription of immunosuppressive cytokines in a PI3K-dependent manner. Furthermore, conditioned media from PTEN-deficient, patient-derived short-term melanoma cultures and established melanoma cell lines blocked the production of the interleukin-12 (IL-12) in human monocyte-derived dendritic cells. Inhibition of IL-12 production was rescued by restoring PTEN or using neutralizing antibodies against the immunosuppressive cytokines. Furthermore, we report that PTEN, as an alternative mechanism to promote the host immune response against cancer cells, represses the expression of programmed cell death 1 ligand, a known repressor of the host immune response. Finally, to establish the clinical significance of our results, we analyzed malignant melanoma patient samples with or without brisk host responses. These analyses confirmed that PTEN loss is associated with a higher percentage of malignant melanoma samples with non-brisk host responses compared with samples with brisk host responses. Collectively, these results establish that PTEN functions as a melanoma tumor suppressor in part by regulating the host immune response against melanoma cells and highlight the importance of assessing PTEN status before recruiting melanoma patients for immunotherapies.

  10. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  11. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC. Our data suggested that the

  12. The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury

    Science.gov (United States)

    Fiteih, Yahya; Law, Jennifer; Volodko, Natalia; Mohamed, Anwar; El-Kadi, Ayman O. S.; Liu, Lei; Odenbach, Jeff; Thiesen, Aducio; Onyskiw, Christina; Ghazaleh, Haya Abu; Park, Jikyoung; Lee, Sean Bong; Yu, Victor C.; Fernandez-Patron, Carlos; Alexander, R. Todd; Wine, Eytan; Baksh, Shairaz

    2013-01-01

    Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR

  13. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  14. KLF10, transforming growth factor-β-inducible early gene 1, acts as a tumor suppressor

    International Nuclear Information System (INIS)

    Song, Ki-Duk; Kim, Duk-Jung; Lee, Jong Eun; Yun, Cheol-Heui; Lee, Woon Kyu

    2012-01-01

    Highlights: ► KLF10 −/− mice exhibited accelerated papilloma development after DMBA/TPA treatment. ► KLF10 −/− keratinocytes showed increased proliferation and apoptosis. ► KLF10 −/− MEFs yielded more colonies than wild-type one with H-Ras transfection. ► KLF10 dose-dependently activated p21 WAF1/CIP1 transcription. ► KLF10 is a tumor suppressor and that it targets p21 WAF1/CIP1 transcription. -- Abstract: Krüppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21 WAF1/CIP1 transcription, which was independent of p53 and Sp1 binding sites in p21 WAF1/CIP1 promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21 WAF1/CIP1 transcription.

  15. Utility of P19 Gene-Silencing Suppressor for High Level Expression of Recombinant Human Therapeutic Proteins in Plant Cells

    Directory of Open Access Journals (Sweden)

    Maryam Zangi

    2016-07-01

    Full Text Available Background: The potential of plants, as a safe and eukaryotic system, is considered in the production of recombinant therapeutic human protein today; but the expression level of heterologous proteins is limited by the post-transcriptional gene silencing (PTGS response in this new technology. The use of viral suppressors of gene silencing can prevent PTGS and improve transient expression level of foreign proteins. In this study, we investigated the effect of p19 silencing suppressor on recombinant human nerve growth factor expression in Nicotiana benthamiana. Materials and Methods: The p19 coding region was inserted in the pCAMBIA using NcoI and BstEII recognition sites. Also, the cloned synthesized recombinant human NGF (rhNGF fragment was cloned directly into PVX vector by ClaI and SalI restriction enzymes. The co-agroinfiltration of rhNGF with p19 viral suppressor of gene silencing was evaluated by dot-blot and SDS-PAGE. The amount of expressed rhNGF protein was calculated by AlphaEaseFC software. Results: Co-agroinfiltration of hNGF with P19 suppressor showed about forty-fold increase (8% total soluble protein (TSP when compared to the absence of P19 suppressor (0.2%TSP. Conclusion: The results presented here confirmed that the use of P19 gene silencing suppressor derived from tomato bushy stunt virus (TBSV could efficiently increase the transient expression of recombinant proteins in Nicotiana benthamiana manifold.

  16. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Idit Hazan

    2016-12-01

    Full Text Available The role of common fragile sites (CFSs in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.

  17. Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2010-11-01

    Full Text Available Abstract Elite controllers or suppressors (ES are HIV-1 infected patients who maintain viral loads of gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host.

  18. Suppressor of fused (Sufu) promotes epithelial-mesenchymal transition (EMT) in cervical squamous cell carcinoma

    Science.gov (United States)

    Zhang, Ziyu; Zou, Yang; Liang, Meirong; Chen, Yuanting; Luo, Yong; Yang, Bicheng; Liu, Faying; Qin, Yunna; He, Deming; Wang, Feng; Huang, Ouping

    2017-01-01

    Suppressor of fused is essential for the maximal activation of Sonic Hedgehog signaling in development and tumorigenesis. However, the role of Sufu in cervical carcinoma remains unknown. Here, we report new findings of Sufu in regulating the epithelial-to-mesenchymal transition through the FoxM1 transcriptional modulation by 14-3-3ζ protein in cervical carcinoma. Sufu is overexpressed in cervical squamous cell carcinoma and its level in clinical tumor tissues is positively correlated with 14-3-3ζ. Functionanlly, siSufu remarkably prevents the cancer cell migration and invasion. We further demonstrate that the transcriptional activity of Sufu is increased by FoxM1, of which stability is promoted by 14-3-3ζ. Knockdown FoxM1 decreases the invasion of SiHa cells and reconstitution of Sufu rescues the invasion of these cells.Finally, overexpression of Sufu is significantly associated with differentiation grade, FIGO stage, Depth of stromal invasion and vascular cancer embolus. Our findings highlight a novel role for Sufu in cervical carcinogenesis. PMID:29371981

  19. Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth

    Directory of Open Access Journals (Sweden)

    Wu Xiaodong

    2008-01-01

    Full Text Available Abstract Background Transforming Growth Factor-β1 stimulated clone-22 (TSC-22 is assumed to act as a negative growth regulator and tumor suppressor. TSC-22 belongs to a family of putative transcription factors encoded by four distinct loci in mammals. Possible redundancy among the members of the TSC-22/Dip/Bun protein family complicates a genetic analysis. In Drosophila, all proteins homologous to the TSC-22/Dip/Bun family members are derived from a single locus called bunched (bun. Results We have identified bun in an unbiased genetic screen for growth regulators in Drosophila. Rather unexpectedly, bun mutations result in a growth deficit. Under standard conditions, only the long protein isoform BunA – but not the short isoforms BunB and BunC – is essential and affects growth. Whereas reducing bunA function diminishes cell number and cell size, overexpression of the short isoforms BunB and BunC antagonizes bunA function. Conclusion Our findings establish a growth-promoting function of Drosophila BunA. Since the published studies on mammalian systems have largely neglected the long TSC-22 protein version, we hypothesize that the long TSC-22 protein is a functional homolog of BunA in growth regulation, and that it is antagonized by the short TSC-22 protein.

  20. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    Directory of Open Access Journals (Sweden)

    Jill C Preston

    Full Text Available Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae, many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1 in the short-lived perennial Petunia hybrida (petunia, Solanaceae. Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS and Floral Binding Protein 21 (FBP21, but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  1. Tumor suppressor gene E-cadherin and its role in normal and malignant cells

    Directory of Open Access Journals (Sweden)

    Pećina-Šlaus Nives

    2003-10-01

    Full Text Available Abstract E-cadherin tumor suppressor genes are particularly active area of research in development and tumorigenesis. The calcium-dependent interactions among E-cadherin molecules are critical for the formation and maintenance of adherent junctions in areas of epithelial cell-cell contact. Loss of E-cadherin-mediated-adhesion characterises the transition from benign lesions to invasive, metastatic cancer. Nevertheless, there is evidence that E-cadherins may also play a role in the wnt signal transduction pathway, together with other key molecules involved in it, such as beta-catenins and adenomatous poliposis coli gene products. The structure and function of E-cadherin, gene and protein, in normal as well as in tumor cells are reviewed in this paper.

  2. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking

    NARCIS (Netherlands)

    Westra, W. H.; Offerhaus, G. J.; Goodman, S. N.; Slebos, R. J.; Polak, M.; Baas, I. O.; Rodenhuis, S.; Hruban, R. H.

    1993-01-01

    Mutations in the p53 tumor suppressor gene are frequently observed in primary lung adenocarcinomas, suggesting that these mutations are critical events in the malignant transformation of airway cells. These mutations are often associated with stabilization of the p53 gene product, resulting in the

  3. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available So far, investigators have found numerous tumor suppressor genes (TSGs and oncogenes (OCGs that control cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of transcription factors (TFs to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and OCGs to TF gene regulation.In this study, we developed a novel computational framework for identifying target genes of TSGs and OCGs using TFs as bridges through the integration of protein-protein interactions and gene expression data. We applied this pipeline to ovarian cancer and constructed a three-layer regulatory network. In the network, the top layer was comprised of modulators (TSGs and OCGs, the middle layer included TFs, and the bottom layer contained target genes. Based on regulatory relationships in the network, we compiled TSG and OCG profiles and performed clustering analyses. Interestingly, we found TSGs and OCGs formed two distinct branches. The genes in the TSG branch were significantly enriched in DNA damage and repair, regulating macromolecule metabolism, cell cycle and apoptosis, while the genes in the OCG branch were significantly enriched in the ErbB signaling pathway. Remarkably, their specific targets showed a reversed functional enrichment in terms of apoptosis and the ErbB signaling pathway: the target genes regulated by OCGs only were enriched in anti-apoptosis and the target genes regulated by TSGs only were enriched in the ErbB signaling pathway.This study provides the first comprehensive investigation of the interplay of TSGs and OCGs in a regulatory network modulated by TFs. Our application in ovarian cancer revealed distinct regulatory patterns of TSGs and OCGs, suggesting a competitive regulatory mechanism acting upon apoptosis and the ErbB signaling pathway through

  4. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias.

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M; Savova, Virginia; Schumacher, Steven E; Cleary, John P; Yoda, Akinori; Sullivan, Timothy J; Hess, Julian M; Gimelbrant, Alexander A; Beroukhim, Rameen; Lawrence, Michael S; Getz, Gad; Lane, Andrew A

    2017-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X-chromosome genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative 'escape from X-inactivation tumor-suppressor' (EXITS) genes, we examined somatic alterations from >4,100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) X-chromosome genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) harbored loss-of-function mutations more frequently in males (based on a false discovery rate < 0.1), in comparison to zero of 18,055 autosomal and PAR genes (Fisher's exact P < 0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence in females as compared to males across a variety of tumor types.

  5. Sulforaphane Alone and in Combination with Clofarabine Epigenetically Regulates the Expression of DNA Methylation-Silenced Tumour Suppressor Genes in Human Breast Cancer Cells.

    Science.gov (United States)

    Lubecka-Pietruszewska, Katarzyna; Kaufman-Szymczyk, Agnieszka; Stefanska, Barbara; Cebula-Obrzut, Barbara; Smolewski, Piotr; Fabianowska-Majewska, Krystyna

    2015-01-01

    Sporadic breast cancer is frequently associated with aberrant DNA methylation patterns that are reversible and responsive to environmental factors, including diet. In the present study, we investigated the effects of sulforaphane (SFN), a phytochemical from cruciferous vegetables, on the methylation and expression of PTEN and RARbeta2 tumour suppressor genes as well as on the expression of regulators of DNA methylation reaction, DNMT1 , p53 , and p21 , in MCF-7 and MDA-MB-231 human breast cancer cells with different invasive potential. We also evaluate the role of SFN epigenetic effects in support of therapy with clofarabine (ClF) that was recently shown to modulate the epigenome as well. Promoter methylation and gene expression were estimated using methylation-sensitive restriction analysis and real-time PCR, respectively. In both MCF-7 and MDA-MB-231 cells, SFN at IC 50 (22 and 46 μ M , respectively) and a physiologically relevant 10 μ M concentration lead to hypomethylation of PTEN and RARbeta2 promoters with concomitant gene upregulation. The combination of SFN and ClF enhances these effects, resulting in an increase in cell growth arrest and apoptosis at a non-invasive breast cancer stage. Our findings provide evidence that SFN activates DNA methylation-silenced tumour suppressor genes in breast cancer cells and may contribute to SFN-mediated support of therapy with an anti-cancer drug, ClF, increasing its applications in solid tumours.

  6. [Construction of Escherichia coli-Bifidobacterium longum shuttle vector and expression of tumor suppressor gene PTEN in B. longum].

    Science.gov (United States)

    Hou, Xin; Liu, Jun-E

    2006-06-01

    It was reported that Bifidobacterium longum accumulated specifically in hypoxic solid tumors, therefore could be used as a delivery system for cancer-specific gene therapy. Furthermore, construction of E.coli-B. longum shuttle vectors was proved by other research to be an efficient way for stable gene expression in B. longum. To obtain a shuttle vector and analyze the inhibition on mice solid tumors by genetically engineered B. longum, 48 primers with mutual overlaps were designed, assisted by software package Oligo 6.0. By PCR with the above primers, a linear plasmid was synthesized, which consists of pMB1 and HU gene promoter, both from B. longum. pMB-HU was constructed by cloning the synthesized linear plasmid into E.coli vector pMD 18-T, and was proved to be stably replicated in both E.coli DH5alpha and B. longum L17. By inserting PTEN cDNA into pMB-HU, expression vector pMB-HU-PTEN was obtained, in which PTEN gene was reported as a major tumor suppressor gene encoding a dual-specificity phosphatase. pMB-HU-PTEN was then transferred into B. longum L17 by electroporation. After transformation, an effective expression of PTEN in B. longum L17 was confirmed by Western blot, and significant inhibition on growth of mice solid tumors was also observed with the above genetically engineered B. longum. Those obtained results have laid foundation for tumor-targeting gene therapy with B. longum.

  7. Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas

    Science.gov (United States)

    Pimenta, Flávio J.; Gomes, Dawidson A.; Perdigão, Paolla F.; Barbosa, Alvimar A.; Romano-Silva, Marco A.; Gomez, Marcus V.; Aldaz, C. Marcelo; De Marco, Luiz; Gomez, Ricardo S.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm of the oral cavity, representing ~90% of all oral carcinomas and accounting for 3–5% of all malignancies. The WWOX gene (WW-domain containing oxidoreductase) is a candidate tumor suppressor gene located at 16q23.3–24.1, spanning the second most common fragile site, FRA16D. In this report, the role of the WWOX gene was investigated in 20 tumors and 10 normal oral mucosas, and we demonstrated an altered WWOX gene in 50% (10/20) of OSCCs. Using nested RT-PCR, mRNA transcription was altered in 35% of the tumors, with the complete absence of transcripts in 2 samples as well as absence of exons 6–8 (2 tumors), exon 7 (1 tumor), exon 7 and exon 6–8 (1 tumor) and partial loss of exons 8 and 9 (1 tumor). To determine if the aberrant transcripts were translated, Western blots were performed in all samples; however, only the normal protein was detected. By immunohistochemistry, a reduction in Wwox protein expression was observed, affecting 40% of the tumors when compared with normal mucosa. In addition, a novel somatic mutation (S329F) was found. The presence of alterations in mRNA transcription correlated with the reduced expression of Wwox protein in the tumors. These results show that the WWOX gene is frequently altered in OSCC and may contribute to the carcinogenesis processes in oral cancer. PMID:16152610

  8. ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaohan Li

    2011-01-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.

  9. Tumor suppressor gene-based nanotherapy: from test tube to the clinic.

    Science.gov (United States)

    Shanker, Manish; Jin, Jiankang; Branch, Cynthia D; Miyamoto, Shinya; Grimm, Elizabeth A; Roth, Jack A; Ramesh, Rajagopal

    2011-01-01

    Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  10. Tumor Suppressor Gene-Based Nanotherapy: From Test Tube to the Clinic

    Directory of Open Access Journals (Sweden)

    Manish Shanker

    2011-01-01

    Full Text Available Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  11. Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in Type 1 diabetes and insulin sensitivity

    DEFF Research Database (Denmark)

    Gylvin, T; Nolsøe, R; Hansen, T

    2004-01-01

    Beta cell loss in Type 1 and Type 2 diabetes mellitus may result from apoptosis and necrosis induced by inflammatory mediators. The suppressor of cytokine signalling (SOCS)-3 is a natural inhibitor of cytokine signalling and also influences insulin signalling. SOCS3 could therefore be a candidate...... gene in the development of Type 1 and Type 2 diabetes mellitus....

  12. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  13. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Antje M. Richter

    2016-02-01

    Full Text Available Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF. Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005. RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005. Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis

  14. The chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in human lung cancer development.

    Science.gov (United States)

    Sharp, Tyson V; Al-Attar, Ahmad; Foxler, Daniel E; Ding, Li; de A Vallim, Thomas Q; Zhang, Yining; Nijmeh, Hala S; Webb, Thomas M; Nicholson, Andrew G; Zhang, Qunyuan; Kraja, Aldi; Spendlove, Ian; Osborne, John; Mardis, Elaine; Longmore, Gregory D

    2008-12-16

    Loss of heterozygosity (LOH) and homozygous deletions at chromosome 3p21.3 are common in both small and nonsmall cell lung cancers, indicating the likely presence of tumor suppressor genes (TSGs). Although genetic and epigenetic changes within this region have been identified, the functional significance of these changes has not been explored. Concurrent protein expression and genetic analyses of human lung tumors coupled with functional studies have not been done. Here, we show that expression of the 3p21.3 gene, LIMD1, is frequently down-regulated in human lung tumors. Loss of LIMD1 expression occurs through a combination of gene deletion, LOH, and epigenetic silencing of transcription without evidence for coding region mutations. Experimentally, LIMD1 is a bona fide TSG. Limd1(-/-) mice are predisposed to chemical-induced lung adenocarcinoma and genetic inactivation of Limd1 in mice heterozygous for oncogenic K-Ras(G12D) markedly increased tumor initiation, promotion, and mortality. Thus, we conclude that LIMD1 is a validated chromosome 3p21.3 tumor-suppressor gene involved in human lung cancer development. LIMD1 is a LIM domain containing adapter protein that localizes to E-cadherin cell-cell adhesive junctions, yet also translocates to the nucleus where it has been shown to function as an RB corepressor. As such, LIMD1 has the potential to communicate cell extrinsic or environmental cues with nuclear responses.

  15. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  16. Gene promoter hypermethylation in leukoplakia of the oral mucosa

    Directory of Open Access Journals (Sweden)

    Mingli Liu

    2010-07-01

    Full Text Available Mingli Liu1, Lei Feng2, Ximing Tang3, Shanchun Guo41Department of Physics, Tufts University School of Medicine, Boston, Massachussetts; 2Department of Thoracic/Head and Neck Medical Oncology, 3Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas; 4Sylvester Cancer Center, University of Miami School of Medicine, Florida, USAAbstract: To examine whether aberrant DNA methylation in the promoter region might occur earlier in tumorigenesis, particularly in premalignant lesions, we examined biopsies from 111 participants in a chemoprevention trial aimed at reversal of oral leukoplakia, using methylation-specific polymerase chain reaction for the promoter regions of the tumor suppressor gene CDKN2A (p16, the putative metastasis suppressor gene for death-associated protein kinase (DAP-K, the DNA repair gene O6-methyguanine-DNA-methyltransferase (MGMT, and the detoxification gene glutathione S-transferase p1(GSTP1. p16 promoter hypermethylation was detected in 21 of 82 (25.6%, DAP-K hypermethylation in 28 of 87 (32.2%, and MGMT hypermethylation in 32 of 106 (30.2% oral leukoplakia lesions analyzed. No aberrant methylation was found at the GSTP1 gene in 110 lesions examined. Among 68 biopsies analyzed for all three genes (p16, DAP-K, MGMT, 17 biopsies were detected with an abnormal methylation pattern at only one gene, 15 at two genes, and 8 at all three genes. Among clinical characteristics and their correlation with methylation, only alcohol consumption was correlated with DAP-K methylation (P = 0.027, while MGMT methylation was more frequent in females (P = 0.003 and nonsmokers (P = 0.0005. A significant correlation was found between p16 and DAP-K hypermethylation; p16 promoter was methylated in 14 (56% of 25 lesions with DAP-K methylation, and only 5 (11.1% of 45 DAP-K methylation-negative lesions (P = 0.0001. DAP-K aberrant methylation was also significantly correlated with MGMT methylation (16 of 31 in MGMT methylation

  17. Self-association of the WT1 tumor suppressor gene product

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, W.; Nakagama, H.: Bardessy, N. [McGill Univ., Montreal (Canada)] [and others

    1994-09-01

    Wilms` tumor (WT), an embryonal malignancy of the kidney, occurs most frequently in children under the age of 5 years, affecting {approximately}1 in 10,000 individuals. The WT1 tumor suppressor gene, residing at 11p13, is structurally altered in {approximately}10-15% of WT cases. Individuals with germline mutations within the WT1 gene suffer from predisposition to WT and developmental defects of the urogenital system. Patients with heterozygous deletions of the WT1 gene, or mutations predicted to cause inactivation of one WT1 allele, suffer relatively mild genital system defects (notably hypospadias and cryptorchidism in males) and a predisposition to WT. These results suggest that developing genital system development is sensitive to the absolute concentrations of the WT1 gene products. Patients with missense mutations within the WT1 gene, however, can suffer from a much more severe disorder known as Denys-Drash syndrome (DDS). This syndrome is characterized by intersex disorders, renal nephropathy, and a predisposition to WTs. The increased severity of the developmental defects associated with DDS, compared to those individuals with mild genital system anomalies and WTs, suggests that mutations defined in patients with DDS behave in a dominant-negative fashion. We have identified a novel WT1 mutation in a patient with DDS. This mutation, predicted to produce a truncated WT1 polypeptide encompassing exons 1, 2, and 3, defines a domain capable of behaving as an antimorph. We have also demonstrated that WT1 can self-associate in vivo using yeast two-hybrid systems. Deletion analysis have mapped the interacting domains to the amino terminus of the WT1 polypeptide, within exons 1 and 2. These results provide a molecular mechanism to explain how WT1 mutations can function in a dominant-negative fashion to eliminate wild-type WT1 activity, leading to DDS.

  18. Tumor suppressor gene P53 in fish species as a target for genotoxic effects monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kusser, W.C.; Brand, D.; Glickman, B.W. [Univ. of Victoria, British Columbia (Canada); Cretney, W.

    1995-12-31

    Analysis of environmentally induced molecular changes in DNA from fish was initiated with a study of tumor suppressor gene p53. This gene was chosen because of the high number of documented mutations in p53 from humans and their relevance in tumorigenesis. Bottom-feeding flatfish (e.g. English sole, Pleuronectes vetulus) and members of the salmonid family (e.g. rainbow trout, Oncorhynchus mykiss and chinook salmon, O. tschaaytsha) were chosen, because they are widespread and of commercial and recreational importance. The studies include the use of histopathological, biochemical, and molecular genetic tools in aquatic systems. The authors are currently examining the deposition of DNA damage and mutation in the p53 gene in fish. Parallel histopathology of liver showed idiopathic liver lesions that were strongly dependent on location of capture (0.01 < p(X{sup 2} 0.05, 2 > 6.89) < 0.025) with a prevalence of 30% for fish collected from the vicinity of pulp mills. To assess DNA damage and mutation analysis, DNA was extracted from fish liver. Polymerase chain reaction (PCR) and DNA sequencing of the p53 gene was performed for rainbow trout, chinook and sockeye salmon, O. nerka. Southern blotting with a labeled p53 probe from rainbow trout was performed using genomic DNA from various teleost fish species. The presence of p53 could be shown in all fish species examined, including salmonids and sentinel species for environmental monitoring like English sole and white sucker (Catostomus commersom). To correlate histopathology with molecular analysis the authors initiated the determination of DNA damage, DNA adducts and mutations in the p53 gene (conserved exons 5 to 9).

  19. A study on tumor suppressor genes mutations associated with different pathological colorectal lesions

    International Nuclear Information System (INIS)

    Matar, S.N.A.

    2011-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients ≤40 years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumor genesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (G I) Cancerous group, (G II) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (G III) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD

  20. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53.

    Science.gov (United States)

    Levine, Arnold J

    2009-02-20

    The small DNA tumor viruses, Polyoma virus, Simian Vacuolating Virus 40, the Papilloma viruses and the human Adenoviruses, were first described during a period of intense virus discovery (1930-1960s) and shown to produce tumors in animals. In each of these cases the viral DNA was shown to persist (commonly integrated into a host chromosome) and only a selected portion of this DNA was expressed as m-RNA and proteins in these cancers. The viral encoded tumor antigens were identified and shown to be required to both establish the tumor and maintain the transformed cell phenotype. The functions of these viral tumor antigens were explored and shown to have common features and mechanisms even though they appear to have evolved from diverse genes. The SV40 large tumor antigen, the human Papilloma virus E7 protein and the Adenovirus E1A protein were shown to bind to and inactivate the functions of the Retinoblastoma proteins in transformed cells. This resulted in the activation of the E2F and DP transcription factors and the entry of cells into the S-phase of DNA synthesis which was required for viral DNA replication. These events triggered the activation of p53 which promotes apoptosis of these virus infected cells limiting virus replication and tumor formation. These viruses responded by evolving and producing the SV40 large tumor antigen, the human Papilloma virus E6 protein and the Adenovirus E1b-55Kd protein which binds to and inactivates the p53 functions in both the infected cells and transformed cells. Some of the human Papilloma viruses and one of the Polyoma viruses have been shown to cause selected cancers in humans. Both the p53 tumor suppressor gene, which was uncovered in the studies with these viruses, and the retinoblastoma protein, have been shown to play a central role in the origins of human cancers via both somatic and germ line mutations in those genes.

  1. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Suma Choorapoikayil

    2012-03-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena+/−ptenb−/− or ptena−/−ptenb+/− are viable and fertile. ptena+/−ptenb−/− fish develop tumors at a relatively high incidence (10.2% and most tumors developed close to the eye (26/30. Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena−/−ptenb+/− fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena+/−ptenb−/− and ptena−/−ptenb+/− fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena+/−ptenb−/− zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish.

  2. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis

    Science.gov (United States)

    Wang, Xiaoxiao; Huang, Huiqiang; Young, Ken H.

    2015-01-01

    The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed. PMID:26655726

  3. Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function

    Science.gov (United States)

    Wang, Tiehui; Gorgoglione, Bartolomeo; Maehr, Tanja; Holland, Jason W.; Vecino, Jose L. González; Wadsworth, Simon; Secombes, Christopher J.

    2011-01-01

    The intracellular suppressors of cytokine signaling (SOCS) family members, including CISH and SOCS1 to 7 in mammals, are important regulators of cytokine signaling pathways. So far, the orthologues of all the eight mammalian SOCS members have been identified in fish, with several of them having multiple copies. Whilst fish CISH, SOCS3, and SOCS5 paralogues are possibly the result of the fish-specific whole genome duplication event, gene duplication or lineage-specific genome duplication may also contribute to some paralogues, as with the three trout SOCS2s and three zebrafish SOCS5s. Fish SOCS genes are broadly expressed and also show species-specific expression patterns. They can be upregulated by cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-21, by immune stimulants such as LPS, poly I:C, and PMA, as well as by viral, bacterial, and parasitic infections in member- and species-dependent manners. Initial functional studies demonstrate conserved mechanisms of fish SOCS action via JAK/STAT pathways. PMID:22203897

  4. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma.

    Science.gov (United States)

    Choorapoikayil, Suma; Kuiper, Raoul V; de Bruin, Alain; den Hertog, Jeroen

    2012-03-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/-)ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile. ptena(+/-)ptenb(-/-) fish develop tumors at a relatively high incidence (10.2%) and most tumors developed close to the eye (26/30). Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena(-/-)ptenb(+/-) fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena(+/-)ptenb(-/-) and ptena(-/-)ptenb(+/-) fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena(+/-)ptenb(-/-) zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish.

  5. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the

  6. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines.

    Science.gov (United States)

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2007-12-14

    To identify the relationship between DNA hyper-methylation and histone modification at a hyperme-thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification. We used chromatin immunoprecipitation (ChIP) assay to assess the status of histone acetylation and methylation in promoter regions of the p16 and mutL homolog 1 (MLH1) genes in 2 gastric cancer cell lines, SGC-7901 and MGC-803. We used methylation-specific PCR (MSP) to evaluate the effect of 5-Aza-2'-deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their combination treatment on DNA methylation status. We used RT-PCR to determine whether alterations of histone modification status after 5-Aza-dC and TSA treatment are reflected in gene expression. For the p16 and MLH1 genes in two cell lines, silenced loci associated with DNA hypermethylation were characterized by histone H3-K9 hypoacetylation and hypermethylation and histone H3-K4 hypomethylation. Treatment with TSA resulted in moderately increased histone H3-K9 acetylation at the silenced loci with no effect on histone H3-K9 methylation and minimal effects on gene expression. In contrast, treatment with 5-Aza-dC rapidly reduced histone H3-K9 methylation at the silenced loci and resulted in reactivation of the two genes. Combined treatment with 5-Aza-dC and TSA was synergistic in reactivating gene expression at the loci showing DNA hypermethylation. Similarly, histone H3-K4 methylation was not affected after TSA treatment, and increased moderately at the silenced loci after 5-Aza-dC treatment. Hypermethylation of DNA in promoter CpG islands is related to transcriptional silencing of tumor suppressor genes. Histone H3-K9 methylation in different regions of the promoters studied correlates with DNA methylation status of each gene in gastric cancer cells. However, histone H3-K9 acetylation and H3-K4 methylation inversely correlate with DNA methylation

  7. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    OpenAIRE

    Luković Ljiljana; Popović Branka; Atanacković Jasmina; Novaković Ivana; Perović Milica; Petrović Bojana; Petković Spasoje

    2006-01-01

    Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH) in the regions of the genes p53 and BRCA1 ...

  8. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here......, we describe the two different methods for obtaining promoter libraries and compare their applicability....

  9. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    Science.gov (United States)

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  10. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    Science.gov (United States)

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-07

    To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by c2 test. Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).

  11. Inactivation of tumor suppressor genes and cancer therapy: An evolutionary game theory approach.

    Science.gov (United States)

    Khadem, Heydar; Kebriaei, Hamed; Veisi, Zahra

    2017-06-01

    Inactivation of alleles in tumor suppressor genes (TSG) is one of the important issues resulting in evolution of cancerous cells. In this paper, the evolution of healthy, one and two missed allele cells is modeled using the concept of evolutionary game theory and replicator dynamics. The proposed model also takes into account the interaction rates of the cells as designing parameters of the system. Different combinations of the equilibrium points of the parameterized nonlinear system is studied and categorized into some cases. In each case, the interaction rates' values are suggested in a way that the equilibrium points of the replicator dynamics are located on an appropriate region of the state space. Based on the suggested interaction rates, it is proved that the system doesn't have any undesirable interior equilibrium point as well. Therefore, the system will converge to the desirable region, where there is a scanty level of cancerous cells. In addition, the proposed conditions for interaction rates guarantee that, when a trajectory of the system reaches the boundaries, then it will stay there forever which is a desirable property since the equilibrium points have been already located on the boundaries, appropriately. The simulation results show the effectiveness of the suggestions in the elimination of the cancerous cells in different scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Martin, Rebecca K; Saleem, Sheinei J; Folgosa, Lauren; Zellner, Hannah B; Damle, Sheela R; Nguyen, Giang-Kim T; Ryan, John J; Bear, Harry D; Irani, Anne-Marie; Conrad, Daniel H

    2014-07-01

    It has been shown recently that MCs are required for differential regulation of the immune response by granulocytic versus monocytic MDSCs. Granulocytic MDSCs promoted parasite clearance, whereas monocytic MDSCs enhanced tumor progression; both activities were abrogated in MC-deficient mice. Herein, we demonstrate that the lack of MCs also influences MDSC trafficking. Preferential trafficking to the liver was not seen in MC-deficient mice. In addition, evidence that the MC mediator histamine was important in MDSC trafficking and activation is also shown. MDSCs express HR1-3. Blockade of these receptors by HR1 or HR2 antagonists reversed the histamine enhancement of MDSC survival and proliferation observed in cell culture. In addition, histamine differentially influenced Arg1 and iNOS gene expression in MDSCs and greatly enhanced IL-4 and IL-13 message, especially in granulocytic MDSCs. Evidence that histamine influenced activity seen in vitro translated to in vivo when HR1 and HR2 antagonists blocked the effect of MDSCs on parasite expulsion and tumor metastasis. All of these data support the MDSC-mediated promotion of Th2 immunity, leading to the suggestion that allergic-prone individuals would have elevated MDSC levels. This was directly demonstrated by looking at the relative MDSC levels in allergic versus control patients. Monocytic MDSCs trended higher, whereas granulocytic MDSCs were increased significantly in allergic patients. Taken together, our studies indicate that MCs and MC-released histamine are critical for MDSC-mediated immune regulation, and this interaction should be taken into consideration for therapeutic interventions that target MDSCs. © 2014 Society for Leukocyte Biology.

  13. Is the gene encoding Chibby implicated as a tumour suppressor in colorectal cancer ?

    International Nuclear Information System (INIS)

    Gad, Sophie; Teboul, David; Lièvre, Astrid; Goasguen, Nicolas; Berger, Anne; Beaune, Philippe; Laurent-Puig, Pierre

    2004-01-01

    A novel member of the Wnt signalling pathway, Chibby, was recently identified. This protein inhibits Wnt/β-catenin mediated transcriptional activation by competing with Lef-1 (the transcription factor and target of β-catenin) to bind to β-catenin. This suggests that Chibby could be a tumour suppressor protein. The C22orf2 gene coding Chibby is located on chromosome 22, a region recurrently lost in colorectal cancer. Activation of the Wnt pathway is a major feature of colorectal cancer and occurs through inactivation of APC or activation of β-catenin. All of this led us to analyse the possible implication of Chibby in colorectal carcinogenesis. First, 36 tumour and matched normal colonic mucosa DNA were genotyped with five microsatellite markers located on chromosome 22 to search for loss of heterozygosity. Then, mutation screening of the C22orf2 coding sequence and splice sites was performed in the 36 tumour DNA. Finally, expression of Chibby was analysed by quantitative RT-PCR on 10 patients, 4 with loss of heterozygosity (LOH) on chromosome 22. Loss of heterozygosity involving the C22orf2 region was detected in 11 out of 36 patients (30%). Sequencing analysis revealed a known variant, rs3747174, in exon 5: T321C leading to a silent amino acid polymorphism A107A. Allelic frequencies were 0.69 and 0.31 for T and C variants respectively. No other mutation was detected. Among the 10 patients studied, expression analysis revealed that Chibby is overexpressed in 2 tumours and underexpressed in 1. No correlations were found with 22q LOH status. As no somatic mutation was detected in C22orf2 in 36 colorectal tumour DNA, our results do not support the implication of Chibby as a tumour suppressor in colorectal carcinogenesis. This was supported by the absence of underexpression of Chibby among the tumour samples with 22q LOH. The implication of other Wnt pathway members remains to be identified to explain the part of colorectal tumours without mutation in APC and β-catenin

  14. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  15. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer

    Science.gov (United States)

    Wang, Qi; Li, Juanjuan; Wu, Wei; Shen, Ruizhe; Jiang, He; Qian, Yuting; Tang, Yanping; Bai, Tingting; Wu, Sheng; Wei, Lumin; Zang, Yi; Zhang, Ji; Wang, Lifu

    2016-01-01

    The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis. PMID:26848620

  16. 99: A Novel Myc-Interacting Protein with Features of a Breast Tumor Suppressor Gene Product

    National Research Council Canada - National Science Library

    Prendergast, George

    1997-01-01

    Bin1 is a novel tumor suppressor-like molecule we identified through its ability to interact with and inhibit the oncogenic activity of the Myc oncoprotein, which is widely deregulated in breast cancer...

  17. Functional Analysis of Chromosome 18 in Pancreatic Cancer: Strong Evidence for New Tumour Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Liviu P. Lefter

    2004-04-01

    Conclusion: These data represent strong functional evidence that chromosome 18q encodes strong tumour and metastasis suppressor activity that is able to switch human pancreatic cancer cells to a dormant phenotype.

  18. Functional interactions between the erupted/tsg101 growth suppressor gene and the DaPKC and rbf1 genes in Drosophila imaginal disc tumors.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    Full Text Available BACKGROUND: The Drosophila gene erupted (ept encodes the fly homolog of human Tumor Susceptibility Gene-101 (TSG101, which functions as part of the conserved ESCRT-1 complex to facilitate the movement of cargoes through the endolysosomal pathway. Loss of ept or other genes that encode components of the endocytic machinery (e.g. synatxin7/avalanche, rab5, and vps25 produces disorganized overgrowth of imaginal disc tissue. Excess cell division is postulated to be a primary cause of these 'neoplastic' phenotypes, but the autonomous effect of these mutations on cell cycle control has not been examined. PRINCIPAL FINDINGS: Here we show that disc cells lacking ept function display an altered cell cycle profile indicative of deregulated progression through the G1-to-S phase transition and express reduced levels of the tumor suppressor ortholog and G1/S inhibitor Rbf1. Genetic reductions of the Drosophila aPKC kinase (DaPKC, which has been shown to promote tumor growth in other fly tumor models, prevent both the ept neoplastic phenotype and the reduction in Rbf1 levels that otherwise occurs in clones of ept mutant cells; this effect is coincident with changes in localization of Notch and Crumbs, two proteins whose sorting is altered in ept mutant cells. The effect on Rbf1 can also be blocked by removal of the gamma-secretase component presenilin, suggesting that cleavage of a gamma-secretase target influences Rbf1 levels in ept mutant cells. Expression of exogenous rbf1 completely ablates ept mutant eye tissues but only mildly affects the development of discs composed of cells with wild type ept. CONCLUSIONS: Together, these data show that loss of ept alters nuclear cell cycle control in developing imaginal discs and identify the DaPKC, presenilin, and rbf1 genes as modifiers of molecular and cellular phenotypes that result from loss of ept.

  19. Relevance of miR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells

    International Nuclear Information System (INIS)

    Peralta-Zaragoza, Oscar; Deas, Jessica; Meneses-Acosta, Angélica; De la O-Gómez, Faustino; Fernández-Tilapa, Gloria; Gómez-Cerón, Claudia; Benítez-Boijseauneau, Odelia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Madrid-Marina, Vicente; Rodríguez-Dorantes, Mauricio; Hidalgo-Miranda, Alfredo; Pérez-Plasencia, Carlos

    2016-01-01

    Expression of the microRNA miR-21 has been found to be altered in almost all types of cancers and it has been classified as an oncogenic microRNA or oncomir. Due to the critical functions of its target proteins in various signaling pathways, miR-21 is an attractive target for genetic and pharmacological modulation in various cancers. Cervical cancer is the second most common cause of death from cancer in women worldwide and persistent HPV infection is the main etiologic agent. This malignancy merits special attention for the development of new treatment strategies. In the present study we analyze the role of miR-21 in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression in a cervical intraepithelial neoplasia-derived cell lines using siRNAs. The effect of miR-21 on gene expression was assessed in cervical cancer cells transfected with the siRNA expression plasmid pSIMIR21. We identified the tumor suppressor gene PTEN as a target of miR-21 and determined the mechanism of its regulation throughout reporter construct plasmids. Using this model, we analyzed the expression of miR-21 and PTEN as well as functional effects such as autophagy and apoptosis induction. In SiHa cells, there was an inverse correlation between miR-21 expression and PTEN mRNA level as well as PTEN protein expression in cervical cancer cells. Transfection with the pSIMIR21 plasmid increased luciferase reporter activity in construct plasmids containing the PTEN-3′-UTR microRNA response elements MRE21-1 and MRE21-2. The role of miR-21 in cell proliferation was also analyzed in SiHa and HeLa cells transfected with the pSIMIR21 plasmid, and tumor cells exhibited markedly reduced cell proliferation along with autophagy and apoptosis induction. We conclude that miR-21 post-transcriptionally down-regulates the expression of PTEN to promote cell proliferation and cervical cancer cell survival. Therefore, it may be a

  20. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  1. Epigenetic silencing of the 3p22 tumor suppressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas

    Directory of Open Access Journals (Sweden)

    Wang Zhaohui

    2012-10-01

    Full Text Available Abstract Background Inactivaion of tumor suppressor genes (TSGs by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. Deleted in lung and esophageal cancer 1 (DLEC1, located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet. Methods We examined the expression of DLEC1 by semi-quantitative reverse transcription (RT-PCR, and evaluated the promoter methylation of DLEC1 by methylation-specific PCR (MSP and bisulfite genomic sequencing (BGS in common lymphoma cell lines and tumors. Results Here we report that DLEC1 is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23 of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL, 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25 of lymphoma cell lines and correlated with DLEC1 downregulation/silencing. Pharmacologic demethylation reversed DLEC1 expression in lymphoma cell lines along with concomitant promoter demethylation. DLEC1 methylation was also frequently detected in 32 out of 58 (55% different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, DLEC1 was specifically methylated in the sera of 3/13 (23% Hodgkin lymphoma patients. Conclusions Thus, methylation-mediated silencing of DLEC1 plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.

  2. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells.

    Science.gov (United States)

    Alvarez-Díaz, Silvia; Valle, Noelia; García, José Miguel; Peña, Cristina; Freije, José M P; Quesada, Víctor; Astudillo, Aurora; Bonilla, Félix; López-Otín, Carlos; Muñoz, Alberto

    2009-08-01

    The active vitamin D metabolite 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] has wide but not fully understood antitumor activity. A previous transcriptomic analysis of 1alpha,25(OH)2D3 action on human colon cancer cells revealed cystatin D (CST5), which encodes an inhibitor of several cysteine proteases of the cathepsin family, as a candidate target gene. Here we report that 1alpha,25(OH)2D3 induced vitamin D receptor (VDR) binding to, and activation of, the CST5 promoter and increased CST5 RNA and protein levels in human colon cancer cells. In cells lacking endogenous cystatin D, ectopic cystatin D expression inhibited both proliferation in vitro and xenograft tumor growth in vivo. Furthermore, cystatin D inhibited migration and anchorage-independent growth, antagonized the Wnt/beta-catenin signaling pathway, and repressed c-MYC expression. Cystatin D repressed expression of the epithelial-mesenchymal transition inducers SNAI1, SNAI2, ZEB1, and ZEB2 and, conversely, induced E-cadherin and other adhesion proteins. CST5 knockdown using shRNA abrogated the antiproliferative effect of 1alpha,25(OH)2D3, attenuated E-cadherin expression, and increased c-MYC expression. In human colorectal tumors, expression of cystatin D correlated with expression of VDR and E-cadherin, and loss of cystatin D correlated with poor tumor differentiation. Based on these data, we propose that CST5 has tumor suppressor activity that may contribute to the antitumoral action of 1alpha,25(OH)2D3 in colon cancer.

  3. Lack of mutations in the TP53 tumor suppressor gene exons 5 to 8 in Fanconi's anemia.

    Science.gov (United States)

    Jonveaux, P; Le Coniat, M; Grausz, D; Berger, R

    1991-01-01

    The TP53 gene is considered to be a negative regulator of cell growth whose inactivation is an important step in the development or progression of malignancies. Recently, germ line TP53 mutations have been detected in a familial cancer syndrome, the dominantly inherited Li-Fraumeni syndrome. Using single strand conformation polymorphism analysis of PCR products, we looked for TP53 mutations in DNA of patients with Fanconi anemia, an autosomal recessive disease characterized by increased predisposition to neoplasia. We did not find any TP53 mutation in 13 patients, suggesting that this tumor suppressor gene is not directly involved in the cancer susceptibility observed in Fanconi's anemia.

  4. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene

    OpenAIRE

    Gil, Elad B.; Malone Link, Elizabeth; Liu, Leo X.; Johnson, Carl D.; Lees, Jacqueline A.

    1999-01-01

    The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3′K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or...

  5. Molecular Analysis: Microsatellite Instability and Loss of Heterozygosity of Tumor Suppressor Gene in Hereditary Non-Polyposis Colorectal Cancer (HNPCC

    Directory of Open Access Journals (Sweden)

    Vesna Hadžiavdić

    2009-02-01

    Full Text Available HNPCC (Hereditary non-polyposis colorectal cancer development is caused by mutation of genes included in system of mismatch repair genes. The mutation exists at 60% of patients in hMSH2 gene, 30% in hMLH1 and 10% both in hPMS1and hPMS2 genes. RER+ exists in about 90% in hereditary non-polyposis colorectal cancer and about 15-28% in sporadic cancers.The purpose of the study was to determine highly sensitive microsatellite markers which can be fast and efficient way of microsatellite screening for detection of HNPCC patients. Moreover, we have analysed the loss of heterozygosity of tumour suppressor genes which could have the diagnostic value in detection of HPNCC patients.

  6. The CREB Coactivator CRTC2 Is a Lymphoma Tumor Suppressor that Preserves Genome Integrity through Transcription of DNA Mismatch Repair Genes.

    Science.gov (United States)

    Fang, Minggang; Pak, Magnolia L; Chamberlain, Lynn; Xing, Wei; Yu, Hongbo; Green, Michael R

    2015-06-09

    The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here, we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1, and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1, and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are downregulated in specific T cell lymphoma subtypes, which are microsatellite unstable. The levels of acetylated histone H3 on the CRTC2 promoter are significantly reduced in lymphoma in comparison to normal tissue, explaining the decreased CRTC2 expression. Our results establish a role for CRTC2 as a lymphoma tumor suppressor gene that preserves genome integrity by stimulating transcription of MMR genes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States); Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  8. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  9. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  10. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  11. Evidence of molecular alterations in the tumour suppressor gene WWOX in benign and malignant bone related lesions of the jaws.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Borges, Erica Rievrs; Pimenta, Flavio Juliano; De Mesquita Netto, Ana Carolina; De Marco, Luiz; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri

    2011-02-01

    WWOX is a tumour suppressor gene altered in various human neoplasms. Deletion of WWOX is associated with bone metabolic defects and development of osteosarcoma in mice. We hypothesized that alterations of this gene are associated with the development of benign and malignant mesenchymal bone related lesions of the jaws. We investigated WWOX mRNA by nested reverse transcription-PCR and direct sequencing and quantitative real-time PCR in two osteosarcoma, two fibrosarcoma, eight ossifying fibroma and two fibrous dysplasia fresh samples. Malignancy was associated with a decreased WWOX mRNA expression. Aberrant transcription pattern was found in five samples; however, the relative quantification (RQ) of the WWOX mRNA in such lesions was not different from those carrying only the wild-type. We provide new evidence of WWOX alterations in osteosarcomas and demonstrate for the first time alterations of this gene in fibrosarcomas as well as in ossifying fibromas of the jaws.

  12. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  13. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B

    2002-01-01

    Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses......, hence we screened primary melanoma samples for losses of heterozygosity (LOH), and acquired melanocytic naevi and melanomas for transcription of DMBT1 and protein expression. Of 38 informative melanomas, 1 nodular melanoma and 2 subcutaneous metastases showed LOH of both microsatellites flanking...... the gene, suggesting loss of 1 DMBT1 allele. Three further melanomas showed LOH at 1 informative locus but were heterozygous for the second marker. Applying reverse-transcription polymerase chain reaction (RT-PCR), DMBT1 transcription was not found in melanomas. However, DMBT1 transcription was also absent...

  14. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  15. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B

    2002-01-01

    , hence we screened primary melanoma samples for losses of heterozygosity (LOH), and acquired melanocytic naevi and melanomas for transcription of DMBT1 and protein expression. Of 38 informative melanomas, 1 nodular melanoma and 2 subcutaneous metastases showed LOH of both microsatellites flanking......Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses...... the gene, suggesting loss of 1 DMBT1 allele. Three further melanomas showed LOH at 1 informative locus but were heterozygous for the second marker. Applying reverse-transcription polymerase chain reaction (RT-PCR), DMBT1 transcription was not found in melanomas. However, DMBT1 transcription was also absent...

  16. Genetic interactions between the Drosophila tumor suppressor gene ept and the stat92E transcription factor.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    2009-09-01

    Full Text Available Tumor Susceptibility Gene-101 (TSG101 promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control.We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs.These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues.

  17. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  18. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  19. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  20. Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Xiao-Yan He

    2017-10-01

    Full Text Available Calreticulin (CRT, a multifunctional Ca2+-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272 in secreted form (B16-CRT, or recombinant enhanced green fluorescence protein (rEGFP (B16-EGFP, were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC-dependent manner. The B16-CRT-bearing mice showed increased Gr1+ MDSC infiltration in tumor tissues, accelerated proliferation of CD11b+Ly6G+Ly6Clow (G-MDSC precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC in periphery. In in vitro studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs via interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.

  1. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer.

    Science.gov (United States)

    Vorvis, Christina; Hatziapostolou, Maria; Mahurkar-Joshi, Swapna; Koutsioumpa, Marina; Williams, Jennifer; Donahue, Timothy R; Poultsides, George A; Eibl, Guido; Iliopoulos, Dimitrios

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis. Copyright © 2016 the American Physiological Society.

  2. Helicobacter pylori infection is associated with decreased expression of SLC5A8, a cancer suppressor gene, in young children

    Directory of Open Access Journals (Sweden)

    Andrea Orellana Manzano

    2016-10-01

    Full Text Available Background: Helicobacter pylori infects half of the world's population and causes gastric cancer in a subset of infected adults. Previous blood microarray findings showed that apparently healthy children, persistently infected with H. pylori have differential gene expression compared to age-matched, non-infected children. SLC5A8, a cancer suppressor gene with decreased expression among infected children, was chosen for further study based on bioinformatics analysis. Methods: A pilot study was conducted using specific qRT-PCR amplification of SLC5A8 in blood samples from H. pylori infected and non-infected children, followed by a larger, blinded, case-control study. We then analyzed gastric tissue from H. pylori infected and non-infected children undergoing endoscopy for clinical purposes. Results: Demographics, clinical findings and family history were similar between groups. SLC5A8 expression was decreased in infected versus non-infected children in blood, 0.12 (IQR: 0 – 0.89 versus 1.86 (IQR: 0 – 8.94, P=0.002, and in gastric tissue, 0.08 (IQR: 0.04 – 0.15 versus 1.88 (IQR: 0.55 – 2.56; P=0.001. Children who were both stool positive and seropositive for H. pylori had the lowest SLC5A8 expression levels.Conclusions: H. pylori infection is associated with suppression of SCL5A8, a cancer suppressor gene, in both blood and tissue samples from young children.

  3. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  4. Tumor suppressors status in cancer cell line Encyclopedia.

    Science.gov (United States)

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J; Tatarinova, Tatiana V

    2013-08-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss of function mutation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional "status". This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells

    NARCIS (Netherlands)

    M. Ansems (Marleen); J.N. Søndergaard (Jonas Nørskov); A.M. Sieuwerts (Anieta); M.W.G. Looman (Maaike W. G.); M. Smid (Marcel); A.M.A. de Graaf (Annemarie M. A.); V. de Weerd (Vanja); M. Zuidscherwoude (Malou); J.A. Foekens (John); J.W.M. Martens (John); G.J. Adema (Gosse J.)

    2015-01-01

    textabstractBreast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent

  6. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERalpha-positive breast cancer cells

    NARCIS (Netherlands)

    Ansems, M.; Sondergaard, J.N.; Sieuwerts, A.M.; Looman, M.W.G.; Smid, M.; Graaf, A.M.A. de; Weerd, V. de; Zuidscherwoude, M.; Foekens, J.A.; Martens, J.W.; Adema, G.J.

    2015-01-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERalpha) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERalpha and as a strong and independent

  7. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs

    Directory of Open Access Journals (Sweden)

    Mako Yamamoto

    2012-03-01

    The membrane-anchored metalloproteinase-regulator RECK has been characterized as a tumor suppressor. Here we report that mice with reduced Reck-expression show limb abnormalities including right-dominant, forelimb-specific defects in postaxial skeletal elements. The forelimb buds of low-Reck mutants have an altered dorsal ectoderm with reduced Wnt7a and Igf2 expression, and hypotrophy in two signaling centers (i.e., ZPA and AER that are essential for limb outgrowth and patterning. Reck is abundantly expressed in the anterior mesenchyme in normal limb buds; mesenchyme-specific Reck inactivation recapitulates the low-Reck phenotype; and some teratogens downregulate Reck in mesenchymal cells. Our findings illustrate a role for Reck in the mesenchymal-epithelial interactions essential for mammalian development.

  8. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene.

    Science.gov (United States)

    Gil, E B; Malone Link, E; Liu, L X; Johnson, C D; Lees, J A

    1999-03-16

    The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3'K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or the age-1 encoded PI3'K catalytic subunit homolog cause constitutive dauer formation and also affect the life span, brood size, and metabolism of nondauer animals. Strikingly, loss-of-function mutations in the age-1 PI3'K and daf-2 IRL genes are suppressed by loss-of-function mutations in the PTEN homolog. We establish that the PTEN homolog is encoded by daf-18, a previously uncloned gene that has been shown to interact genetically with the DAF-2 IRL AGE-1 PI3'K signaling pathway. This interaction provides clear genetic evidence that PTEN acts to antagonize PI3'K function in vivo. Given the conservation of the PI3'K signaling pathway between C. elegans and mammals, the analysis of daf-18 PTEN mutant nematodes should shed light on the role of human PTEN in the etiology of metabolic disease, aging, and cancer.

  9. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/Cip1 in colorectal carcinoma

    NARCIS (Netherlands)

    Slebos, R. J.; Baas, I. O.; Clement, M.; Polak, M.; Mulder, J. W.; van den Berg, F. M.; Hamilton, S. R.; Offerhaus, G. J.

    1996-01-01

    Inactivation of the p53 tumour-suppressor gene is common in a wide variety of human neoplasms. In the majority of cases, single point mutations in the protein-encoding sequence of p53 lead to positive immunohistochemistry (IHC) for the p53 protein, and are accompanied by loss of the wild-type

  10. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes.

    Science.gov (United States)

    Singer, Stephan; Zhao, Ruiying; Barsotti, Anthony M; Ouwehand, Anette; Fazollahi, Mina; Coutavas, Elias; Breuhahn, Kai; Neumann, Olaf; Longerich, Thomas; Pusterla, Tobias; Powers, Maureen A; Giles, Keith M; Leedman, Peter J; Hess, Jochen; Grunwald, David; Bussemaker, Harmen J; Singer, Robert H; Schirmacher, Peter; Prives, Carol

    2012-12-14

    The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Polymorphisms rs12998 and rs5780218 in KiSS1 Suppressor Metastasis Gene in Mexican Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Edhit Guadalupe Cruz Quevedo

    2015-01-01

    Full Text Available Aims. KiSS1 is a metastasis suppressor gene associated with inhibition of cellular chemotaxis and invasion attenuating the metastasis in melanoma and breast cancer cell lines. Along the KiSS-1 gene at least 294 SNPs have been described; however the association of these polymorphisms as genetic markers for metastasis in breast cancer studies has not been investigated. Here we describe two simple PCR-RFLPs protocols to identify the rs5780218 (9DelT and the rs12998 (E20K KiSS1 polymorphisms and the allelic, genotypic, and haplotypic frequencies in Mexican general population (GP and patients with benign breast disease (BBD or breast cancer (BC. Results. The rs5780218 polymorphism was individually associated with breast cancer (P=0.0332 and the rs12998 polymorphism shows statistically significant differences when GP versus case (BC and BBD groups were compared (P<0.0001. The H1 Haplotype (G/- occurred more frequently in BC group (0.4256 whereas H2 haplotype (G/T was the most prevalent in BBD group (0.4674. Conclusions. Our data indicated that the rs5780218 polymorphism individually confers susceptibility for development of breast cancer in Mexican population and a possible role as a genetic marker in breast cancer metastasis for H1 haplotype (Wt/variant in KiSS1 gene must be analyzed in other populations.

  12. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2 tumor-suppressor gene

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2005-12-01

    Full Text Available Abstract Background Merlin, the product of the Neurofibromatosis type 2 (NF2 tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. Results By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis. Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The

  13. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Science.gov (United States)

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  14. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  15. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  16. High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene

    Directory of Open Access Journals (Sweden)

    Jehnan Liu

    2015-03-01

    Conclusion: High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

  17. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Munawwar Ali Khan

    2015-01-01

    Full Text Available Sulforaphane (SFN may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs and histone deacetylases (HDACs were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  18. Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets.

    Science.gov (United States)

    Goonesekere, Nalin C W; Andersen, Wyatt; Smith, Alex; Wang, Xiaosheng

    2018-02-01

    The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease. In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines. This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC. While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.

  19. Hypoxia Inducible Factor-independent functions for the von Hippel-Lindau tumor suppressor gene

    NARCIS (Netherlands)

    Lolkema, Martijn Paul Jung Kyu

    2006-01-01

    Inactivating mutations of the von Hippel-Lindau gene (VHL) on chromosome 3p have been associated with the autosomal dominant VHL disease, characterized by extensively vascularized tumors and cysts in different organs, as well as the majority of conventional kidney cancers. The VHL gene product

  20. Heterozygous mutations in the tumor suppressor gene PATCHED provoke basal cell carcinoma-like features in human organotypic skin cultures.

    Science.gov (United States)

    Brellier, F; Bergoglio, V; Valin, A; Barnay, S; Chevallier-Lagente, O; Vielh, P; Spatz, A; Gorry, P; Avril, M-F; Magnaldo, T

    2008-11-20

    Basal cell carcinoma of the skin is the most common type of cancer in humans. The majority of these tumors displays aberrant activation of the SONIC HEDGEHOG (SHH)/PATCHED pathway, triggered by mutations in the PATCHED tumor suppressor gene, which encodes a transmembrane receptor of SHH. In this study, we took advantage of the natural genotype (PATCHED(+/-)) of healthy keratinocytes expanded from patients with the nevoid basal cell carcinoma or Gorlin syndrome to mimic heterozygous somatic mutations thought to occur in the PATCHED gene early upon basal cell carcinoma development in the general population. PATCHED(+/-) epidermis developed on a dermal equivalent containing wild-type (WT) PATCHED(+/+) fibroblasts exhibited striking invasiveness and hyperproliferation, as well as marked differentiation impairment. Deciphering the phenotype of PATCHED(+/-) keratinocytes revealed slight increases of the transcriptional activators GLI1 and GLI2-the latter known to provoke basal cell carcinoma-like tumors when overexpressed in transgenic mice. PATCHED(+/-) keratinocytes also showed a substantial increase of the cell cycle regulator cyclin D1. These data show for the first time the physiological impact of constitutive heterozygous PATCHED mutations in primary human keratinocytes and strongly argue for a yet elusive mechanism of haploinsufficiency leading to cancer proneness.

  1. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  2. Ontogeny of clock and KiSS-1 metastasis-suppressor (Kiss1) gene expression in the prepubertal mouse hypothalamus.

    Science.gov (United States)

    Yap, Cassandra C; Mark, Peter J; Waddell, Brendan J; Smith, Jeremy T

    2017-09-01

    Kisspeptin is crucial for the generation of the circadian-gated preovulatory gonadotrophin-releasing hormone (GnRH)-LH surge in female rodents, with expression in the anteroventral periventricular nucleus (AVPV) peaking in the late afternoon of pro-oestrus. Given kisspeptin expression is established before puberty, the aim of the present study was to investigate kisspeptin and clock gene rhythms during the neonatal period. Anterior and posterior hypothalami were collected from C57BL/6J mice on Postnatal Days (P) 5, 15 and 25, at six time points across 24h, for analysis of gene expression by reverse transcription-quantitative polymerase chain reaction. Expression of aryl hydrocarbon receptor nuclear translocator-like gene (Bmal1) and nuclear receptor subfamily 1, group D, member 2 (Rev-erbα) in the anterior hypothalamus (containing the suprachiasmatic nucleus) was not rhythmic at P5 or P15, but Bmal1 expression exhibited rhythmicity in P25 females, whereas Rev-erbα expression was rhythmic in P25 males. KiSS-1 metastasis-suppressor (Kiss1) expression did not exhibit time-of-day variation in the anterior (containing the AVPV) or posterior (containing the arcuate nucleus) hypothalami in female and male mice at P5, P15 or P25. The data indicate that the kisspeptin circadian peak in expression observed in the AVPV of pro-oestrous females does not manifest at P5, P15 or P25, likely due to inadequate oestrogenic stimuli, as well as incomplete development of clock gene rhythmicity before puberty.

  3. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    OpenAIRE

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) ...

  4. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    Directory of Open Access Journals (Sweden)

    Luković Ljiljana

    2006-01-01

    Full Text Available Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. Methods. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Results. Both of the analyzed microsatellite markers were informative in 13/20 (65% cases. In the region of gene p53, LOH was established in 4/13 (30.7% tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5% tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO classification one was with stage Ib, one was with stage IIIb, while the three were with stage IIIc. LOH in both of the analyzed regions was detected in one tumor (7.7%, with histological gradus G3 and the FIGO IIIc stage. Conclusion. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the

  5. [Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas].

    Science.gov (United States)

    Petrović, Bojana; Perović, Milica; Novaković, Ivana; Atanacković, Jasmina; Popović, Branka; Luković, Ljiljana; Petković, Spasoje

    2006-09-01

    Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH) in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Both of the analyzed microsatellite markers were informative in 13/20 (65%) cases. In the region of gene p53, LOH was established in 4/13 (30.7%) tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO) IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5%) tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO) classification one was with stage Ib, one was with stage IIIb, while the three were with stage IlIc. LOH in both of the analyzed regions was detected in one tumor (7.70), with histological gradus G3 and the FIGO IIIc stage. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the association of this occurrence with a later phase of the disease.

  6. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) more frequently harbored loss-of-function mutations in males (based on false discovery rate <0.1), compared to zero of 18,055 autosomal and PAR genes (P<0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence compared to males across a variety of tumor types. PMID:27869828

  7. Hypermethylation of the 16q23.1 Tumor Suppressor Gene ADAMTS18 in Clear Cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ben Xu

    2015-01-01

    Full Text Available To identify tumor suppressor genes (TSGs silenced by hypermethylation and discover new epigenetic biomarkers for early cancer detection. ADAMTS18, located at 16q23.1, has been reported to be a critical TSG in multiple primary tumors; however, this has not yet been verified in clear cell renal cell carcinoma (ccRCC. We explored epigenetic alterations in this gene in ccRCC and analyzed possible clinicopathological associations. We examined ADAMTS18 gene expression and methylation by semi-quantitative reverse transcription PCR (RT-PCR and methylation-specific polymerase chain reaction (MSP in 5 ccRCC-derived cell lines before and after treatment with 5-aza-2'-deoxycytidine (5-AzaC. MSP was further performed for 101 ccRCC primary tumors and 20 adjacent normal tissues. Some cell lines and specimens were examined by subsequent bisulfite genomic sequencing (BGS and real-time PCR. Further, we analyzed the relationship between the ADAMTS18 gene methylation and clinicopathological features, including short-term disease-free survival (DFS, in patients with ccRCC. ADAMTS18 down-regulation and hypermethylation were detected in the ccRCC-derived cell lines using RT-PCR and MSP. Treatment with 5-AzaC reversed the hypermethylation of the ADAMTS18 gene and restored its expression. Hypermethylation was further detected in 44 of 101 (43.6% primary tumors and 3 of 20 (15.0% adjacent normal tissues. However, a significant difference between both groups was observed (p = 0.02. BGS analysis and real-time PCR were subsequently performed to confirm the results of RT-PCR and MSP. Furthermore, the methylation status of ADAMTS18 was not significantly associated with gender, age, location, tumor diameter, pathological stage, nuclear grade or short-term DFS in patients with ccRCC (p > 0.05. The ADAMTS18 gene is often down-regulated by hypermethylation in ccRCC-derived cell lines and primary tumors, indicating its critical role as a TSG in ccRCC. We conclude that ADAMTS18

  8. Aberrations of the p53 tumor suppressor gene in human epithelial ovarian carcinoma.

    Science.gov (United States)

    Kim, J W; Cho, Y H; Kwon, D J; Kim, T E; Park, T C; Lee, J M; Namkoong, S E

    1995-05-01

    Aberrations of the p53 gene in 26 surgical specimens of human epithelial ovarian carcinomas were examined by single-strand conformation polymorphism (SSCP) analysis of polymerase chain reaction (PCR) products. Seven (27%) of the tumors demonstrated a SSCP band shift in exons 4 to 9 of the gene, including 5 in the region encompassing exons 5 and 6, 1 in exon 7, and 1 in the region encompassing exons 8 and 9. Mutations were clustered in exon 5 in highly conserved regions of the p53 gene. All of the abnormal DNA fragments have been further characterized by direct DNA sequencing. These include five missense mutations (five transitions), a one-base-pair deletion introducing, by frameshift, a stop codon further downstream, and a two-base-pair insertion introducing a stop codon downstream by frameshift. Most mutations were base substitutions, and were clustered in exon 5 (71%), especially codons 175 and 179. The aberrations of the p53 gene were only found in tumors of FIGO stages III and IV. Histologic grading was also reviewed with respect to p53 aberrations. The aberrations were absent in well-differentiated carcinomas. The more undifferentiated the primary tumor, the more frequent p53 mutation (P p53 gene were common in epithelial ovarian cancers and p53 aberration may occur late during ovarian cancer evolution.

  9. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene

    OpenAIRE

    Cheedipudi, Sirisha; Puri, Deepika; Saleh, Amena; Gala, Hardik P.; Rumman, Mohammed; Pillai, Malini S.; Sreenivas, Prethish; Arora, Reety; Sellathurai, Jeeva; Schr?der, Henrik Daa; Mishra, Rakesh K.; Dhawan, Jyotsna

    2015-01-01

    Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myobla...

  10. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas.

    Science.gov (United States)

    Makker, Annu; Goel, Madhu Mati; Mahdi, Abbas Ali; Bhatia, Vikram; Das, Vinita; Agarwal, Anjoo; Pandey, Amita

    2016-05-01

    Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (PPTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma.

  11. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene.

    Science.gov (United States)

    Cheedipudi, Sirisha; Puri, Deepika; Saleh, Amena; Gala, Hardik P; Rumman, Mohammed; Pillai, Malini S; Sreenivas, Prethish; Arora, Reety; Sellathurai, Jeeva; Schrøder, Henrik Daa; Mishra, Rakesh K; Dhawan, Jyotsna

    2015-07-27

    Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs-myogenesis and the cell cycle-while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1

    DEFF Research Database (Denmark)

    Jenal, Mathias; Trinh, Emmanuelle; Britschgi, Christian

    2009-01-01

    The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened...

  13. Identification of Prostate Cancer Metastasis-Suppressor Genes Using Genomic shRNA Libraries

    National Research Council Canada - National Science Library

    Gelman, Irwin H

    2008-01-01

    .... However, little is known regarding the genetics that control disease recurrence. Our proposed research was to screen for metastasis- inducing genes in LNCaP and LAPC-4 CaP cells using libraries expressing RNAi covering the entire human genome...

  14. miR-203 Acts as a Tumor Suppressor Gene in Osteosarcoma by Regulating RAB22A.

    Directory of Open Access Journals (Sweden)

    Dawei Yang

    Full Text Available microRNAs (miRNAs, small noncoding RNAs of 19-25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT. Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis.

  15. The induction of a tumor suppressor gene (p53) expression by low-dose radiation and its biological meaning

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1997-01-01

    I report the induced accumulation of wild-type p53 protein of a tumor suppressor gene within 12 h in various organs of rats exposed to X-ray irradiation at low doses (10-50 cGy). The levels of p53 in some organs of irradiated rats were increased about 2- to 3-fold in comparison with the basal p53 levels in non-irradiated rats. Differences in the levels of p53 induction after low-dose X-ray irradiation were observed among the small intestine, bone marrow, brain, liver, adrenal gland, spleen, hypophysis and skin. In contrast, there was no obvious accumulation of p53 protein in the testis and ovary. Thus, the induction of cellular p.53 accumulation by low-dose X-ray irradiation in rats seems to be organ-specific. I consider that cell type, and interactions with other signal transduction pathways of the hormone system, immune system and nervous system may contribute to the variable induction of p53 by low-dose X-ray irradiation. I discussed the induction of p53 by radiation and its biological meaning from an aspect of the defense system for radiation-induced cancer. (author)

  16. Tumor suppressor QM-like gene from disk abalone (Haliotis discus discus): molecular characterization and transcriptional analysis upon immune challenge.

    Science.gov (United States)

    Oh, Chulhong; De Zoysa, Mahanama; Nikapitiya, Chamilani; Whang, Ilson; Kim, Yu Cheol; Kang, Do-Hyung; Heo, Soo-jin; Choi, Young-Ung; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2010-09-01

    We describe molecular characterization and transcriptional analysis of the gene encoding tumor suppressor QM-like protein, AbQM, in the disk abalone Haliotis discus discus. The full-length cDNA (765-bp) of AbQM was found to consist of a 654-bp ORF coding for a 218 amino acid protein of a 25 kDa molecular mass with a 10.2 isoelectric point. Analysis of AbQM sequence revealed the presence of characteristic motifs, including the ribosomal protein L10 signature, SH3-binding motif and two antibiotic binding sites. Phylogenetic analysis confirmed that AbQM is closely related to other mollusk QM proteins, and altogether they form a mollusk QM protein sub-family which displays evolutionary conservation from yeast to human. Tissue-specific expression and transcriptional regulation of AbQM was analyzed by quantitative real-time PCR in response to bacterial (Vibrio alginolyticus and Vibrio parahemolyticus, Listeria monocytogenes) and viral (viral hemorrhagic septicemia virus, VHSV) challenge. AbQM transcripts were found to be expressed ubiquitously in all examined tissues in a constitutive manner, as similar expression levels were detected in hemocytes, mantle, digestive tract and muscle. Upon bacterial and VHSV challenge, AbQM showed significant up-regulation in gills, but not in hemocytes. Taken together, these findings suggest that AbQM in abalone-like mollusks can respond to and facilitate a defensive effect against pathogenic infection. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities

    International Nuclear Information System (INIS)

    Mangwende, Tichaona; Wang Mingli; Borth, Wayne; Hu, John; Moore, Paul H.; Mirkov, T. Erik; Albert, Henrik H.

    2009-01-01

    The Sugarcane yellow leaf virus (SCYLV) P0, a member of the highly heterologous proteins of poleroviruses, is a suppressor of posttranscriptional gene silencing (PTGS) and has additional activities not seen in other P0 proteins. The P0 protein in previously tested poleroviruses (Beet western yellows virus and Cucurbit aphid-borne yellows virus), suppresses local, but not systemic, PTGS induced by both sense GFP and inverted repeat GF using its F-box-like domain to mediate destabilization of the Argonaute1 protein. We now report that the SCYLV P0 protein not only suppressed local PTGS induced by sense GFP and inverted repeat GF in Nicotiana benthamiana, but also triggered a dosage dependent cell death phenotype in infiltrated leaves and suppressed systemic sense GFP-PTGS. Deletion of the first 15 N-terminal amino acid residues of SCYLV P0 abolished suppression of both local and systemic PTGS and the induction of cell death. In contrast, only systemic PTGS and cell death were lost when the 15 C-terminal amino acid residues were deleted. We conclude that the 15 C-terminal amino acid residue region of SCYLV P0 is necessary for suppressing systemic PTGS and inducing cell death, but is not required for suppression of local PTGS

  18. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer

    DEFF Research Database (Denmark)

    Lu, Z; Luo, R Z; Peng, H

    2006-01-01

    to the P2 region of the ARHI promoter and regulate its activity. Sequence analysis and oligonucleotide competition in electrophoretic mobility shift assays identified an A2 fragment containing an E2F-binding site. Using specific antibodies in supershift assays, we have shown that anti-E2F1 and 4 antibodies...... and increased E2F DNA-binding activity. Moreover, chromatin immunoprecipitation experiments revealed that both E2F1 and 4 bind to the ARHI promoter in breast cancer cells in vivo. This binding was reduced when the cells were treated with the histone deacetylase (HDAC) inhibitor--trichostatin A (TSA). When SKBr3...... cells were cotransfected with an ARHI/luciferase reporter and E2F-expression vectors, E2F1 and 4 reduced ARHI promoter activity 2-3-fold, and this reduction could be reversed by TSA treatment. The negative regulation by E2F-HDAC complexes could also be reduced by small interfering RNA of E2F1 and 4...

  19. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors

    DEFF Research Database (Denmark)

    Rehfeld, Anders Aagaard; Plass, Mireya; Døssing, Kristina

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site...... and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3' untranslated regions. Additionally, APA can also produce mRNAs containing different 3'-terminal coding regions. Therefore, APA alters both the repertoire...... and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3' truncation of mRNA coding regions...

  20. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  1. Prediction of functionally significant single nucleotide polymorphisms in PTEN tumor suppressor gene: An in silico approach.

    Science.gov (United States)

    Khan, Imran; Ansari, Irfan A; Singh, Pratichi; Dass J, Febin Prabhu

    2017-09-01

    The phosphatase and tensin homolog (PTEN) gene plays a crucial role in signal transduction by negatively regulating the PI3K signaling pathway. It is the most frequent mutated gene in many human-related cancers. Considering its critical role, a functional analysis of missense mutations of PTEN gene was undertaken in this study. Thirty five nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of the PTEN gene were selected for our in silico investigation, and five nsSNPs (G129E, C124R, D252G, H61D, and R130G) were found to be deleterious based on combinatorial predictions of different computational tools. Moreover, molecular dynamics (MD) simulation was performed to investigate the conformational variation between native and all the five mutant PTEN proteins having predicted deleterious nsSNPs. The results of MD simulation of all mutant models illustrated variation in structural attributes such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and total energy; which depicts the structural stability of PTEN protein. Furthermore, mutant PTEN protein structures also showed a significant variation in the solvent accessible surface area and hydrogen bond frequencies from the native PTEN structure. In conclusion, results of this study have established the deleterious effect of the all the five predicted nsSNPs on the PTEN protein structure. Thus, results of the current study can pave a new platform to sort out nsSNPs that can be undertaken for the confirmation of their phenotype and their correlation with diseased status in case of control studies. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. The Role of Tumor Metastases Suppressor Gene, Drg-1, in Breast Cancer

    National Research Council Canada - National Science Library

    Watabe, Kounosuke

    2008-01-01

    .... This inhibition leads to down-regulation of the ATF3 gene and thus suppressing metastases. We also found that a combination of NDRGI, PTEN and ATF3 is a good prognostic marker for breast cancer patients. These results suggest that the Wnt and ATF3 pathways are a potential therapeutic target for patients with metastatic disease. We will focus our next year's effort on further clarification of the NDRG1 pathway.

  3. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  4. Relationship of ultrasonic shear wave velocity with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents

    Directory of Open Access Journals (Sweden)

    Xing Yin1

    2017-06-01

    Full Text Available Objective: To discuss the relationship of ultrasonic shear wave velocity (SWV with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents. Methods: 100 patients with primary liver cancer who underwent surgical treatment in our hospital between March 2014 and September 2016 were collected as observation group, and 50 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. The ultrasonic SWV levels of two groups of subjects were measured before the operation, and the observation groups were further divided into high SWV group and low SWV group, 50 cases in each group. Intraoperative tumor tissue samples were kept and fluorescence quantitative PCR was used to determine the mRNA expression of oncogenes and tumor suppressor genes. Enzymelinked immunosorbent assay was used to determine serum contents of angiogenesis factors in observation group before operation. Results: Hepatic ultrasonic SWV level in observation group was significantly higher than that in normal control group; proto-oncogene CK, Ki67, Gly-3, Survivin and Pokemon mRNA expression in tumor tissue of high SWV group were higher than those of low SWV group while tumor suppressor genes Tg737, p16, p27, PTEN and runx3 mRNA expression were lower than those of low SWV group; serum angiogenesis factors VEGF, MMP-9 and IGF-1R contents were higher than those in low SWV group. Conclusion: The hepatic ultrasonic SWV level increases in patients with primary liver cancer, and the SWV level is directly correlated with oncogene and tumor suppressor gene expression as well as angiogenesis factor contents.

  5. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization.

    Directory of Open Access Journals (Sweden)

    Seung-Beom Hong

    2010-12-01

    Full Text Available Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC in Birt-Hogg-Dubé syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN.TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation.Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis.

  6. Molecular characterization of two suppressor of cytokine signaling 1 genes (SOCS1a and SOCS1b in chickens

    Directory of Open Access Journals (Sweden)

    Xue XU,Jiannan ZHANG,Juan LI,Yajun WANG

    2015-03-01

    Full Text Available Suppressor of cytokine signaling 1 (SOCS1 protein can inhibit the signal transduction triggered by some cytokines or hormones and thus are important in many physiological/pathological processes, including innate and adaptive immunity, inflammation, and development in mammals. However, there is sparse information about their structure, tissue expression, in birds, where their biological functions remain unknown. In this study, we cloned and characterized two SOCS1 genes (named cSOCS1a and cSOCS1b from chickens. SOCS1a is predicted to encode a 207-amino acid protein, which shares high amino acid sequence identity (64%–67% with human and mouse SOCS1. Besides SOCS1a, a novel SOCS1b gene was also identified in chickens and other non-mammalian vertebrates including Xenopus tropicalis. Chicken SOCS1b is predicted to encode a 212-amino acid protein, which shares only 30%–32% amino acid sequence identity with human SOCS1 and cSOCS1a. RT-PCR assay revealed that both cSOCS1a and cSOCS1b are widely expressed in all chicken tissues. Using a luciferase reporter assay system, we further demonstrated that transient expression of cSOCS1a and cSOCS1b can significantly inhibit chicken growth hormone (GH- or prolactin (PRL-induced luciferase activities of Hep G2 cells expressing cGH receptor (or cPRL receptor, indicating that SOCS1a and SOCS1b proteins can negatively regulate GH/PRL signaling. Taken together, these data suggest that both cSOCS1a and cSOCS1b may function as negative regulators of cytokine/hormone actions, such as modulation of GH/PRL actions in chickens.

  7. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  8. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  9. Discovery of Metastatic Breast Cancer Suppressor Genes Using Functional Genome Analysis

    Science.gov (United States)

    2012-07-01

    al., 2008; Cheung,H.W., et al., 2011; Barbie ,D.A., et al., 2009]. To identify genes whose essentiality could be associated specifically with...Reference Barbie ,D.A., Tamayo,P., Boehm,J.S., Kim,S.Y., Moody,S.E., Dunn,I.F., Schinzel,A.C., Sandy,P., Meylan,E., Scholl,C., Frohling,S., Chan,E.M... Barbie ,D.A., Awad,T., Zhou,X., Nguyen,T., Piqani,B., Li,C., Golub,T.R., Meyerson,M., Hacohen,N., Hahn,W.C., Lander,E.S., Sabatini,D.M., and Root

  10. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    International Nuclear Information System (INIS)

    Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J.; Morioka, Takamitsu; Kaminishi, Mutsumi; Shang, Yi; Nishimura, Mayumi; Shimada, Yoshiya; Tachibana, Akira

    2015-01-01

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  11. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  12. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    International Nuclear Information System (INIS)

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins

  13. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6 -methyguanine-DNA methyltransferase (MGMT is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC tissue samples, 14 low malignant potential (LMP tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  14. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer.

    Science.gov (United States)

    Shilpa, V; Bhagat, Rahul; Premalata, C S; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2014-11-01

    Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6-methyguanine-DNA methyltransferase (MGMT) is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. A total of 88 epithelial ovarian cancer (EOC) tissue samples, 14 low malignant potential (LMP) tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP) after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  15. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation.

    Directory of Open Access Journals (Sweden)

    Kevin Pruitt

    2006-03-01

    Full Text Available The class III histone deactylase (HDAC, SIRT1, has cancer relevance because it regulates lifespan in multiple organisms, down-regulates p53 function through deacetylation, and is linked to polycomb gene silencing in Drosophila. However, it has not been reported to mediate heterochromatin formation or heritable silencing for endogenous mammalian genes. Herein, we show that SIRT1 localizes to promoters of several aberrantly silenced tumor suppressor genes (TSGs in which 5' CpG islands are densely hypermethylated, but not to these same promoters in cell lines in which the promoters are not hypermethylated and the genes are expressed. Heretofore, only type I and II HDACs, through deactylation of lysines 9 and 14 of histone H3 (H3-K9 and H3-K14, respectively, had been tied to the above TSG silencing. However, inhibition of these enzymes alone fails to re-activate the genes unless DNA methylation is first inhibited. In contrast, inhibition of SIRT1 by pharmacologic, dominant negative, and siRNA (small interfering RNA-mediated inhibition in breast and colon cancer cells causes increased H4-K16 and H3-K9 acetylation at endogenous promoters and gene re-expression despite full retention of promoter DNA hypermethylation. Furthermore, SIRT1 inhibition affects key phenotypic aspects of cancer cells. We thus have identified a new component of epigenetic TSG silencing that may potentially link some epigenetic changes associated with aging with those found in cancer, and provide new directions for therapeutically targeting these important genes for re-expression.

  16. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes

    OpenAIRE

    Tiffen, Jessamy C.; Gunatilake, Dilini; Gallagher, Stuart J.; Gowrishankar, Kavitha; Heinemann, Anja; Cullinane, Carleen; Dutton-Regester, Ken; Pupo, Gulietta M.; Strbenac, Dario; Yang, Jean Y.; Madore, Jason; Mann, Graham J.; Hayward, Nicholas K.; McArthur, Grant A.; Filipp, Fabian V.

    2015-01-01

    The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown. We show that inhibition of EZH2 has potent effects on the growth of both wild-type and EZH2 mutant hum...

  17. Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies.

    Directory of Open Access Journals (Sweden)

    Yan-Fung Wong

    Full Text Available Treatment with the demethylating drugs 5-azacytidine (AZA and decitabine (DAC is now recognised as an effective therapy for patients with Myelodysplastic Syndromes (MDS, a range of disorders arising in clones of hematopoietic progenitor cells. A variety of cell models have been used to study the effect of these drugs on the methylation of promoter regions of tumour suppressor genes, with recent efforts focusing on the ability of these drugs to inhibit DNA methylation at low doses. However, it is still not clear how nano-molar drug treatment exerts its effects on the methylome. In this study, we have characterised changes in DNA methylation caused by prolonged low-dose treatment in a leukemic cell model (SKM-1, and present a genome-wide analysis of the effects of AZA and DAC. At nano-molar dosages, a one-month continuous treatment halved the total number of hypermethylated probes in leukemic cells and our analysis identified 803 candidate regions with significant demethylation after treatment. Demethylated regions were enriched in promoter sequences whereas gene-body CGIs were more resistant to the demethylation process. CGI methylation in promoters was strongly correlated with gene expression but this correlation was lost after treatment. Our results indicate that CGI demethylation occurs preferentially at promoters, but that it is not generally sufficient to modify expression patterns, and emphasises the roles of other means of maintaining cell state.

  18. The Relationship between FHIT Gene Promoter Methylation and Lung Cancer Risk: 
a Meta-analysis

    Directory of Open Access Journals (Sweden)

    Yichang SUN

    2014-03-01

    Full Text Available Background and objective Tumor-suppressor gene promoter DNA methylation in tumor cells is associated with its reduced expression. FHIT (fragile histindine triad was one of the important tumor suppressor genes which was found hypermethylated in the promoter region in most of tumors. The aim of this study is to evaluate the relationship between FIHT gene promother methylation and lung cancer risk by meta-analysis. Methods By searching Pubmed, CNKI and Wanfang, the open published articles related to FHIT gene promoter methylation and lung carcinoma risk were collected. The odds ratio (OR and range of FHIT gene of cancer tissue of lung cancer patients compared with normal lung tissue, plasma and the bronchial lavage fluid were pooled by statistical software Stata 11.0. Results Eleven studies were finally included in this meta-analysis. The median methylation rate were Pmedian=40.0% (0-68.3%, Pmedian=8.7% (0-35.0%, Pmedian=33.3% (17.1%-38.3% and Pmedian=35.9% (31.1%-50.8% in cancer tissue, NLT, BALF and plasm respectively. The pooled results showed the methylation rate in tumor tissue was much higer than that of NLT OR=5.82 (95%CI: 3.74-9.06, P0.05 and plasma OR=1.41 (95%CI: 0.90-2.20, P>0.05. Conclusion Hypermethylation of FHIT gene promoter region was found more frequent in cancer tissue than that of NLT which may demonstrated association between lung cancer risk and FHIT gene promoter methylation.

  19. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis.

    Science.gov (United States)

    Jarrett, Stuart G; Novak, Marian; Dabernat, Sandrine; Daniel, Jean-Yves; Mellon, Isabel; Zhang, Qingbei; Harris, Nathan; Ciesielski, Michael J; Fenstermaker, Robert A; Kovacic, Diane; Slominski, Andrzej; Kaetzel, David M

    2012-01-01

    Reduced expression of the metastasis suppressor NM23-H1 is associated with aggressive forms of multiple cancers. Here, we establish that NM23-H1 (termed H1 isoform in human, M1 in mouse) and two of its attendant enzymatic activities, the 3'-5' exonuclease and nucleoside diphosphate kinase, are novel participants in the cellular response to UV radiation (UVR)-induced DNA damage. NM23-H1 deficiency compromised the kinetics of repair for total DNA polymerase-blocking lesions and nucleotide excision repair of (6-4) photoproducts in vitro. Kinase activity of NM23-H1 was critical for rapid repair of both polychromatic UVB/UVA-induced (290-400 nm) and UVC-induced (254 nm) DNA damage, whereas its 3'-5' exonuclease activity was dominant in the suppression of UVR-induced mutagenesis. Consistent with its role in DNA repair, NM23-H1 rapidly translocated to sites of UVR-induced (6-4) photoproduct DNA damage in the nucleus. In addition, transgenic mice hemizygous-null for nm23-m1 and nm23-m2 exhibited UVR-induced melanoma and follicular infundibular cyst formation, and tumor-associated melanocytes displayed invasion into adjacent dermis, consistent with loss of invasion-suppressing activity of NM23 in vivo. Taken together, our data show a critical role for NM23 isoforms in limiting mutagenesis and suppressing UVR-induced melanomagenesis. ©2011 AACR.

  20. Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity.

    Science.gov (United States)

    Riquelme, Sebastián A; Hopkins, Benjamin D; Wolfe, Andrew L; DiMango, Emily; Kitur, Kipyegon; Parsons, Ramon; Prince, Alice

    2017-12-19

    The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl -/- mice, which lack the NH 2 -amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. Published by Elsevier Inc.

  1. The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Kristen L. Karlin

    2014-11-01

    Full Text Available Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 (“STP axis” cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase βTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.

  2. Isolating Barley ( Hordeum vulgare L.) B1 Hordein Gene Promoter ...

    African Journals Online (AJOL)

    Promoters play the most important role in determining the temporal and spatial expression pattern and transcript level of a gene. Some strong constitutive promoters, such as cauliflower mosaic virus 35s promoter, are widely used in plant genetic engineering research. However, the expression levels of the foreign genes in ...

  3. The tumor suppressors p33ING1 and p33ING2 interact with alien in vivo and enhance alien-mediated gene silencing.

    Science.gov (United States)

    Fegers, Inga; Kob, Robert; Eckey, Maren; Schmidt, Oliver; Goeman, Frauke; Papaioannou, Maria; Escher, Niko; von Eggeling, Ferdinand; Melle, Christian; Baniahmad, Aria

    2007-11-01

    The tumor suppressor p33ING1 is involved in DNA repair and cell cycle regulation. Furthermore, p33ING1 is a transcriptional silencer that recognizes the histone mark for trimethylated lysine 4 at histone H3. Interestingly, expression of p33ING1 and p33ING2 is able to induce premature senescence in primary human fibroblasts. The corepressor Alien is involved in gene silencing mediated by selected members of nuclear hormone receptors. In addition, Alien acts as a corepressor for E2F1, a member of the E2F cell cycle regulatory family. Furthermore, recent findings suggest that Alien is complexed with transcription factors participating in DNA repair and chromatin. Here, using a proteomic approach by surface-enhanced laser desorption ionization and mass spectrometry (SELDI-MS) combined with immunological techniques, we show that Alien interacts in vivo with the tumor suppressor p33ING1 as well as with the related tumor suppressor candidate p33ING2. The interaction of Alien with p33ING1 and p33ING2 was confirmed in vitro with GST-pull-down, suggesting a direct binding of Alien to these factors. The binding domain was mapped to a central region of Alien. Functionally, the expression of p33ING1 or p33ING2 enhances the Alien-mediated silencing, suggesting that the interaction plays a role in transcriptional regulation. Thus, the findings suggest that the identified interaction between Alien and the tumor suppressors p33ING1 and p33ING2 reveals a novel cellular protein network.

  4. Inducing gene expression by targeting promoter sequences using small activating RNAs

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2015-02-01

    Full Text Available Vector-based systems comprised of exogenous nucleic acid sequences remain the standard for ectopic expression of a particular gene. Such systems offer robust overexpression, but have inherent drawbacks such the tedious process of construction, excluding sequences (e.g. introns and untranslated regions important for gene function and potential insertional mutagenesis of host genome associated with the use of viral vectors. We and others have recently reported that short double-stranded RNAs (dsRNAs can induce endogenous gene expression by targeting promoter sequences in a phenomenon referred to as RNA activation (RNAa and such dsRNAs are termed small activating RNAs (saRNAs. To date, RNAa has been successfully utilized to induce the expression of different genes such as tumor suppressor genes. Here, we describe a detailed protocol for target selection and dsRNA design with associated experiments to facilitate RNAa in cultured cells. This technique may be applied to selectively activate endogenous gene expression for studying gene function, interrogating molecular pathways and reprogramming cell fate.

  5. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus

    NARCIS (Netherlands)

    Caron, H.; van Sluis, P.; Buschman, R.; Pereira do Tanque, R.; Maes, P.; Beks, L.; de Kraker, J.; Voûte, P. A.; Vergnaud, G.; Westerveld, A.; Slater, R.; Versteeg, R.

    1996-01-01

    Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p

  6. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Indications for a tumor suppressor gene at 22q11 involved in the pathogenesis of ependymal tumors and distinct from hSNF5/INI1.

    Science.gov (United States)

    Kraus, J A; de Millas, W; Sörensen, N; Herbold, C; Schichor, C; Tonn, J C; Wiestler, O D; von Deimling, A; Pietsch, T

    2001-07-01

    Ependymomas account for approximately 9% of all neuroepithelial tumors and represent the most frequent neuroepithelial tumors of the spinal cord. In adults, allelic loss of chromosome arm 22q occurs in up to 60% of the cases studied. Some of these tumors show an altered neurofibromatosis type 2 (NF2) gene; in others, NF2 appears to be unaffected, indicating the involvement of another tumor suppressor gene. Recently, the tumor suppressor gene hSNF5/INI1, located on 22q11.23, has been shown to contribute to the pathogenesis of renal and extrarenal rhabdoid tumors. In addition, this gene may be responsible for a new hereditary syndrome predisposing to a variety of tumors designated "rhabdoid predisposition syndrome." In the present study, we analyzed a series of 53 ependymal tumors of 48 patients [4 myxopapillary ependymomas (WHO grade I), 3 subependymomas (WHO grade I), 18 ependymomas (WHO grade II), 21 anaplastic ependymomas (WHO grade III) and 2 ependymoblastomas (WHO grade IV)] for mutations and homozygous deletions in the coding region of the hSNF5/INI1 gene and for allelic loss of its flanking chromosomal regions in 39 ependymal tumors of 35 patients. Allelic loss was detected in 11 of 35 informative primary ependymal tumors (31%) with a common region of overlap covered by the markers D22S257 and D22S310 on 22q11 including the marker D22S301. However, a detailed molecular analysis of 53 ependymal tumors for mutations and homozygous deletion of the hSNF5/INI1 gene revealed no alterations. We conclude that the hSNF5/INI1 gene is not involved in the pathogenesis of human ependymal tumors with allelic loss on chromosome arm 22q and an intact NF2 locus. In addition, our study localizes a putative ependymoma tumor suppressor gene(s) to a domain of chromosome arm 22q flanked by the microsatellite markers D22S257 and D22S310.

  8. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data

    DEFF Research Database (Denmark)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme

    2018-01-01

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, ...

  9. Promoter hypermethylation inactivate tumor suppressor FAM134B and is associated with poor prognosis in colorectal cancer.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Pillai, Suja; Lu, Cu-Tai; Kasem, Kais; Lam, Alfred King-Yin

    2018-05-01

    The present study aims to examine promoter methylation status of FAM134B in a large cohort of patients with colorectal adenocarcinomas. The clinical significances and correlations of FAM134B promoter methylation with its expression are also analysed. Methylation-specific high-resolution melt-curve analysis followed by sequencing was used to identify FAM134B promoter methylation in colorectal adenomas (N = 32), colorectal adenocarcinomas (N = 164), matched adjacent non-neoplastic colorectal mucosae (N = 83) and colon cancer cell lines (N = 4). FAM134B expression was studied by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blots. FAM134B promoter methylation was more frequent in adenocarcinomas (52%; 85/164) when compared to that of adenomas (28%; 9/32) and non-neoplastic mucosae (35%; 29/83). Cancer cells exhibited higher methylation when compared to non-neoplastic cells. FAM134B promoter methylation was inversely correlated with low FAM134B copy number and mRNA/protein expressions, whereas in-vitro demethylation has restored FAM134B expression in colon cancer cells. FAM134B promoter methylation was associated with high histological grade (P = .025), presence of peri-neural infiltration (P = .012), lymphovascular invasion (P = .021), lymph node metastasis (P = .0001), distant metastasis (P = .0001) and advanced pathological stages (P = .0001). In addition, FAM134B promoter methylation correlated with cancer recurrence and poor survival rates of patients with colorectal adenocarcinomas. To conclude, FAM134B promoter methylation plays a key role in regulating FAM134B expression in vitro and in vivo, which in turn contributes to the prediction of the biological aggressiveness of colorectal adenocarcinomas. Furthermore, FAM134B methylation might act as a marker in predicting clinical prognosis in patients with colorectal adenocarcinomas. © 2018 Wiley Periodicals, Inc.

  10. Promoter Hypermethylation of the EMP3 Gene in a Series of 229 Human Gliomas

    Directory of Open Access Journals (Sweden)

    Marta Mellai

    2013-01-01

    Full Text Available The epithelial membrane protein 3 (EMP3 is a candidate tumor suppressor gene in the critical region 19q13.3 for several solid tumors, including tumors of the nervous systems. The aim of this study was to investigate the EMP3 promoter hypermethylation status in a series of 229 astrocytic and oligodendroglial tumors and in 16 GBM cell lines. The analysis was performed by methylation-specific PCR and capillary electrophoresis. Furthermore, the EMP3 expression at protein level was evaluated by immunohistochemistry and Western blotting analysis. Associations of EMP3 hypermethylation with total 1p/19q codeletion, MGMT promoter hypermethylation, IDH1/IDH2 and TP53 mutations, and EGFR amplification were studied, as well as its prognostic significance. The EMP3 promoter hypermethylation has been found in 39.5% of gliomas. It prevailed in low-grade tumors, especially in gliomas with an oligodendroglial component, and in sGBMs upon pGBMs. In oligodendroglial tumors, it was strongly associated with both IDH1/IDH2 mutations and total 1p/19q codeletion and inversely with EGFR gene amplification. No association was found with MGMT hypermethylation and TP53 mutations. In the whole series, the EMP3 hypermethylation status correlated with 19q13.3 loss and lack of EMP3 expression at protein level. A favorable prognostic significance on overall survival of the EMP3 promoter hypermethylation was found in patients with oligodendroglial tumors.

  11. Correlation between RAGE gene promoter methylation and diabetic retinal inflammation.

    Science.gov (United States)

    Kan, Shifeng; Wu, Jing; Sun, Chengxi; Hao, Jing; Wu, Zhen

    2018-01-01

    The methylation status of the receptor for advanced glycation end products (RAGE) gene promoter in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic retinopathy (DR) patients was evaluated to investigate the correlation between RAGE gene promoter methylation and diabetic retinal inflammation. Eighty patients admitted and diagnosed as type 2 DR in Qilu Hospital, Shandong University during the period from October, 2013 to October, 2015 were enrolled in this study. They were the observation group and 40 healthy subjects were enrolled in the control group. PBMCs were collected from patients using density gradient centrifugation, and the methylation status of RAGE gene promoters was detected using methylation-specific PCP (MSP). Interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) levels of in the serum were measured using enzyme-linked immunosorbent assay (ELISA). PBMCs in patients with positive RAGE gene promoter methylation were isolated and cultured and RAGE gene promoter methylation was inhibited using the demethylating agent, 5'-aza-2'-deoxycytidine (5-aza-dC). The methylation status of RAGE gene promoters in PBMCs was detected via MSP. IL-1β, IL-6 and TNF-α levels in the supernatant of PBMC culture solution were evaluated using ELISA. MSP results showed that there were 26 cases (32.50%) of RAGE gene promoter methylation in PBMCs in DR patients. RAGE gene promoters were methylated in all normal healthy subjects. IL-1β, IL-6 and TNF-α levels in serum for positive RAGE gene promoter methylation group were significantly lower than those in negative RAGE gene promoter methylation group (pRAGE gene promoter methylation of PBMCs in patients with positive RAGE gene promoter methylation. The inhibition of methylation in RAGE gene promoter increased the levels of IL-1β, IL-6 and TNF-α in supernatant of culture solution. In conclusion, RAGE gene promoter hypomethylation was detected in DR patients, indicating that RAGE gene promoter

  12. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation

    LENUS (Irish Health Repository)

    Sernbo, Sandra

    2011-09-24

    Abstract Background The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking. Methods SOX11 expression and clinicopathological data was compared using χ2 test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation. Results SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5\\'-Aza-2\\'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11. Conclusions SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.

  13. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  14. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    Science.gov (United States)

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.

  15. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein.

    Science.gov (United States)

    Pabona, John Mark P; Dave, Bhuvanesh; Su, Ying; Montales, Maria Theresa E; de Lumen, Ben O; de Mejia, Elvira G; Rahal, Omar M; Simmen, Rosalia C M

    2013-01-01

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature and precise actions of specific bioactive components present in foods with purported health effects. The 43-amino acid peptide lunasin (LUN) is found in soybeans, is bioavailable similar to the isoflavone genistein (GEN), and thus may mediate the beneficial effects of soy food consumption. Here, we evaluated whether LUN displays common and distinct actions from those of GEN in non-malignant (mouse HC11) and malignant (human MCF-7) mammary epithelial cells. In MCF-7 cells, LUN up-regulated tumor suppressor phosphatase and tensin homolog deleted in chromosome ten (PTEN) promoter activity, increased PTEN transcript and protein levels and enhanced nuclear PTEN localization, similar to that shown for GEN in mammary epithelial cells. LUN-induced cellular apoptosis, akin to GEN, was mediated by PTEN, but unlike that for GEN, was p53-independent. LUN promoted E-cadherin and β-catenin non-nuclear localization similar to GEN, but unlike GEN, did not influence the proliferative effects of oncogene Wnt1 on HC11 cells. Further, LUN did not recapitulate GEN inhibitory effects on expansion of the cancer stem-like/progenitor population in MCF-7 cells. Results suggest the concerted actions of GEN and LUN on cellular apoptosis for potential mammary tumor preventive effects and highlight whole food consumption rather than intake of specific dietary supplements with limited biological effects for greater health benefits.

  16. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...... is mediated by the transcription factor E2F, which binds to a specific site in the cyclin A promoter. It differs from the prototype E2F site in nucleotide sequence and protein binding; it is bound by E2F complexes containing cyclin E and p107 but not pRB. Ectopic expression of cyclin D1 triggers premature...... activation of the cyclin A promoter by E2F, and this effect is blocked by the tumor suppressor protein p16INK4....

  17. Sodium butyrate induces cell death by autophagy and reactivates a tumor suppressor gene DIRAS1 in renal cell carcinoma cell line UOK146.

    Science.gov (United States)

    Verma, Shiv Prakash; Agarwal, Ayushi; Das, Parimal

    2018-04-01

    Sodium butyrate (SB), a histone deacetylase inhibitor, is emerging as a potent anti-cancer drug for different types of cancers. In the present study, anti-cancer activity of SB in Xp11.2 (TFE3) translocated renal cell carcinoma cell line UOK146 was studied. Anti-proliferative effect of SB in renal cell carcinoma (RCC) cell line UOK146 was evaluated by MTT assay and morphological characteristics were observed by phase contrast microscopy which displayed the cell death after SB treatment. SB induces DNA fragmentation and change in nuclear morphology observed by increased sub-G1 region cell population and nuclear blebbings. Cell cycle arrest at G2/M phase was found after SB treatment. UOK146 cell line shows autophagy mode of cell death as displayed by acridine orange staining and flow cytometry analysis. LC3-II, a protein marker of autophagy, was also found to be upregulated after SB treatment. A tumor suppressor gene DIRAS1 was upregulated after SB treatment, displaying its anti-cancer potential at molecular level. These findings suggest that SB could serve as a novel regulator of tumor suppressors and lead to the discovery of novel therapeutics with better and enhanced anti-cancer activity.

  18. The expression of a tumor suppressor gene JDP2 and its prognostic value in hepatocellular carcinoma patients.

    Science.gov (United States)

    Chen, Yao-Li; Chan, Shih-Hsuan; Lin, Ping-Yi; Chu, Pei-Yi

    2017-05-01

    The c-Jun dimerization protein 2 (JDP2) belongs to the activator protein-1 (AP-1) family and functions as a repressor of the AP-1 complex by dimerizing with other c-Jun proteins. Thus, JDP2 plays an important role in the repression of AP-1-driven biological processes, such as differentiation and proliferation. Recent studies have suggested that JDP2 may function as a tumor suppressor through its suppressive action against the AP-1 complex, which is known to drive oncogenic signals in several human malignancies. In this study, we used immunohistochemistry to examine the JDP2 expression in 211 cases of hepatocellular carcinoma (HCC) and analyzed the potential link of JDP2 expression to the clinicopathological features of HCC patients. Clinical parameter analysis showed that high expression of JDP2 was significantly correlated with smaller tumor size (P=.002) and early stage HCC (P=.039). Moreover, Kaplan-Meier survival analysis showed that high expression of JDP2 was significantly associated with better survival in HCC patients (P=.006). Taken together, our results showed that JDP2 may serve as a tumor suppressor in HCC and could therefore serve as a good prognostic marker for patients with HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFβ-MYH11 fusion transcripts

    DEFF Research Database (Denmark)

    Rethmeier, Anita; Aggerholm, Anni; Olesen, Lene Hyldahl

    2006-01-01

    Silencing of the putative tumour suppressor gene retinoic acid receptor beta2 (RARbeta2) caused by aberrant promoter hypermethylation has been identified in several solid tumours. In order to evaluate the extent of RARbeta2 hypermethylation and transcription in acute myeloid leukaemia (AML...... was unmethylated in 10/10 bone marrow and 7/7 blood samples from healthy individuals, the gene was hypermethylated in 43% of the AML patients. The RARbeta2 degree of promoter methylation differed between and within individuals, and the mRNA transcription levels of the gene varied inter-individually by a factor...... of 4000. A significant inverse correlation between promoter hypermethylation and gene expression could be established (t-test, P = 0.019). Comparison of methylation data with a series of other molecular alterations in the same patient materials revealed a correlation between hypermethylation...

  20. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Directory of Open Access Journals (Sweden)

    Bianco Linda

    2009-11-01

    Full Text Available Abstract Background In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein. In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef. Results The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19 gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue. Conclusion We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor

  1. Physical mapping of chromosome 17p13.3 in the region of a putative tumor suppressor gene important in medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.D.; Daneshvar, L.; Willert, J.R. [Univ. of California, San Franciso, CA (United States)] [and others

    1994-09-01

    Deletion mapping of a medulloblastoma tumor panel revealed loss of distal chromosome 17p13.3 sequences in tumors from 14 of 32 patients (44%). Of the 14 tumors showing loss of heterozygosity by restriction fragment length polymorphism analysis, 14 of 14 (100%) displayed loss of the telomeric marker p144-D6 (D17S34), while a probe for the ABR gene on 17p13.3 was lost in 7 of 8 (88%) informative cases. Using pulsed-field gel electrophoresis, we localized the polymorphic marker (VNTR-A) of the ABR gene locus to within 220 kb of the p144-D6 locus. A cosmid contig constructed in this region was used to demonstrate by fluorescence in situ hybridization that the ABR gene is oriented transcriptionally 5{prime} to 3{prime} toward the telomere. This report provides new physical mapping data for the ABR gene, which has not been previously shown to be deleted in medulloblastoma. These results provide further evidence for the existence of a second tumor suppressor gene distinct from p53 on distal chromosome 17p. 12 refs., 3 figs.

  2. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    Science.gov (United States)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  3. [A meta-analysis of Association between MGMT gene promoter methylation and non-small cell lung cancer].

    Science.gov (United States)

    Fang, Nianzhen; Gu, Jundong; Wei, Huijun; You, Jiacong; Zhou, Qinghua

    2014-08-20

    DNA promoter methylation of the tumor suppressor genes was one of the key mechanism for gene silence. The aim of this study is to investigate the difference of MGMT gene promoter methylation rate in tumor tissue and autologous controls (serum, normal lung tissue and bronchial lavage fluid) in patients with non-small cell lung cancer (NSCLC). The databases of Medline, EMBSE, CNKI and Wanfang were searched for selection of published articles of MGMT gene promoter methylation and non-small cell lung carcinoma risk. The pooled odds ratio (OR) and percentage of MGMT for lung cancer tissue of NSCLC patients compared with normal lung tissue, plasma and the bronchial lavage fluid were pooled. 15 articles of association between MGMT gene promoter methylation and non small cell lung carcinoma risk were included in this meta-analysis. The combined results demonstrated the methylation rate of MGMT in NSCLC cancer tissue was 38% (95%CI: 23%-53%). For normal lung tissue, plasma and the bronchial lavage fluid were 16% (95%CI: 5%-27%), 23% (95%CI: 10%-34%) and 39% (95%CI: 23%-55%) respectively. The OR in cancer tissue was much higher than that in normal lung tissue and plasma odds ratio (OR) 3.98 (95%CI: 2.71-5.84, P0.05). Mehtylation rate in MGMT gene promoter of cancer tissue in NSCLC patients was much higher than that in normal lung tissue and plasma, which showed a close association between NSCLC cancer and MGMT gene promoter methylation.

  4. A Meta-analysis of Association between MGMT GenePromoter Methylation and Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nianzhen FANG

    2014-08-01

    Full Text Available Backgroud and objective DNA promoter methylation of the tumor suppressor genes was one of the key mechanism for gene silence. The aim of this study is to investigate the difference of MGMT gene promoter methylation rate in tumor tissue and autologous controls (serum, normal lung tissue and bronchial lavage fluid in patients with non-small cell lung cancer (NSCLC. Methods The databases of Medline, EMBSE, CNKI and Wanfang were searched for selection of published articles of MGMT gene promoter methylation and non-small cell lung carcinoma risk. The pooled odds ratio (OR and percentage of MGMT for lung cancer tissue of NSCLC patients compared with normal lung tissue, plasma and the bronchial lavage fluid were pooled. Results 15 articles of association between MGMT gene promoter methylation and non small cell lung carcinoma risk were included in this meta-analysis. The combined results demonstrated the methylation rate of MGMT in NSCLC cancer tissue was 38% (95%CI: 23%-53%. For normal lung tissue, plasma and the bronchial lavage fluid were 16% (95%CI: 5%-27%, 23% (95%CI: 10%-34% and 39% (95%CI: 23%-55% respectively. The OR in cancer tissue was much higher than that in normal lung tissue and plasma odds ratio (OR 3.98 (95%CI: 2.71-5.84, P0.05. Conclusions Mehtylation rate in MGMT gene promoter of cancer tissue in NSCLC patients was much higher than that in normal lung tissue and plasma, which showed a close association between NSCLC cancer and MGMT gene promoter methylation.

  5. Human papillomavirus type 16 E7 perturbs DREAM to promote cellular proliferation and mitotic gene expression.

    Science.gov (United States)

    DeCaprio, J A

    2014-07-31

    The study of the small DNA tumor viruses continues to provide valuable new insights into oncogenesis and fundamental biological processes. Although much has already been revealed about how the human papillomaviruses (HPVs) can transform cells and contribute to cervical and oropharyngeal cancer, there clearly is much more to learn. In this issue of Oncogene, Pang et al., doi:10.1038/onc.2013.426, demonstrate that the high-risk HPV16 E7 oncogene can promote cellular proliferation by interacting with the DREAM (DP, RB-like, E2F and MuvB) complex at two distinct phases of the cell cycle. Consistent with earlier work, HPV16 E7 can bind to the retinoblastoma tumor suppressor (RB) family member p130 (RBL2) protein and promote its proteasome-mediated destruction thereby disrupting the DREAM complex and can prevent exit from the cell cycle into quiescence. In addition, they demonstrate that HPV16 E7 can bind to MuvB core complex in association with BMYB and FOXM1 and activate gene expression during the G2 and M phase of the cell cycle. Thus, HPV16 E7 acts to prevent exit from the cell cycle entry and promotes mitotic proliferation and may account for the high levels of FOXM1 often observed in poor-risk cervical cancers.

  6. The tumor suppressor phosphatase PP2A-B56α regulates stemness and promotes the initiation of malignancies in a novel murine model.

    Directory of Open Access Journals (Sweden)

    Mahnaz Janghorban

    Full Text Available Protein phosphatase 2A (PP2A is a ubiquitously expressed Serine-Threonine phosphatase mediating 30-50% of protein phosphatase activity. PP2A functions as a heterotrimeric complex, with the B subunits directing target specificity to regulate the activity of many key pathways that control cellular phenotypes. PP2A-B56α has been shown to play a tumor suppressor role and to negatively control c-MYC stability and activity. Loss of B56α promotes cellular transformation, likely at least in part through its regulation of c-MYC. Here we report generation of a B56α hypomorph mouse with very low B56α expression that we used to study the physiologic activity of the PP2A-B56α phosphatase. The predominant phenotype we observed in mice with B56α deficiency in the whole body was spontaneous skin lesion formation with hyperproliferation of the epidermis, hair follicles and sebaceous glands. Increased levels of c-MYC phosphorylation on Serine62 and c-MYC activity were observed in the skin lesions of the B56αhm/hm mice. B56α deficiency was found to increase the number of skin stem cells, and consistent with this, papilloma initiation was accelerated in a carcinogenesis model. Further analysis of additional tissues revealed increased inflammation in spleen, liver, lung, and intestinal lymph nodes as well as in the skin lesions, resembling elevated extramedullary hematopoiesis phenotypes in the B56αhm/hm mice. We also observed an increase in the clonogenicity of bone marrow stem cells in B56αhm/hm mice. Overall, this model suggests that B56α is important for stem cells to maintain homeostasis and that B56α loss leading to increased activity of important oncogenes, including c-MYC, can result in aberrant cell growth and increased stem cells that can contribute to the initiation of malignancy.

  7. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development

    Science.gov (United States)

    Rennebeck, Gabriela; Kleymenova, Elena V.; Anderson, Rebecca; Yeung, Raymond S.; Artzt, Karen; Walker, Cheryl L.

    1998-01-01

    Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain. PMID:9861021

  8. Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach.

    Science.gov (United States)

    Meyer, Pablo; Siwo, Geoffrey; Zeevi, Danny; Sharon, Eilon; Norel, Raquel; Segal, Eran; Stolovitzky, Gustavo

    2013-11-01

    The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in a previously unknown experimentally generated data set. The challenge was presented to the community in the framework of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same genomic site of yeast Saccharomyces cerevisiae. Twenty-one teams submitted results predicting the expression levels of 53 different promoters from yeast ribosomal protein genes. Analysis of participant predictions shows that accurate values for low-expressed and mutated promoters were difficult to obtain, although in the latter case, only when the mutation induced a large change in promoter activity compared to the wild-type sequence. As in previous DREAM challenges, we found that aggregation of participant predictions provided robust results, but did not fare better than the three best algorithms. Finally, this study not only provides a benchmark for the assessment of methods predicting activity of a specific set of promoters from their sequence, but it also shows that the top performing algorithm, which used machine-learning approaches, can be improved by the addition of biological features such as transcription factor binding sites.

  9. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    PTEN promoter hypermethylation has been found to be involved in many kinds of cancers. Up to date, no report about the relationships between methylation of PTEN promoter region and bladder cancer has been found. To investigate the methylation pattern of PTEN gene transcriptional regulation region (TRR), ...

  10. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    International Nuclear Information System (INIS)

    Dávalos-Salas, Mercedes; Furlan-Magaril, Mayra; González-Buendía, Edgar; Valdes-Quezada, Christian; Ayala-Ortega, Erandi; Recillas-Targa, Félix

    2011-01-01

    Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing

  11. The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription.

    Science.gov (United States)

    Müller, Gerd A; Engeland, Kurt

    2010-02-01

    The cell cycle-dependent element (CDE) and the cell cycle genes homology region (CHR) control the transcription of genes with maximum expression in G(2) phase and in mitosis. Promoters of these genes are repressed by proteins binding to CDE/CHR elements in G(0) and G(1) phases. Relief from repression begins in S phase and continues into G(2) phase and mitosis. Generally, CDE sites are located four nucleotides upstream of CHR elements in TATA-less promoters of genes such as Cdc25C, Cdc2 and cyclin A. However, expression of some other genes, such as human cyclin B1 and cyclin B2, has been shown to be controlled only by a CHR lacking a functional CDE. To date, it is not fully understood which proteins bind to and control CDE/CHR-containing promoters. Recently, components of the DREAM complex were shown to be involved in CDE/CHR-dependent transcriptional regulation. In addition, the expression of genes regulated by CDE/CHR elements is mostly achieved through CCAAT-boxes, which bind heterotrimeric NF-Y proteins as well as the histone acetyltransferase p300. Importantly, many CDE/CHR promoters are downregulated by the tumor suppressor p53. In this review, we define criteria for CDE/CHR-regulated promoters and propose to distinguish two classes of CDE/CHR-regulated genes. The regulation through transcription factors potentially binding to the CDE/CHR is discussed, and recently discovered links to central pathways regulated by E2F, the pRB family and p53 are highlighted.

  12. Comparative analysis of ADS gene promoter in seven Artemisia ...

    Indian Academy of Sciences (India)

    2014-12-23

    Dec 23, 2014 ... tent in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 64, 319–323. Kiran K., Ansari S. A., Srivastava R., Lodhi N., Chaturvedi C. P.,. Sawant S. V. et al. 2006 The TATA-Box sequence in the basal promoter contributes to determining light-dependent gene.

  13. Firefly luciferase gene contains a cryptic promoter

    Czech Academy of Sciences Publication Activity Database

    Vopálenský, V.; Mašek, T.; Horváth, Ondřej; Vicenová, B.; Mokrejš, M.; Pospíšek, M.

    2008-01-01

    Roč. 14, č. 9 (2008), s. 1720-1729 ISSN 1355-8382 Grant - others:GAČR(CZ) GA204/03/1487; GAČR(CZ) GA301/07/0607; Mšk(CZ) LC06066 Program:LC Institutional research plan: CEZ:AV0Z50520514 Keywords : luciferase * cryptic promoter * hepatitis C virus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.018, year: 2008

  14. The von Hippel-Lindau (VHL) tumor-suppressor gene is down-regulated by selenium deficiency in Caco-2 cells and rat colon mucosa

    Science.gov (United States)

    To test the hypothesis that selenium affects DNA methylation and hence gene regulation we employed a methylation array (Panomics) in the human colonic epithelial Caco-2 cell model. The array profiles DNA methylation from promoter regions of 82 human genes. After conditioning cells to repeatedly redu...

  15. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz

    2009-01-01

    expression through specific transcription factor binding sites in the promoter region of mechanosensitive genes. In the present study, we demonstrate that the expression of HB-GAM, which is known to have stimulating effects on osteogenic differentiation, is rapidly induced by mechanical loading in hMSC-TERT4...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  16. Alternative exon usage creates novel transcript variants of tumor suppressor SHREW-1 gene with differential tissue expression profile

    Directory of Open Access Journals (Sweden)

    Petra A. B. Klemmt

    2016-11-01

    Full Text Available Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants.

  17. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    OpenAIRE

    Wu, B; Georgopoulos, C; Ang, D

    1992-01-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of on...

  18. B-cell translocation gene 1 is downregulated by promoter methylation in ovarian carcinoma.

    Science.gov (United States)

    Kim, Ji-Ye; Do, Sung-Im; Bae, Go Eun; Kim, Hyun-Soo

    2017-01-01

    A better understanding of tumor biology is important in the identification of molecules that are downregulated in malignancy and in determining their role in tumor suppression. B-cell translocation gene 1 (BTG1) has been shown to act as a tumor suppressor in several types of human malignancy. In this study, we analyzed BTG1 expression in ovarian carcinoma cell lines, and we investigated the mechanism underlying the observed alterations. The methylation status of the BTG1 promoter region was determined by methylation-specific polymerase chain reaction, and the effect of demethylation on BTG1 expression was analyzed. BTG1 protein expression in ovarian high-grade serous carcinoma tissue samples was evaluated using immunohistochemistry. BTG1 mRNA and protein expression were reduced in ovarian carcinoma cells. In BTG1-silenced ovarian cancer cells, the BTG1 promoter was highly methylated. Treatment with 5-aza-deoxycytidine significantly elevated BTG1 mRNA and protein expression. Immunostaining demonstrated that BTG1 expression was significantly lower in ovarian carcinoma tissue samples than nonpathological ovaries and fallopian tubes. We demonstrated that BTG1 silencing in ovarian carcinoma occurs through epigenetic repression and is involved in the ovarian carcinogenesis. Our data suggest that BTG1 is a potential therapeutic target for patients with ovarian carcinoma.

  19. MTHFR variants reduce the risk of G:C->A:T transition mutations within the p53 tumor suppressor gene in colon tumors.

    Science.gov (United States)

    Ulrich, C M; Curtin, K; Samowitz, W; Bigler, J; Potter, J D; Caan, B; Slattery, M L

    2005-10-01

    5,10-Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme in folate-mediated 1-carbon metabolism. Reduced MTHFR activity has been associated with genomic DNA hypomethylation. Methylated cytosines at CpG sites are easily mutated and have been implicated in G:C-->A:T transitions in the p53 tumor suppressor gene. We investigated 2 polymorphisms in the MTHFR gene (C677T and A1298C) and their associations with colon tumor characteristics, including acquired mutations in Ki-ras and p53 genes and microsatellite instability (MSI). The study population comprised 1248 colon cancer cases and 1972 controls, who participated in a population-based case-control study and had been analyzed previously for MSI, acquired mutations in Ki-ras, p53, and germline MTHFR polymorphisms. Multivariable-adjusted odds ratios are presented. Overall, MTHFR genotypes were not associated with MSI status or the presence of any p53 or Ki-ras mutation. Individuals with homozygous variant MTHFR genotypes had a significantly reduced risk of G:C-->A:T transition mutations within the p53 gene, yet, as hypothesized, only at CpG-associated sites [677TT vs. 677CC (referent group) OR = 0.4 (95% CI: 0.1-0.8) for CpG-associated sites; OR = 1.5 (0.7-3.6) for non-CpG associated sites]. Genotypes conferring reduced MTHFR activity were associated with a decreased risk of acquired G:C-->A:T mutations within the p53 gene occurring at CpG sites. Consistent with evidence on the phenotypic effect of the MTHFR C677T variant, we hypothesize that this relation may be explained by modestly reduced genomic DNA methylation, resulting in a lower probability of spontaneous deamination of methylated cytosine to thymidine. These results suggest a novel mechanism by which MTHFR polymorphisms can affect the risk of colon cancer.

  20. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer.

    Science.gov (United States)

    Reeves, Helen L; Narla, Goutham; Ogunbiyi, Olagunju; Haq, Asif I; Katz, Amanda; Benzeno, Sharon; Hod, Eldad; Harpaz, Noam; Goldberg, Shlomit; Tal-Kremer, Sigal; Eng, Francis J; Arthur, Michael J P; Martignetti, John A; Friedman, Scott L

    2004-04-01

    Kruppel-like factor 6 (KLF6) is a ubiquitous zinc finger tumor suppressor that is often mutated in prostate cancer. Our aims were to establish the frequency of KLF6 inactivation in sporadic and inflammatory bowel disease (IBD)-associated colorectal cancers (CRC); to correlate these abnormalities with mutation and/or loss of TP53, APC, and K-RAS; and to characterize the behavior of mutant KLF6 in colon-derived cell lines. We analyzed DNA isolated from 50 microdissected CRC cases, including 35 sporadic and 15 IBD-associated tumors. Microsatellite analysis and direct sequencing were used to establish the incidence of microsatellite instability, KLF6 and TP53 allelic imbalance, and KLF6, K-RAS, TP53, and APC mutation. Loss of growth suppressive function of the CRC-derived KLF6 mutants was characterized by in vitro thymidine incorporation assays and Western blotting. KLF6 was inactivated by loss and/or mutation in most sporadic and IBD-related CRCs. The KLF6 locus was deleted in at least 55% of tumors, and mutations were identified in 44%. Rates of KLF6 loss and mutation were similar to those of TP53 and K-RAS in the same samples. KLF6 mutations were present in tumors with either microsatellite or chromosomal instability and were more common, particularly in the IBD-related cancers, in the presence of wild-type APC. Unlike wild-type KLF6, cancer-derived KLF6 mutants neither suppressed growth nor induced p21 following transfection into cultured cells. Deregulation of KLF6 by a combination of allelic imbalance and mutation may play a role in the development of CRC.

  1. Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Lohuis, H.; Hedil, M.; Lent, van J.W.M.; Kormelink, R.J.M.

    2013-01-01

    As a result of contradictory reports, the avirulence (Avr) determinant that triggers Tsw gene-based resistance in Capsicum annuum against the Tomato spotted wilt virus (TSWV) is still unresolved. Here, the N and NSs genes of resistance-inducing (RI) and resistance-breaking (RB) isolates were cloned

  2. Evolution of Drosophila ribosomal protein gene core promoters.

    Science.gov (United States)

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  3. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors.

    Science.gov (United States)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  4. p16 Tumor Suppressor Gene Methylation in Diffuse Large B Cell Lymphoma: A Study of 88 Cases at Two Hospitals in the East Coast of Malaysia

    Science.gov (United States)

    Mohd Ridah, Lailatul Jalilah; A Talib, Norlelawati; Muhammad, Naznin; Hussain, Faezahtul Arbaeyah; Zainuddin, Norafiza

    2017-10-26

    Introduction: p16 gene plays an important role in the normal cell cycle regulation. Methylation of p16 has been reported to be one of the epigenetic events contributing to the pathogenesis of diffuse large B-cell lymphoma (DLBCL) which occurring at varying frequency. DLBCL is an aggressive and high-grade malignancy which accounts for approximately 30% of all non-Hodgkin lymphoma cases. However, little is known regarding the epigenetic alterations of p16 gene in DLBCL cases in Malaysia. Therefore, the objective of this study was to examine the status of p16 methylation in DLBCL. Methods: A total of 88 formalin-fixed paraffin-embedded DLBCL tissues retrieved from two hospitals located in the east coast of Malaysia, namely Hospital Tengku Ampuan Afzan (HTAA) Pahang and Hospital Universiti Sains Malaysia (HUSM) Kelantan, were chosen for this study. DNA specimens were isolated and subsequently subjected to bisulfite treatment prior to methylation specific-PCR. Two pairs of primers were used to amplify methylated and unmethylated regions of p16 gene. The PCR products were then separated using agarose gel electrophoresis and visualised under UV illumination. SPSS version 12.0 was utilised to perform all statistical analysis. Result: p16 methylation was detected in 65 of 88 (74%) samples. There was a significant association between p16 methylation status and patients aged >50 years old (p=0.04). Conclusion: Our study demonstrated that methylation of p16 tumor suppressor gene in our DLBCL cases is common and significantly increased among patients aged 50 years and above. Aging is known to be an important risk factor in the development of cancers and we speculate that this might be due to the increased transformation of malignant cells in aging cell population. However, this has yet to be confirmed with further research and correlate the findings with clinicopathological parameters. Creative Commons Attribution License

  5. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-01-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  6. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  7. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer.

    Science.gov (United States)

    Thangapazham, Rajesh; Saenz, Francisco; Katta, Shilpa; Mohamed, Ahmed A; Tan, Shyh-Han; Petrovics, Gyorgy; Srivastava, Shiv; Dobi, Albert

    2014-01-13

    In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis.

  8. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer

    International Nuclear Information System (INIS)

    Thangapazham, Rajesh; Saenz, Francisco; Katta, Shilpa; Mohamed, Ahmed A; Tan, Shyh-Han; Petrovics, Gyorgy; Srivastava, Shiv; Dobi, Albert

    2014-01-01

    In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis

  9. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  10. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  11. Interleukin-18 gene promoter polymorphisms and recurrent spontaneous abortion.

    Science.gov (United States)

    Naeimi, Sirous; Ghiam, Alireza Fotouhi; Mojtahedi, Zahra; Dehaghani, Alamtaj Samsami; Amani, Dawar; Ghaderi, Abbas

    2006-01-01

    IL-18 is a multifunctional cytokine capable of inducing either Th1 or Th2 polarization depending on the immunologic milieu. IL-18 is detected at the materno-fetal interface very soon in early pregnancy. Two polymorphisms in the promoter region of the IL-18 gene at positions of -607 and -137 appear to have functional impacts. This study attempts to evaluate the frequency of these two polymorphisms in the IL-18 gene promoter in patients with recurrent spontaneous abortion (RSA) and normal pregnant women. One hundred and two RSA patients and 103 healthy pregnant women were enrolled in this study. Single nucleotide polymorphisms of the IL-18 gene at positions -607 (C/A) and -137 (G/C) were analyzed by the sequence-specific PCR method. There was no significant association between the allele, genotype, and haplotype frequencies of the two single nucleotide polymorphisms (SNPs) in the IL-18 gene promoter and RSA. The results of this study showed that IL-18 gene promoter polymorphisms at positions -607 and -137 did not confer susceptibility to RSA in southern Iranian patients.

  12. A novel BDNF gene promoter directs expression to skeletal muscle

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2003-06-01

    Full Text Available Abstract Background Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. Results The cloning and analysis of three additional zebrafish (Danio rerio BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. Conclusion The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are

  13. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  14. Physical mapping of a commonly deleted region, the site of a candidate tumor suppressor gene, at 12q22 in human male germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.V.V.S.; Bosl, G.J.; Chaganti, R.S.K. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [and others

    1996-08-01

    A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22-q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (priximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR{sub 8000} and the minimal region of deletion to be 141 cR{sub 8000}. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22. 35 refs., 4 figs., 2 tabs.

  15. Immunohistochemical observations on tumor suppressor gene p53 status in mouse fibrosarcoma following in-vivo photodynamic therapy: the role of xanthine oxidase activity

    Science.gov (United States)

    Ziolkowski, Piotr P.; Symonowicz, Krzysztof; Milnerowicz, Artur; Osiecka, Beata J.

    1997-12-01

    Tumor suppressor gene p53 expression in a mouse fibrosarcoma following in-vivo photodynamic therapy has been studied using the immunohistochemical method. Photodynamic treatment involved injections of the well known sensitizer -- hematoporphyrin derivative at the doses 1.25 and 2.5 mg/kg of body weight and irradiations at the doses 25 and 50 J/sq cm. Glass slide preparations from PDT-treated tumors were obtained at different time points (15, 60 minutes, 2 and 24 hours) after therapy, subsequently stained for wild type/mutant p53, and assessed for positive reaction. High PDT doses (HpD -- 2.5 mg/kg; light dose -- 50 J/sq cm) correlated with decreased expression of p53 in tumor cells. The other part of the study was directed to measure the xanthine oxidase (XO) activity in the tumor cells. PDT included injections of HpD and light exposure at the same doses as for p53 study. We observed a complete inhibition of the enzyme activity. The slight increase in XO activity was found following treatment with either light or HpD alone.

  16. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  17. Comparative analysis of ADS gene promoter in seven Artemisia ...

    Indian Academy of Sciences (India)

    Artemisinin is the most effective antimalarial drug that is derived from Artemisia annua. Amorpha-4,11-diene synthase (ADS) controls the first committed step in artemisinin biosynthesis. The ADS gene expression is regulated by transcription factors which bind to the cis-acting elements on the ADS promoter and are probably ...

  18. Interleukin-10 gene promoter polymorphism as a potential host ...

    African Journals Online (AJOL)

    10) gene have been associated with altered levels of circulating IL-10, a Th2 cytokine that plays a key role in the pathogenesis of TB. We analyzed the frequencies of IL-10 promoter polymorphisms in 82 TB patients and 99 healthy Pakistani ...

  19. Interleukin 10 gene promoter polymorphism and risk of diffuse large ...

    African Journals Online (AJOL)

    Purpose: Given the importance of understanding the genetic variations involved in the pathogenesis of non-Hodgkin's lymphoma (NHL), this work was designed to study the impact of IL-10 (1082 G/A; rs1800896 and 819 C/T; rs1800871) gene promoter polymorphism on susceptibility of Egyptians to diffuse large B cell ...

  20. Isolating Barley (Hordeum vulgare L.) B1 Hordein Gene Promoter ...

    African Journals Online (AJOL)

    Yomi

    2012-04-10

    Apr 10, 2012 ... Isolating Barley (Hordeum vulgare L.) B1 Hordein Gene. Promoter and Using Sequencing Analaysis. For The Identification of Conserved Regulatory. Elements By Bioinformatic Tools. Kobra Nalbandi1, Bahram Baghban Kohnehrouz2*, Khalil Alami Saeed1 and Ashraf. Gholizadeh3. 1Ramin Agricultural ...

  1. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Changhua, E-mail: chkoukou@hotmail.com [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Zhou, Tian [Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Han, Xilin; Zhuang, Huijie [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Qian, Haixin, E-mail: qianhaixin@hotmail.com [The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000 (China)

    2015-08-21

    Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling. - Highlights: • Promoter methylation of LRIG1 occurred in colorectal cancer cells and tumors. • Restoration of LRIG1 inhibits tumor growth in vitro and in vivo. • Overexpression or knockdown of LRIG1 regulates EGFR/AKT and downstream apoptosis. • Methylation of LRIG1 correlates with its mRNA and protein downregulation. • LRIG1 was firstly identified as an epigenetic target in cancer.

  2. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  3. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  4. Specific expression and promoter analysis of the albumin gene promoter of the duck (Anas platyrhynchos domesticus).

    Science.gov (United States)

    Chen, Y; Yu, Q; Huang, Z; Wang, B; Xu, Q; Lan, L; Chang, G; Zhang, Y; Chen, G

    2017-02-01

    1. Albumin (ALB) is a serum protein most highly expressed in liver and regarded as an effective indicator for liver pathologies. The objectives of this study were to determine the expression of duck ALB gene (duALB) in various non-hepatic tissues and identify the potential cis-regulatory elements in the promoter. 2. A model was established to assess duALB promoter activity in different cell lines by construction of a duALB promoter-driven GFP (Green Fluorescent Protein)-expressing vector, which exhibited high expression activity in liver-derived cells and lower expression in other cells. Through the firefly luciferase reporter gene driven by a series of constructs carrying progressive deletions, the core transcriptional regulatory region within the duALB promoter was identified. Mutations in candidate-binding sites were made by site-directed mutagenesis. 3. The core transcriptional regulatory region was located in the -190/-51 bp region. This region contains three potential transcription factor-binding sites, one each for hepatocyte nuclear factor (HNF-3β) (-158/-149), CCAAT/Enhancer-binding protein element (C/EBPα) (-119/-107) and nuclear factor-1 (HNF-1) (-67/-57). Site-directed mutagenesis of HNF-1 and C/EBPα-binding sites resulted in a significant reduction in duALB promoter activity. Two potential cis-regulatory elements (C/EBPα and HNF-1) were responsible for its transcriptional activity in liver-derived cells. 4. These findings contribute to the further understanding of the fundamental mechanisms of ALB gene regulation and the use of tissue-specific gene promoters to regulate tissue-specific expression of exogenous genes in vivo.

  5. Molecular Cloning, Characterization, and Expression ofMiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indicaL).

    Science.gov (United States)

    Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan

    2016-01-01

    MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango ( Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5' UTR and a 189 bp long 3' UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems' leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue -specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis . In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango.

  6. Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Doug A Medvetz

    Full Text Available Birt-Hogg-Dube (BHD is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN, the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhd(flox/flox mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1 activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma.

  7. Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors

    International Nuclear Information System (INIS)

    Chosdol, Kunzang; Misra, Anjan; Puri, Sachin; Srivastava, Tapasya; Chattopadhyay, Parthaprasad; Sarkar, Chitra; Mahapatra, Ashok K; Sinha, Subrata

    2009-01-01

    We had earlier used the comparison of RAPD (Random Amplification of Polymorphic DNA) DNA fingerprinting profiles of tumor and corresponding normal DNA to identify genetic alterations in primary human glial tumors. This has the advantage that DNA fingerprinting identifies the genetic alterations in a manner not biased for locus. In this study we used RAPD-PCR to identify novel genomic alterations in the astrocytic tumors of WHO grade II (Low Grade Diffuse Astrocytoma) and WHO Grade IV (Glioblastoma Multiforme). Loss of heterozygosity (LOH) of the altered region was studied by microsatellite and Single Nucleotide Polymorphism (SNP) markers. Expression study of the gene identified at the altered locus was done by semi-quantitative reverse-transcriptase-PCR (RT-PCR). Bands consistently altered in the RAPD profile of tumor DNA in a significant proportion of tumors were identified. One such 500 bp band, that was absent in the RAPD profile of 33% (4/12) of the grade II astrocytic tumors, was selected for further study. Its sequence corresponded with a region of FAT, a putative tumor suppressor gene initially identified in Drosophila. Fifty percent of a set of 40 tumors, both grade II and IV, were shown to have Loss of Heterozygosity (LOH) at this locus by microsatellite (intragenic) and by SNP markers. Semi-quantitative RT-PCR showed low FAT mRNA levels in a major subset of tumors. These results point to a role of the FAT in astrocytic tumorigenesis and demonstrate the use of RAPD analysis in identifying specific alterations in astrocytic tumors

  8. Molecular Cloning, Characterization, and Expression of MiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L)

    Science.gov (United States)

    Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan

    2016-01-01

    MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango (Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5′ UTR and a 189 bp long 3′ UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems’ leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue –specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis. In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango. PMID:27965680

  9. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  10. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  11. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Bignone, P A; Lee, K Y; Liu, Y

    2007-01-01

    -activated protein kinase pathway. It is expressed in normal ovarian epithelium, whereas reduced or absent in tumours or cell lines. We show that RPS6KA2 is monoallelically expressed in the ovary suggesting that loss of a single expressed allele is sufficient to cause complete loss of expression in cancer cells....... Further, we have identified two new isoforms of RPS6KA2 with an alternative start codon. Homozygous deletions were identified within the RPS6KA2 gene in two cell lines. Re-expression of RPS6KA2 in ovarian cancer cell lines suppressed colony formation. In UCI101 cells, the expression of RPS6KA2 reduced...

  12. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  13. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  14. KF-1 ubiquitin ligase: anxiety suppressor model.

    Science.gov (United States)

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Nakagawa, Masanori; Marunaka, Yoshinori

    2011-06-01

    Anxiety disorders are the most popular psychiatric disease in any human societies irrespective of nation, culture, religion, economics or politics. Anxiety expression mediated by the amygdala may be suppressed by signals transmitted from the prefrontal cortex and hippocampus. KF-1 is an endoplasmic reticulum (ER)-based E3-ubiquitin (Ub) ligase with a RING-H2 finger motif at the C-terminus. The kf-1 gene expression is up-regulated in the frontal cortex and hippocampus in rats after anti-depressant treatments. The kf-1 null mice show no apparent abnormalities, but exhibit selectively pronounced anxiety-like behaviors or increased timidity-like responses. The kf-1 orthologous genes had been generated after the Poriferan emergence, and are found widely in all animals except insects, arachnids and threadworms such as Drosophila, Ixodes and Caenorhabditis, respectively. This suggests that the kf-1 gene may be relevant to some biological functions characteristic to animals. Based on these observations, the Anxiety Suppressor Model has been proposed, which assumes that KF-1 Ub ligase may suppress the amygdala-mediated anxiety by degrading some anxiety promoting protein(s), such as a neurotransmitter receptor, through the ER-associated degradation pathway in the frontal cortex and hippocampus. According to this model, the emotional sensitivity to environmental stresses may be regulated by the cellular protein level of KF-1 relative to that of the putative anxiety promoter. The kf-1 null mice should be useful in elucidating the molecular mechanisms of the anxiety regulation and for screening novel anxiolytic compounds, which may block the putative anxiety promoter.

  15. Mxd1 mediates hypoxia-induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene.

    Science.gov (United States)

    Zheng, Datong; Wu, Weiling; Dong, Na; Jiang, Xiuqin; Xu, Jinjin; Zhan, Xi; Zhang, Zhengdong; Hu, Zhenzhen

    2017-10-01

    Hypoxia-induced chemoresistance remains a major obstacle to treating osteosarcoma effectively. Mxd1, a member of the Myc/Max/Mxd family, was shown to be involved in the development of drug resistance under hypoxia. However, the effect of Mxd1 on hypoxia-induced cisplatin (CDDP) resistance and its mechanism in osteosarcoma have not been fully elucidated. In this study, we demonstrated that HIF-1α-induced Mxd1 contributed to CDDP resistance in hypoxic U-2OS and MG-63 cells. The knockdown of Mxd1 expression elevated PTEN expression at both protein and RNA levels in these hypoxic cells. Using Luciferase reporter and ChIP assays, we confirmed that Mxd1 directly bound to the E-box sites within the PTEN promoter region. We further demonstrated that PTEN knockdown decreased CDDP sensitivity in Mxd1 siRNA-transfected U-2OS and MG-63 cells under hypoxia. Our results also showed that Mxd1 deficiency in hypoxic U-2OS and MG-63 cells lead to inactivation of PI3K/AKT signaling, which is the downstream of PTEN. Furthermore, blockade of PI3K/AKT signal re-sensitized hypoxic U-2OS and MG-63 cells to CDDP. Taken together, these findings suggest that HIF-1α-induced Mxd1 up-regulation suppresses the expression of PTEN under hypoxia, which leads to the activation of PI3K/AKT antiapoptotic and survival pathway. As a result CDDP resistance in osteosarcoma cells is induced. © 2017 Wiley Periodicals, Inc.

  16. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Directory of Open Access Journals (Sweden)

    Arthur K Tugume

    Full Text Available BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae encodes a Class 1 RNase III (RNase3, a putative hydrophobic protein (p7 and a 22-kDa protein (p22 from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b encoding an RNase3 homolog (<56% identity to SPCSV RNase3 able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in

  17. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Fambrini, Marco; Salvini, Mariangela; Pugliesi, Claudio

    2017-03-01

    The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha

  18. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  19. MicroRNA-375 Functions as a Tumor-Suppressor Gene in Gastric Cancer by Targeting Recepteur d’Origine Nantais

    Directory of Open Access Journals (Sweden)

    Sen Lian

    2016-09-01

    Full Text Available Emerging evidence supports a fundamental role for microRNAs (miRNA in regulating cancer metastasis. Recently, microRNA-375 (miR-375 was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON, a receptor tyrosine kinase, has been reported in tumors. However, the function of miR-375 and RON expression in gastric cancer metastasis has not been sufficiently studied. In silico analysis identified miR-375 binding sites in the 3′-untranslated regions (3′-UTR of the RON-encoding gene. Expression of miR-375 resulted in reduced activity of a luciferase reporter containing the 3′-UTR fragments of RON-encoding mRNA, confirming that miR-375 directly targets the 3′-UTR of RON mRNA. Moreover, we found that overexpression of miR-375 inhibited mRNA and protein expression of RON, which was accompanied by the suppression of cell proliferation, migration, and invasion in gastric cancer AGS and MKN-28 cells. Ectopic miR-375 expression also induced G1 cell cycle arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of retinoblastoma (Rb. Knockdown of RON by RNAi, similar to miR-375 overexpression, suppressed tumorigenic properties and induced G1 arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of Rb. Thus, our study provides evidence that miR-375 acts as a suppressor of metastasis in gastric cancer by targeting RON, and might represent a new potential therapeutic target for gastric cancer.

  20. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  1. Allospecific CD8 T suppressor cells induced by multiple MLC stimulation or priming in the presence of ILT3.Fc have similar gene expression profiles.

    Science.gov (United States)

    Chen, Ling; Xu, Zheng; Chang, Chris; Ho, Sophey; Liu, Zhuoru; Vlad, George; Cortesini, Raffaello; Clynes, Raphael A; Luo, Yun; Suciu-Foca, Nicole

    2014-02-01

    Alloantigen specific CD8 T suppressor cells can be generated in vitro either by multiple stimulations of CD3 T cells with allogeneic APC or by single stimulation in primary MLC containing recombinant ILT3.Fc protein. The aim of the present study was to determine whether multiple MLC stimulation induced in CD8(+) CD28(-) T suppressor cells molecular changes that are similar to those observed in CD8 T suppressor cells from primary MLC containing ILT3.Fc protein. Our study demonstrates that the characteristic signatures of CD8 T suppressor cells, generated by either of these methods are the same consisting of up-regulation of the BCL6 transcriptional repressor and down-regulation of inflammatory microRNAs, miR-21, miR-30b, miR-146a, and miR-155 expression. In conclusion microRNAs which are increased under inflammatory conditions in activated CD4 and CD8 T cells with helper or cytotoxic function show low levels of expression in CD8 T cells which have acquired antigen-specific suppressor activity. Copyright © 2014. Published by Elsevier Inc.

  2. Polymorphisms in the leptin gene promoter in Brazilian beef herds.

    Science.gov (United States)

    Guimarães, R C; Azevedo, J S N; Corrêa, S C; Campelo, J E G; Barbosa, E M; Gonçalves, E C; Silva Filho, E

    2016-12-02

    Brazil is the world's largest producer of beef cattle; however, the quality of its herds needs to be improved. The use of molecular markers as auxiliary tools in selecting animals for reproduction with high pattern for beef production would significantly improve the quality of the final beef product in Brazil. The leptin gene has been demonstrated to be an excellent candidate gene for bovine breeding. The objective of this study was to sequence and compare the leptin gene promoter of Brazil's important cattle breeds in order to identify polymorphisms in it. Blood samples of the Nellore, Guzerat, Tabapuã, and Senepol breeds were collected for genomic DNA extraction. The genomic DNA was used as a template for polymerase chain reaction (PCR) to amplify a 1575-bp fragment, which in turn was sequenced, aligned, and compared between animals of different breeds. Twenty-three single nucleotide polymorphic sites, including transitions and transversions, were detected at positions -1457, -1452, -1446, -1397, -1392, -1361, -1238, -963,-901, -578, -516, -483, -478, -470, -432, -430, -292, -282, -272, -211, -202, -170, and -147. Additionally, two insertion sites at positions -680 and -416 and two deletion sites at positions -1255 and -1059 were detected. As the promoter region of the leptin gene has been demonstrated to vary among breeds, these variations must be tested for their use as potential molecular markers for artificial selection of animals for enhanced beef production in different systems of bovine production in Brazil.

  3. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Shen, Chengwu [Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Wang, Lin [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Research Center for Medicinal Biotechnology, Shandong Academy of Medicinal Sciences, Jinan 250012 (China); Ma, Quanping [Department of Clinical Laboratory, The Fourth People’s Hospital of Jinan, Jinan 250031 (China); Xia, Pingtian; Qi, Mei; Yang, Muyi [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Han, Bo, E-mail: boh@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  4. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22(q24.13;q11.21 in a young girl with dysgerminoma

    Directory of Open Access Journals (Sweden)

    Fiorio Patrizia

    2009-07-01

    Full Text Available Abstract Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22 in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN, a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.

  5. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun [Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Jin, Shi; Cao, Shoubo [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Yu, Yan, E-mail: yuyan@hrbmu.edu.cn [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China)

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  6. Analysis of the tumour suppressor genes, FHIT and WT-1, and the tumour rejection genes, BAGE, GAGE-1/2, HAGE, MAGE-1, and MAGE-3, in benign and malignant neoplasms of the salivary glands.

    Science.gov (United States)

    Nagel, H; Laskawi, R; Eiffert, H; Schlott, T

    2003-08-01

    Molecular genetic changes involved in tumorigenesis and malignant transformation of human tumours are novel targets of cancer diagnosis and treatment. This study aimed to analyse the expression of putative tumour suppressor genes, FHIT and WT-1, and tumour rejection genes, BAGE, GAGE-1/2, MAGE-1, MAGE-3, and HAGE (which are reported to be important in human cancers), in salivary gland neoplasms. Gene expression was analysed by reverse transcription polymerase chain reaction (RT-PCR) in normal salivary gland tissue and 44 benign and malignant salivary gland tumours. Aberrant FHIT transcripts were found in one of 38 normal salivary glands, three of 28 adenomas, and two of 16 carcinomas. WT-1 mRNA was detectable in two adenomas and five carcinomas. Immunoblotting showed that WT-1 mRNA expression was associated with raised WT-1 protein concentrations. RT-PCR for detection of BAGE, GAGE, and MAGE gene expression was positive in two adenomas and nine carcinomas, but negative in normal salivary gland tissue. HAGE mRNA was found in two normal salivary glands, 11 benign, and eight malignant tumours. FHIT mRNA splicing does not appear to be involved in the genesis of salivary gland neoplasms. The upregulation of WT-1 mRNA in tumours of epithelial/myoepithelial phenotype may imply a potential role of WT-1 in the genesis and/or cellular differentiation of these salivary gland tumours. The tumour rejection genes were more frequently, but not exclusively, expressed in malignant salivary gland tumours than in benign neoplasms, although none was suitable as a diagnostic marker of malignancy in salivary gland neoplasms.

  7. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  8. Hypermethylation of E-Cadherin and Estrogen Receptor-a Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients

    Directory of Open Access Journals (Sweden)

    Mozhgan Rasti

    2009-06-01

    Full Text Available Background: Aberrant methylation of cytosine-guanine dinucleotideislands leads to inactivation of tumor suppressorgenes in breast cancer. Tumor suppressor genes are unmethylatedin normal tissue and often become hypermethylatedduring tumor formation, leading to gene silencing. We investigatedthe association between E-cadherin (CDH1 and estrogenreceptor-α (ESRα gene promoter methylation andmajor clinical and pathological features of breast cancer inIranian women.Methods: DNA was extracted from 67 primary breast tumorsand gene promoter methylation was analyzed by methylationspecificpolymerase chain reaction method.Results: Fifty percent of the samples showed aberrant methylationin at least one of the two tested loci. We detectedCDH1 hypermethylation in 41% of invasive tumors and receptor-α gene hypermethylation in 18% of invasive tumorsamples. We found no association between CDH1 and receptor-α gene hypermethylation (P=0.45. There was a correlationbetween hypermethylation of CDH1 locus and tumorsize ≥5 cm (P=0.019.Conclusion: Our data suggest that the malignant progressionof human ductal and lobular breast carcinoma in Iranianwomen involves a heterogeneous pattern of cytosine-guaninedinucleotide island hypermethylation of the CDH1 gene.

  9. Rotating night work, lifestyle factors, obesity and promoter methylation in BRCA1 and BRCA2 genes among nurses and midwives.

    Science.gov (United States)

    Peplonska, Beata; Bukowska, Agnieszka; Wieczorek, Edyta; Przybek, Monika; Zienolddiny, Shanbeh; Reszka, Edyta

    2017-01-01

    Some recent evidence suggests that environmental and lifestyle factors may modify DNA methylation. We hypothesized that rotating night work and several modifiable factors may be associated with the methylation of the promoter regions within two tumor suppressor and DNA repair genes: BRCA1 and BRCA2. The methylation status of BRCA1 and BRCA2 was determined via qMSP reactions using DNA samples derived from blood leucocytes of 347 nurses and midwives working rotating nights and 363 working during the days. The subjects were classified into unmethylated vs methylated BRCA1 and BRCA2 when the methylation index was 0% or >0%, respectively. The adjusted odds ratios with 95% confidence intervals were calculated for night work status, smoking, obesity, physical activity and alcohol drinking. Current night shift work or night work history was not associated with methylation status of the promoter sites within BRCA1 and BRCA2 genes. We observed weak associations between smoking and the methylation status of BRCA1 with OR = 1.50 (95%CI: 0.98-2.29) for current smoking, OR = 1.83, 95CI: 1.08-3.13 for smoking longer than 31 years, and 0.1>p>0.05 for trends for the number of cigarettes per day, smoking duration and packyears. In conclusion, no links between night shift work and methylation of the promoter region within the BRCA1, and BRCA2 genes were observed in this exploratory analysis. The findings of our study weakly support the hypothesis that smoking may contribute to epigenetic events.

  10. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    Science.gov (United States)

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. P53 and Rb tumor suppressor gene alterations in gastric cancer Alterações dos genes supressores tumorais p53 e Rb no câncer gástrico

    Directory of Open Access Journals (Sweden)

    Rejane Mattar

    2004-01-01

    Full Text Available Inactivation of tumor suppressor genes has been frequently observed in gastric carcinogenesis. Our purpose was to study the involvement of p53, APC, DCC, and Rb genes in gastric carcinoma. METHOD: Loss of heterozygosity of the p53, APC, DCC and Rb genes was studied in 22 gastric cancer tissues using polymerase chain reaction; single-strand conformation polymorphism of the p53 gene exons 5-6 and exons 7-8 was studied using 35S-dATP, and p53 expression was detected using a histological immunoperoxidase method with an anti-p53 clone. RESULTS AND DISCUSSION: No loss of heterozygosity was observed in any of these tumor suppressor genes; homozygous deletion was detected in the Rb gene in 23% (3/13 of the cases of intestinal-type gastric carcinoma. Eighteen (81.8% cases showed band mobility shifts in exons 5-6 and/or 7-8 of the p53 gene. The presence of the p53 protein was positive in gastric cancer cells in 14 cases (63.6%. Normal gastric mucosa showed negative staining for p53; thus, the immunoreactivity was likely to represent mutant forms. The correlation of band mobility shift and the immunoreactivity to anti-p53 was not significant (P = .90. There was no correlation of gene alterations with the disease severity. CONCLUSIONS: The inactivation of Rb and p53 genes is involved in gastric carcinogenesis in our environment. Loss of the Rb gene observed only in the intestinal-type gastric cancer should be further evaluated in association with Helicobacter pylori infection. The p53 gene was affected in both intestinal and diffuse histological types of gastric cancer.A inativação de genes supressores tumorais tem sido freqüentemente observada na carcinogênese gástrica. O nosso objetivo foi estudar o envolvimento dos genes p53, APC, DCC e Rb no câncer gástrico. MÉTODO: Vinte e dois casos de câncer gástrico foram estudados por PCR-LOH (reação de polimerase em cadeia- perda de alelo heterozigoto dos genes p53, APC, DCC e Rb; e por PCR-SSCP (rea

  12. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Directory of Open Access Journals (Sweden)

    Kristof Y Neven, MSc

    2018-04-01

    Full Text Available Summary: Background: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. Methods: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE birth cohort, which enrols pairs of mothers and neonates (singleton births only at the East-Limburg Hospital (Genk, Belgium. Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1. We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5, black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort. Findings: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001 and black carbon (r=0·33, p<0·0001, but not NO2

  13. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors.

    Science.gov (United States)

    Evangelisti, Cecilia; de Biase, Dario; Kurelac, Ivana; Ceccarelli, Claudio; Prokisch, Holger; Meitinger, Thomas; Caria, Paola; Vanni, Roberta; Romeo, Giovanni; Tallini, Giovanni; Gasparre, Giuseppe; Bonora, Elena

    2015-03-21

    Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.

  14. [Correlation between histone H3-K9 methylation, DNA methylation and expression of gene MGMT in Hep-2 cell line].

    Science.gov (United States)

    Yang, Jing; He, Liria; Ji, Wenyue; Jin, Mingzhu; Zhao, Xudong

    2012-11-01

    To explore the correlation between histone H3-K9 methylation, DNA methylation and expression of carcinoma suppressor gene MGMT in laryngeal carcinoma Hep-2 cell line. 5-Aza-dC was used to deal with Hep-2 cell cultured in vitro. ChIP, MSP and Realtime-PCR were used to detect H3-K9 methylation, DNA methylation, of MGMT gene promoter region and MGMT gene expression before and after treatment with drugs. (1) In Hep-2 cell line, gene MGMT was characterized by DNA methylation and histone H3-K9 hypermethylation. (2) 5-Aza-dC was able to reduce H3-K9 methylation of MGMT gene histone in Hep-2 cell line, 5-Aza-dC was able to reverse DNA methylation of MGMT gene histone in Hep-2 cell line, 5-Aza-dC was able to upregulate the down-regulated gene expression of tumor suppressor genes MGMT. Promoter methylation of cancer suppressor gene MGMT may induce the gene inactivity. DNA methylation may increase H3-K9 methylation. 5-Aza-dC can reduce H3-K9 methylation of tumor suppressor gene MGMT histone by reversing DNA methylation of tumor suppressor gene MGMT, and then the expression of tumor suppressor genes is increased and tumor development is inhibited.

  15. ARS2 is a general suppressor of pervasive transcription.

    Science.gov (United States)

    Iasillo, Claudia; Schmid, Manfred; Yahia, Yousra; Maqbool, Muhammad A; Descostes, Nicolas; Karadoulama, Evdoxia; Bertrand, Edouard; Andrau, Jean-Christophe; Jensen, Torben Heick

    2017-09-29

    Termination of transcription is important for establishing gene punctuation marks. It is also critical for suppressing many of the pervasive transcription events occurring throughout eukaryotic genomes and coupling their RNA products to efficient decay. In human cells, the ARS2 protein has been implicated in such function as its depletion causes transcriptional read-through of selected gene terminators and because it physically interacts with the ribonucleolytic nuclear RNA exosome. Here, we study the role of ARS2 on transcription and RNA metabolism genome wide. We show that ARS2 depletion negatively impacts levels of promoter-proximal RNA polymerase II at protein-coding (pc) genes. Moreover, our results reveal a general role of ARS2 in transcription termination-coupled RNA turnover at short transcription units like snRNA-, replication-dependent histone-, promoter upstream transcript- and enhancer RNA-loci. Depletion of the ARS2 interaction partner ZC3H18 mimics the ARS2 depletion, although to a milder extent, whereas depletion of the exosome core subunit RRP40 only impacts RNA abundance post-transcriptionally. Interestingly, ARS2 is also involved in transcription termination events within first introns of pc genes. Our work therefore establishes ARS2 as a general suppressor of pervasive transcription with the potential to regulate pc gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. An endothelial cell genetic screen identifies the GTPase Rem2 as a suppressor of p19ARF expression that promotes endothelial cell proliferation and angiogenesis

    NARCIS (Netherlands)

    Bierings, Ruben; Beato, Miguel; Edel, Michael J.

    2008-01-01

    Angiogenesis requires an increase in endothelial cell proliferation to support an increase in mass of blood vessels. We designed an in vitro endothelial cell model to functionally screen for genes that regulate endothelial cell proliferation. A gain of function screen for genes that bypass p53

  17. RASSF10 is epigenetically silenced and functions as a tumor suppressor in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ziran [Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China); Chen, Xia [Urology Department, Minhang District Central Hospital, Shanghai (China); Chen, Ji; Wang, Weimin [Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China); Xu, Xudong [Urology Department, Minhang District Central Hospital, Shanghai (China); Cai, Qingping, E-mail: qingping_caicz@163.com [Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China)

    2013-03-22

    Highlights: ► Epigenetic silencing of RASSF10 gene expression in GC cells. ► RASSF10 overexpression inhibits cell growth in vitro and in vivo. ► RASSF10 induces apoptosis in GC cells. ► RASSF10 inhibits Wnt/β-catenin signaling pathway. -- Abstract: Ras association domain family (RASSF) proteins are encoded by several tumor suppressor genes that are frequently silenced in human cancers. In this study, we investigated RASSF10 as a target of epigenetic inactivation and examined its functions as a tumor suppressor in gastric cancer. RASSF10 was silenced in six out of eight gastric cancer cell lines. Loss or downregulation of RASSF10 expression was associated with promoter hypermethylation, and could be restored by a demethylating agent. Overexpression of RASSF10 in gastric cancer cell lines (JRST, BGC823) suppressed cell growth and colony formation, and induced apoptosis, whereas RASSF10 depletion promoted cell growth. In xenograft animal experiments, RASSF10 overexpression effectively repressed tumor growth. Mechanistic investigations revealed that RASSF10 inhibited tumor growth by blocking activation of β-catenin and its downstream targets including c-Myc, cyclinD1, cyclinE1, peroxisome proliferator-activated receptor δ, transcription factor 4, transcription factor 1 and CD44. In conclusion, the results of this study provide insight into the role of RASSF10 as a novel functional tumor suppressor in gastric cancer through inhibition of the Wnt/β-catenin signaling pathway.

  18. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Science.gov (United States)

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10 23 to 10 25 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological

  19. A strong promoter of a non-cry gene directs expression of the cry1Ac gene in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Xin; Gao, Tantan; Peng, Qi; Song, Lai; Zhang, Jie; Chai, Yunrong; Sun, Dongmei; Song, Fuping

    2018-04-01

    Bacillus thuringiensis bacteria show insecticidal activities that rely upon the production of insecticidal crystal proteins, which are encoded by cry or cyt genes and can target a variety of insect pests. It has been shown that cry1Ac is the only cry gene in B. thuringiensis subsp. kurstaki HD73 (B. thuringiensis HD73) and its expression is controlled by both σ E and σ K . Here, we report a novel σ E -dependent strong promoter of a non-cry gene (HD73_5014), which can direct strong cry1Ac gene expression in B. thuringiensis HD73. We constructed an E. coli-B. thuringiensis shuttle vector (pHT315-P 5014 -1Ac) for cry1Ac gene expression, using the HD73_5014 gene promoter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis showed that expression of the cry1Ac gene directed by the HD73_5014 gene promoter was at the same level as that directed by the previously known strongest cry promoter, P cry8E . However, this strain did not form typical bipyramidal crystals in mother cells, as observed by transmission electron microscopy and atomic force microscope. The strain with Cry1Ac protein expression under the control of the HD73_5014 gene promoter (P 5014 -cry1Ac) showed insecticidal activity against Plutella xylostella similar to that under the control of the orf1cry8E gene promoter (P cry8E -cry1Ac). Collectively, these results suggest that the HD73_5014 gene promoter, as a non-cry gene promoter, would be an efficient transcriptional element for cry gene expression. These data also show the possibility for improving Cry production by searching for transcriptional elements in not only cry genes, but also non-cry genes.

  20. IL6 gene promoter polymorphisms and type 2 diabetes

    DEFF Research Database (Denmark)

    Huth, Cornelia; Heid, Iris M; Vollmert, Caren

    2006-01-01

    Several lines of evidence indicate a causal role of the cytokine interleukin (IL)-6 in the development of type 2 diabetes in humans. Two common polymorphisms in the promoter of the IL-6 encoding gene IL6, -174G>C (rs1800795) and -573G>C (rs1800796), have been investigated for association with type...... 2 diabetes in numerous studies but with results that have been largely equivocal. To clarify the relationship between the two IL6 variants and type 2 diabetes, we analyzed individual data on >20,000 participants from 21 published and unpublished studies. Collected data represent eight different...... countries, making this the largest association analysis for type 2 diabetes reported to date. The GC and CC genotypes of IL6 -174G>C were associated with a decreased risk of type 2 diabetes (odds ratio 0.91, P = 0.037), corresponding to a risk modification of nearly 9%. No evidence for association was found...

  1. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  2. Promoter methylation and gene polymorphism are two independent events in regulation of GSTP1 gene expression.

    Science.gov (United States)

    Bhat, Aaliya; Masood, A; Wani, K A; Bhat, Younus Ahmad; Nissar, Bushra; Khan, Nuzhat Shaheen; Ganai, B A

    2017-04-01

    Breast carcinogenesis is a multistep process, involving both genetic and epigenetic modification process of genes, involved in diverse pathways ranging from DNA repair to metabolic processes. This study was undertaken to assess the role of promoter methylation of GSTP1 gene, a member of glutathione-S-transferase family of enzymes, in relation to its expression, polymorphism, and clinicopathological parameters. Tissue samples were taken from breast cancer patients and paired with their normal adjacent tissues. A total of 51 subjects were studied, in which the frequency of promoter methylation in cancerous tissue was 37.25% as against 11% in the normal tissues ( p ≤ 0.001). The hypermethylated status of the gene was significantly associated with the loss of the protein expression ( r = -0.449, p = 0.001, odds ratio = 7.42, 95% confidence interval = 2.05-26.92). Furthermore, when compared with the clinical parameters, the significant association was found between the promoter hypermethylation and lymph node metastasis ( p ≤ 0.001), tumor stage ( p = 0.039), tumor grade ( p = 0.028), estrogen receptor status ( p = 0.018), and progesterone receptor status ( p = 0.046). Our study is the first of its kind in Kashmiri population, which indicates that GSTP1 shows aberrant methylation pattern in the breast cancer with the consequent loss in the protein expression. Furthermore, it also shows that the gene polymorphism (Ile105Val) at codon 105 is not related to the promoter methylation and two are the independent events in breast cancer development.

  3. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Science.gov (United States)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  4. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  5. [The methylation of ZHX2 gene promoter enhances AFP gene expression in hepatocellular carcinoma].

    Science.gov (United States)

    Lv, Zili; DU, Yangjun; Wen, Jianming

    2013-07-01

    To investigate the relationship between Zinc-fingers and homeoboxes 2 (ZHX2) promoter methylation and alpha-fetoprotein (AFP) gene expression, and analyze the mechanism of AFP gene expression. HepG2 cell line was cultured with 0.5, 1.0 or 5.0 μmol/L of 5-aza-deoxycytidine (5-Aza-Dc). RT-PCR and Western blotting were used to detect the expressions of ZHX2 and AFP in HepG2 cell line. Methylation-specific PCR was used to detect ZHX2 promoter methylation in 38 hepatocellular carcinoma tissues. The HepG2 cell line showed a low level of ZHX2 mRNA, negative expression of ZHX2 protein, but high expression of AFP at both mRNA and protein levels. After the HepG2 cells were treated with 1.0 or 5.0 μmol/L 5-Aza-Dc for 6 d, the expression of ZHX2 mRNA and protein increased and the expression of AFP mRNA and protein decreased. Among 38 hepatocellular carcinoma tissues, ZHX2 promoter methylation was found in 16 hepatocellular carcinoma tissues with AFP>25 ng/mL in serum. No methylation of ZHX2 promoter was found in 8 hepatocellular carcinoma tissues with AFPexpression.

  6. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  7. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  8. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Science.gov (United States)

    Li, Jing; Jiang, Dagang; Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-03-03

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  9. Human glucagon gene promoter sequences regulating tissue-specific versus nutrient-regulated gene expression.

    Science.gov (United States)

    Nian, Min; Gu, Jun; Irwin, David M; Drucker, Daniel J

    2002-01-01

    The glucagon-like peptides (GLPs) are synthesized and secreted in a nutrient-dependent manner in rodents; however, the factors regulating human GLP-1 and GLP-2 biosynthesis remain unclear. To understand how nutrients regulate human proglucagon gene expression, we studied the expression of a human proglucagon promoter-growth hormone (GH) transgene in 1.6 human glucagon-GH transgenic mice. Fasting-refeeding significantly decreased and increased the levels of circulating mouse insulin and transgene-derived hGH (P fasting vs. refeeding) and decreased and upregulated, respectively, the levels of endogenous mouse proglucagon RNA in the ileum but not in the jejunum or colon. High-fiber feeding significantly increased the levels of glucose-stimulated circulating hGH and upregulated levels of mouse intestinal proglucagon gene expression in the jejunum, ileum, and colon (P fasting-refeeding nor a high-fiber diet upregulated the expression of the human proglucagon promoter-hGH transgene. These findings demonstrate that human proglucagon gene regulatory sequences specifying tissue-specific expression in gut endocrine cells are not sufficient for recognition of energy-derived signals regulating murine glucagon gene expression in enteroendocrine cells in vivo.

  10. Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1 is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation

    Directory of Open Access Journals (Sweden)

    Meyer-Schwesinger Catherine

    2011-10-01

    Full Text Available Abstract Background We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1 in prostate cancer (PCa compared to the surrounding benign tissue. UCHL1 plays an important role in ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the underlying mechanism of UCHL1 downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways. Results Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/20 of tumor tissue compared to 15% (3/20 of normal tissues from PCa patients. Pyrosequencing results confirmed a mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHL1 in PCa, UCHL1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent growth of these cells. In further analysis, we found evidence that exogenous expression of UCHL1 suppress LNCaP cells growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of UCHL1 induced a senescent phenotype that was detected by using the SA-ß-gal assay and might be due to increased p14ARF, p53, p27kip1 and decreased MDM2. Conclusion From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of proliferation.

  11. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis.

    Science.gov (United States)

    Jiménez-Garza, Octavio; Guo, Liqiong; Byun, Hyang-Min; Carrieri, Mariella; Bartolucci, Giovanni Battista; Zhong, Jia; Baccarelli, Andrea A

    2017-11-01

    Exposure to low levels of benzene may cause acute myeloid leukemia in humans. Epigenetic effects in benzene exposure have been studied for tumor suppressor genes and oxidative stress-related genes, but other cellular pathways must be explored. Here, we studied promoter DNA methylation of IL6, CYP2E1 and iNOS in blood cells from three groups of workers: a) gas station attendants (GS) exposed to low levels of benzene; b) plastic shoe factory workers (PS) exposed to other solvents different to benzene and c) administrative workers as a reference group with no solvent exposure (C). IL6 promoter methylation was higher in GS workers (p benzene levels (r = -0.47, p benzene. Correlations between iNOS methylation with both CYP2E1 methylation and urinary SPMA levels represent novel evidence about CYP2E1 epigenetic regulation and activity related with nitrosative stress, making promoter methylation status of these genes a potential biomarker in early stages of oncogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Epigenetic regulation of putative tumor suppressor TGFBI in human leukemias.

    Science.gov (United States)

    Fang, Hongbo; Liu, Jing; Guo, Dan; Liu, Peixiang; Zhao, Yongliang

    2014-01-01

    Both in vitro and in vivo data have demonstrated the TGFBI gene functions as a putative tumor suppressor and is frequently downregulated in human tumors of different histological types. The hypermethylation of the TGFBI promoter, as one of the main regulatory mechanisms, is associated with TGFBI silencing. In this study, we used a methylation-specific PCR (MSP) method to evaluate the methylation status of the TGFBI promoter in human leukemias. Real-time RT-PCR and methylation-specific PCR approaches were performed to define the TGFBI expression and promoter methylation in human leukemia cell lines and clinical samples. Genomic DNA was isolated from peripheral blood mononuclear cells from leukemia patients, bisulfite-converted, and analyzed by the MSP method. Hypermethylation of the TGFBI promoter occurred in leukemia cell lines and demethylation treatment reexpressed TGFBI at a substantially increased level in most of leukemia cell lines tested. Furthermore, a much higher level of CpG island methylation and a significantly lower TGFBI expression were also identified in clinical leukemia samples. The results suggest an important role of promoter methylation in regulating TGFBI expression in leukemia, which provides a useful diagnostic marker for clinical management of human leukemias.

  13. Identification of the subgenomic promoter of the coat protein gene of cucumber fruit mottle mosaic virus and development of a heterologous expression vector.

    Science.gov (United States)

    Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo

    2016-06-01

    Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.

  14. HOX Gene Promoter Prediction and Inter-genomic Comparison: an Evo-Devo Study

    OpenAIRE

    Endriga, Maria A; de la Paz, Victoria Karenina R; Sazon, Jezreel Marie G; Co, Elisa L; Deocaris, Custer C

    2010-01-01

    Homeobox genes direct the anterior-posterior axis of the body plan in eukaryotic organisms. Promoter regions upstream of the Hox genes jumpstart the transcription process. CpG islands found within the promoter regions can cause silencing of these promoters. The locations of the promoter regions and the CpG islands of Homeo sapiens sapiens (human), Pan troglodytes (chimpanzee), Mus musculus (mouse), and Rattus norvegicus (brown rat) are compared and related to the possib...

  15. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    Science.gov (United States)

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  16. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer

    OpenAIRE

    Wang, Qi; Li, Juanjuan; Wu, Wei; Shen, Ruizhe; Jiang, He; Qian, Yuting; Tang, Yanping; Bai, Tingting; Wu, Sheng; Wei, Lumin; Zang, Yi; Zhang, Ji; Wang, Lifu

    2016-01-01

    The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancr...

  17. LncRNAs as an intermediate in HPV16 promoting myeloid-derived suppressor cell recruitment of head and neck squamous cell carcinoma

    Science.gov (United States)

    Jiang, Yaping; Gao, Xiaolei; Cen, Xiao; Wu, Jiashun; Wang, Shasha; Tang, Yajie; Tang, Yaling; Liang, Xinhua

    2017-01-01

    The emerging evidence showed that long noncoding RNAs (lncRNAs) are involved in cell growth and apoptosis as well as cancer progression and metastasis of malignant tumor, however, limited data are available on the role of lncRNAs in human papillomavirus (HPV)-associated Head and neck squamous cell carcinomas (HNSCC). Here, we demonstrated that 23.98% of 196 HNSCC cases in Southwest China could be classified as HPV16 infection. The number of MDSCs in HPV-positive HNSCC was significantly higher than normal control, indicating that HPV infection may promote MDSCs aggregation. Then, we applied an array-based approach to monitor the lncRNA expression between HPV-positive HNSCC, HPV-negative HNSCC and normal oral mucous, and obtained 132 different lncRNAs in different HPV infected states of HNSCC. HOTAIR, PROM1, CCAT1, and MUC19 mRNA levels, determined by qRT-PCR were inversely correlated with MDSCs collection of HPV-associated HNSCC in 2 independent patient cohorts. The results may provide a rationale for the further evaluation of lncRNAs as a molecular target to elucidate the molecular mechanism of HPV promoting MDSCs collection of HNSCC. PMID:28159935

  18. DTIE, a novel core promoter element that directs start site selection in TATA-less genes.

    Science.gov (United States)

    Marbach-Bar, Nadav; Bahat, Anat; Ashkenazi, Shaked; Golan-Mashiach, Michal; Haimov, Ora; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Puzio-Kuter, Anna; Hirshfield, Kim M; Levine, Arnold J; Dikstein, Rivka

    2016-02-18

    The transcription start site (TSS) determines the length and composition of the 5' UTR and therefore can have a profound effect on translation. Yet, little is known about the mechanism underlying start site selection, particularly from promoters lacking conventional core elements such as TATA-box and Initiator. Here we report a novel mechanism of start site selection in the TATA- and Initiator-less promoter of miR-22, through a strictly localized downstream element termed DTIE and an upstream distal element. Changing the distance between them reduced promoter strength, altered TSS selection and diminished Pol II recruitment. Biochemical assays suggest that DTIE does not serve as a docking site for TFIID, the major core promoter-binding factor. TFIID is recruited to the promoter through DTIE but is dispensable for TSS selection. We determined DTIE consensus and found it to be remarkably prevalent, present at the same TSS downstream location in ≈20.8% of human promoters, the vast majority of which are TATA-less. Analysis of DTIE in the tumor suppressor p53 confirmed a similar function. Our findings reveal a novel mechanism of transcription initiation from TATA-less promoters. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data

    Directory of Open Access Journals (Sweden)

    Kim Seon-Young

    2006-07-01

    Full Text Available Abstract Background A complete understanding of the regulatory mechanisms of gene expression is the next important issue of genomics. Many bioinformaticians have developed methods and algorithms for predicting transcriptional regulatory mechanisms from sequence, gene expression, and binding data. However, most of these studies involved the use of yeast which has much simpler regulatory networks than human and has many genome wide binding data and gene expression data under diverse conditions. Studies of genome wide transcriptional networks of human genomes currently lag behind those of yeast. Results We report herein a new method that combines gene expression data analysis with promoter analysis to infer transcriptional regulatory elements of human genes. The Z scores from the application of gene set analysis with gene sets of transcription factor binding sites (TFBSs were successfully used to represent the activity of TFBSs in a given microarray data set. A significant correlation between the Z scores of gene sets of TFBSs and individual genes across multiple conditions permitted successful identification of many known human transcriptional regulatory elements of genes as well as the prediction of numerous putative TFBSs of many genes which will constitute a good starting point for further experiments. Using Z scores of gene sets of TFBSs produced better predictions than the use of mRNA levels of a transcription factor itself, suggesting that the Z scores of gene sets of TFBSs better represent diverse mechanisms for changing the activity of transcription factors in the cell. In addition, cis-regulatory modules, combinations of co-acting TFBSs, were readily identified by our analysis. Conclusion By a strategic combination of gene set level analysis of gene expression data sets and promoter analysis, we were able to identify and predict many transcriptional regulatory elements of human genes. We conclude that this approach will aid in decoding

  20. Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Koen M.A. Dreijerink

    2017-03-01

    Full Text Available While the multiple endocrine neoplasia type 1 (MEN1 gene functions as a tumor suppressor in a variety of cancer types, we explored its oncogenic role in breast tumorigenesis. The MEN1 gene product menin is involved in H3K4 trimethylation and co-activates transcription. We integrated ChIP-seq and RNA-seq data to identify menin target genes. Our analysis revealed that menin-dependent target gene promoters display looping to distal enhancers that are bound by menin, FOXA1 and GATA3. In this fashion, MEN1 co-regulates a proliferative breast cancer-specific gene expression program in ER+ cells. In primary mammary cells, MEN1 exerts an anti-proliferative function by regulating a distinct expression signature. Our findings clarify the cell-type-specific functions of MEN1 and inform the development of menin-directed treatments for breast cancer.

  1. Development of chimeric gene promoters responsive to hypoxia and ionizing radiation

    International Nuclear Information System (INIS)

    Zheng Aiqing; Yu Jinming

    2004-01-01

    The authors describe two systems that make use of gene-directed enzyme prodrug therapy, regulated by radiation or hypoxic-responsive promoters. The use of treatment-, condition- or tumor-specific promoters to control gene-directed enzyme prodrug therapy is one such method for targeting gene expression to the tumor. The development of such strategies that achieve tumor targeted expression of genes via selective promoters will enable improved specificity and targeting thereby addressing one of the major limitations of cancer gene therapy

  2. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer

    International Nuclear Information System (INIS)

    Li, Qiaoyan; Zhu, Fufan; Chen, Puxiang

    2012-01-01

    Highlights: ► Both miR-7 and miR-218 down-regulates HoxB3 expression by targeting the 3′-UTR of HoxB3 mRNA. ► A reverse correlation between the levels of endogenous miR-7, miR218 and HoxB3 expression. ► Epigenetic changes involve in the reactivation of HoxB3. ► Both miRNAs inhibits the cell cycle and clone formation of breast cancer cells. -- Abstract: Many microRNAs have been implicated as key regulators of cellular growth and differentiation and have been found to dysregulate proliferation in human tumors, including breast cancer. Cancer-linked microRNAs also alter the epigenetic landscape by way of DNA methylation and post-translational modifications of histones. Aberrations in Hox gene expression are important for oncogene or tumor suppressor during abnormal development and malignancy. Although recent studies suggest that HoxB3 is critical in breast cancer, the putative role(s) of microRNAs impinging on HoxB3 is not yet fully understood. In this study, we found that the expression levels of miR-7 and miR-218 were strongly and reversely associated with HoxB3 expression. Stable overexpression of miR-7 and miR-218 was accompanied by reactivation of tumor suppressor genes including RASSF1A and Claudin-6 by means of epigenetic switches in DNA methylation and histone modification, giving rise to inhibition of the cell cycle and clone formation of breast cancer cells. The current study provides a novel link between overexpression of collinear Hox genes and multiple microRNAs in human breast malignancy.

  3. ABERRANT METHYLATION OF THE PROMOTER OF APC, CDH13 AND MGMT GENES IN COLORECTAL CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Aberrant methylation of gene promoter regions is the main epigenetic change characterizing colorectal cancer. Methylation levels of 42 CpG-sites of promoter regions of the MGMT, APC and CDH13 genes in colorectal cancer were studied in comparison with methylation levels of the adjacent normal tissue in 25 patients. Pyrosequencing showed an increase in methylation levels of promoter regions of the MGMT, APC and CDH13 genes in tumor samples by 3 to 5 times. These tumor samples were screened for activating SNP-mutations in the KRAS (40 %, NRAS (0 % and BRAF (0 % oncogenes. SNP-mutations in the KRAS gene were accompanied by hypermethylation of one or more promoters of the studied genes. Association of this epigenetic index with tumor metastasis was proved. The data on an increase in methylation of the promoter regions of oncosupressor genes can be used as sensitive prognostic markers of progression and metastasis of colorectal cancer.

  4. Macrophages, Inflammation, and Tumor Suppressors: ARF, a New Player in the Game

    Directory of Open Access Journals (Sweden)

    Paqui G. Través

    2012-01-01

    Full Text Available The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2 characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.

  5. Identification of genes that promote or inhibit olfactory memory formation in Drosophila.

    Science.gov (United States)

    Walkinshaw, Erica; Gai, Yunchao; Farkas, Caitlin; Richter, Daniel; Nicholas, Eric; Keleman, Krystyna; Davis, Ronald L

    2015-04-01

    Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources. Copyright © 2015 by the Genetics Society of America.

  6. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob Daniela

    2005-06-01

    Full Text Available Abstract Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  7. Cloning, expression, and characterization of the TATA-binding protein (TBP) promoter binding factor, a transcription activator of the Acanthamoeba TBP gene.

    Science.gov (United States)

    Huang, W; Bateman, E

    1995-12-01

    TATA-binding protein (TBP) gene promoter binding factor (TPBF) is a transactivator which binds to the TBP promoter element (TPE) sequence of the Acanthamoeba TBP gene promoter and stimulates transcription in vitro. We have isolated a cDNA clone encoding TPBF. TPBF is a polypeptide of 327 amino acids with a calculated molecular mass of 37 kDa. The predicted amino acid sequence of TPBF shows no significant homology to other proteins. TPBF has two potential coiled-coil regions, a basic region, a proline-rich region, a histidine-rich N terminus, and a nuclear targeting sequence. The recombinant protein has an apparent molecular mass of 50 kDa, identical with that of TPBF purified from Acanthamoeba. Recombinant TPBF is able to bind DNA and activate transcription with the same specificity as natural Acanthamoeba TPBF, demonstrating the authenticity of the clone. Mobility shift assays of co-translated TPBF polypeptides and chemical cross-linking demonstrate that TPBF is tetrameric in solution and when bound to DNA. Analyses of TPBF mutants show that Coiled-coil II is essential for DNA binding, but Coiled-coil I and the basic region are also involved. TPBF is thus a novel DNA-binding protein with functional similarity to the tumor suppressor protein p53.

  8. Reciprocal occupancy of BCL6 and STAT5 on Growth Hormone target genes: contrasting transcriptional outcomes and promoter-specific roles of p300 and HDAC3.

    Science.gov (United States)

    Lin, Grace; LaPensee, Christopher R; Qin, Zhaohui S; Schwartz, Jessica

    2014-09-01

    Expression of the Growth Hormone (GH)-stimulated gene Socs2 (Suppressor of Cytokine Signaling 2) is mediated by the transcription activator STAT5 (Signal Transducer and Activator of Transcription 5) and the transcription repressor BCL6 (B-Cell Lymphoma 6). ChIP-Sequencing identified Cish (Cytokine-Inducible SH2-containing protein) and Bcl6 as having similar patterns of reciprocal occupancy by BCL6 and STAT5 in response to GH, though GH stimulates Cish and inhibits Bcl6 expression. The co-activator p300 occupied Socs2, Cish and Bcl6 promoters, and enhanced STAT5-mediated activation of Socs2 and Cish. In contrast, on Bcl6, p300 functioned as a repressor and inhibited in conjunction with STAT5 or BCL6. The co-repressor HDAC3 (Histone deacetylase 3) inhibited the Socs2, Cish and Bcl6 promoters in the presence of STAT5. Thus transcriptional outcomes on GH-regulated genes occupied by BCL6 and STAT5 are determined in a promoter-specific fashion by co-regulatory proteins which mediate the distinction between activating and repressive transcription factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang

    2011-01-01

    element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked...

  10. Suppressors (scsl-scs7) of CSG2, a Gene Required by Saccharomyces cerevisiae for Growth in Media Containing 10 mMCa(2+), Identify Genes Required for Sphingolipid Biosynthesis

    Science.gov (United States)

    1994-07-01

    grew comparably to wild type on YPD medium but failed to grow on the same medium containing 50 mM eal+ [Beeler et al., 1994]. The null allele was...8217 exchanger. The decrease of Ca" in medium can be measured spectrophotometrically. The wild type and suppressor strains were grown in YPD + 100 mM Ca" (pH...4.7), but the csg2i1 strain was grown in YPD (pH 4.7) medium . All suppressors (except scs]·]) showed vacuolar Ca"· uptake comparable to that

  11. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  12. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  14. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  15. Gene promoter evolution targets the center of the human protein interaction network.

    Directory of Open Access Journals (Sweden)

    Jordi Planas

    Full Text Available Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes. We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively. Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P=0.008, for Eigenvalue centrality. Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P=0.02, for the logistic regression coefficient. This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters

  16. Expression of a Fungal Cellulase Gene by b-glucanase Promoter of Streptococcus bovis

    OpenAIRE

    EKİNCİ, Mehmet Sait

    2014-01-01

    The promoter region of the §-glucanase gene was identified using a transcriptional fusion between the upstream region of the Streptococcus bovis b-glucanase gene and the celA gene. Using the transcriptional and protein localisation signals of the S. bovis b-glucanase gene, an in-frame tarnslational fusion between the end of the b-glucanase signal sequence and the ATG of the Neocallimastix patriciarum celA gene was constructed. The b-glucanase promoter-celA fusion was expressed in both E....

  17. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters.

    Science.gov (United States)

    Zhang, Ning; McHale, Leah K; Finer, John J

    2016-01-01

    Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.

  18. Investigation of Interleukin-17 gene polymorphism on DAP-Kinase gene promoter methylation in Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    S Naeimi

    2016-02-01

    Full Text Available Background & Aim: Breast cancer is the most common malignancy in women . Studies have shown that increased in methylation of CpG islands (CpG island hyper methylation, CIHM, is one of the important mechanisms in gene down regulation. DAP-Kinase protein plays an important role in the process of Apoptosis. Interleukin-17 is an proinflammatory cytokine and inflammation,is one of the factors  that affect on gene methylation . the purpose of this study was to evaluate the polymorphism of the IL-17 gene promoter methylation Dap-kinase and its relationship to breast cancer. Methods: In this case - control study, A total of 40 Women with Breast cancer and 40 healthy women in Iran were examined.DNA was extracted by saluting out method and Single nucleotide Polymorphisms of the IL-17 gene were analyzed by the PCR-RFLP method and To study gene promoter methylation Dap-kinase, MSPCR method was used.data were compared in both groups by using Pearson’s chi-square and Hardy-weinberg equilibrium test. RESULTS: Results confirm the fact that, there is a relationship between DAP-kinase gene promoter methylation and breast cancer disease So that the promoter of this gene in patients than in healthy individuals was much more methylated( p0.05 Conclusion: Due to the fact, that promoter genes methylation is one of the mechanisms of epigenetic genes silencing, it seems that DAP-kinase gene promoter methylation increases is associated with the risk of breast cancer in women.

  19. Effectiveness of B-actin promoter on driving target gene expression in common carp transgenesis

    Directory of Open Access Journals (Sweden)

    Andi Aliah Hidayani

    2011-01-01

    Full Text Available Promoter in transgene construct plays an important role on regulating of transgene expression level in transgenic fish. In fish transgenesis, researcher convinced that use all-fish gene construct is safety and prospective. This study was performed to compare effectiveness b-actin promoter, - the promoter which has ubiquitous, constitutive, housekeeping characteristics, from common carp (homologous and from tilapia and medaka b-actin promoters (heterologous in driving of green fluorescent protein (GFP expression as a model of target gene on common carp transgenesis. These gene constructs were separately microinjected into cytoplasm of 60 one-cell-stage common carp embryos. The results suggested that 70% survival rate at embryo stage and 45% hatching rate values showed that the microinjection was performed successfully. Percentage of embryos expressing GFP gene were slightly higher when injected using common carp and medaka promoters than those of using tilapia promoter. Percentage of larvae expressing GFP using common carp promoter was similar with medaka promoter. Furthermore, GFP expression using common carp b-actin promoter could be detected at one-week-old larvae, while GFP expressing using medaka b-actin promoter was lasted at 2-day-old larvae. The results demonstrated that homologous promoter more effective in driving of a target gene expression than that of heterologous promoter.  Key words: homologous promoter, GFP, transgenesis, common carp   ABSTRAK Promoter dalam konstruksi transgen berperan penting dalam pengaturan tingkat ekspresi transgen pada ikan transgenik. Dalam transgenesis ikan, peneliti meyakini bahwa penggunaan konstruksi gen "all-fish" adalah aman dan prospektif.  Penelitian ini dilakukan untuk membandingkan efektivitas promoter β-aktin, - promoter yang memiliki ciri ubiquitous, constitutive, dan housekeeping, dari ikan dari ikan mas (homolog dan ikan nila dan ikan medaka (heterolog dalam mengendalikan ekspresi gen GFP

  20. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    Science.gov (United States)

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  1. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  2. An Inducible Lentiviral Guide RNA Platform Enables the Identification of Tumor-Essential Genes and Tumor-Promoting Mutations In Vivo

    Directory of Open Access Journals (Sweden)

    Brandon J. Aubrey

    2015-03-01

    Full Text Available The CRISPR/Cas9 technology enables the introduction of genomic alterations into almost any organism; however, systems for efficient and inducible gene modification have been lacking, especially for deletion of essential genes. Here, we describe a drug-inducible small guide RNA (sgRNA vector system allowing for ubiquitous and efficient gene deletion in murine and human cells. This system mediates the efficient, temporally controlled deletion of MCL-1, both in vitro and in vivo, in human Burkitt lymphoma cell lines that require this anti-apoptotic BCL-2 protein for sustained survival and growth. Unexpectedly, repeated induction of the same sgRNA generated similar inactivating mutations in the human Mcl-1 gene due to low mutation variability exerted by the accompanying non-homologous end-joining (NHEJ process. Finally, we were able to generate hematopoietic cell compartment-restricted Trp53-knockout mice, leading to the identification of cancer-promoting mutants of this critical tumor suppressor.

  3. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  4. Identification and functional analysis of an alternative promoter of human intersectin 1 gene

    Directory of Open Access Journals (Sweden)

    Rynditch A. V.

    2010-04-01

    Full Text Available Aim. Intersectin 1 (ITSN1 gene encodes an evolutionarily conserved adaptor protein that functions in clathrin-mediated endocytosis, cell signalling, apoptosis and cytoskeleton rearrangements. Its expression is characterized by multiple alternative splicing. Alternative promoter usage is an additional way to create diversity and flexibility in the regulation of gene expression. The aim of this study was to identify possible alternative promoters of ITSN1 gene. Methods. In silico prediction, 5' RACE, RT-PCR and reporter gene expression assay were used for identification and functional characterization of alternative promoter region. Results. We detected an alternative promoter of human ITSN1 gene which is located in intron 5 and generates 5' truncated transcripts containing in-frame ATG codon with strong Kozak sequence and could encode an N-terminally truncated isoforms lacking first EH domain. The region located 246–190 bp upstream of exon 6 is required for alternative promoter activity. ITSN1 transcripts generated from an alternative promoter were detected in human kidney, liver, lung and brain tissues. However, the level of their expression was significantly lower than that of major ITSN1 isoforms. Conclusion. The results obtained suggest that alternative promoter region located in intron 5 of ITSN1 gene functions as a weak promoter. Further experiments are required to clarify the role of 5' truncated ITSN1 transcripts.

  5. MDM2 negatively regulates the human telomerase RNA gene promoter

    Directory of Open Access Journals (Sweden)

    Keith W Nicol

    2005-01-01

    Full Text Available Abstract Background We have previously demonstrated that NF-Y and Sp1 interact with the human telomerase RNA (hTR promoter and play a central role in its regulation. We have also shown that pRB activates the hTR promoter, but the mechanism of pRb directed activation is unknown. It has recently been reported that pRB induces Sp1 activity by relieving inhibition mediated by mdm2. The aim was to investigate possible roles for mdm2 in hTR promoter regulation. Methods Chromatin immunoprecipitation was used to determine binding of mdm2 to the hTR promoter. Transfection and luciferase assays were used to investigate mdm2 repression of the promoter activity and interaction with known transcriptional modulators. Results Here we show using chromatin immunoprecipitation that mdm2 specifically binds the hTR promoter in vivo. Transient co-transfection experiments using an hTR promoter luciferase reporter construct show that hTR promoter activity is inhibited by over-expression of mdm2 in 5637 bladder carcinoma cells (p53 and pRB negative, low mdm2. Titration of mdm2 was able to antagonise activation of hTR promoter activity mediated by pRB or Sp1 over-expression, although in the presence of pRB, mdm2 could not repress promoter activity below basal levels. Using an Sp1 binding site mutation construct we showed that mdm2 repression did not absolutely require Sp1 binding sites in the hTR promoter, suggesting the possibility of pRB/Sp1 independent mechanisms of repression. Finally, we show that NF-Y mediated transactivation of the hTR promoter was also suppressed by mdm2 in a dose-dependent manner. Conclusions These studies suggest that mdm2 may inhibit the hTR promoter by multiple mechanisms. Mdm2 may directly repress activation by both pRB and Sp1, or activation by NF-Y. Furthermore, the ability of mdm2 to interact and interfere with components of the general transcription machinery might partly explain the general repressive effect seen here. Elucidation of

  6. Analysis of promoter regions of co-expressed genes identified by microarray analysis

    Directory of Open Access Journals (Sweden)

    Höglund Mattias

    2006-08-01

    Full Text Available Abstract Background The use of global gene expression profiling to identify sets of genes with similar expression patterns is rapidly becoming a widespread approach for understanding biological processes. A logical and systematic approach to study co-expressed genes is to analyze their promoter sequences to identify transcription factors that may be involved in establishing specific profiles and that may be experimentally investigated. Results We introduce promoter clustering i.e. grouping of promoters with respect to their high scoring motif content, and show that this approach greatly enhances the identification of common and significant transcription factor binding sites (TFBS in co-expressed genes. We apply this method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs and a second from a time series experiment, and show that biologically relevant promoter patterns may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15% of the analyzed promoter regions contained transcription factors start sites for additional genes transcribed in the opposite direction. Conclusion Promoter clustering based on global promoter features greatly improve the identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be a useful first step to identify transcription factors that contribute to specific features of gene expression profiles.

  7. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1999-01-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were

  8. A novel method for the determination of basal gene expression of tissue-specific promoters: an analysis of prostate-specific promoters.

    NARCIS (Netherlands)

    Poel, H.G. van der; McCadden, J.; Verhaegh, G.W.C.T.; Kruszewski, M.; Ferrer, F.; Schalken, J.A.; Carducci, M.; Rodriguez, R.

    2001-01-01

    Because the toxicity of suicide gene therapeutics is directly related to basal promoter activity, we developed an assay to test for promoter "leakiness" using a diphtheria toxin mutant. Sequences of 15 prostate-specific gene promoter constructs were cloned in an expression plasmid (pBK; Stratagene,

  9. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.

    Science.gov (United States)

    Zabidi, Muhammad A; Arnold, Cosmas D; Schernhuber, Katharina; Pagani, Michaela; Rath, Martina; Frank, Olga; Stark, Alexander

    2015-02-26

    Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.

  10. The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2'-deoxycytidine.

    Science.gov (United States)

    Alleman, Wade G; Tabios, Ray L; Chandramouli, Gadisetti V R; Aprelikova, Olga N; Torres-Cabala, Carlos; Mendoza, Arnulfo; Rogers, Craig; Rodgers, Craig; Sopko, Nikolai A; Linehan, W Marston; Vasselli, James R

    2004-10-15

    Clear cell renal carcinoma (ccRCC) is strongly associated with loss of the von Hippel-Lindau (VHL) tumor suppressor gene. The VHL gene is functionally lost through hypermethylation in up to 19% of sporadic ccRCC cases. We theorized that re-expressing VHL silenced by methylation in ccRCC cells, using a hypo-methylating agent, may be an approach to treatment in patients with this type of cancer. We test the ability of two hypo-methylating agents to re-express VHL in cell culture and in mice bearing human ccRCC and evaluate the effects of re-expressed VHL in these models. Real-time reverse transcription-PCR was used to evaluate the ability of zebularine and 5-aza-2'-deoxycytidine (5-aza-dCyd) to re-express VHL in four ccRCC cell lines with documented VHL gene silencing through hypermethylation. We evaluated if the VHL re-expressed after hypo-methylating agent treatment could recreate similar phenotypic changes in ccRCC cells observed when the VHL gene is re-expressed via transfection in cell culture and in a xenograft mouse model. Finally we evaluate global gene expression changes occurring in our cells, using microarray analysis. 5-Aza-dCyd was able to re-express VHL in our cell lines both in culture and in xenografted murine tumors. Well described phenotypic changes of VHL expression including decreased invasiveness into Matrigel, and decreased vascular endothelial growth factor and glucose transporter-1 expression were observed in the treated lines. VHL methylated ccRCC xenografted tumors were significantly reduced in size in mice treated with 5-aza-dCyd. Mice bearing nonmethylated but VHL-mutated tumors showed no tumor shrinkage with 5-aza-dCyd treatment. Hypo-methylating agents may be useful in the treatment of patients having ccRCC tumors consisting of cells with methylated VHL.

  11. MGMT promoter hypermethylation is a frequent, early, and consistent event in astrocytoma progression, and not correlated with TP53 mutation

    NARCIS (Netherlands)

    F.H. Groenendijk (Floris); W. Taal (Walter); H.J. Dubbink (Erik Jan); C.R. Haarloo (Cathleen); M.C.M. Kouwenhoven (Mathilde); M.J. van den Bent (Martin); J.M. Kros (Johan); W.N.M. Dinjens (Winand)

    2011-01-01

    textabstractHypermethylation of the MGMT gene promoter and mutation of the TP53 tumor-suppressor gene are frequently present in diffuse astrocytomas. However, there is only anecdotal information about MGMT methylation status and TP53 mutations during progression of low-grade diffuse astrocytoma

  12. Nup98 promotes antiviral gene expression to restrict RNA viral infection in Drosophila.

    Science.gov (United States)

    Panda, Debasis; Pascual-Garcia, Pau; Dunagin, Margaret; Tudor, Matthew; Hopkins, Kaycie C; Xu, Jie; Gold, Beth; Raj, Arjun; Capelson, Maya; Cherry, Sara

    2014-09-16

    In response to infection, the innate immune system rapidly activates an elaborate and tightly orchestrated gene expression program to induce critical antimicrobial genes. While many key players in this program have been identified in disparate biological systems, it is clear that there are additional uncharacterized mechanisms at play. Our previous studies revealed that a rapidly-induced antiviral gene expression program is active against disparate human arthropod-borne viruses in Drosophila. Moreover, one-half of this program is regulated at the level of transcriptional pausing. Here we found that Nup98, a virus-induced gene, was antiviral against a panel of viruses both in cells and adult flies since its depletion significantly enhanced viral infection. Mechanistically, we found that Nup98 promotes antiviral gene expression in Drosophila at the level of transcription. Expression profiling revealed that the virus-induced activation of 36 genes was abrogated upon loss of Nup98; and we found that a subset of these Nup98-dependent genes were antiviral. These Nup98-dependent virus-induced genes are Cdk9-dependent and translation-independent suggesting that these are rapidly induced primary response genes. Biochemically, we demonstrate that Nup98 is directly bound to the promoters of virus-induced genes, and that it promotes occupancy of the initiating form of RNA polymerase II at these promoters, which are rapidly induced on viral infection to restrict human arboviruses in insects.

  13. Promoter-sharing by different genes in human genome – CPNE1 and RBM12 gene pair as an example

    Directory of Open Access Journals (Sweden)

    Yiu Siu-Ming

    2008-10-01

    Full Text Available Abstract Background Regulation of gene expression plays important role in cellular functions. Co-regulation of different genes may indicate functional connection or even physical interaction between gene products. Thus analysis on genomic structures that may affect gene expression regulation could shed light on the functions of genes. Results In a whole genome analysis of alternative splicing events, we found that two distinct genes, copine I (CPNE1 and RNA binding motif protein 12 (RBM12, share the most 5' exons and therefore the promoter region in human. Further analysis identified many gene pairs in human genome that share the same promoters and 5' exons but have totally different coding sequences. Analysis of genomic and expressed sequences, either cDNAs or expressed sequence tags (ESTs for CPNE1 and RBM12, confirmed the conservation of this phenomenon during evolutionary courses. The co-expression of the two genes initiated from the same promoter is confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR in different tissues in both human and mouse. High degrees of sequence conservation among multiple species in the 5'UTR region common to CPNE1 and RBM12 were also identified. Conclusion Promoter and 5'UTR sharing between CPNE1 and RBM12 is observed in human, mouse and zebrafish. Conservation of this genomic structure in evolutionary courses indicates potential functional interaction between the two genes. More than 20 other gene pairs in human genome were found to have the similar genomic structure in a genome-wide analysis, and it may represent a unique pattern of genomic arrangement that may affect expression regulation of the corresponding genes.

  14. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16{sup INK4a} gene in human colorectal carcinoma (Caco-2) cells

    Energy Technology Data Exchange (ETDEWEB)

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A., E-mail: maria.livrea@unipa.it

    2014-07-18

    Highlights: • Cactus pear fruit extract and indicaxanthin cause apoptosis of colon cancer cells. • Indicaxanthin does not cause ROS formation, but affects epigenoma in Caco-2 cells. • Indicaxanthin reverses methylation of oncosuppressor p16{sup INK4a} gene in Caco-2 cells. • Indicaxanthin reactivates retinoblastoma in Caco-2 cells. • Bioavailable indicaxanthin may have chemopreventive activity in colon cancer. - Abstract: Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC{sub 50} 400 ± 25 mg fresh pulp equivalents/mL, and 115 ± 15 μM (n = 9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16{sup INK4a} gene promoter, reactivation of the silenced mRNA expression and accumulation of p16{sup INK4a}, a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells.

  15. Induction of TRPV5 expression by small activating RNA targeting gene promoter as a novel approach to regulate cellular calcium transportation.

    Science.gov (United States)

    Yang, Bicheng; Duan, Xiaolu; Wu, Wenzheng; Ji, Weidong; Wu, Wenqi; Zhong, Wen; Zhao, Zhijian; Li, Shujue; Liu, Yang; Zeng, Guohua

    2014-10-02

    Promoter-targeted small activating RNAs (saRNAs) have been shown to be able to induce target gene expression, a mechanism known as RNA activation (RNAa). The present study tested whether saRNA can induce the overexpression of TRPV5 in human cells derived from the kidney and subsequently manipulate cell calcium uptake. Three saRNAs complementary to the TRPV5 promoter were synthesized and transfected into cells. TRPV5 expression at the RNA and protein levels was analyzed by quantitative real-time PCR and Western blotting respectively. For functional study, transcellular Ca(2+) transportation was tested by fura-2 analysis. Dihydrotestosterone (DHT), a suppressor of cellular calcium transportation, was administered to challenge the activating effect of selected saRNA. One of these synthesized saRNAs, ds-2939, significantly induced the expression of TRPV5 at both mRNA and protein levels. Fura-2 analysis revealed that the intracellular Ca(2+) concentration was elevated by ds-2939. DHT treatment reduced transmembrane Ca(2+) transport, which was partially antagonized by ds-2939. Our results suggest that a saRNA targeting TRPV5 promoter can be utilized to manipulate the transmembrane Ca(2+) transport by upregulating the expression of TRPV5 and may serve as an alternative for the treatment of Ca(2+) balance-related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation.

    Science.gov (United States)

    Heymont, J; Berenfeld, L; Collins, J; Kaganovich, A; Maynes, B; Moulin, A; Ratskovskaya, I; Poon, P P; Johnston, G C; Kamenetsky, M; DeSilva, J; Sun, H; Petsko, G A; Engebrecht, J

    2000-11-07

    PTEN/MMAC1/TEP1 (PTEN, phosphatase deleted on chromosome ten; MMAC1, mutated in multiple advanced cancers; TEP1, tensin-like phosphatase) is a major human tumor suppressor gene whose suppressive activity operates on the phosphatidylinositol pathway. A single homologue of this gene, TEP1 (YNL128w), exists in the budding yeast Saccharomyces cerevisiae. Yeast strains deleted for TEP1 exhibit essentially no phenotype in haploids; however, diploids exhibit resistance to the phosphatidylinositol-3-phosphate kinase inhibitor wortmannin and to lithium ions. Although rates of cancer increase with age, neither tep1 haploids nor diploids have altered life spans. TEP1 RNA is present throughout the cell cycle, and levels are dramatically up-regulated during meiotic development. Although homozygous tep1 mutants initiate the meiotic program and form spores with wild-type kinetics, analysis of the spores produced in tep1 mutants indicates a specific defect in the trafficking or deposition of dityrosine, a major component of yeast spore walls, to the surface. Introduction of a common PTEN mutation found in human tumors into the analogous position in Tep1p produces a nonfunctional protein based on in vivo activity. These studies implicate Tep1p in a specific developmental trafficking or deposition event and suggest that Tep1p, like its mammalian counterpart, impinges on the phosphatidylinositol pathway.

  17. A novel binary T-vector with the GFP reporter gene for promoter characterization.

    Directory of Open Access Journals (Sweden)

    Shu-Ye Jiang

    Full Text Available Several strategies have been developed to clone PCR fragments into desired vectors. However, most of commercially available T-vectors are not binary vectors and cannot be directly used for Agrobacterium-mediated plant genetic transformation. In this study, a novel binary T-vector was constructed by integrating two AhdI restriction sites into the backbone vector pCAMBIA 1300. The T-vector also contains a GFP reporter gene and thus, can be used to analyze promoter activity by monitoring the reporter gene. On the other hand, identification and characterization of various promoters not only benefit the functional annotation of their genes but also provide alternative candidates to be used to drive interesting genes for plant genetic improvement by transgenesis. More than 1,000 putative pollen-specific rice genes have been identified in a genome-wide level. Among them, 67 highly expressed genes were further characterized. One of the pollen-specific genes LOC_Os10g35930 was further surveyed in its expression patterns with more details by quantitative real-time reverse-transcription PCR (qRT-PCR analysis. Finally, its promoter activity was further investigated by analyzing transgenic rice plants carrying the promoter::GFP cassette, which was constructed from the newly developed T-vector. The reporter GFP gene expression in these transgenic plants showed that the promoter was active only in mature but not in germinated pollens.

  18. Tumor suppressor molecules and methods of use

    Science.gov (United States)

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  19. Transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2010-07-01

    Full Text Available This presentation focused on the transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans. It concludes to a successful implementation of a high throughput mRNA sandwich hybridisation...

  20. Tumor suppressor gene mutation in a patient with a history of hyperparathyroidism-jaw tumor syndrome and healed generalized osteitis fibrosa cystica: a case report and genetic pathophysiology review.

    Science.gov (United States)

    Parfitt, Joshua; Harris, Malcolm; Wright, John M; Kalamchi, Sabah

    2015-01-01

    Hyperparathyroidism-jaw tumor (HPT-JT) was first observed by Jackson in 1958 in a family who exhibited hyperparathyroidism and recurrent pancreatitis. The author noticed the presence of jaw tumors in the affected family and reported them as fibrous dysplasia. However, it was not until 1990 that a familial variety of hyperparathyroidism with fibro-osseous jaw tumors was recognized as HPT-JT syndrome and reported as a clinically and genetically distinct syndrome. Hyperparathyroidism generally arises from glandular hyperplasia or parathyroid adenomas, with only about 1% of cases resulting from parathyroid carcinoma. However, parathyroid carcinoma develops in about 15% of HPT-JT patients. The true incidence of HPT-JT is unknown, although the prevalence of about 100 published cases suggests its rarity. Twenty percent of HPT-JT cases have renal hamartomas or tumors, and female patients with HPT-JT have been reported to have carcinoma of the uterus. This syndrome appears to arise from a variety of mutations that deactivate the tumor suppressor gene CDC73 (also known as HRPT2) and its production of the tumor suppressor protein parafibromin. Functional parafibromin has 531 amino acids, and mutations result in a short nonfunctional protein. CDC73 disorders exhibit dominant germline gene behavior, with varying degrees of penetration. In most cases an affected person has 1 parent with the condition, which raises the need for family investigation and genetic counseling. We report a case of HPT-JT syndrome in a male patient who presented to the local community hospital 6 years previously with a history of back pain. Investigations showed elevated serum parathyroid hormone and calcium levels, and a technetium 99m sestamibi parathyroid scan showed increased activity at the site of the lower left gland that proved to be a substernal parathyroid carcinoma. The patient's parathyroid hormone level dropped from 126 to 97 pg/mL at 5 minutes and was 65 pg/mL at 10 minutes after excision

  1. Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation.

    Science.gov (United States)

    Tyo, Keith E J; Nevoigt, Elke; Stephanopoulos, Gregory

    2011-01-01

    Manipulating RNA synthesis rates is a primary method the cell uses to adjust its physiological state. Therefore to design synthetic genetic networks and circuits, precise control of RNA synthesis rates is of the utmost importance. Often, however, a native promoter does not exist that has the precise characteristics required for a given application. Here, we describe two methods to change the rates and regulation of RNA synthesis in cells to create RNA synthesis of a desired specification. First, error-prone PCR is discussed for diversifying the properties of native promoters, that is, changing the rate of synthesis in constitutive promoters and the induction properties for an inducible promoter. Specifically, we describe techniques for generating diversified promoter libraries of the constitutive promoters P(L)tetO-1 in Escherichia coli and TEF1 in Saccharomyces cerevisiae as well as the inducible, oxygen-repressed promoter DAN1 in S. cerevisiae. Beyond generating promoter libraries, we discuss techniques to quantify the parameters of each new promoter. Promoter characteristics for each promoter in hand, the designer can then pick and choose the promoters needed for the specific genetic circuit described in silico. Second, Chemically Induced Chromosomal Evolution (CIChE) is presented as an alternative method to finely adjust RNA synthesis rates in E. coli by variation of gene cassette copy numbers in tandem gene arrays. Both techniques result in precisely defined RNA synthesis and should be of great utility in synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. NNK, a Tobacco-Specific Carcinogen, Inhibits the Expression of Lysyl Oxidase, a Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Guang Cheng

    2014-12-01

    Full Text Available A tobacco-specific carcinogen, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, is believed to contribute to the cancer burden in cigarette smokers. To evaluate NNK effects on the expression of lysyl oxidase (LOX, a tumor suppressor, we examined this enzyme at various levels in NNK-treated rat fetal lung fibroblasts (RFL6. Exposure of cells to NNK reduced levels of steady-states LOX mRNA and new transcript synthesis. NNK inhibited all LOX protein species in a dose-dependent manner. Although 300 µM NNK markedly decreased the level in the 46 kDa preproenzyme, under same conditions, there was no detectable amounts of the 50 kDa proenzyme and the 32 kDa mature enzyme suggesting NNK perturbing the LOX protein processing to its mature form. Moreover, NNK also suppressed LOX activities in conditioned media of treated cells. At the promoter level, NNK enhanced methylation of CpG, but decreased acetylation of histone H3 at the core promoter region of the LOX gene. These results indicated that transcriptional and translational processes of LOX are major targets for NNK. Thus, inactivation of tumor suppressor gene LOX may play a critical role in NNK carcinogenesis.

  3. Minimal enhancer elements of the leghemoglobin lba and lbc3 gene promoters from Glycine max L. have different properties

    DEFF Research Database (Denmark)

    She, Q; Lauridsen, P; Stougaard, J

    1993-01-01

    The characteristics of the soybean leghemoglobin lba gene promoter were analyzed and important promoter elements from the lba and lbc3 promoters were compared using transgenic Lotus corniculatus plants. A 5' deletion analysis of the lba promoter delimited two cis-acting elements controlling expre...... function. This may reflect the differential expression of the two lb genes of Glycine max L....

  4. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  5. Identification, isolation and evaluation of a constitutive sucrose phosphate synthase gene promoter from tomato

    International Nuclear Information System (INIS)

    Naqvi, R.Z.; Mubeen, H.; Maqsood, A.; Khatoon, A.

    2017-01-01

    Sucrose phosphate synthase (SPS) is one of the abundantly expressed genes in plants. The promoters of SPS gene was identified, analyzed and retrieved from high throughput genomic sequence (HTGS) database. The cis-acting regulatory elements and transcription start sites of promoter were identified through different bioinformatics tools. The SPS promoter was isolated from Solanum lycopersicum and was initially cloned in TA vector (pTZ57R/T). Later on this promoter was transferred to a plant expression binary vector, pGR1 (pGRSPS) that was used for the transient GUS expression studies in various tissues of Nicotiana tabacum. SPS promoter was also cloned in plant stable expression vector pGA482 (pGASPS) and was transformed in Nicotiana tabacum through Agrobacterium-mediated transformation method. The histochemical GUS expression analysis of both transient and stable transgenic plants for this promoter indicated its functional importance in regulating gene expression in a constitutive manner. It was concluded that SPS promoter is constitutively expressed with a strength equivalent to CaMV 2X35S promoter. The promoter isolated through these studies may be effectively substituted in plant genetic engineering with other constitutive promoter for transgene expression in economically important agricultural crops. (author)

  6. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  7. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study.

    Science.gov (United States)

    Neven, Kristof Y; Saenen, Nelly D; Tarantini, Letitzia; Janssen, Bram G; Lefebvre, Wouter; Vanpoucke, Charlotte; Bollati, Valentina; Nawrot, Tim S

    2018-04-01

    Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE) birth cohort, which enrols pairs of mothers and neonates (singleton births only) at the East-Limburg Hospital (Genk, Belgium). Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation) and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1). We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM 2·5 ), black carbon, and NO 2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort). 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m 3 for PM 2·5 , 0·36 μg/m 3 for black carbon, and 5·34 μg/m 3 for NO 2 . Among these samples, increased Alu mutation rate was associated with greater exposure to PM 2·5 (r=0·26, p<0·0001) and black carbon (r=0·33, p<0·0001), but not NO 2 . Promoter methylation was positively

  8. Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity.

    Science.gov (United States)

    Bongiorni, Silvia; Tilesi, Francesca; Bicorgna, Silvia; Iacoponi, Francesca; Willems, Daniela; Gargani, Maria; D'Andrea, MariaSilvia; Pilla, Fabio; Valentini, Alessio

    2014-11-07

    Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and

  9. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation

    International Nuclear Information System (INIS)

    Anstett, A.

    2005-09-01

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  10. Identification of Novel Tumor Suppressor Genes in Human Breast Cancer Using Nonsense-Mediated mRNA Decay Inhibition (NMDI)-Microarray Analysis

    National Research Council Canada - National Science Library

    Johnstone, Cameron N

    2007-01-01

    This project sought to identify genes that harbor nonsense mutations in breast cancer cell lines that are commonly used as in vitro models in the study of breast cancer biology, with the ultimate aim...

  11. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    Energy Technology Data Exchange (ETDEWEB)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J. (Scripps Clinic and Research Foundation, La Jolla, CA (USA))

    1988-08-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5{prime} flanking region of the gene revealed a perfect TATA box at position {minus}28 to position {minus}23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5{prime} flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk{sup {minus}} fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides {minus}305 and +75 of the plasminogen activator inhibitor type 1 gene.

  12. Aberrant gene promoter methylation in sputum from individuals exposed to smoky coal emissions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Lan, Q.; Shen, M.; Jin, J.; Mumford, J.; Ren, D.X.; Keohavong, P. [University of Pittsburgh, Pittsburgh, PA (United States). Dept. of Environment and Occupational Health

    2008-07-15

    Recent studies suggested the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. Here, the promoter methylation of p16, MGMT, RASSF1A and DAPK genes was investigated in sputum of individuals exposed to smoky coal emissions in Xuan Wei, China, where the lung cancer rate is more than 6 times the Chinese national average. Sputum DNA of 107 noncancer individuals and 58 lung cancer patients was screened for promoter methylation using methylation-specific PCR. Promoter methylation of the p16 gene was detected in about half (51.4% (551107)) of sputum DNA from noncancer individuals, a frequency higher than that observed for the RASSF1A (29.9%), MGMT (17.8%) and DAPK (15.9%) genes. Furthermore, the p16 gene was affected by promoter methylation at a frequency even higher among the lung cancer group, compared with the noncancer group (70.7% (41/58) versus 51.7% (55/107), p=0.017). Individuals exposed to smoky coal emissions in this region harbored frequent promoter methylation of these genes in their sputum and some of such alterations may be involved in lung tumor development.

  13. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  14. Comparative analysis of ADS gene promoter in seven Artemisia ...

    Indian Academy of Sciences (India)

    2014-12-23

    Dec 23, 2014 ... ness, salicylic acid and abscisic acid responsiveness, induc- tion upon fungal elicitation, endosperm expression, MeJA- responsiveness, low-temperature responsiveness, elicitation, wounding and pathogen responsiveness were also found in. ADS promoters of all or some of the seven Artemisia species.

  15. [Cloning of ID4 gene expression regulation promoter and subcloning of recombinant ID4 promoter luciferase reporter].

    Science.gov (United States)

    Li, Wei; Huang, Yu; Yang, Bo; Chi, Xiao-Hua; Liu, Li-Hong; Zhang, Feng; Yan, Jiang-Wei; Lu, Xue-Chun

    2010-04-01

    The present study was aimed to clone ID4 gene promoter and upstream regulatory region, and to construct a series of recombinant promoter-luciferase reporter for exploring the mechanism of ID4 gene expression regulation. the upstream 5' flanking sequence of 2242 bp from transcriptional start site (TSS) and downstream 5' non-coding region of 212 bp on ID4 gene were searched out and downloaded from human genome databank of NCBI using whole length of ID4 gene cDNA as a probe; On-line promoter analysis softwares, including TESS and Genomax, were employed to analyze the characteristics of ID4 gene promoter and upstream regulatory elements. Then, based on the analytic results, PCR primers were designed and synthesized. Segmental amplification method was adopted to obtain two fragments of 1829 bp and 784 bp. The two fragments were inserted into the plasmid pGEM-T, transformed into TOP10 competent E. coli., and positive recombinants were screened respectively. Subsequently, restriction enzymes KpnI/NheI and KpnI/EcoRI were used to digest the above-mentioned two plasmids pGEM-T and pGL3, and ligation was completed by T4 DNA ligase. After transformation to TOP10 competent E. coli. and screening of positive colonies, the basic recombinant ID4 gene promoter-pGL3 was successfully constructed. KpnI/NheI double digestion and sequencing showed that the target fragment was 2 459 bp and consistent with the corresponding sequence of GenBank; Using the 2459 bp fragment as a template, 5 pairs of primers with identical 3' terminus and different 5' terminus were designed and synthesized for half-nest PCR amplification. 5 fragments with an interval of approximate 400 bp each other, i.e. 2112 bp, 1703 bp, 1290 bp, 784 bp and 496 bp, were produced and inserted into pGEM-T after recovery and purification for transformation to TOP10 competent E. coli. and screening of positive colonies. After that, KpnI/NheI was used to digest the above-mentioned five pGEM-T recombinant plasmids and pGL3 basic

  16. The host factor polyhedrin promoter binding protein (PPBP) is involved in transcription from the baculovirus polyhedrin gene promoter.

    Science.gov (United States)

    Ghosh, S; Jain, A; Mukherjee, B; Habib, S; Hasnain, S E

    1998-09-01

    Hypertranscription and temporal expression from the Autographa californica nuclear polyhedrosis (AcNPV) baculovirus polyhedrin promoter involves an alpha-amanitin-resistant RNA polymerase and requires a trans-acting viral factor(s). We previously reported that a 30-kDa host factor, polyhedrin promoter binding protein (PPBP), binds with unusual affinity, specificity, and stability to the transcriptionally important motif AATAAATAAGTATT within the polyhedrin (polh) initiator promoter and also displays coding strand-specific single-stranded DNA (ssDNA)-binding activity (S. Burma, B. Mukherjee, A. Jain, S. Habib, and S. E. Hasnain, J. Biol. Chem. 269:2750-2757, 1994; B. Mukherjee, S. Burma, and S. E. Hasnain, J. Biol. Chem. 270:4405-4411, 1995). We now present evidence which indicates that an additional factor(s) is involved in stabilizing PPBP-duplex promoter and PPBP-ssDNA interactions. TBP (TATA box binding protein) present in Spodoptera frugiperda (Sf9) cells is characteristically distinct from PPBP and does not interact directly with the polh promoter. Replacement of PPBP cognate sequences within the polh promoter with random nucleotides abolished PPBP binding in vitro and also failed to express the luciferase reporter gene in vivo. Phosphocellulose fractions of total nuclear extract from virus-infected cells which support in vitro transcription from the polh promoter contain PPBP activity. When PPBP was sequestered by the presence of oligonucleotides containing PPBP cognate sequence motifs, in vitro transcription of a C-free reporter cassette was affected but was restored by the exogenous addition of nuclear extract containing PPBP. When PPBP was mopped out in vivo by a plasmid carrying PPBP cognate sequence present in trans, polh promoter-driven expression of the luciferase reporter was abolished, demonstrating that binding of PPBP to the polh promoter is essential for transcription.

  17. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene

    DEFF Research Database (Denmark)

    Agrawal-Singh, Shuchi; Isken, Fabienne; Agelopoulos, Konstantin

    2012-01-01

    With the use of ChIP on microarray assays in primary leukemia samples, we report that acute myeloid leukemia (AML) blasts exhibit significant alterations in histone H3 acetylation (H3Ac) levels at > 1000 genomic loci compared with CD34+ progenitor cells. Importantly, core promoter regions tended ...

  18. Cloning and analysis of plant fatty acid desaturase 7 gene promoter ...

    African Journals Online (AJOL)

    In order to investigate the regulation mode of Brassica napus FAD7 gene in response of thermal stress, we measured the protein levels of BnFAD7 in plant at low and high temperature, and then analyzed promoter activity of 5'-flanking regions of BnFAD7 by transient gene expression in B. napus protoplasts at different ...

  19. Cloning and expression of Icc1 Laccase gene promoter in Aspergillus niger

    International Nuclear Information System (INIS)

    Marqueda-Galvez, A. P.; Loera Carrol, O.; Xaconostle cazares, B.; Tellez-Jurado, A.; Arana-Cuenca, A.

    2009-01-01

    The white rot fungus Trametes sp. I-62 is a strain with laccase activity and a great potential for biotechnological applications given its ability to detoxify distillery effluents. The Icc1, Icc2 and Icc3 laccase genes of this basidiomycetes have been cloned and sequenced. The promoter region of Icc1 laccase gene contains a putative site for xenobiotics (XRE). (Author)

  20. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  1. Interleukin 10 gene promoter polymorphism and risk of diffuse large B cell lymphoma (DLBCL

    Directory of Open Access Journals (Sweden)

    Roba M. Talaat

    2014-01-01

    Conclusions: Taken together, our findings demonstrated that IL-10 promoter gene polymorphism (−1082 and −819 may not have an influence on the clinical outcome of DLBCL, especially in terms of overall secretion level. Further investigations of other cytokine gene polymorphisms will lead to a better understanding of the disease’s biological background.

  2. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis.

    NARCIS (Netherlands)

    Geurts, J.; Joosten, L.A.B.; Takahashi, N.; Arntz, O.J.; Gluck, A.; Bennink, M.B.; Berg, W.B. van den; Loo, F.A.J. van de

    2009-01-01

    The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define

  3. Altered gene-expression profile in rat plasma and promoted body ...

    African Journals Online (AJOL)

    ... among which five GO annotations and four KEGG pathways were annotated. Findings indicate that EE during pregnancy could positively promote the body and nervous system development of offspring, involving the evidence for altered gene expression profile. Keywords: Environmental enrichment, rats, gene expression ...

  4. Cloning and expression of Icc1 Laccase gene promoter in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Marqueda-Galvez, A. P.; Loera Carrol, O.; Xaconostle cazares, B.; Tellez-Jurado, A.; Arana-Cuenca, A.

    2009-07-01

    The white rot fungus Trametes sp. I-62 is a strain with laccase activity and a great potential for biotechnological applications given its ability to detoxify distillery effluents. The Icc1, Icc2 and Icc3 laccase genes of this basidiomycetes have been cloned and sequenced. The promoter region of Icc1 kaccase gene contains a putative site for xenobiotics (XRE). (Author)

  5. Deletion lengthening at chromosomes 6q and 16q targets multiple tumor suppressor genes and is associated with an increasingly poor prognosis in prostate cancer

    DEFF Research Database (Denmark)

    Kluth, Martina; Jung, Simon; Habib, Omar

    2017-01-01

    317 patients for 6q and 16q deletion length heterogeneity and found that the deletion expanded within 50-60% of 6q and 16q deleted cancers. Taken together, these data suggest continuous "deletion lengthening" as a key mechanism for prostate cancer progression leading to parallel down regulation......Prostate cancer is characterized by recurrent deletions that can considerably vary in size. We hypothesized that large deletions develop from small deletions and that this "deletion lengthening" might have a "per se" carcinogenic role through a combinatorial effect of multiple down regulated genes.......In vitroknockdown of 37 genes located inside the 6q12-q22 deletion region identified 4 genes with additive tumor suppressive effects, further supporting a role of the deletion size for cancer aggressiveness. Employing fluorescencein-situhybridization analysis on prostate cancer tissue microarrays, we determined...

  6. Inducible Promoter Systems for Gene Perturbation Experiments in Arabidopsis.

    Science.gov (United States)

    Thomson, Bennett; Graciet, Emmanuelle; Wellmer, Frank

    2017-01-01

    Assessing molecular changes that occur through altering a gene's activity is often hampered by difficulties that arise due to the typically static nature of the introduced perturbation. This is especially problematic when investigating molecular events at specific stages and/or in certain tissues or organs during Arabidopsis development. To circumvent these issues, we have employed chemically inducible artificial microRNAs (amiRNAs) for the specific knockdown of developmental regulators. For our own research, we have combined this gene perturbation approach with a floral induction system, which allows the simultaneous induction of a large number of flowers on the inflorescence of a single plant, and the ability to knock down a gene's activity at any given stage of development. To enable the plant community to avail of the full benefits of these systems, we describe, in this chapter, strategies for amiRNA-mediated gene perturbations and address some common problems that can be encountered when generating inducible amiRNA constructs, growing these plants, and collecting floral buds for analysis.

  7. Methylation of the BIN1 gene promoter CpG island associated with breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Khomyakova Anastasiya

    2007-01-01

    Full Text Available Abstract Background Loss of BIN1 tumor suppressor expression is abundant in human cancer and its frequency exceeds that of genetic alterations, suggesting the role of epigenetic regulators (DNA methylation. BIN1 re-expression in the DU145 prostate cancer cell line after 5-aza-2'-deoxycytidine treatment was recently reported but no methylation of the BIN1 promoter CpG island was found in DU145. Methods Methylation-sensitive arbitrarily-primed PCR was used to detect genomic loci abnormally methylated in breast cancer. BIN1 CpG island fragment was identified among the differentially methylated loci as a result of direct sequencing of the methylation-sensitive arbitrarily-primed PCR product and subsequent BLAST alliance. BIN1 CpG island cancer related methylation in breast and prostate cancers was confirmed by bisulphite sequencing and its methylation frequency was evaluated by methylation sensitive PCR. Loss of heterozygosity analysis of the BIN1 region was performed with two introgenic and one closely adjacent extragenic microsatellite markers.BIN1 expression was evaluated by real-time RT-PCR. Results We have identified a 3'-part of BIN1 promoter CpG island among the genomic loci abnormally methylated in breast cancer. The fragment proved to be methylated in 18/99 (18% and 4/46 (9% breast and prostate tumors, correspondingly, as well as in MCF7 and T47D breast cancer cell lines, but was never methylated in normal tissues and lymphocytes as well as in DU145 and LNCaP prostate cancer cell lines. The 5'-part of the CpG island revealed no methylation in all samples tested. BIN1 expression losses were detected in MCF7 and T47D cells and were characteristic of primary breast tumors (10/13; 77%, while loss of heterozygosity was a rare event in tissue samples (2/22 informative cases; 9% and was ruled out for MCF7. Conclusion BIN1 promoter CpG island is composed of two parts differing drastically in the methylation patterns in cancer. This appears to be a

  8. A cII-dependent promoter is located within the Q gene of bacteriophage lambda.

    OpenAIRE

    Hoopes, B C; McClure, W R

    1985-01-01

    We have found a cII-dependent promoter, PaQ, within the Q gene of bacteriophage lambda. Transcription experiments and abortive initiation assays performed in vitro showed that the promoter strength and the cII affinity of PaQ were comparable to the other cII-dependent lambda promoters, PE and PI. The location and leftward direction of PaQ suggests a possible role in the delay of lambda late-gene expression by cII protein, a phenomenon that has been called cII-dependent inhibition. We have con...

  9. Abnormal P-53 suppressor gene expression predicts for a poorer outcome in patients with locally advanced adenocarcinoma of the prostate treated by external beam radiation therapy with or without pre-radiation androgen ablation: results based on RTOG study 86-10

    International Nuclear Information System (INIS)

    Lawton, Colleen A.; Grignon, David; Caplan, Richard; Sarkar, Fazlul; Forman, Jeffrey; Mesic, John; Fu, Karen K.; Abrams, Ross

    1995-01-01

    Purpose/Objective: The purpose of this study is to establish the effect of the abnormal expression of the P-53 suppressor gene on the results of locally advanced adenocarcinoma of the prostate treated with radiation therapy with or without pre-radiation therapy androgen ablation. Materials and Methods: Patients evaluated were part of a RTOG phase III multi-institutional trial. This trial assessed the value of pre-radiation therapy androgen ablation on patients with locally advanced disease (bulky stage B and stage C). Of the 471 patients registered, pre-treatment pathological material was available for 129 patients. P-53 status was determined immunohistochemically utilizing a commercially available antibody (D07). Clinical endpoints evaluated were overall survival and development of metastases. Results: Twenty-three of the 129 patients had abnormal expression of the P-53 suppressor gene. Presence of this abnormal expression significantly correlated with lower overall survival (p=0.03) and the development of distant metastases (p=0.03). Abnormal expression of the P-53 gene was an independent prognostic indicator when evaluated against clinical stage and Gleason score. Conclusion: This data from patients entered on a phase III multi-institutional, randomized clinical trial shows that abnormal P-53 suppressor gene expression as determined immunohistochemically is an independent predictor of poorer survival and the development of distant metastases in patients with locally advanced adenocarcinoma of the prostate treated with radiation therapy with or without pre-radiation therapy androgen ablation

  10. DNA repair and damage pathway related cancer suppressor genes in low-dose-rate irradiated AKR/J an IR mice

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyun Soon; Bong, Jin Jong; Kang, Yumi; Choi, Moo Hyun; Lee, Hae Un; Yoo, Jae Young; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Gyeongju (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    It has been reported that low-dose-rate radiation stimulates the immune response, prolongs life span and inhibits carcinogenesis. The high dose-rate radiation influences the expression of DNA repair and damage-related genes. In contrast, DNA repair and damage signaling triggered by low-dose-rate irradiation remain unclear. In the present study, we investigated the differential expression of DNA repair and damage pathway related genes in the thymus of AKR/J and ICR mice after 100th day low-dose-rate irradiation. Our findings demonstrated that low-dose-rate γ -radiation suppressed tumorigenesis.

  11. Characteristic differences between the promoters of intron-containing and intronless ribosomal protein genes in yeast

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2008-10-01

    Full Text Available Abstract Background More than two thirds of the highly expressed ribosomal protein (RP genes in Saccharomyces cerevisiae contain introns, which is in sharp contrast to the genome-wide five percent intron-containing genes. It is well established that introns carry regulatory sequences and that the transcription of RP genes is extensively and coordinately regulated. Here we test the hypotheses that introns are innately associated with heavily transcribed genes and that introns of RP genes contribute regulatory TF binding sequences. Moreover, we investigate whether promoter features are significantly different between intron-containing and intronless RP genes. Results We find that directly measured transcription rates tend to be lower for intron-containing compared to intronless RP genes. We do not observe any specifically enriched sequence motifs in the introns of RP genes other than those of the branch point and the two splice sites. Comparing the promoters of intron-containing and intronless RP genes, we detect differences in number and position of Rap1-binding and IFHL motifs. Moreover, the analysis of the length distribution and the folding free energies suggest that, at least in a sub-population of RP genes, the 5' untranslated sequences are optimized for regulatory function. Conclusion Our results argue against the direct involvement of introns in the regulation of transcription of highly expressed genes. Moreover, systematic differences in motif distributions suggest that RP transcription factors may act differently on intron-containing and intronless gene promoters. Thus, our findings contribute to the decoding of the RP promoter architecture and may fuel the discussion on the evolution of introns.

  12. Nup98 regulation of histone methylation promotes normal gene expression and may drive leukemogenesis.

    Science.gov (United States)

    Sump, Bethany; Brickner, Jason H

    2017-11-15

    Nuclear pore proteins (Nups) interact with chromosomes to regulate gene expression and chromatin structure. A new study by Franks and colleagues (pp. 2222-2234) provides new mechanistic insight into the molecular basis by which Nup98 promotes gene activation in normal hematopoietic cells and how that process is altered by translocations to cause excess expression of developmental genes in leukemia. © 2017 Sump and Brickner; Published by Cold Spring Harbor Laboratory Press.

  13. Different promoter affinities account for specificity in MYC-dependent gene regulation

    Science.gov (United States)

    Lorenzin, Francesca; Benary, Uwe; Baluapuri, Apoorva; Walz, Susanne; Jung, Lisa Anna; von Eyss, Björn; Kisker, Caroline; Wolf, Jana; Eilers, Martin; Wolf, Elmar

    2016-01-01

    Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells. DOI: http://dx.doi.org/10.7554/eLife.15161.001 PMID:27460974

  14. Tumor-suppressor activity of RRIG1 in breast cancer

    International Nuclear Information System (INIS)

    Zhang, Guihong; Brewster, Abenaa; Guan, Baoxiang; Fan, Zhen; Brown, Powel H; Xu, Xiao-Chun

    2011-01-01

    Retinoid receptor-induced gene-1 (RRIG1) is a novel gene that has been lost in several types of human cancers. The aim of this study was to determine whether RRIG1 plays a role in breast cancer, such as in the suppression of breast cancer cell growth and invasion. Immunohistochemistry was used to detect RRIG1 expression in breast tissue specimens. Gene transfection was used to restore or knock down RRIG1 expression in breast cancer cell lines for analysis of cell viability, colony formation, and migration/invasion potential. Reverse-transcription polymerase chain reaction and western blot assays were used to detect the changes in gene expression. The RhoA activation assay was used to assess RRIG1-induced inhibition of RhoA activity. The immunohistochemical data showed that RRIG1 expression was reduced in breast cancer tissues compared with normal and atypical hyperplastic breast tissues. RRIG1 expression was inversely correlated with lymph node metastasis of breast cancer but was not associated with the status of hormone receptors, such as estrogen receptor, progesterone receptor, or HER2. Furthermore, restoration of RRIG1 expression inhibited proliferation, colony formation, migration, and invasion of breast cancer cells. Expression of RRIG1 also reduced phosphorylated Erk1/2 and Akt levels; c-Jun, MMP9, and Akt expressions; and RhoA activity. In contrast, knockdown of RRIG1 expression promoted breast cancer cell proliferation, colony formation, migration, and invasion potential. The data from the current study indicated that RRIG1 expression was reduced or lost in breast cancer and that restoration of RRIG1 expression suppressed breast cancer cell growth and invasion capacity. Future studies will determine the underlying molecular mechanisms and define RRIG1 as a tumor-suppressor gene in breast cancer

  15. Role of promoter element in c-mpl gene expression induced by TPO.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2013-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role for the development of megakaryocyte and considered to regulate megakaryocytopoiesis. Previously we reported that TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter and the expression of the c-mpl gene is modulated by transcription through a protein kinase C (PKC)-dependent pathway in the megakaryoblastic cells. In this research, to elucidate the required elements in c-mpl promoter, the promoter activity of the deletion constructs and site-directed mutagenesis were measured by a transient transfection assay system. Destruction of -77GATA in c-mpl promoter decreased the activity by 22.8%. Our study elucidated that -77GATA involved in TPO-induced c-mpl gene expression in a human megakaryoblastic cell line, CMK.

  16. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  17. Promoter polymorphism of transforming growth factor-beta1 gene and ulcerative colitis.

    Science.gov (United States)

    Tamizifar, B; Lankarani, K B; Naeimi, S; Rismankar Zadeh, M; Taghavi, A; Ghaderi, A

    2008-01-14

    To elucidate the possible difference in two promoter polymorphisms of the transforming growth factor-beta1 (TGF-beta1) gene (-800G > A, -509C > T) between ulcerative colitis (UC) patients and normal subjects. A total of 155 patients with established ulcerative colitis and 139 normal subjects were selected as controls. Two single nucleotide polymorphisms within the promoter region of TGF-beta1 gene (-509C > T and -800G > A) were genotyped using PCR-RFLP. There was a statistically significant difference in genotype and allele frequency distributions between UC patients and controls for the -800G > A polymorphism of the TGF-beta1 gene (P A of TGF-beta1 gene promoter between Iranian patients with UC and normal subjects.

  18. Tissue-specific and ubiquitous expression patterns from alternative promoters of human genes.

    Directory of Open Access Journals (Sweden)

    Edwin Jacox

    2010-08-01

    Full Text Available Transcriptome diversity provides the key to cellular identity. One important contribution to expression diversity is the use of alternative promoters, which creates mRNA isoforms by expanding the choice of transcription initiation sites of a gene. The proximity of the basal promoter to the transcription initiation site enables prediction of a promoter's location based on the gene annotations. We show that annotation of alternative promoters regulating expression of transcripts with distinct first exons enables a novel methodology to quantify expression levels and tissue specificity of mRNA isoforms.The use of distinct alternative first exons in 3,296 genes was examined using exon-microarray data from 11 human tissues. Comparing two transcripts from each gene we found that the activity of alternative promoters (i.e., P1 and P2 was not correlated through tissue specificity or level of expression. Furthermore neither P1 nor P2 conferred any bias for tissue-specific or ubiquitous expression. Genes associated with specific diseases produced transcripts whose limited expression patterns were consistent with the tissue affected in disease. Notably, genes that were historically designated as tissue-specific or housekeeping had alternative isoforms that showed differential expression. Furthermore, only a small number of alternative promoters showed expression exclusive to a single tissue indicating that "tissue preference" provides a better description of promoter activity than tissue specificity. When compared to gene expression data in public databases, as few as 22% of the genes had detailed information for more than one isoform, whereas the remainder collapsed the expression patterns from individual transcripts into one profile.We describe a computational pipeline that uses microarray data to assess the level of expression and breadth of tissue profiles for transcripts with distinct first exons regulated by alternative promoters. We conclude that

  19. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  20. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Li Mingji

    2012-02-01

    Full Text Available Abstract Background For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs in tandem. Results Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. Conclusions The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.

  1. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Science.gov (United States)

    Uno, Miyuki; Oba-Shinjo, Sueli Mieko; Camargo, Anamaria Aranha; Moura, Ricardo Pereira; de Aguiar, Paulo Henrique; Cabrera, Hector Navarro; Begnami, Marcos; Rosemberg, Sérgio; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi

    2011-01-01

    OBJECTIVES: 1) To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter to its gene and protein expression levels in glioblastoma and 2) to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001). However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297). The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing), and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue. PMID:22012047

  2. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Directory of Open Access Journals (Sweden)

    Miyuki Uno

    2011-01-01

    Full Text Available OBJECTIVES: 1 To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT promoter to its gene and protein expression levels in glioblastoma and 2 to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001. However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297. The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing, and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue.

  3. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer.

    Science.gov (United States)

    Agarwal, Payal; Sandey, Maninder; DeInnocentes, Patricia; Bird, R Curtis

    2013-06-01

    p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16-defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16-transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re-feeding to induce cell cycle re-entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16-associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re-entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by (3)H-thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16-transfected CMT27A and CMT27H cells exited cell cycle post-serum-starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post-serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non-proliferative states. Copyright © 2012 Wiley Periodicals, Inc.

  4. Identification of learning and memory genes in canine; promoter investigation and determining the selective pressure.

    Science.gov (United States)

    Seifi Moroudi, Reihane; Masoudi, Ali Akbar; Vaez Torshizi, Rasoul; Zandi, Mohammad

    2014-12-01

    One of the important behaviors of dogs is trainability which is affected by learning and memory genes. These kinds of the genes have not yet been identified in dogs. In the current research, these genes were found in animal models by mining the biological data and scientific literatures. The proteins of these genes were obtained from the UniProt database in dogs and humans. Not all homologous proteins perform similar functions, thus comparison of these proteins was studied in terms of protein families, domains, biological processes, molecular functions, and cellular location of metabolic pathways in Interpro, KEGG, Quick Go and Psort databases. The results showed that some of these proteins have the same performance in the rat or mouse, dog, and human. It is anticipated that the protein of these genes may be effective in learning and memory in dogs. Then, the expression pattern of the recognized genes was investigated in the dog hippocampus using the existing information in the GEO profile. The results showed that BDNF, TAC1 and CCK genes are expressed in the dog hippocampus, therefore, these genes could be strong candidates associated with learning and memory in dogs. Subsequently, due to the importance of the promoter regions in gene function, this region was investigated in the above genes. Analysis of the promoter indicated that the HNF-4 site of BDNF gene and the transcription start site of CCK gene is exposed to methylation. Phylogenetic analysis of protein sequences of these genes showed high similarity in each of these three genes among the studied species. The dN/dS ratio for BDNF, TAC1 and CCK genes indicates a purifying selection during the evolution of the genes.

  5. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level...

  6. Expression of the 90K immunostimulator gene is controlled by a promoter with unique features

    DEFF Research Database (Denmark)

    Brakebusch, C; Jallal, B; Fusco, O

    1997-01-01

    for promoter activity. This minimal promoter showed increased activity after stimulation with interferon-gamma or poly(I.C), a substance mimicking viral infection. Essential for both inductions was the integrity of an interferon regulatory factor element within this sequence, a potential binding site...... and was localized on chromosome 11, region E. RNase protection identified one major transcription start site (+1) and three minor ones (-3, +32, +34). The mouse 90K gene was found to have a TATA-less promoter of unusual structure. The 2. 3-kilobase pair 5'-flanking region exhibited strong promoter activity in NIH 3...

  7. Differential Splicing of Oncogenes and Tumor Suppressor Genes in African- and Caucasian-American Populations: Contributing Factor in Prostate Cancer Disparities

    Science.gov (United States)

    2015-10-01

    Sciences, Washington, District of Columbia. 3Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda...5Department of Surgery ,Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland. 6Department of...each biopsy core was purified using the RNeasy Micro Kit (Qiagen) and interrogated with the Affymetrix Human Exon 1.0 ST GeneChip. For miRNA

  8. Helicobacter pylori infection and family history of gastric cancer decrease expression of FHIT tumor suppressor gene in gastric mucosa of dyspeptic patients.

    Science.gov (United States)

    Stec-Michalska, Krystyna; Peczek, Lukasz; Michalski, Blazej; Wisniewska-Jarosinska, Maria; Krakowiak, Agnieszka; Nawrot, Barbara

    2009-10-01

    The expression of a fragile histidine triad (FHIT) protein is lost in stomach tumors. The study aimed at determining whether FHIT expression is affected by Helicobacter pylori infection, strain virulence (vacA and cagA genes) and histopathological changes in the gastric mucosa of patients with functional dyspepsia having first-degree relatives with gastric cancer. Eighty-eight never-smoking patients with functional dyspepsia were selected for the study, and 48 of them had first-degree relatives with gastric cancer. Bacterial DNA amplification was used to identify H. pylori colonization. The level of FHIT gene expression was determined by qRT-PCR (mRNA) and Western blot (FHIT protein) analyses. For patients having first-degree relatives with gastric cancer FHIT expression was lower (mRNA by ca. 40-45% and protein by 30%) compared with the control patients (p pylori infection decreased the FHIT mRNA level by 10-35% and the protein level by 10-20%. Bacterial strain vacA(+)cagA(+) lowered FHIT mRNA by ca. 30-35% in the antrum samples of both groups and in corpus samples of patients with first-degree relatives with gastric cancer (p pylori-negative patients with intestinal metaplasia, compared with those with non-atrophic gastritis. The decreased FHIT gene expression associated with hereditary factors and with H. pylori infection, especially with vacA(+)cagA(+)-positive strains, may be related to gastric carcinoma development.

  9. Low-Dose Radiation Induces Genes Promoting Cell Survival

    International Nuclear Information System (INIS)

    Liu, Shu-Zheng; Chen, Dong; Mu, Ying

    1999-01-01

    Apoptosis is an important process controlling homeostasis of the body. It is influenced by stimuli constantly arising from the external and internal environment of the organism. It is well known that radiation could induce apoptosis of cells in vitro and in vivo. However, the dose-effect relationship of apoptosis extending to the low-dose range has scarcely been studied. Here, the molecular basis of the phenomenon is explored by examining the changes in expression of some of the proapoptotic and antiapoptotic genes

  10. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  11. Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2003-03-04

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  12. Characterization of the sporophyte-preferential gene promoter from the red alga Porphyra yezoensis using transient gene expression.

    Science.gov (United States)

    Uji, Toshiki; Mizuta, Hiroyuki; Saga, Naotsune

    2013-04-01

    The life cycle of plants entails an alternation of generations, the diploid sporophyte and haploid gametophyte stages. There is little information about the characteristics of gene expression during each phase of marine macroalgae. Promoter analysis is a useful method for understanding transcriptional regulation; however, there is no report of promoter analyses in marine macroalgae. In this study, with the aim of elucidating the differences in the transcriptional regulatory mechanisms between the gametophyte and sporophyte stages in the marine red alga Porphyra yezoensis, we isolated the promoter from the sporophyte preferentially expressed gene PyKPA1, which encodes a sodium pump, and analyzed its promoter using a transient gene expression system with a synthetic β-glucuronidase (PyGUS) reporter. The deletion of -1432 to -768 relative to the transcription start site resulted in decreased GUS activity in sporophytes. In contrast, deletion from -767 to -527 increased GUS activity in gametophytes. Gain-of-function analyses showed that the -1432 to -760 region enhanced the GUS activity of a heterologous promoter in sporophytes, whereas the -767 to -510 region repressed it in gametophytes. Further mutation and gain-of-function analyses of the -767 to -510 region revealed that a 20-bp GC-rich sequence (-633 to -614) is responsible for the gametophyte-specific repressed expression. These results showed that the sporophyte-specific positive regulatory region and gametophyte-specific negative regulatory sequence play a crucial role in the preferential expression of PyKPA1 in P. yezoensis sporophytes.

  13. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  14. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course-based undergraduate research experience in molecular and cell biology.

    Science.gov (United States)

    Hekmat-Scafe, Daria S; Brownell, Sara E; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S; Stearns, Tim

    2017-03-04

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA-binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161-178, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1.

    Science.gov (United States)

    Benzeno, Sharon; Narla, Goutham; Allina, Jorge; Cheng, George Z; Reeves, Helen L; Banck, Michaela S; Odin, Joseph A; Diehl, J Alan; Germain, Doris; Friedman, Scott L

    2004-06-01

    Kruppel-like factor 6 (KLF6) is a tumor suppressor gene inactivated in prostate and colon cancers, as well as in astrocytic gliomas. Here, we establish that KLF6 mediates growth inhibition through an interaction with cyclin D1, leading to reduced phosphorylation of the retinoblastoma protein (Rb) at Ser(795). Furthermore, introduction of KLF6 disrupts cyclin D1-cyclin-dependent kinase (cdk) 4 complexes and forces the redistribution of p21(Cip/Kip) onto cdk2, which promotes G(1) cell cycle arrest. Our data suggest that KLF6 converges with the Rb pathway to inhibit cyclin D1/cdk4 activity, resulting in growth suppression.

  16. IFN-gamma increases the hGH gene promoter activity in rat GH3 cells.

    Science.gov (United States)

    Gong, Feng-Ying; Deng, Jie-Ying; Shi, Yi-Fan

    2003-01-01

    To study the effect(s) of interferon gamma (IFN-gamma) on the activity of human growth hormone (hGH) gene promoter in rat pituitary GH3 cells and the molecular mechanism underlying the effect(s). Cell transfection and luciferase reporter gene were used. IFN-gamma (10(2) and 10(3) U/ml) increased the activity of hGH in GH3 cells. The addition of the mitogen-activated protein kinase inhibitor PD98059 (40 micromol/l) to the cells blocked the stimulatory effect of IFN-gamma. Neither overexpression of Pit-1 nor inhibiting Pit-1 expression affected IFN-gamma induction of hGH promoter activity. To identify the DNA sequence that mediated the effect of IFN-gamma, four deletion constructs of hGH gene promoter were created. The stimulatory effect of IFN-gamma was abolished following deletion of the -250 to -132 fragment. IFN-gamma increases the activity of hGH gene promoter in rat pituitary GH3 cells. This stimulatory effect of IFN-gamma appears to require the intracellular mitogen-activated protein kinase-dependent signaling pathway. The effect of IFN-gamma requires the promoter sequence that spans the -250 to -132 fragment of the gene, but is unrelated to Pit-1 protein. Copyright 2003 S. Karger AG, Basel

  17. GAP promoter library for fine-tuning of gene expression in Pichia pastoris.

    Science.gov (United States)

    Qin, Xiulin; Qian, Jiangchao; Yao, Gaofeng; Zhuang, Yingping; Zhang, Siliang; Chu, Ju

    2011-06-01

    A library of engineered promoters of various strengths is a useful genetic tool that enables the fine-tuning and precise control of gene expression across a continuum of broad expression levels. The methylotrophic yeast Pichia pastoris is a well-established expression host with a large academic and industrial user base. To facilitate manipulation of gene expression spanning a wide dynamic range in P. pastoris, we created a functional promoter library through mutagenesis of the constitutive GAP promoter. Using yeast-enhanced green fluorescent protein (yEGFP) as the reporter, 33 mutants were chosen to form the functional promoter library. The 33 mutants spanned an activity range between ∼0.6% and 19.6-fold of the wild-type promoter activity with an almost linear fluorescence intensity distribution. After an extensive characterization of the library, the broader applicability of the results obtained with the yEGFP reporter was confirmed using two additional reporters (β-galactosidase and methionine adenosyltransferase [MAT]) at the transcription and enzyme activity levels. Furthermore, the utility of the promoter library was tested by investigating the influence of heterologous MAT gene expression levels on cell growth and S-adenosylmethionine (SAM) production. The extensive characterization of the promoter strength enabled identification of the optimal MAT activity (around 1.05 U/mg of protein) to obtain maximal volumetric SAM production. The promoter library permits precise control of gene expression and quantitative assessment that correlates gene expression level with physiologic parameters. Thus, it is a useful toolbox for both basic and applied research in P. pastoris.

  18. Functional characterization of genetic polymorphisms identified in the promoter region of the bovine PEPS gene.

    Science.gov (United States)

    Ju, Zhihua; Zheng, Xue; Huang, Jinming; Qi, Chao; Zhang, Yan; Li, Jianbin; Zhong, Jifeng; Wang, Changfa

    2012-06-01

    Peptidase S (PEPS) is a metallopeptidase that cleaves N-terminal residues from proteins and peptides. PEPS is used as a cell maintenance enzyme with critical roles in peptide turnover. The promoter region located upstream of the initiation site plays an important role in regulating gene expression. Polymorphism in the promoter region can alter gene expression and lead to biological changes. In the current study, polymorphisms in the promoter region of the PEPS gene were investigated. Polymerase chain reaction (PCR)-restriction fragment length polymorphism and DNA sequencing methods were used to screen sequence variations in the promoter region of DNA samples from 743 Chinese Holstein cattle. Two polymorphisms (g. -534 T>C and g. -2545 G>A) were identified and eight haplotypes were classified by haplotype analysis. The two genetic polymorphisms and haplotypes were associated with fat percentage and somatic cell score in Chinese Holstein cattle. The results of real-time PCR showed that cow kidneys exhibit the highest PEPS expression level. Moreover, bioinformatics analysis predicted that the single-nucleotide polymorphism g. -534 T>C is located in the core promoter region and in the transcription factor binding sites. The promoter activities of the polymorphism of -543 T>C were measured by luciferase assay in the human kidney epithelial cell line 293T. Transcriptional activity is significantly lower in cell lines transfected with the reporter construct containing 2.5 kb upstream fragments with -543 C than in those with wild-type -543 T. The results indicated that genetic variation at locus -543 influences PEPS promoter activity. The genetic variation in the promoter region of PEPS gene may regulate PEPS gene transcription and might have consequences at a regulatory level.

  19. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis

    Science.gov (United States)

    Liu, Xue-Song; Haines, Jenna E.; Mehanna, Elie K.; Genet, Matthew D.; Ben-Sahra, Issam; Asara, John M.; Manning, Brendan D.

    2014-01-01

    Elevated glycolysis is a common metabolic trait of cancer, but what drives such metabolic reprogramming remains incompletely clear. We report here a novel transcriptional repressor-mediated negative regulation of glycolysis. ZBTB7A, a member of the POK (POZ/BTB and Krüppel) transcription repressor family, directly binds to the promoter and represses the transcription of critical glycolytic genes, including GLUT3, PFKP, and PKM. Analysis of The Cancer Genome Atlas (TCGA) data sets reveals that the ZBTB7A locus is frequently deleted in many human tumors. Significantly, reduced ZBTB7A expression correlates with up-regulation of the glycolytic genes and poor survival in colon cancer patients. Remarkably, while ZBTB7A-deficient tumors progress exceedingly fast, they exhibit an unusually heightened sensitivity to glycolysis inhibition. Our study uncovers a novel tumor suppressor role of ZBTB7A in directly suppressing glycolysis. PMID:25184678

  20. [TEC promoter mediates P210(bcr/abl) gene expression in BaF3 cells].

    Science.gov (United States)

    Zhu, Yu-Feng; Wang, Yuan-Zhan; Meng, Fan-Yi

    2012-06-01

    P210(bcr/abl) transgene mouse is a good model to research the chronic myelogenous leukemia (CML), but the P210(bcr/abl) gene has a lethal effect on embryogenesis if driven by the constitutive promoter. So, the use of promoter which induces the special expression in hematopoietic tissue is the key to construct CML transgenic mice. This study was purposed to investigate the TEC promoter mediated P210(bcr/abl) gene expression in BaF3 cells. The CMVie promotes of IRES2-eGFP vector was replaced with the -364-+22 domain of TEC promoter cloned from mouse genome, and the P210(bcr/abl) gene was inserted into the EcoR I site of TEC-IRES2-eGFP vector. Then, the constructed vector was transfected into the BaF3 cells and 293 cells respectively. The expression levels of eGFP gene and P210(bcr/abl) gene in BaF3 and 293 cells were detected. The results showed that with fluorescent microscopy and flow cytometry, the eGFP gene was found to be expressed in the BaF3 cells, the expression rate was 7.10%, 23.35%, 64.61% at 6, 24, 72 h respectively after transfection, but the fluorescence was not seen in 293 cells. A 372 bp fragment of BCR/ABL mRNA was amplified by RT-PCR in BaF3 cells, but not in 293 cells. It is concluded that the -364-+22 domain of TEC promoter can mediate high-effective and specific expression of related genes in hematopoietic tissue, which can be used to construct P210(bcr/abl) transgene mice model.

  1. Culex tarsalis vitellogenin gene promoters investigated in silico and in vivo using transgenic Drosophila melanogaster.

    Science.gov (United States)

    Chen, Song; Rasgon, Jason L

    2014-01-01

    Genetic modification, or transgenesis, is a powerful technique to investigate the molecular interactions between vector-borne pathogens and their arthropod hosts, as well as a potential novel approach for vector-borne disease control. Transgenesis requires the use of specific regulatory regions, or promoters, to drive expression of genes of interest in desired target tissues. In mosquitoes, the vast majority of described promoters are from Anopheles and Aedes mosquitoes. Culex tarsalis is one of the most important vectors of arboviruses (including West Nile virus) in North America, yet it has not been the subject of molecular genetic study. In order to facilitate molecular genetic work in this important vector species, we isolated four fat body-specific promoter sequences located upstream of the Cx. tarsalis vitellogenin genes (Vg1a, Vg1b, Vg2a and Vg2b). Sequences were analyzed in silico to identify requisite cis-acting elements. The ability for promoter sequences to drive expression of green fluorescent protein (GFP) in vivo was investigated using transgenic Drosophila melanogaster. All four promoters were able to drive GFP expression but there was dramatic variation between promoters and between individual Drosophila lines, indicating significant position effects. The highest expression was observed in line Vg2bL3, which was >300-fold higher than the lowest line Vg1aL2. These new promoters will be useful for driving expression of genes of interest in transgenic Cx. tarsalis and perhaps other insects.

  2. Culex tarsalis vitellogenin gene promoters investigated in silico and in vivo using transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available Genetic modification, or transgenesis, is a powerful technique to investigate the molecular interactions between vector-borne pathogens and their arthropod hosts, as well as a potential novel approach for vector-borne disease control. Transgenesis requires the use of specific regulatory regions, or promoters, to drive expression of genes of interest in desired target tissues. In mosquitoes, the vast majority of described promoters are from Anopheles and Aedes mosquitoes.Culex tarsalis is one of the most important vectors of arboviruses (including West Nile virus in North America, yet it has not been the subject of molecular genetic study. In order to facilitate molecular genetic work in this important vector species, we isolated four fat body-specific promoter sequences located upstream of the Cx. tarsalis vitellogenin genes (Vg1a, Vg1b, Vg2a and Vg2b. Sequences were analyzed in silico to identify requisite cis-acting elements. The ability for promoter sequences to drive expression of green fluorescent protein (GFP in vivo was investigated using transgenic Drosophila melanogaster. All four promoters were able to drive GFP expression but there was dramatic variation between promoters and between individual Drosophila lines, indicating significant position effects. The highest expression was observed in line Vg2bL3, which was >300-fold higher than the lowest line Vg1aL2.These new promoters will be useful for driving expression of genes of interest in transgenic Cx. tarsalis and perhaps other insects.

  3. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2016-06-01

    Full Text Available Aim: To analyze the promoter sequence of toll-like receptor (TLR genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases.

  4. Enhancer activity of Helitron in sericin-1 gene promoter from Bombyx mori.

    Science.gov (United States)

    Huang, Ke; Li, Chun-Feng; Wu, Jie; Wei, Jun-Hong; Zou, Yong; Han, Min-Jin; Zhou, Ze-Yang

    2016-06-01

    Sericin is a kind of water-soluble protein expressed specifically in the middle silk gland of Bombyx mori. When the sericin-1 gene promoter was cloned and a transgenic vector was constructed to express a foreign protein, a specific Helitron, Bmhel-8, was identified in the sericin-1 gene promoter sequence in some genotypes of Bombyx mori and Bombyx mandarina. Given that the Bmhel-8 Helitron transposon was present only in some genotypes, it could be the source of allelic variation in the sericin-1 promoter. The length of the sericin-1 promoter sequence is approximately 1063 or 643 bp. The larger size of the sequence or allele is ascribed to the presence of Bmhel-8. Silkworm genotypes can be homozygous for either the shorter or larger promoter sequence or heterozygous, containing both alleles. Bmhel-8 in the sericin-1 promoter exhibits enhancer activity, as demonstrated by a dual-luciferase reporter system in BmE cell lines. Furthermore, Bmhel-8 displays enhancer activity in a sericin-1 promoter-driven gene expression system but does not regulate the tissue-specific expression of sericin-1. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Epstein - Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α.

    Directory of Open Access Journals (Sweden)

    Rosita Accardi

    2013-03-01

    Full Text Available Many studies have proved that oncogenic viruses develop redundant mechanisms to alter the functions of the tumor suppressor p53. Here we show that Epstein-Barr virus (EBV, via the oncoprotein LMP-1, induces the expression of ΔNp73α, a strong antagonist of p53. This phenomenon is mediated by the LMP-1 dependent activation of c-Jun NH2-terminal kinase 1 (JNK-1 which in turn favours the recruitment of p73 to ΔNp73α promoter. A specific chemical inhibitor of JNK-1 or silencing JNK-1 expression strongly down-regulated ΔNp73α mRNA levels in LMP-1-containing cells. Accordingly, LMP-1 mutants deficient to activate JNK-1 did not induce ΔNp73α accumulation. The recruitment of p73 to the ΔNp73α promoter correlated with the displacement of the histone-lysine N-methyltransferase EZH2 which is part of the transcriptional repressive polycomb 2 complex. Inhibition of ΔNp73α expression in lymphoblastoid cells (LCLs led to the stimulation of apoptosis and up-regulation of a large number of cellular genes as determined by whole transcriptome shotgun sequencing (RNA-seq. In particular, the expression of genes encoding products known to play anti-proliferative/pro-apoptotic functions, as well as genes known to be deregulated in different B cells malignancy, was altered by ΔNp73α down-regulation. Together, these findings reveal a novel EBV mechanism that appears to play an important role in the transformation of primary B cells.

  6. Octamer and heat shock elements regulate transcription from the AcMNPV polyhedrin gene promoter.

    Science.gov (United States)

    Kumar, M Senthil; Ramachandran, Aruna; Hasnain, Seyed E; Bashyam, Murali Dharan

    2009-01-01

    The baculovirus expression vector system exploits the polyhedrin (polh) promoter for high expression of foreign proteins in insect cells. The mechanism of basal and hyperactivated transcription from this promoter, however, remains poorly understood. We have analyzed the 4-kb upstream region of the polh promoter; deletion of two separate parts of the 4-kb upstream region, harboring the Oct binding site and the heat shock element, respectively, resulted in significant reduction of reporter gene expression regulated by the polh promoter. Insect cell host factors could bind to these elements in vitro. Moreover, these elements could activate polh transcription during viral infection when present upstream of a minimal polh promoter in transient expression reporter assays. Our results suggest the possible existence of transcription factors belonging to the POU and heat shock transcription factor family in Spodoptera frugiperda cells and support the hypothesis that host proteins may play a major role in activating transcription from the polh promoter.

  7. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  8. Inhibitor of differentiation 4 (Id4 is a potential tumor suppressor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Carey Jason PW

    2009-06-01

    Full Text Available Abstract Background Inhibitor of differentiation 4 (Id4, a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS, expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR, p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously

  9. Identifying Growth Conditions for Nicotiana benthimiana Resulting in Predictable Gene Expression of Promoter-Gus Fusion

    Science.gov (United States)

    Sandoval, V.; Barton, K.; Longhurst, A.

    2012-12-01

    Revoluta (Rev) is a transcription factor that establishes leaf polarity inArabidopsis thaliana. Through previous work in Dr. Barton's Lab, it is known that Revoluta binds to the ZPR3 promoter, thus activating the ZPR3 gene product inArabidopsis thaliana. Using this knowledge, two separate DNA constructs were made, one carrying revgene and in the other, the ZPR3 promoter fussed with the GUS gene. When inoculated in Nicotiana benthimiana (tobacco), the pMDC32 plasmid produces the Rev protein. Rev binds to the ZPR3 promoter thereby activating the transcription of the GUS gene, which can only be expressed in the presence of Rev. When GUS protein comes in contact with X-Gluc it produce the blue stain seen (See Figure 1). In the past, variability has been seen of GUS expression on tobacco therefore we hypothesized that changing the growing conditions and leaf age might improve how well it's expressed.

  10. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas.

    Science.gov (United States)

    Zhang, Jie; Yang, Jian-Hui; Quan, Jia; Kang, Xing; Wang, Hui-Juan; Dai, Peng-Gao

    2016-10-01

    O 6 -methylguanine-DNA methyltransferase (MGMT) gene promoter methylation was reported to be an independent prognostic and predictive factor in glioma patients who received temozolomide treatment. However, the predictive value of MGMT methylation was recently questioned by several large clinical studies. The purpose of this study is to identify MGMT gene promoter CpG sites or region whose methylation were closely correlated with its gene expression to elucidate this contradictory clinical observations. The methylation status for all CpG dinucleotides in MGMT promoter and first exon region were determined in 42 Chinese glioma patients, which were then correlated with MGMT gene expression, IDH1 mutation, and tumor grade. In whole 87 CpG dinucleotides analyzed, three distinct CpG regions covering 28 CpG dinucleotides were significantly correlated with MGMT gene expression; 10 CpG dinucleotides were significantly correlated with glioma classification (p MGMT gene hypermethylation significantly co-existed, but not for MGMT gene expression. The validation cohort of gliomas treated with standard of care and comparison of the CpGs we identified with the current CpGs used in clinical setting will be very important for gliomas individual medicine in the future.

  11. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.

    Science.gov (United States)

    Ahn, Jungoh; Park, Kyung-Min; Lee, Hongweon; Son, Yeo-Jin; Choi, Eui-Sung

    2013-02-01

    The removal of Gal80 protein by gene disruption turned into efficient GAL promoter-driven heterologous gene expression under anaerobic alcoholic fermentation of Saccharomyces cerevisiae. Using lipase B from Candida antarctica as a reporter, the relative strength of GAL10 promoter (P(GAL10) ) in Δgal80 mutant that does not require galactose as an inducer was compared to those of ADH1, PDC1, and PGK promoters, which have been known to work well anaerobically in actively fermenting yeast cells under high glucose concentration. P(GAL10) in the Δgal80 mutant showed 0.8-fold (ADH1), fourfold (PDC1), and 50-fold (PGK) in promoter strength. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  13. The Tumor Suppressor Protein TEP1/PTEN/MMAC1 and Human Breast Cancer

    National Research Council Canada - National Science Library

    Sun, Hong

    2002-01-01

    PTEN is an important tumor suppressor. Both inherited mutations and somatic mutations in the PTEN gene have been frequently found in a variety of human cancers, including the breast cancer, PTEN protein has been shown to possess...

  14. Structure of the Tetrameric p53 Tumor Suppressor Bound to DNA

    National Research Council Canada - National Science Library

    Marmorstein, Ronen

    2002-01-01

    The p53 tumor suppressor binds DNA as a tetramer to regulate the transcription of genes involved in cell cycle arrest and apoptosis, and alterations in the DNA-binding core domain of p53 are the most...

  15. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.

    Science.gov (United States)

    Farthing, Cassandra R; Ficz, Gabriella; Ng, Ray Kit; Chan, Chun-Fung; Andrews, Simon; Dean, Wendy; Hemberger, Myriam; Reik, Wolf

    2008-06-27

    DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early

  16. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.

    Directory of Open Access Journals (Sweden)

    Cassandra R Farthing

    2008-06-01

    Full Text Available DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES cells, embryonic germ (EG cells, sperm, trophoblast stem (TS cells, and primary embryonic fibroblasts (pMEFs. Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency

  17. Promoter hypermethylation of DNA repair genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas of the lung