WorldWideScience

Sample records for suppressor gene mutated

  1. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  2. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  3. A study on tumor suppressor genes mutations associated with different pathological colorectal lesions

    International Nuclear Information System (INIS)

    Matar, S.N.A.

    2011-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients ≤40 years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumor genesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (G I) Cancerous group, (G II) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (G III) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD

  4. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Rems Miran

    2009-08-01

    Full Text Available Abstract Background Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC, it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. Methods We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. Results We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Conclusion Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin.

  5. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  6. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome

    Science.gov (United States)

    Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco

    2012-01-01

    Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968

  7. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  8. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  9. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  10. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  11. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells

    NARCIS (Netherlands)

    Chan, M.F.; van Amerongen, R.; Nijjar, T.; Cuppen, E.; Jones, P.A.; Laird, P.W.

    2001-01-01

    Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by

  12. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  13. NF2 tumor suppressor gene: a comprehensive and efficient detection of somatic mutations by denaturing HPLC and microarray-CGH.

    Science.gov (United States)

    Szijan, Irene; Rochefort, Daniel; Bruder, Carl; Surace, Ezequiel; Machiavelli, Gloria; Dalamon, Viviana; Cotignola, Javier; Ferreiro, Veronica; Campero, Alvaro; Basso, Armando; Dumanski, Jan P; Rouleau, Guy A

    2003-01-01

    The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of multiple tumors of the nervous system, either associated with neurofibromatosis 2 or sporadic ones, mainly schwannomas and meningiomas. In order to evaluate the role of the NF2 gene in sporadic central nervous system (CNS) tumors, we analyzed NF2 mutations in 26 specimens: 14 meningiomas, 4 schwannomas, 4 metastases, and 4 other histopathological types of neoplasms. Denaturing high performance liquid chromatography (denaturing HPLC) and comparative genomic hybridization on a DNA microarray (microarray- CGH) were used as scanning methods for small mutations and gross rearrangements respectively. Small mutations were identified in six out of seventeen meningiomas and schwannomas, one mutation was novel. Large deletions were detected in six meningiomas. All mutations were predicted to result in truncated protein or in the absence of a large protein domain. No NF2 mutations were found in other histopathological types of CNS tumors. These results provide additional evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas and schwannomas. Denaturing HPLC analysis of small mutations and microarray-CGH of large deletions are complementary, fast, and efficient methods for the detection of mutations in tumor tissues.

  14. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  15. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations

    DEFF Research Database (Denmark)

    Aslan, Derya; Garde, Christian; Nygaard, Mette Katrine

    2016-01-01

    Spliceosome mutations are frequently observed in patients with myelodysplastic syndromes (MDS). However, it is largely unknown how these mutations contribute to the disease. MicroRNAs (miRNAs) are small noncoding RNAs, which have been implicated in most human cancers due to their role in post...... the most downregulated miRNAs were several tumor-suppressor miRNAs, including several let-7 family members, miR-423, and miR-103a. Finally, we observed that the predicted targets of the most downregulated miRNAs were involved in apoptosis, hematopoiesis, and acute myeloid leukemia among other cancer......- and metabolic pathways. Our data indicate that spliceosome mutations may play an important role in MDS pathophysiology by affecting the expression of tumor suppressor miRNA genes involved in the development and progression of MDS....

  16. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    OpenAIRE

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-...

  17. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  18. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  19. Photoreactivation of conversion and de novo suppressor mutation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, R C; Plamer, J E [Indiana Univ., Indianapolis (USA). Dept. of Microbiology

    1977-04-01

    Studies of mutagenesis and photoreactivation in various E.coli strains have shown that conversion mutation of a mutant containing an amber suppressor to one containing an ochre suppressor is sensitive to photoreactivation. Direct photoreactivation by photoreactivating light (PRL) after uv mutagenesis reduced mutation frequencies by a factor of about 2 for each minute of exposure during the first 5 to 8 min of exposure for cells with normal repair capacity. Conversion and potential de novo suppressor mutations were about equally sensitive. For conversion, the sensitivities to PRL were identical in the repair-normal and excisions-repair-deficient strains. For de novo suppressor mutation, the rate of mutation frequency reduction by PRL in the repair-deficient strain was about one-half that in the other strains. The results suggest that ultraviolet radiation produces both de novo suppressor mutation and conversion at the sup(E,B) locus by photoreversible pyrimidine dimers in the DNA. The causative dimers could be Thy()Cyt dimers in the transcribed strand or the non-transcribed strand, respectively.

  20. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  1. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking

    NARCIS (Netherlands)

    Westra, W. H.; Offerhaus, G. J.; Goodman, S. N.; Slebos, R. J.; Polak, M.; Baas, I. O.; Rodenhuis, S.; Hruban, R. H.

    1993-01-01

    Mutations in the p53 tumor suppressor gene are frequently observed in primary lung adenocarcinomas, suggesting that these mutations are critical events in the malignant transformation of airway cells. These mutations are often associated with stabilization of the p53 gene product, resulting in the

  2. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/Cip1 in colorectal carcinoma

    NARCIS (Netherlands)

    Slebos, R. J.; Baas, I. O.; Clement, M.; Polak, M.; Mulder, J. W.; van den Berg, F. M.; Hamilton, S. R.; Offerhaus, G. J.

    1996-01-01

    Inactivation of the p53 tumour-suppressor gene is common in a wide variety of human neoplasms. In the majority of cases, single point mutations in the protein-encoding sequence of p53 lead to positive immunohistochemistry (IHC) for the p53 protein, and are accompanied by loss of the wild-type

  3. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  4. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  5. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway

    International Nuclear Information System (INIS)

    Schiestl, R.H.; Prakash, S.; Prakash, L.

    1990-01-01

    rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, the authors have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6Δ) mutations and show that they also suppress the γ-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of γ-ray sensitivity. The six suppressor mutations they isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. They show that suppression of rad6Δ is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6Δ SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed

  6. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  7. P18 tumor suppressor gene and progression of oligodendrogliomas to anaplasia.

    Science.gov (United States)

    He, J; Hoang-Xuan, K; Marie, Y; Leuraud, P; Mokhtari, K; Kujas, M; Delattre, J Y; Sanson, M

    2000-09-26

    P18INK4C is a good candidate to be the tumor suppressor gene involved in oligodendrogliomas on 1p32. Loss of heterozygosity on 1p, mutation(s), homozygous deletion(s), and expression of p18 in 30 oligodendroglial tumors were investigated. Loss of heterozygosity on 1p was found in 15 tumors. A p18 mutation was found at an recurrence of an anaplastic oligodendroglioma, but not in the primary, low-grade tumor. No homozygous deletions were found and p18 was expressed in all cases. These results show that p18 alteration is involved in tumor progression in a subset of oligodendrogliomas.

  8. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level....... Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter...

  9. Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2010-11-01

    Full Text Available Abstract Elite controllers or suppressors (ES are HIV-1 infected patients who maintain viral loads of gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host.

  10. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  11. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias.

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M; Savova, Virginia; Schumacher, Steven E; Cleary, John P; Yoda, Akinori; Sullivan, Timothy J; Hess, Julian M; Gimelbrant, Alexander A; Beroukhim, Rameen; Lawrence, Michael S; Getz, Gad; Lane, Andrew A

    2017-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X-chromosome genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative 'escape from X-inactivation tumor-suppressor' (EXITS) genes, we examined somatic alterations from >4,100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) X-chromosome genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) harbored loss-of-function mutations more frequently in males (based on a false discovery rate < 0.1), in comparison to zero of 18,055 autosomal and PAR genes (Fisher's exact P < 0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence in females as compared to males across a variety of tumor types.

  12. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation.

    Science.gov (United States)

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Bussell, John Desmond; Schwambach, Joseli; Pop, Tiberia Ioana; Kowalczyk, Mariusz; Gutierrez, Laurent; Cavel, Emilie; Chaabouni, Salma; Ljung, Karin; Fett-Neto, Arthur Germano; Pamfil, Doru; Bellini, Catherine

    2014-04-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.

  13. Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Katherine A. McCulloch

    2017-07-01

    Full Text Available Acetylcholine (ACh receptors (AChR regulate neural circuit activity in multiple contexts. In humans, mutations in ionotropic acetylcholine receptor (iAChR genes can cause neurological disorders, including myasthenia gravis and epilepsy. In Caenorhabditis elegans, iAChRs play multiple roles in the locomotor circuit. The cholinergic motor neurons express an ACR-2-containing pentameric AChR (ACR-2R comprised of ACR-2, ACR-3, ACR-12, UNC-38, and UNC-63 subunits. A gain-of-function mutation in the non-α subunit gene acr-2 [acr-2(gf] causes defective locomotion as well as spontaneous convulsions. Previous studies of genetic suppressors of acr-2(gf have provided insights into ACR-2R composition and assembly. Here, to further understand how the ACR-2R regulates neuronal activity, we expanded the suppressor screen for acr-2(gf-induced convulsions. The majority of these suppressor mutations affect genes that play critical roles in synaptic transmission, including two novel mutations in the vesicular ACh transporter unc-17. In addition, we identified a role for a conserved major facilitator superfamily domain (MFSD protein, mfsd-6, in regulating neural circuit activity. We further defined a role for the sphingosine (SPH kinase (Sphk sphk-1 in cholinergic neuron activity, independent of previously known signaling pathways. Overall, the genes identified in our study suggest that optimal modulation of synaptic activity is balanced by the differential activities of multiple pathways, and the novel alleles provide valuable reagents to further dissect neuronal mechanisms regulating the locomotor circuit.

  14. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-01-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another

  15. p53 tumor suppressor gene: significance in neoplasia - a review

    International Nuclear Information System (INIS)

    Alam, J.M.

    2000-01-01

    p53 is a tumor suppressor gene located on chromosome 17p13.1. Its function includes cell cycle control and apoptosis. Loss of p53 function, either due to decreased level or genetic transformation, is associated with loss of cell cycle control, decrease, apoptosis and genomic modification, such mutation of p53 gene is now assessed and the indicator of neoplasia of cancer of several organs and cell types, p53 has demonstrated to have critical role in defining various progressive stages of neoplasia, therapeutic strategies and clinical application. The present review briefly describes function of p53 in addition to its diagnostic and prognostic significance in detecting several types of neoplasia. (author)

  16. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    Science.gov (United States)

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  17. Mutations and epimutations in the origin of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    2012-02-15

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.

  18. Identification and Characterization of Genes That Interact with Lin-12 in Caenorhabditis Elegans

    OpenAIRE

    Tax, F. E.; Thomas, J. H.; Ferguson, E. L.; Horvitz, H. R.

    1997-01-01

    We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor ...

  19. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  20. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  1. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  2. Molecular Analysis: Microsatellite Instability and Loss of Heterozygosity of Tumor Suppressor Gene in Hereditary Non-Polyposis Colorectal Cancer (HNPCC

    Directory of Open Access Journals (Sweden)

    Vesna Hadžiavdić

    2009-02-01

    Full Text Available HNPCC (Hereditary non-polyposis colorectal cancer development is caused by mutation of genes included in system of mismatch repair genes. The mutation exists at 60% of patients in hMSH2 gene, 30% in hMLH1 and 10% both in hPMS1and hPMS2 genes. RER+ exists in about 90% in hereditary non-polyposis colorectal cancer and about 15-28% in sporadic cancers.The purpose of the study was to determine highly sensitive microsatellite markers which can be fast and efficient way of microsatellite screening for detection of HNPCC patients. Moreover, we have analysed the loss of heterozygosity of tumour suppressor genes which could have the diagnostic value in detection of HPNCC patients.

  3. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    International Nuclear Information System (INIS)

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins

  4. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  5. Clinical Impact of TP53 Gene Mutations in Diffuse Large B-Cell Lymphoma (DLBCL)

    DEFF Research Database (Denmark)

    Young, Ken H; Patten, Nancy; Truong, Sim

    2009-01-01

    Mutations of the TP53 tumor suppressor gene are associated with a poor clinical outcome in DLBCL patients treated with CHOP. The impact of TP53 mutations on clinical outcome of DLBCL patients treated with Rituxan-CHOP has not been comprehensively analyzed. The purpose of this study was to analyze...

  6. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Heikkilä, Pirjo

    2010-01-01

    The causal role of work-related exposure to wood dust in the development of sinonasal cancer has long been established by numerous epidemiologic studies. To study molecular changes in these tumors, we analyzed TP53 gene mutations in 358 sinonasal cancer cases with or without occupational exposure...... affected the ORs only slightly. Smoking did not influence the occurrence of TP53 mutation; however, it was associated with multiple mutations (p = 0.03). As far as we are aware, this is the first study to demonstrate a high prevalence of TP53 mutation-positive cases in a large collection of sinonasal...... cancers with data on occupational exposure. Our results indicate that mutational mechanisms, in particular TP53 mutations, are associated with work-related exposure to wood dust in sinonasal cancer....

  7. MMS sensitivity of all amino acid-requiring mutants in aspergillus and its suppression by mutations in a single gene.

    Science.gov (United States)

    Käfer, E

    1987-04-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regulation of amino acid biosynthesis than MMS uptake, since a variety of pathway interactions were clearly modified by smsA suppressors in the absence of MMS.

  8. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  9. Absence of mutations in the coding sequence of the potential tumor suppressor 3pK in metastatic melanoma

    Directory of Open Access Journals (Sweden)

    Houben Roland

    2005-12-01

    Full Text Available Abstract Background Activation of Ras or Raf contributes to tumorigenesis of melanoma. However, constitutive Raf activation is also a characteristic of the majority of benign melanocytic nevi and high intensity signaling of either Ras or Raf was found to induce growth inhibition and senescence rather than transformation. Since the chromosome 3p kinase (3pK is a target of the Ras/Raf/Mek/Erk signaling pathway which antagonizes the function of the oncogene and anti-differentiation factor Bmi-1, 3pK may function as a tumor suppressor in tumors with constitutive Ras/Raf activation. Consequently, we tested whether inactivating 3pK mutations are present in melanoma. Methods 30 metastatic melanoma samples, which were positive for activating mutations of either BRaf or NRas, were analyzed for possible mutations in the 3pk gene. The 10 coding exons and their flanking intron sequences were amplified by PCR and direct sequencing of the PCR products was performed. Results This analysis revealed that besides the presence of some single nucleotide polymorphisms in the 3pk gene, we could not detect any possible loss of function mutation in any of these 30 metastatic melanoma samples selected for the presence of activating mutations within the Ras/Raf/Mek/Erk signaling pathway. Conclusion Hence, in melanoma with constitutively active Ras/Raf inactivating mutations within the 3pk gene do not contribute to the oncogenic phenotype of this highly malignant tumor.

  10. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  11. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  12. MUTATIONS OF THE SMARCB1 GENE IN HUMAN CANCERS

    Directory of Open Access Journals (Sweden)

    D. S. Mikhaylenko

    2016-01-01

    Full Text Available In the recent years, the full exome sequencing helped to reveal a  set of mutations in the genes that are not oncogenes or tumor suppressor genes by definition, but play an important role in carcinogenesis and encode proteins involved in chromatin remodeling. Among chromatin remodeling systems, which operate through the ATP-dependent mechanism, the complex SWI/ SNF attracts the great attention. The complex consists of the catalytic ATPase (SMARCA2/4, a group of conservative core subunits (SMARCB1, SMARCC1/2, and variant subunits. Abnormalities in the genes coding for each of these components have been identified as driver mutations in various human tumors. The SMARCB1 gene is of interest for practical oncogenetics, with its typical genotype-phenotype correlations. Germinal inactivating mutations (frameshift insertions/deletions, full deletions of the gene, nonsense mutations lead to development of rhabdoid tumors in the kidneys and the brain in children in their first years of life, or even in utero. These tumors are highly malignant (Rhabdoid Tumor Predisposition Syndrome 1 – RTPS1. If a mutation carrier survives his/hers four years of life without manifestation RTPS1 with a missense mutation or has the mutation in the "hot spot" of the first or the last exon, then he/she will not develop rhabdoid tumors, but after 20 years of life, shwannomatosis may develop as multiple benign tumors of peripheral nerves. Finally, some point mutations in the exons 8–9 can result in Coffin-Siris syndrome characterized by mental retardation and developmental disorders, but no neoplasms. In this regard, rational referral of patients for direct DNA diagnostics of each of the described disease entities plays an important role, based on respective minimal criteria, as well as necessity of further development of NGS technologies (full genome and full exome sequencing that are able to sequence not only individual exons, but all candidate genes of the

  13. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    OpenAIRE

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corr?, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation t...

  14. Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in Type 1 diabetes and insulin sensitivity

    DEFF Research Database (Denmark)

    Gylvin, T; Nolsøe, R; Hansen, T

    2004-01-01

    Beta cell loss in Type 1 and Type 2 diabetes mellitus may result from apoptosis and necrosis induced by inflammatory mediators. The suppressor of cytokine signalling (SOCS)-3 is a natural inhibitor of cytokine signalling and also influences insulin signalling. SOCS3 could therefore be a candidate...... gene in the development of Type 1 and Type 2 diabetes mellitus....

  15. Tumor suppressor gene mutation in a patient with a history of hyperparathyroidism-jaw tumor syndrome and healed generalized osteitis fibrosa cystica: a case report and genetic pathophysiology review.

    Science.gov (United States)

    Parfitt, Joshua; Harris, Malcolm; Wright, John M; Kalamchi, Sabah

    2015-01-01

    Hyperparathyroidism-jaw tumor (HPT-JT) was first observed by Jackson in 1958 in a family who exhibited hyperparathyroidism and recurrent pancreatitis. The author noticed the presence of jaw tumors in the affected family and reported them as fibrous dysplasia. However, it was not until 1990 that a familial variety of hyperparathyroidism with fibro-osseous jaw tumors was recognized as HPT-JT syndrome and reported as a clinically and genetically distinct syndrome. Hyperparathyroidism generally arises from glandular hyperplasia or parathyroid adenomas, with only about 1% of cases resulting from parathyroid carcinoma. However, parathyroid carcinoma develops in about 15% of HPT-JT patients. The true incidence of HPT-JT is unknown, although the prevalence of about 100 published cases suggests its rarity. Twenty percent of HPT-JT cases have renal hamartomas or tumors, and female patients with HPT-JT have been reported to have carcinoma of the uterus. This syndrome appears to arise from a variety of mutations that deactivate the tumor suppressor gene CDC73 (also known as HRPT2) and its production of the tumor suppressor protein parafibromin. Functional parafibromin has 531 amino acids, and mutations result in a short nonfunctional protein. CDC73 disorders exhibit dominant germline gene behavior, with varying degrees of penetration. In most cases an affected person has 1 parent with the condition, which raises the need for family investigation and genetic counseling. We report a case of HPT-JT syndrome in a male patient who presented to the local community hospital 6 years previously with a history of back pain. Investigations showed elevated serum parathyroid hormone and calcium levels, and a technetium 99m sestamibi parathyroid scan showed increased activity at the site of the lower left gland that proved to be a substernal parathyroid carcinoma. The patient's parathyroid hormone level dropped from 126 to 97 pg/mL at 5 minutes and was 65 pg/mL at 10 minutes after excision

  16. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  17. Mms Sensitivity of All Amino Acid-Requiring Mutants in Aspergillus and Its Suppression by Mutations in a Single Gene

    OpenAIRE

    Käfer, Etta

    1987-01-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regula...

  18. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  19. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Pasquale, Elena B

    2007-01-01

    Mutations have been recently identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor suppressor in prostate cancer...

  20. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Pasquale, Elena B

    2006-01-01

    Mutations have been recently identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor suppressor in prostate cancer...

  1. Is the gene encoding Chibby implicated as a tumour suppressor in colorectal cancer ?

    International Nuclear Information System (INIS)

    Gad, Sophie; Teboul, David; Lièvre, Astrid; Goasguen, Nicolas; Berger, Anne; Beaune, Philippe; Laurent-Puig, Pierre

    2004-01-01

    A novel member of the Wnt signalling pathway, Chibby, was recently identified. This protein inhibits Wnt/β-catenin mediated transcriptional activation by competing with Lef-1 (the transcription factor and target of β-catenin) to bind to β-catenin. This suggests that Chibby could be a tumour suppressor protein. The C22orf2 gene coding Chibby is located on chromosome 22, a region recurrently lost in colorectal cancer. Activation of the Wnt pathway is a major feature of colorectal cancer and occurs through inactivation of APC or activation of β-catenin. All of this led us to analyse the possible implication of Chibby in colorectal carcinogenesis. First, 36 tumour and matched normal colonic mucosa DNA were genotyped with five microsatellite markers located on chromosome 22 to search for loss of heterozygosity. Then, mutation screening of the C22orf2 coding sequence and splice sites was performed in the 36 tumour DNA. Finally, expression of Chibby was analysed by quantitative RT-PCR on 10 patients, 4 with loss of heterozygosity (LOH) on chromosome 22. Loss of heterozygosity involving the C22orf2 region was detected in 11 out of 36 patients (30%). Sequencing analysis revealed a known variant, rs3747174, in exon 5: T321C leading to a silent amino acid polymorphism A107A. Allelic frequencies were 0.69 and 0.31 for T and C variants respectively. No other mutation was detected. Among the 10 patients studied, expression analysis revealed that Chibby is overexpressed in 2 tumours and underexpressed in 1. No correlations were found with 22q LOH status. As no somatic mutation was detected in C22orf2 in 36 colorectal tumour DNA, our results do not support the implication of Chibby as a tumour suppressor in colorectal carcinogenesis. This was supported by the absence of underexpression of Chibby among the tumour samples with 22q LOH. The implication of other Wnt pathway members remains to be identified to explain the part of colorectal tumours without mutation in APC and β-catenin

  2. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. ..... rangement of the EGF receptor gene in primary human brain tumors ... the INK4A gene in superficial bladder tumors.

  3. Functional Analysis of In-frame Indel ARID1A Mutations Reveals New Regulatory Mechanisms of Its Tumor Suppressor Functions

    Directory of Open Access Journals (Sweden)

    Bin Guan

    2012-10-01

    Full Text Available AT-rich interactive domain 1A (ARID1A has emerged as a new tumor suppressor in which frequent somatic mutations have been identified in several types of human cancers. Although most ARID1A somatic mutations are frame-shift or nonsense mutations that contribute to mRNA decay and loss of protein expression, 5% of ARID1A mutations are in-frame insertions or deletions (indels that involve only a small stretch of peptides. Naturally occurring in-frame indel mutations provide unique and useful models to explore the biology and regulatory role of ARID1A. In this study, we analyzed indel mutations identified in gynecological cancers to determine how these mutations affect the tumor suppressor function of ARID1A. Our results demonstrate that all in-frame mutants analyzed lost their ability to inhibit cellular proliferation or activate transcription of CDKN1A, which encodes p21, a downstream effector of ARID1A. We also showed that ARID1A is a nucleocytoplasmic protein whose stability depends on its subcellular localization. Nuclear ARID1A is less stable than cytoplasmic ARID1A because ARID1A is rapidly degraded by the ubiquitin-proteasome system in the nucleus. In-frame deletions affecting the consensus nuclear export signal reduce steady-state protein levels of ARID1A. This defect in nuclear exportation leads to nuclear retention and subsequent degradation. Our findings delineate a mechanism underlying the regulation of ARID1A subcellular distribution and protein stability and suggest that targeting the nuclear ubiquitin-proteasome system can increase the amount of the ARID1A protein in the nucleus and restore its tumor suppressor functions.

  4. Genetic screening of the FLCN gene identify six novel variants and a Danish founder mutation

    DEFF Research Database (Denmark)

    Rossing, Maria; Albrechtsen, Anders; Skytte, Anne-Bine

    2016-01-01

    Pathogenic germline mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, a rare disease characterized by the development of cutaneous hamartomas (fibrofolliculomas), multiple lung cysts, spontaneous pneumothoraces and renal cell cancer. In this stu...... understanding of BHD syndrome and management of BHD patients.Journal of Human Genetics advance online publication, 13 October 2016; doi:10.1038/jhg.2016.118....

  5. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  6. Mutation analysis of breast cancer gene BRCA among breast cancer Jordanian females

    International Nuclear Information System (INIS)

    Atoum, Manar F.; Al-Kayed, Sameer A.

    2004-01-01

    To screen mutations of the tumor suppressor breast cancer susceptibility gene 1 (BRCA1) within 3 exons among Jordanian breast cancer females. A total of 135 Jordanian breast cancer females were genetically analyzed by denaturing gradient electrophoresis (DGGE) for mutation detection in 3 BRCA1 exons (2, 11 and 20) between 2000-2002 in Al-Basheer Hospital, Amman, Jordan. Of the studied patients 50 had a family history of breast cancer, 28 had a family history of cancer other than breast cancer, and 57 had no family history of any cancer. Five germline mutations were detected among breast cancer females with a family history of breast cancers (one in exon 2 and 4 mutations in exon 11). Another germline mutation (within exon 11) was detected among breast cancer females with family history of cancer other than breast cancer, and no mutation was detected among breast cancer females with no family history of any cancer or among normal control females. Screening mutations within exon 2, exon 11 and exon 20 showed that most screened mutations were within BRCA1 exon 11 among breast cancer Jordanian families with a family history of breast cancer. (author)

  7. Mutational myriad of tumor suppressor p53 in Filipino breast cancer: results and perspectives in molecular pathology and epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Deocaris, Custer C

    2000-04-01

    The p53 tumor suppressor is by far the most widely mutated gene in human cancers. p53 encodes a 53-kDa phosphoprotein, transcription-activator whose targets include genes and gene products that orchestrate genomic stability, cellular response to DNA damage, cell cycle progression apoptosis and aging (senescence). Analysis of the p53 gene profile has previously resulted in identifying several cancer-causative factors in the human setting, as well as, in creating a unique molecular profile of a tumor useful in the design of tailored-therapies for individual cancer patients. Our results in screening for p53 abnormalities in 140 Filipino patients with primary breast lesions confined from 1997-1998 in 5 major hospitals in Manila reveal that p53 plays an important role in the development and progression of breast cancer in at least 48% of all cases. Two methods of p53 analysis are employed, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-temporal temperature gradient electrophoresis (PCR-TTGE). Inter-comparisons of method exhibit 63.3% concordance in 21 fresh breast carcinoma samples, with ELISA demonstrating 14% false-positives and 10% false-negatives. Only mutations in exon 7 (p=0.063) in the tumor samples how significant correlation with abnormal cellular elevation of p53. PCR-TTGE screening in a large series of 140 patients show that most genetic lesions are localized in exons 5 (41% of the total cases) and 6 (27% of the total cases). No mutations are, however, detected in the transactivation (exons 2-4) and oligomerization (exons 10-11) domains. Invasive carcinomas (stages II and III) are characterized with more frequent and diverse genetic alterations compared with benign tumors, most significantly at exon 5B (p=0.066) and at independently multiple sites (p=0.066). Earlier-onset cases (age of diagnosis < 50 yrs), known to be more clinico-pathologically aggressive, are diagnosed harboring more frequent p53 mutations centered at exon 7 (p=0

  8. Mutational myriad of tumor suppressor p53 in Filipino breast cancer: results and perspectives in molecular pathology and epidemiology

    International Nuclear Information System (INIS)

    Deocaris, Custer C.

    2000-04-01

    The p53 tumor suppressor is by far the most widely mutated gene in human cancers. p53 encodes a 53-kDa phosphoprotein, transcription-activator whose targets include genes and gene products that orchestrate genomic stability, cellular response to DNA damage, cell cycle progression apoptosis and aging (senescence). Analysis of the p53 gene profile has previously resulted in identifying several cancer-causative factors in the human setting, as well as, in creating a unique molecular profile of a tumor useful in the design of tailored-therapies for individual cancer patients. Our results in screening for p53 abnormalities in 140 Filipino patients with primary breast lesions confined from 1997-1998 in 5 major hospitals in Manila reveal that p53 plays an important role in the development and progression of breast cancer in at least 48% of all cases. Two methods of p53 analysis are employed, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-temporal temperature gradient electrophoresis (PCR-TTGE). Inter-comparisons of method exhibit 63.3% concordance in 21 fresh breast carcinoma samples, with ELISA demonstrating 14% false-positives and 10% false-negatives. Only mutations in exon 7 (p=0.063) in the tumor samples how significant correlation with abnormal cellular elevation of p53. PCR-TTGE screening in a large series of 140 patients show that most genetic lesions are localized in exons 5 (41% of the total cases) and 6 (27% of the total cases). No mutations are, however, detected in the transactivation (exons 2-4) and oligomerization (exons 10-11) domains. Invasive carcinomas (stages II and III) are characterized with more frequent and diverse genetic alterations compared with benign tumors, most significantly at exon 5B (p=0.066) and at independently multiple sites (p=0.066). Earlier-onset cases (age of diagnosis < 50 yrs), known to be more clinico-pathologically aggressive, are diagnosed harboring more frequent p53 mutations centered at exon 7 (p=0

  9. Mutation and Methylation Analysis of the Chromodomain-Helicase-DNA Binding 5 Gene in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kylie L. Gorringe

    2008-11-01

    Full Text Available Chromodomain, helicase, DNA binding 5 (CHD5 is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04. The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

  10. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  11. Identification of the second mutation of BADH2 gene derived from rice mutant lines induced by gamma rays

    International Nuclear Information System (INIS)

    I Ishak

    2016-01-01

    The BADH2 gene acts as suppressor of 2-acetyl-1-pyrolline (2AP) biosynthesis in plants. 2AP is the volatile compound which provides fragrance in rice. Biosynthesis of 2AP occurs when BADH2 loses its function as suppressor gene. Aromatic rice cultivars naturally incur mutation of BADH2 gene at 8 bp. In this experiment, aromatic mutant rice lines derived from irradiation of Sintanur cultivar by gamma rays with dose of 100 Gy were studied in molecular level. These mutant lines were characterized at the M10 plantgeneration under the assumption that genetically these aromatic mutant rice lines were homozygotic. Several primers related to aroma in rice have been used for polymerase chain reaction (PCR) in a thermal cycler instrument. Gel electrophoreses were carried out using 1.5% agarose in TAE buffer. DNA fragments at 254 bp and 355 bp (base pair) were taken and amplified by primer for nucleotide sequencing of these fragments. Molecular identification and characterization after electrophoresis showed that the mutant line from AR1020 can be differentiated from AR.1080 at 254 bp. Nucleotide sequence data from of these DNA fragments showed that point mutations (deletions and substitutions) occurred at the BADH2 gene in exon 7; those are called second mutation and were caused by gamma rays effects. The Sintanur variety was used as check cultivar and its DNA sequence was compared to that of the AR.1020 mutant line. The results from both DNA sequences (from cv. Sintanur and AR.1020) derived from fragments at 254 bp show that point mutations occurred within exon 7 and earlier stop codon occurred in the AR.1020 mutant rice line. Further, the use of EA primer in PCR resulted in detection of deletion and substitution of nucleotides in the AR.1020 mutant line. (author)

  12. Identification and Functional Analysis of Gene Regulatory Sequences Interacting with Colorectal Tumor Suppressors

    DEFF Research Database (Denmark)

    Dahlgaard, Katja; Troelsen, Jesper

    2018-01-01

    Several tumor suppressors possess gene regulatory activity. Here, we describe how promoter and promoter/enhancer reporter assays can be used to characterize a colorectal tumor suppressor proteins’ gene regulatory activity of possible target genes. In the first part, a bioinformatic approach...... of the quick and efficient In-Fusion cloning method, and how to carry out transient transfections of Caco-2 colon cancer cells with the produced luciferase reporter plasmids using polyethyleneimine (PEI). A plan describing how to set up and carry out the luciferase expression assay is presented. The luciferase...... to identify relevant gene regulatory regions of potential target genes is presented. In the second part, it is demonstrated how to prepare and carry out the functional assay. We explain how to clone the bioinformatically identified gene regulatory regions into luciferase reporter plasmids by the use...

  13. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    OpenAIRE

    Wu, B; Georgopoulos, C; Ang, D

    1992-01-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of on...

  14. Promoter Methylation Analysis of IDH Genes in Human Gliomas

    International Nuclear Information System (INIS)

    Flanagan, Simon; Lee, Maggie; Li, Cheryl C. Y.; Suter, Catherine M.; Buckland, Michael E.

    2012-01-01

    Mutations in isocitrate dehydrogenase (IDH)-1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132) or IDH2 (R172). But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a “toxic gain-of-function” to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumor suppressor gene. As most, if not all, tumor suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumors, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumor suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumors, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumors examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumors. These findings do not support a tumor suppressor role for IDH genes in human gliomas.

  15. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  16. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  17. Study the Molecular Association between a Deletion Mutation in CHEK2 gene (5395 bp and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manijeh Jalilvand

    2015-07-01

    Full Text Available Background & Objectives: Breast cancer is the most common cancer among women and the second most common cause of cancer death. Genetic factors play an important role in the development of breast cancer. Among these genetic factors, CHEk2 (checkpoint kinase 2 gene, as a tumor suppressor gene, plays a critical role in DNA repair. Germline mutations in CEHK2 result in the loss of this feature. One of the mutations in CHEK2 gene is a 5395 bp deletion mutation which has been associated with the increasing risk of Breast Cancer in some populations in the world.  In the present study, we investigated the association between a 5395 bp deletion mutation in CHEK2 gene and the risk of Breast Cancer in the women of an Iranian population. Methods: Pathologic information of 38 cases under the age of 45 and 62 cases over the age of 45 referring to surgery ward of Milad Hospital in Tehran were extracted. 100 healthy controls were included in the study as well. After obtaining informed consent, 5 mL whole blood was taken DNA was successfully isolated. Multiplex PCR was used to investigate the association between a 5395bp deletion mutation in CHEK2 gene and increasing risk of Breast Cancer among patients. Results: The 5395bp deletion mutation in CHEK2 gene was not found in any of the participating groups of patients or heathy controls. Conclusion: The present study revealed that there is no significant relation between increasing the risk of Breast Cancer and bearing large deletion mutation in exon 9 and exon 10 of CHECK2 gene.

  18. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    Science.gov (United States)

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  19. Profiling of oligosaccharides and p53 gene mutation in Filipino breast tumors

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Vera, Azucena C.; Magno, Jose Donato A.; Cruz, Michael Joseph B.; Prodigalidad, Abelardo-Alan T.; Jacinto, Sonia D.

    2010-01-01

    Majority of patients are diagnosed with benign tumors, however, such benign tumors can progress to an invasive disease. Since carbohydrate-mediated cell-cell adhesion and proliferative potential play crucial roles in tumorigenesis and tumor aggressive behavior, we analyzed the qualitative changes in oligosaccharide expression and analyzed for presence of mutation in the tumor suppressor p53 gene, the most mutated gene in all human cancers. Forty-three (43) breast tumors were screened for p53 mutation in exons 2-11 using polymerase chain reaction (PCR)-amplification coupled to temporal temperature gradient electrophoresis (TTGE). Paraffin-embedded tissues were stained with biotinylated-glycoproteins containing the following sugar groups: mannose (Man), lactose (Lac), fucoidan (Fuc), N-acetyl-glucosamine (GlcNac), N-acetyl-b-galactosamine (GalNAc) and hyaluronic acid (Hya). Expression of carbohydrate receptors was significantly elevated (p=0.003) in malignant compared with benign tumors, particularly at receptors for GalNAc, lac and Fuc. No change in overall glycan signatures using our panel of neoglycoconjugates was noted when grouped according to p53 mutation status in both benign and malignant cases. Although the prognostic value of carbohydrate-receptors in breast cancer has not been validated to date, our results indicate that benign and malignant tumors can be defined by their affinities to our battery of neoglyconjugates. However, result from our reverse lectin histochemistry failed to correlated glycan signature with presence of p53 mutations. (author)

  20. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  1. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers

    International Nuclear Information System (INIS)

    Ingvarsson, Sigurdur; Sigbjornsdottir, Bjarnveig I; Huiping, Chen; Hafsteinsdottir, Sigridur H; Ragnarsson, Gisli; Barkardottir, Rosa B; Arason, Adalgeir; Egilsson, Valgardur; Bergthorsson, Jon TH

    2002-01-01

    Mutations in the CHK2 gene at chromosome 22q12.1 have been reported in families with Li-Fraumeni syndrome. Chk2 is an effector kinase that is activated in response to DNA damage and is involved in cell-cycle pathways and p53 pathways. We screened 139 breast tumors for loss of heterozygosity at chromosome 22q, using seven microsatellite markers, and screened 119 breast tumors with single-strand conformation polymorphism and DNA sequencing for mutations in the CHK2 gene. Seventy-four of 139 sporadic breast tumors (53%) show loss of heterozygosity with at least one marker. These samples and 45 tumors from individuals carrying the BRCA2 999del5 mutation were screened for mutations in the CHK2 gene. In addition to putative polymorphic regions in short mononucleotide repeats in a non-coding exon and intron 2, a germ line variant (T59K) in the first coding exon was detected. On screening 1172 cancer patients for the T59K sequence variant, it was detected in a total of four breast-cancer patients, two colon-cancer patients, one stomach-cancer patient and one ovary-cancer patient, but not in 452 healthy individuals. A tumor-specific 5' splice site mutation at site +3 in intron 8 (TTgt [a → c]atg) was also detected. We conclude that somatic CHK2 mutations are rare in breast cancer, but our results suggest a tumor suppressor function for CHK2 in a small proportion of breast tumors. Furthermore, our results suggest that the T59K CHK2 sequence variant is a low-penetrance allele with respect to tumor growth

  2. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia

    NARCIS (Netherlands)

    van Rooijen, E.; Voest, E.E.; Logister, I.; Korving, J.; Schwerte, T.; Schulte-Merker, S.; Giles, R.H.; van Eeden, F.J.

    2009-01-01

    We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe

  3. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations

    NARCIS (Netherlands)

    J.P. Bayley; R.A. Oldenburg (Rogier); J. Nuk (Jennifer); A.S. Hoekstra (Attje S.); C.A. van der Meer (Conny); E. Korpershoek (Esther); B. McGillivray (Barbara); E.P. Corssmit (Eleonora); W.N.M. Dinjens (Winand); R.R. de Krijger (Ronald); P. Devilee (Peter); J.C. Jansen (Jeroen); F.J. Hes (Frederik)

    2014-01-01

    textabstractThe SDHD gene encodes a subunit of the mitochondrial tricarboxylic acid cycle enzyme and tumor suppressor, succinate dehydrogenase. Mutations in this gene show a remarkable pattern of parent-of-origin related tumorigenesis, with almost all SDHD-related cases of head and neck

  4. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wang, Shumin; Ma, Ning; Murata, Mariko; Huang, Guangwu; Zhang, Zhe; Xiao, Xue; Zhou, Xiaoying; Huang, Tingting; Du, Chunping; Yu, Nana; Mo, Yingxi; Lin, Longde; Zhang, Jinyan

    2010-01-01

    Epigenetic silencing of tumor suppressor genes play important roles in NPC tumorgenesis. Tissue factor pathway inhibitor-2 (TFPI-2), is a protease inhibitor. Recently, TFPI-2 was suggested to be a tumor suppressor gene involved in tumorigenesis and metastasis in some cancers. In this study, we investigated whether TFPI-2 was inactivated epigenetically in nasopharyngeal carcinoma (NPC). Transcriptional expression levels of TFPI-2 was evaluated by RT-PCR. Methylation status were investigated by methylation specific PCR and bisulfate genomic sequencing. The role of TFPI-2 as a tumor suppressor gene in NPC was addressed by re-introducing TFPI-2 expression into the NPC cell line CNE2. TFPI-2 mRNA transcription was inactivated in NPC cell lines. TFPI-2 was aberrantly methylated in 66.7% (4/6) NPC cell lines and 88.6% (62/70) of NPC primary tumors, but not in normal nasopharyngeal epithelia. TFPI-2 expression could be restored in NPC cells after demethylation treatment. Ectopic expression of TFPI-2 in NPC cells induced apoptosis and inhibited cell proliferation, colony formation and cell migration. Epigenetic inactivation of TFPI-2 by promoter hypermethylation is a frequent and tumor specific event in NPC. TFPI-2 might be considering as a putative tumor suppressor gene in NPC

  5. Potential hot spot for de novo mutations in PTCH1 gene in Gorlin syndrome patients: a case report of twins from Croatia.

    Science.gov (United States)

    Musani, Vesna; Ozretić, Petar; Trnski, Diana; Sabol, Maja; Poduje, Sanja; Tošić, Mateja; Šitum, Mirna; Levanat, Sonja

    2018-02-28

    We describe a case of twins with sporadic Gorlin syndrome. Both twins had common Gorlin syndrome features including calcification of the falx cerebri, multiple jaw keratocysts, and multiple basal cell carcinomas, but with different expressivity. One brother also had benign testicular mesothelioma. We propose this tumor type as a possible new feature of Gorlin syndrome. Gorlin syndrome is a rare autosomal dominant disorder characterized by both developmental abnormalities and cancer predisposition, with variable expression of various developmental abnormalities and different types of tumors. The syndrome is primarily caused by mutations in the Patched 1 (PTCH1) gene, although rare mutations of Patched 2 (PTCH2) or Suppressor of Fused (SUFU) genes have also been found. Neither founder mutations nor hot spot locations have been described for PTCH1 in Gorlin syndrome patients. Although de novo mutations of the PTCH1 gene occur in almost 50% of Gorlin syndrome cases, there are a few recurrent mutations. Our twin patients were carriers of a de novo mutation in the PTCH1 gene, c.3364_3365delAT (p.Met1122ValfsX22). This is, to our knowledge, the first Gorlin syndrome-causing mutation that has been reported four independent times in distant geographical locations. Therefore, we propose the location of the described mutation as a potential hot spot for mutations in PTCH1.

  6. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    Science.gov (United States)

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  7. Mutations of the Birt–Hogg–Dubé gene in patients with multiple lung cysts and recurrent pneumothorax

    Science.gov (United States)

    Gunji, Yoko; Akiyoshi, Taeko; Sato, Teruhiko; Kurihara, Masatoshi; Tominaga, Shigeru; Takahashi, Kazuhisa; Seyama, Kuniaki

    2007-01-01

    Rationale Birt–Hogg–Dubé (BHD) syndrome, a rare inherited autosomal genodermatosis first recognised in 1977, is characterised by fibrofolliculomas of the skin, an increased risk of renal tumours and multiple lung cysts with spontaneous pneumothorax. The BHD gene, a tumour suppressor gene located at chromosome 17p11.2, has recently been shown to be defective. Recent genetic studies revealed that clinical pictures of the disease may be variable and may not always present the full expression of the phenotypes. Objectives We hypothesised that mutations of the BHD gene are responsible for patients who have multiple lung cysts of which the underlying causes have not yet been elucidated. Methods We studied eight patients with lung cysts, without skin and renal disease; seven of these patients have a history of spontaneous pneumothorax and five have a family history of pneumothorax. The BHD gene was examined using PCR, denaturing high‐performance liquid chromatography and direct sequencing. Main results We found that five of the eight patients had a BHD germline mutation. All mutations were unique and four of them were novel, including three different deletions or insertions detected in exons 6, 12 and 13, respectively and one splice acceptor site mutation in intron 5 resulting in an in‐frame deletion of exon 6. Conclusions We found that germline mutations of the BHD gene are involved in some patients with multiple lung cysts and pneumothorax. Pulmonologists should be aware that BHD syndrome can occur as an isolated phenotype with pulmonary involvement. PMID:17496196

  8. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    Science.gov (United States)

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC

  9. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall.

    Science.gov (United States)

    Xayarath, Bobbi; Yother, Janet

    2007-05-01

    Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.

  10. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

    Science.gov (United States)

    Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido

    2015-10-01

    The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.

  11. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Sugio, Kenji; Kuwabara, Yasuo

    2003-01-01

    The FDG uptake in lung cancer is considered to reflect the degree of malignancy, while alterations of some tumor suppressor genes are considered to be related to the malignant biological behavior of tumors. The aim of this study is to examine the relationship between FDG-PET and alterations in the tumor suppression genes of lung cancer. We examined 28 patients with primary lung cancer who underwent FDG-PET before surgery consisting of 17 patients with adenocarcinoma, 10 with squamous cell carcinoma and 1 with large cell carcinoma. The FDG-PET findings were evaluated based on the standardized uptake value (SUV). Alterations in the tumor suppressor genes, Rb, p16, p27 and p53, were evaluated immunohistochemically. The FDG uptake in lung cancer with alteration in each tumor suppressor gene tended to be higher than in those genes without alterations, although the differences were not significant. In 15 tumors with alterations in either tumor suppressor genes, the FDG uptake was 6.83±3.21. On the other hand, the mean FDG uptake was 1.95 in 2 tumors without alterations in any genes. The difference in the FDG uptake between the 2 groups was statistically significant (p<0.001). In conclusion, the presence of abnormalities in the tumor suppressor genes, which results in an accelerated cell proliferation, is thus considered to increase the FDG uptake in lung cancer. (author)

  12. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.

    Science.gov (United States)

    Malkin, D; Li, F P; Strong, L C; Fraumeni, J F; Nelson, C E; Kim, D H; Kassel, J; Gryka, M A; Bischoff, F Z; Tainsky, M A

    1990-11-30

    Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.

  13. Off and back-on again: a tumor suppressor's tale.

    Science.gov (United States)

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  14. Analysis of a Novel 17q25 Cell Cycle Gene Homolog: Is it a Breast Tumor Suppressor Gene?

    National Research Council Canada - National Science Library

    Kalikin, Linda

    2000-01-01

    ... of these molecular reagents into successful tools for the medical management of breast cancer. We hypothesize that a 350 kb region on 17q25 detected by our allelic imbalance studies harbors a novel breast tumor suppressor gene...

  15. Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein.

    Science.gov (United States)

    Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin

    2010-10-10

    Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Somatic mutations affect key pathways in lung adenocarcinoma

    Science.gov (United States)

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  17. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  18. Mutated genes as research tool

    International Nuclear Information System (INIS)

    1981-01-01

    Green plants are the ultimate source of all resources required for man's life, his food, his clothes, and almost all his energy requirements. Primitive prehistoric man could live from the abundance of nature surrounding him. Man today, dominating nature in terms of numbers and exploiting its limited resources, cannot exist without employing his intelligence to direct natural evolution. Plant sciences, therefore, are not a matter of curiosity but an essential requirement. From such considerations, the IAEA and FAO jointly organized a symposium to assess the value of mutation research for various kinds of plant science, which directly or indirectly might contribute to sustaining and improving crop production. The benefit through developing better cultivars that plant breeders can derive from using the additional genetic resources resulting from mutation induction has been assessed before at other FAO/IAEA meetings (Rome 1964, Pullman 1969, Ban 1974, Ibadan 1978) and is also monitored in the Mutation Breeding Newsletter, published by IAEA twice a year. Several hundred plant cultivars which carry economically important characters because their genes have been altered by ionizing radiation or other mutagens, are grown by farmers and horticulturists in many parts of the world. But the benefit derived from such mutant varieties is without any doubt surpassed by the contribution which mutation research has made towards the advancement of genetics. For this reason, a major part of the papers and discussions at the symposium dealt with the role induced-mutation research played in providing insight into gene action and gene interaction, the organization of genes in plant chromosomes in view of homology and homoeology, the evolutionary role of gene duplication and polyploidy, the relevance of gene blocks, the possibilities for chromosome engineering, the functioning of cytroplasmic inheritance and the genetic dynamics of populations. In discussing the evolutionary role of

  19. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  20. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  1. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  2. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-01-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  3. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  4. Cox1 mutation abrogates need for Cox23 in cytochrome c oxidase biogenesis

    Directory of Open Access Journals (Sweden)

    Richard Dela Cruz

    2016-06-01

    Full Text Available Cox23 is a known conserved assembly factor for cytochrome c oxidase, although its role in cytochrome c oxidase (CcO biogenesis remains unresolved. To gain additional insights into its role, we isolated spontaneous suppressors of the respiratory growth defect in cox23∆ yeast cells. We recovered independent colonies that propagated on glycerol/lactate medium for cox23∆ cells at 37°C. We mapped these mutations to the mitochondrial genome and specifically to COX1 yielding an I101F substitution. The I101F Cox1 allele is a gain-of-function mutation enabling yeast to respire in the absence of Cox23. CcO subunit steady-state levels were restored with the I101F Cox1 suppressor mutation and oxygen consumption and CcO activity were likewise restored. Cells harboring the mitochondrial genome encoding I101F Cox1 were used to delete genes for other CcO assembly factors to test the specificity of the Cox1 mutation as a suppressor of cox23∆ cells. The Cox1 mutant allele fails to support respiratory growth in yeast lacking Cox17, Cox19, Coa1, Coa2, Cox14 or Shy1, demonstrating its specific suppressor activity for cox23∆ cells.

  5. Mutations at Several Loci Cause Increased Expression of Ribonucleotide Reductase in Escherichia coli

    Science.gov (United States)

    Feeney, Morgan Anne; Ke, Na

    2012-01-01

    Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before. PMID:22247510

  6. SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Yuen Yee Cheng

    2017-01-01

    Full Text Available Malignant pleural mesothelioma (MPM is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56% and SFRP5 (70% in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.

  7. Molecular studies on the function of tumor suppressor gene in gastrointestinal cancer

    International Nuclear Information System (INIS)

    Kim, You Cheoul

    1993-01-01

    Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studies the alteration of tumor suppressor gene in various Gastrointestinal cancer in Korea. Results showed that genetic alteration of Rb gene was in 83% of colorectal cancer. Our results suggest that genetic alteration of Rb gene is crucially involved in the tumorigenesis of colorectum in Korea. (Author)

  8. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex

    Science.gov (United States)

    Tyburczy, Magdalena E.; Wang, Ji-an; Li, Shaowei; Thangapazham, Rajesh; Chekaluk, Yvonne; Moss, Joel; Kwiatkowski, David J.; Darling, Thomas N.

    2014-01-01

    Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet ‘signature’ mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions. PMID:24271014

  9. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome.

    Science.gov (United States)

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Idit Hazan

    2016-12-01

    Full Text Available The role of common fragile sites (CFSs in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.

  11. A Novel WT1 Gene Mutation in a Three-Generation Family with Progressive Isolated Focal Segmental Glomerulosclerosis

    Science.gov (United States)

    Caridi, Gianluca; Malaventura, Cristina; Dagnino, Monica; Leonardi, Emanuela; Artifoni, Lina; Ghiggeri, Gian Marco; Tosatto, Silvio C.E.; Murer, Luisa

    2010-01-01

    Background and objectives: Wilms tumor-suppressor gene-1 (WT1) plays a key role in kidney development and function. WT1 mutations usually occur in exons 8 and 9 and are associated with Denys-Drash, or in intron 9 and are associated with Frasier syndrome. However, overlapping clinical and molecular features have been reported. Few familial cases have been described, with intrafamilial variability. Sporadic cases of WT1 mutations in isolated diffuse mesangial sclerosis or focal segmental glomerulosclerosis have also been reported. Design, setting, participants, & measurements: Molecular analysis of WT1 exons 8 and 9 was carried out in five members on three generations of a family with late-onset isolated proteinuria. The effect of the detected amino acid substitution on WT1 protein's structure was studied by bioinformatics tools. Results: Three family members reached end-stage renal disease in full adulthood. None had genital abnormalities or Wilms tumor. Histologic analysis in two subjects revealed focal segmental glomerulosclerosis. The novel sequence variant c.1208G>A in WT1 exon 9 was identified in all of the affected members of the family. Conclusions: The lack of Wilms tumor or other related phenotypes suggests the expansion of WT1 gene analysis in patients with focal segmental glomerulosclerosis, regardless of age or presence of typical Denys-Drash or Frasier syndrome clinical features. Structural analysis of the mutated protein revealed that the mutation hampers zinc finger-DNA interactions, impairing target gene transcription. This finding opens up new issues about WT1 function in the maintenance of the complex gene network that regulates normal podocyte function. PMID:20150449

  12. [Study of gene mutation in 62 hemophilia A children].

    Science.gov (United States)

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense

  13. The genomic structure of the DMBT1 gene

    DEFF Research Database (Denmark)

    Mollenhauer, J; Holmskov, U; Wiemann, S

    1999-01-01

    Increasing evidence has accumulated for an involvement of the inactivation of tumour suppressor genes at chromosome 10q in the carcinogenesis of brain tumours, melanomas, and carcinomas of the lung, the prostate, the pancreas, and the endometrium. The gene DMBT1 (Deleted in Malignant Brain Tumours...... 1) is located at chromosome 10q25.3-q26.1, within one of the putative intervals for tumour suppressor genes. DMBT1 is a member of the scavenger-receptor cysteine-rich (SRCR) superfamily and displays homozygous deletions or lack of expression in glioblastoma multiforme, medulloblastoma......, and in gastrointestinal and lung cancers. Based on these properties, DMBT1 has been proposed to be a candidate tumour suppressor gene. We have determined the genomic sequence of DMBT1 to allow analyses of mutations. The gene has at least 54 exons that span a genomic region of about 80 kb. We have identified a putative...

  14. Characteristics of gene mutation in Chinese patients with hereditary hemochromatosis

    Directory of Open Access Journals (Sweden)

    LYU Tingxia

    2016-08-01

    Full Text Available ObjectiveTo investigate the characteristics of gene mutation in Chinese patients with hereditary hemochromatosis (HH. MethodsA total of 9 patients with HH who visited Beijing Friendship Hospital, Capital Medical University from January 2013 to December 2015 were enrolled. The genomic DNA was extracted, and PCR amplification and Sanger sequencing were performed for all the exons of four genotypes of HH, i.e., HFE (type Ⅰ, HJV (type ⅡA, HAMP (type ⅡB, TFR2 (type Ⅲ, and SLC40A1 (type Ⅳ to analyze gene mutations. A total of 50 healthy subjects were enrolled as control group to analyze the prevalence of identified gene mutations in a healthy population. ResultsOf all patients, 2 had H63D mutation of HFE gene in type Ⅰ HH, 1 had E3D mutation of HJV gene in type ⅡA HH, 2 had I238M mutation of TFR2 gene in type Ⅲ HH, and 1 had IVS 3+10 del GTT splice mutation of SLC40A1 gene in type Ⅳ HH. No patients had C282Y mutation of HFE gene in type Ⅰ HH which was commonly seen in European and American populations. Five patients had no missense mutation or splice mutation. In addition, it was found in a family that a HH patient had E3D mutation of HJV gene, H63D mutation of HFE gene, and I238M mutation of TFR2 gene, but the healthy brother and sister carrying two of these mutations did not had the phenotype of HH. ConclusionHH gene mutations vary significantly across patients of different races, and non-HFE-HH is dominant in the Chinese population. There may be HH genes which are different from known genes, and further investigation is needed.

  15. Ferredoxin Gene Mutation in Iranian Trichomonas Vaginalis Isolates

    Directory of Open Access Journals (Sweden)

    Soudabeh Heidari

    2013-09-01

    Full Text Available Background: Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO to its active form (CPR. Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferredoxin gene mutations in clinical isolates of T.vaginalis in Tehran has been studied.Methods: Forty six clinical T. vaginalis isolates of vaginal secretions and urine sediment were collected from Tehran Province since 2011 till 2012. DNA was extracted and ferredoxin gene was amplified by PCR technique. The ferredoxin gene PCR products were sequenced to determine gene mutations.Results: In four isolates (8.69% point mutation at nucleotide position -239 (the translation start codon of the ferredoxin gene were detected in which adenosine were converted to thymine.Conclusion: Mutation at nucleotide -239 ferredoxin gene reduces translational regulatory protein’s binding affinity which concludes reduction of ferredoxin expression. For this reduction, decrease in activity and decrease in metronidazole drug delivery into the cells occur. Mutations in these four isolates may lead to resistance of them to metronidazole.

  16. The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Minoru; Ishimura, Akihiko; Yoshida, Masakazu [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan); Suzuki, Yutaka; Sugano, Sumio [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba (Japan); Suzuki, Takeshi, E-mail: suzuki-t@staff.kanazawa-u.ac.jp [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan)

    2010-08-20

    Research highlights: {yields} Utx increases expression of Rb and Rbl2 genes through its demethylase activity. {yields} Utx changes histone H3 methylation on the Rb and Rbl2 promoters. {yields} Utx induces decreased cell proliferation of mammalian primary cells. -- Abstract: Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control.

  17. Role of natural antisense transcripts pertaining to tumor suppressor genes in human carcinomas

    International Nuclear Information System (INIS)

    Pelicci, G.; Pierotti, M.

    2009-01-01

    Overlapping transcripts in opposite orientations can potentially form perfect sense-antisense duplex RNA. Recently, several studies have revealed the extent of natural antisense transcripts (NATs) and their role in important biological phenomena also in higher organisms. In order to test the hypothesis that the function of NATs in man might represent an essential element in the regulation of gene expression, especially at transcriptional level, in this study we planned to look for, systematically examine, and characterize NATs belonging in the human genome to the tumour suppressor class of genes, so to identify physiological (and potentially pathological) modulators in this gene class

  18. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Science.gov (United States)

    Fang, Su-Chiung; de los Reyes, Chris; Umen, James G

    2006-10-13

    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  19. Sleep quality and methylation status of selected tumor suppressor genes among nurses and midwives.

    Science.gov (United States)

    Bukowska-Damska, Agnieszka; Reszka, Edyta; Kaluzny, Pawel; Wieczorek, Edyta; Przybek, Monika; Zienolddiny, Shanbeh; Peplonska, Beata

    2018-01-01

    Chronic sleep restriction may affect metabolism, hormone secretion patterns and inflammatory responses. Limited reports suggest also epigenetic effects, such as changes in DNA methylation profiles. The study aims to assess the potential association between poor sleep quality or sleep duration and the levels of 5-methylcytosine in the promoter regions of selected tumor suppressor genes. A cross-sectional study was conducted on 710 nurses and midwives aged 40-60 years. Data from interviews regarding sleep habits and potential confounders were used. The methylation status of tumor suppressor genes was determined via qMSP reactions using DNA samples derived from leucocytes. No significant findings were observed in the total study population or in the two subgroups of women stratified by the current system of work. A borderline significance association was observed between a shorter duration of sleep and an increased methylation level in CDKN2A among day working nurses and midwives. Further studies are warranted to explore this under-investigated topic.

  20. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  1. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  2. The prognostic value of p53 mutation in pediatric marrow hypoplasia

    Directory of Open Access Journals (Sweden)

    Sharaf Alzahraa EA

    2011-06-01

    Full Text Available Abstract Background The tumor suppressor gene p53 is involved in the control of cell proliferation, particularly in stressed cells. p 53 gene mutations are the most frequent genetic event found in human cancers. Fanconi Anemia (FA is the most common representative of inherited bone marrow failure syndromes (IBMFS with a leukemic propensity. P 53 DNA alteration has not been studied before in Egyptian children with FA. Patients and methods we investigated p53 mutation in the bone marrow and peripheral blood of forty children, FA (n = 10, acquired aplastic anemia (AAA (n = 10, and immune thrombocytopenia (ITP as a control (n = 20, using real-time PCR by TaqMan probe assay Results Mutation of p53 gene was demonstrated in the BM of 90% (9/10 of children with FA, compared to 10% (1/10 in AAA (p Conclusion mutation of p53 gene in hypoplastic marrow especially FA may represent an early indicator of significant DNA genetic alteration with cancer propensity.

  3. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo, E-mail: yutsudo@biken.osaka-u.ac.jp

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  4. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  5. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    Science.gov (United States)

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Analysis of 6174delT Mutation in BRCA2 Gene by Mutagenically Separated PCR Among Libyan Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Lamia Elfandi

    2016-03-01

    Full Text Available Background: Breast cancer is the most common malignancy among women. It is estimated that 1 in 10 women worldwide is affected by breast cancer during their lifetime. In 5 to 10% of breast cancer patients, the disease results from a hereditary predisposition, which can be attributable to mutations in either of two tumor suppressor genes, BRCA1 and BRCA2 to a large extent. BRCA2 6174delT mutation constitutes the common mutant alleles which predispose to hereditary breast cancer in the Ashkenazi population with a reported carrier frequency of 1.52%. In this study, we investigated the presence of the 6174delT mutation of the BRCA2 gene in Libyan woman affected with breast cancer and compared the results with those of other population groups.Methods: Eighty- five Libyan women with breast cancer in additions to 5 relatives of the patients (healthy individuals were recruited to this study. We obtained clinical information, family history, and peripheral blood for DNA extraction and analyzed the data using multiplex mutagenic polymerase chain reaction (MS-PCR for detection of 6174delT mutation in the BRCA2 gene. Results: The 6174delT of the BRCA2 gene was not detected either in the 85 patients with breast cancer (18 with familial breast cancer and 67 with sporadic breast cancer nor in the 5 healthy individuals. Conclusions: The present study showed that the 6174delT of the BRCA2 gene was not detectable using mutagenic PCR in the Libyan patients with breast cancer and can be considered to be exceedingly rare

  7. Hereditary Ovarian Cancer: Not Only BRCA 1 and 2 Genes

    Directory of Open Access Journals (Sweden)

    Angela Toss

    2015-01-01

    Full Text Available More than one-fifth of ovarian tumors have hereditary susceptibility and, in about 65–85% of these cases, the genetic abnormality is a germline mutation in BRCA genes. Nevertheless, several other suppressor genes and oncogenes have been associated with hereditary ovarian cancers, including the mismatch repair (MMR genes in Lynch syndrome, the tumor suppressor gene, TP53, in the Li-Fraumeni syndrome, and several other genes involved in the double-strand breaks repair system, such as CHEK2, RAD51, BRIP1, and PALB2. The study of genetic discriminators and deregulated pathways involved in hereditary ovarian syndromes is relevant for the future development of molecular diagnostic strategies and targeted therapeutic approaches. The recent development and implementation of next-generation sequencing technologies have provided the opportunity to simultaneously analyze multiple cancer susceptibility genes, reduce the delay and costs, and optimize the molecular diagnosis of hereditary tumors. Particularly, the identification of mutations in ovarian cancer susceptibility genes in healthy women may result in a more personalized cancer risk management with tailored clinical and radiological surveillance, chemopreventive approaches, and/or prophylactic surgeries. On the other hand, for ovarian cancer patients, the identification of mutations may provide potential targets for biologic agents and guide treatment decision-making.

  8. Repair-resistant mutation in Neurospora

    International Nuclear Information System (INIS)

    Stadler, D.; Macleod, H.; Loo, M.

    1987-01-01

    Chronic UV treatment produces severalfold fewer mutations in Neurospora conidia than does the same total dose of acute UV. Experiments were designed to determine the conditions required for chronic UV mutagenesis. Measurement of the coincidence frequency for two independent mutations revealed the existence of a subset of cells which are mutable by chronic UV. Analysis of forward mutation at the mtr locus showed that the genetic alterations produced by chronic UV were virtually all point mutants, even though the assay system could detect alterations or deletions extending into neighboring genes. A significant fraction of the mutants produced by acute UV were multigenic deletions. The size of the dose-rate effect (acute UV mutation frequency divided by chronic UV mutation frequency) was compared for several different mutation assay systems. Forward mutations (recessive lethals and mtr) gave values ranging from four to nine. For events which were restricted to specific molecular sites (specific reversions and nonsense suppressor mutations), there was a wider range of dose-rate ratios. This suggests that chronic UV mutation may be restricted to certain molecular sequences or configurations

  9. HFE gene mutations and Wilson's disease in Sardinia.

    Science.gov (United States)

    Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi

    2010-03-01

    Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (PHFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.

  10. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  11. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function

    Science.gov (United States)

    Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique

    2006-01-01

    Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454

  12. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22(q24.13;q11.21 in a young girl with dysgerminoma

    Directory of Open Access Journals (Sweden)

    Fiorio Patrizia

    2009-07-01

    Full Text Available Abstract Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22 in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN, a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.

  13. Mutation update for the PORCN gene

    DEFF Research Database (Denmark)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum......, the pentalogy of Cantrell and Limb-Body Wall Complex. Here we present a review of the published mutations in the PORCN gene to date and report on seven new mutations together with the corresponding clinical data. Based on the review we have created a Web-based locus-specific database that lists all identified...... variants and allows the inclusion of future reports. The database is based on the Leiden Open (source) Variation Database (LOVD) software, and is accessible online at http://www.lovd.nl/porcn. At present, the database contains 106 variants, representing 68 different mutations, scattered along the whole...

  14. Generation of two modified mouse alleles of the Hic1 tumor suppressor gene

    Czech Academy of Sciences Publication Activity Database

    Pospíchalová, Vendula; Turečková, Jolana; Fafílek, Bohumil; Vojtěchová, Martina; Krausová, Michaela; Lukáš, Jan; Šloncová, Eva; Takacova, S.; Divoký, V.; Leprince, D.; Plachý, Jiří; Kořínek, Vladimír

    2011-01-01

    Roč. 49, č. 3 (2011), s. 142-151 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA204/07/1567; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z50520514 Keywords : Hypermethylated In Cancer 1 * Hic1 tumor suppressor * gene targeting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.527, year: 2011

  15. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  16. ASSOCIATION OF HFE GENE MUTATION IN THALASSEMIA MAJOR PATIENTS

    Directory of Open Access Journals (Sweden)

    Amit Kumar Tiwari

    2016-11-01

    Full Text Available BACKGROUND Thalassemia major patients are dependent on frequent blood transfusion and consequently develop iron overload. HFE gene mutations (C282Y, H63D and S65C in hereditary haemochromatosis has been shown to be associated with iron overload. The study aims at finding the association of HFE gene mutations in β-thalassemia major patients. MATERIALS AND METHODS A descriptive observational pilot study was conducted including fifty diagnosed -thalassemia major cases. DNA analysis by PCR-RFLP method for HFE gene mutations was performed. RESULTS Only H63D mutation (out of three HFE gene mutations was detected in 8 out of 50 cases. Observed frequency of H63D mutation was 16%. While frequency of C282Y and S65C were 0% each. CONCLUSION The frequency of HFE mutation in -thalassemia major is not very common.

  17. [FANCA gene mutation analysis in Fanconi anemia patients].

    Science.gov (United States)

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  18. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  19. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks ... have a high number of spontaneous mutations in genes that form a network in the front region ...

  20. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  1. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  2. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  3. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) more frequently harbored loss-of-function mutations in males (based on false discovery rate <0.1), compared to zero of 18,055 autosomal and PAR genes (P<0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence compared to males across a variety of tumor types. PMID:27869828

  4. Suppression of the Escherichia coli ssb-1 mutation by an allele of groEL.

    OpenAIRE

    Ruben, S M; VanDenBrink-Webb, S E; Rein, D C; Meyer, R R

    1988-01-01

    A series of spontaneous suppressors to the temperature-sensitive phenotype of the single-stranded DNA-binding protein mutation ssb-1 were isolated. A genomic library of EcoRI fragments from one of these suppressor strains was prepared by using pBR325 as the cloning vector. A 10.0-kilobase class of inserts was identified as carrying the ssb-1 gene itself. A second class of 8.3-kilobase inserts was shown to contain the groE region by (i) restriction analysis, (ii) Southern hybridization of the ...

  5. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B

    International Nuclear Information System (INIS)

    Soto, José Luis; Cabrera, Carmen M; Serrano, Salvio; López-Nevot, Miguel Ángel

    2005-01-01

    The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied

  6. Polymorphism of the p53 tumor suppressor gene is associated with susceptibility to uterine leiomyoma.

    Science.gov (United States)

    Denschlag, Dominik; Bettendorf, Herta; Watermann, Dirk; Keck, Christoph; Tempfer, Clemens; Pietrowski, Detlef

    2005-07-01

    To evaluate the association between the presence of uterine leiomyoma and two single nuclear polymorphisms of the p53 tumor suppressor and the angiopoietin-2 (ANGPT2) genes. Prospective case control study. Academic research institution. One hundred thirty-two women with clinically and surgically diagnosed uterine leiomyomas and 280 controls. Peripheral venous puncture. Genotyping was performed by polymerase chain reaction-based amplification of the Arg and Pro variants at codon 72 of the p53 gene and by restriction fragment length polymorphism analysis of the G/G and G/A alleles in exon 4 of the ANGPT2 gene. Comparing women with uterine leiomyomas and controls, no statistically significant difference with respect to allele frequency and genotype distribution were ascertained for the ANGPT2 polymorphism (P=.2 and P=.5, respectively). However, for the p53 tumor suppressor gene polymorphism, statistically significant differences in terms of a higher Pro allele frequency and a higher prevalence of the Pro/Pro genotype among women with uterine leiomyoma (32.0% vs. 16.0%, respectively, and 21.3% vs. 4.7%, respectively) were ascertained (P=.001, OR 1.74; 95% CI 1.24-2.45, P=.001; OR 3.84, 95% CI 1.81-8.14; respectively). Carriage of the p53 polymorphism at codon 72 predicts the susceptibility to leiomyoma in a Caucasian population and may contribute to the pathogenesis of uterine leiomyoma.

  7. Gene mutations in children with chronic pancreatitis.

    Science.gov (United States)

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  8. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  9. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  10. Mutation scanning of peach floral genes

    Directory of Open Access Journals (Sweden)

    Wilde H Dayton

    2011-05-01

    Full Text Available Abstract Background Mutation scanning technology has been used to develop crop species with improved traits. Modifications that improve screening throughput and sensitivity would facilitate the targeted mutation breeding of crops. Technical innovations for high-resolution melting (HRM analysis are enabling the clinic-based screening for human disease gene polymorphism. We examined the application of two HRM modifications, COLD-PCR and QMC-PCR, to the mutation scanning of genes in peach, Prunus persica. The targeted genes were the putative floral regulators PpAGAMOUS and PpTERMINAL FLOWER I. Results HRM analysis of PpAG and PpTFL1 coding regions in 36 peach cultivars found one polymorphic site in each gene. PpTFL1 and PpAG SNPs were used to examine approaches to increase HRM throughput. Cultivars with SNPs could be reliably detected in pools of twelve genotypes. COLD-PCR was found to increase the sensitivity of HRM analysis of pooled samples, but worked best with small amplicons. Examination of QMC-PCR demonstrated that primary PCR products for further analysis could be produced from variable levels of genomic DNA. Conclusions Natural SNPs in exons of target peach genes were discovered by HRM analysis of cultivars from a southeastern US breeding program. For detecting natural or induced SNPs in larger populations, HRM efficiency can be improved by increasing sample pooling and template production through approaches such as COLD-PCR and QMC-PCR. Technical advances developed to improve clinical diagnostics can play a role in the targeted mutation breeding of crops.

  11. Ser80Ile mutation and a concurrent Pro25Leu variant of the VHL gene in an extended Hungarian von Hippel-Lindau family

    Directory of Open Access Journals (Sweden)

    Fazakas Ferenc

    2008-04-01

    Full Text Available Abstract Von Hippel-Lindau disease (VHL is a rare autosomal dominant disease characterized by development of cystic and tumorous lesions at multiple sites, including the brain, spinal cord, kidneys, adrenals, pancreas, epididymis and eyes. The clinical phenotype results from molecular abnormalities of the VHL tumor suppressor gene, mapped to human chromosome 3p25-26. The VHL gene encodes two functionally active VHL proteins due to the presence of two translational initiation sites separated by 53 codons. The majority of disease-causing mutations have been detected downstream of the second translational initiation site, but there are conflicting data as to whether few mutations located in the first 53 codons, such as the Pro25Leu could have a pathogenic role. In this paper we report a large Hungarian VHL type 2 family consisting of 32 members in whom a disease-causing AGT80AAT (Ser80Ile c.239G>A, p.Ser80Ile mutation, but not the concurrent CCT25CTT (Pro25Leu c.74C>T, p.Pro25Leu variant co-segregated with the disease. To our knowledge, the Ser80Ile mutation has not been previously described in VHL type 2 patients with high risk of pheochromocytoma and renal cell cancer. Therefore, this finding represents a novel genotype-phenotype association and VHL kindreds with Ser80Ile mutation will require careful surveillance for pheochromocytoma. We concluded that the Pro25Leu variant is a rare, neutral variant, but the presence such a rare gene variant may make genetic counseling difficult.

  12. Mutation update for the PORCN gene

    NARCIS (Netherlands)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo; Lampe, Anne; Gabbett, Michael T.; Ousager, Lillian Bomme; van der Smagt, Jasper J.; Soller, Maria; Stattin, Eva-Lena; Mannens, Marcel A. M. M.; Smigiel, Robert; Hennekam, Raoul C.

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum,

  13. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  14. Tumor suppressor p53 biology, its role in radioresponse and the analysis of p53 mutation/expression among Filipino breast cancers

    International Nuclear Information System (INIS)

    Deocaris, Custer C.

    2004-01-01

    Ionizing radiation remains one of the most effective tools for the treatment of breast cancer. It combines properties of a potent DNA-damaging agent and high degree of spatial specificity to the target tissue. Nonetheless, there remain considerable differences in the outcome for treatment of tumors of differing histological type treated by radiotherapy. The identification of predictive indicators of radiosensitivity is crucial for selecting patients suited for preoperative radiotherapy as well as those unwarranted for postoperative treatments. To improve prognostication, numerous genes involved in the breast carcinogenesis have been studied and thus far over the last decade several multi-center researches converge on the role of tumor suppressor p53 in tumor biology. The p53 gene is located on the short arm of chromosome 17 and encodes a 53-kd nuclear protein, p-53, also referred to as 'the guardian of the genome', it orchestrates multiple cellular processes such as cell growth control, DNA repair and programmed cell death. During radiotherapy, genotoxic damage induces p53 overexpression in order to control the rate of proliferating damaged cells, repair damage or induce the apoptotic pathway. Its molecular inactivation in a tumor cell, typically by a point mutation, leads to chemo/radio resistance due to the inability of the molecule to trigger p53-dependent programmed cell death

  15. Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non–Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Zahra Shajani-Yi

    2018-03-01

    Full Text Available The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer. It encodes p53, a DNA-binding transcription factor that regulates multiple genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis, and senescence. TP53 is associated with human cancer by mutations that lead to a loss of wild-type p53 function as well as mutations that confer alternate oncogenic functions that enable them to promote invasion, metastasis, proliferation, and cell survival. Identifying the discrete TP53 mutations in tumor cells may help direct therapies that are more effective. In this study, we identified the frequency of individual TP53 mutations in patients with colon adenocarcinoma (48%, non–small cell lung carcinoma (NSCLC (36%, and glioma/glioblastoma (28% at our institution using next-generation sequencing. We also identified the occurrence of somatic mutations in numerous actionable genes including BRAF, EGFR, KRAS, IDH1, and PIK3CA that occurred concurrently with these TP53 mutations. Of the 480 tumors examined that contained one or more mutations in the TP53 gene, 219 were colon adenocarcinomas, 215 were NSCLCs, and 46 were gliomas/glioblastomas. Among the patients positive for TP53 mutations diagnosed with colon adenocarcinoma, 50% also showed at least one mutation in pathogenic genes of which 14% were BRAF, 33% were KRAS, and 3% were NRAS. Forty-seven percent of NSCLC patients harboring TP53 mutations also had a mutation in at least one actionable pathogenic variant with the following frequencies: BRAF: 4%, EGFR: 10%, KRAS: 28%, and PIK3CA: 4%. Fifty-two percent of patients diagnosed with glioma/glioblastoma with a positive TP53 mutation had at least one concurrent mutation in a known pathogenic gene of which 9% were CDKN2A, 41% were IDH1, and 11% were PIK3CA.

  16. Mutations of the Norrie gene in Korean ROP infants.

    Science.gov (United States)

    Kim, Jeong Hun; Yu, Young Suk; Kim, Jiyeon; Park, Seong Sup

    2002-12-01

    The present study was conducted to evaluate if there is a Norrie disease gene (ND gene) mutation involved in the retinopathy of prematurity (ROP), and to identify the possibility of a genetic abnormality that may be linked to the presence of ROP. Nineteen premature Korean infants, with a low birth weight (1500 g or less) or low gestational age (32 weeks or less), were included in the study. Eighteen infants had ROP, and the other did not. Genomic DNA was isolated from the peripheral blood leukocytes of these patients, and all three exons and their flanking areas, all known ND gene mutations regions, were evaluated following amplification by a polymerase chain reaction, but no ND gene mutations were detected. Any disagreement between the relationship of ROP to the ND gene mutation will need to be clarified by further investigation.

  17. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  18. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben

    2015-01-01

    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due...... to alterations in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. In the diagnostic setting, sub classification of HCA is based primarily on immunohistochemical analyzes, and has had an increasing impact on choice of treatment and individual prognostic assessment....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  19. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  20. Pharmacological activation of tumor suppressor, wild-type p53 as a promising strategy to fight cancer

    Directory of Open Access Journals (Sweden)

    Alicja Sznarkowska

    2010-08-01

    Full Text Available A powerful tumor suppressor – p53 protein is a transcription factor which plays a critical role in eliciting cellular responses to a variety of stress signals, including DNA damage, hypoxia and aberrant proliferative signals, such as oncogene activation. Since its discovery thirty one years ago, p53 has been connected to tumorigenesis as it accumulates in the transformed tumor cells. Cellular stress induces stabilization of p53 and promotes, depending on the stress level, cell cycle arrest or apoptosis in the irreversibly damaged cells. The p53 protein is found inactive in more than 50�0of human tumors either by enhanced proteasomal degradation or due to the inactivating point mutations in its gene. Numerous data indicate that low molecular weight compounds, identified by molecular modeling or in the functional, cell-based assays, efficiently activate non-mutated p53 in cancer cells which in consequence leads to their elimination due to p53-dependent apoptosis. In this work we describe the structure and cellular function of p53 as well as the latest discoveries on the compounds with high anti-tumor activities aiming at reactivation of the tumor suppressor function of p53.

  1. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    Science.gov (United States)

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  3. Screening for mutations in two exons of FANCG gene in Pakistani population.

    Science.gov (United States)

    Aymun, Ujala; Iram, Saima; Aftab, Iram; Khaliq, Saba; Nadir, Ali; Nisar, Ahmed; Mohsin, Shahida

    2017-06-01

    Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.

  4. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  5. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway

    Czech Academy of Sciences Publication Activity Database

    Ullmannová-Benson, Veronika; Guan, M.; Zhou, X. G.; Tripathi, V.; Yang, V.; Zimonjic, D. B.; Popescu, C.

    2009-01-01

    Roč. 23, č. 2 (2009), s. 383-390 ISSN 0887-6924 Institutional research plan: CEZ:AV0Z50200510 Keywords : multiple myeloma * tumor suppressor gene * promoter methylation Subject RIV: EC - Immunology Impact factor: 8.296, year: 2009

  6. TP53 mutations in clinically normal mucosa adjacent to oral carcinomas

    DEFF Research Database (Denmark)

    Thode, Christenze; Bilde, Anders; von Buchwald, Christian

    2010-01-01

    BACKGROUND: The tumour-suppressor protein p53 often accumulates in histologically normal epithelium adjacent to oral squamous cell carcinomas (OSCC). We investigated whether this was associated with mutations in TP53, the gene for p53, and might implicate impending malignancy. METHODS: Specimens...... products were separated by denatured gradient gel electrophoresis. Fragments with a deviant DGEE pattern were sequenced. RESULTS: TP53 mutations were found in six of 18 tumours. Fourteen specimens contained histologically normal mucosa adjacent to the tumour; 13 of these showed small clusters of p53...

  7. [CDC73 mutations in young patients with primary hyperparathyroidism: A description of two clinical cases].

    Science.gov (United States)

    Mamedova, E O; Mokrysheva, N G; Pigarova, E A; Przhiyalkovskaya, E G; Voronkova, I A; Vasilyev, E V; Petrov, V M; Gorbunova, V A; Rozhinskaya, L Ya; Belaya, Zh E; Tyulpakov, A N

    The article describes two clinical cases of severe primary hyperparathyroidism (PHPT) caused by parathyroid carcinoma in young female patients who underwent molecular genetic testing to rule out the hereditary forms of PHPT. In both patients, heterozygous germline nonsense mutations of tumor suppressor gene CDC73 encoding parafibromin (p.R91X and p.Q166X) were identified using next-generation sequencing with Ion Torrent Personal Genome Machine (Thermo Fisher Scientific - Life Technologies, USA). It is the first description of CDC73 mutations in Russia, one of the mutations is described for the first time in the world. Identification of germline mutations in the CDC73 gene in patients with PHPT necessitates regular lifelong screening for other manifestations of hyperparathyroidism-jaw tumor syndrome (HPT-JT), PHPT recurrence due to parathyroid carcinoma as well, and identification of mutation carriers among first-degree relatives.

  8. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  9. Clonal architectures and driver mutations in metastatic melanomas.

    Directory of Open Access Journals (Sweden)

    Li Ding

    Full Text Available To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1, protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT, as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2. Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3' base of dipyrimidine sequences while one patient (MEL9 with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma.

  10. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  11. Mutational specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1986-01-01

    In an approach to the isolation of mutants of E. coli unable to produce mutations by ultraviolet light, the author has found new umuC-mutants. Their properties could be explained by ''SOS hypothesis of Radman and Witkin'', which has now been justified by many investigators. Analysis of the umuC region of E. coli chromosome cloned in pSK 100 has led to the conclusion that two genes, umuD and umuC, having the capacity of mutation induction express in the same mechanism as that of SOS genes, which is known to be inhibited by LexA protein bonding to ''SOS box'' found at promotor region. Suppressor analysis for mutational specificity has revealed: (i) umuDC-independent mutagens, such as EMS and (oh) 4 Cy, induce selected base substitution alone; and (ii) umuDC-dependent mutagens, such as X-rays and gamma-rays, induce various types of base substitution simultaneously, although they have mutational specificity. In the umuDC-dependent processes of basechange mutagenesis, the spectra of base substitution were a mixture of base substitution reflecting the specific base damages induced by individual mutagens and nonspecific base substitution. In conclusion, base substitution plays the most important role in umuDC-dependent mutagenesis, although mutagenesis of umuDC proteins remains uncertain. (Namekawa, K.)

  12. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  14. Thyroglobulin Gene Mutation with Cold Nodule on Thyroid Scintigraphy

    Directory of Open Access Journals (Sweden)

    Toshio Kahara

    2012-01-01

    Full Text Available Thyroglobulin gene mutation is a rare cause of congenital hypothyroidism, but thyroglobulin gene mutations are thought to be associated with thyroid cancer development. A 21-year-old Japanese man treated with levothyroxine for congenital hypothyroidism had an enlarged thyroid gland with undetectable serum thyroglobulin despite elevated serum TSH level. The patient was diagnosed with thyroglobulin gene mutation, with compound heterozygosity for Gly304Cys missense mutation and Arg432X nonsense mutation. Ultrasonography showed a hypovascular large tumor in the left lobe that appeared as a cold nodule on thyroid scintigraphy. He underwent total thyroidectomy, but pathological study did not reveal findings of thyroid carcinoma, but rather a hyperplastic nodule with hemorrhage. Strong cytoplasmic thyroglobulin immunostaining was observed, but sodium iodide symporter immunostaining was hardly detected in the hyperplastic nodule. The clinical characteristics of patients with thyroglobulin gene mutations are diverse, and some patients are diagnosed by chance on examination of goiter in adults. The presence of thyroid tumors that appear as cold nodules on thyroid scintigraphy should consider the potential for thyroid carcinoma, if the patient has relatively low serum thyroglobulin concentration in relation to the degree of TSH without thyroglobulin autoantibody.

  15. A mutation at IVS1 + 5 of the von Hippel-Lindau gene resulting in intron retention in transcripts is not pathogenic in a patient with a tongue cancer?: case report

    Directory of Open Access Journals (Sweden)

    Asakawa Takeshi

    2012-03-01

    Full Text Available Abstract Background Von Hippel-Lindau disease (VHL is a dominantly inherited familial cancer syndrome predisposing the patient to a variety of malignant and benign neoplasms, most frequently hemangioblastoma, renal cell carcinoma, pheochromocytoma, and pancreatic tumors. VHL is caused by mutations of the VHL tumor suppressor gene on the short arm of chromosome 3, and clinical manifestations develop if both alleles are inactivated according to the two-hit hypothesis. VHL mutations are more frequent in the coding region and occur occasionally in the splicing region of the gene. Previously, we reported that the loss of heterozygosity (LOH of the VHL gene is common in squamous cell carcinoma tissues of the tongue. Case Presentation We describe a case of squamous cell carcinoma in the tongue caused by a point mutation in the splicing region of the VHL gene and discuss its association with VHL disease. Sequence analysis of DNA extracted from the tumor and peripheral blood of the patient with squamous cell carcinoma revealed a heterozygous germline mutation (c. 340 + 5 G > C in the splice donor sequence in intron 1 of the VHL gene. RT-PCR analysis of the exon1/intron1 junction in RNA from tumor tissue detected an unspliced transcript. Analysis of LOH using a marker with a heterozygous mutation of nucleotides (G or C revealed a deletion of the mutant C allele in the carcinoma tissues. Conclusions The fifth nucleotide G of the splice donor site of the VHL gene is important for the efficiency of splicing at that site. The development of tongue cancer in this patient was not associated with VHL disease because the mutation occurred in only a single allele of the VHL gene and that allele was deleted in tumor cells.

  16. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Bignone, P A; Lee, K Y; Liu, Y

    2007-01-01

    We had previously defined by allele loss studies a minimal region at 6q27 (between D6S264 and D6S297) to contain a putative tumour suppressor gene. The p90 ribosomal S6 kinase-3 gene (p90 Rsk-3, RPS6KA2) maps in this interval. It is a serine-threonine kinase that signals downstream of the mitogen...

  17. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    International Nuclear Information System (INIS)

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-01-01

    Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNFα, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNFα-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNFα on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

  18. Advances in sarcoma gene mutations and therapeutic targets.

    Science.gov (United States)

    Gao, Peng; Seebacher, Nicole A; Hornicek, Francis; Guo, Zheng; Duan, Zhenfeng

    2018-01-01

    Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management. Published by Elsevier Ltd.

  19. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    Science.gov (United States)

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  20. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1......, the presumed significance of the missense mutations was predicted in silico using the align GVGD algorithm. In conclusion, the mutation screening identified 40 novel variants in the BRCA1 and BRCA2 genes and thereby extends the knowledge of the BRCA1/BRCA2 mutation spectrum. Nineteen of the mutations were...

  1. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...

  2. ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaohan Li

    2011-01-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.

  3. A BRCA2 mutation incorrectly mapped in the original BRCA2 reference sequence, is a common West Danish founder mutation disrupting mRNA splicing

    DEFF Research Database (Denmark)

    Thomassen, Mads; Pedersen, Inge Søkilde; Vogel, Ida

    2011-01-01

    Inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 predispose carriers to breast and ovarian cancer. The authors have identified a mutation in BRCA2, 7845+1G>A (c.7617+1G>A), not previously regarded as deleterious because of incorrect mapping of the splice junction in the originally...... published genomic reference sequence. This reference sequence is generally used in many laboratories and it maps the mutation 16 base pairs inside intron 15. However, according to the recent reference sequences the mutation is located in the consensus donor splice sequence. By reverse transcriptase analysis......, loss of exon 15 in the final transcript interrupting the open reading frame was demonstrated. Furthermore, the mutation segregates with a cancer phenotype in 18 Danish families. By genetic analysis of more than 3,500 Danish breast/ovarian cancer risk families, the mutation was identified as the most...

  4. Germline mutations in candidate predisposition genes in individuals with cutaneous melanoma and at least two independent additional primary cancers.

    Science.gov (United States)

    Pritchard, Antonia L; Johansson, Peter A; Nathan, Vaishnavi; Howlie, Madeleine; Symmons, Judith; Palmer, Jane M; Hayward, Nicholas K

    2018-01-01

    While a number of autosomal dominant and autosomal recessive cancer syndromes have an associated spectrum of cancers, the prevalence and variety of cancer predisposition mutations in patients with multiple primary cancers have not been extensively investigated. An understanding of the variants predisposing to more than one cancer type could improve patient care, including screening and genetic counselling, as well as advancing the understanding of tumour development. A cohort of 57 patients ascertained due to their cutaneous melanoma (CM) diagnosis and with a history of two or more additional non-cutaneous independent primary cancer types were recruited for this study. Patient blood samples were assessed by whole exome or whole genome sequencing. We focussed on variants in 525 pre-selected genes, including 65 autosomal dominant and 31 autosomal recessive cancer predisposition genes, 116 genes involved in the DNA repair pathway, and 313 commonly somatically mutated in cancer. The same genes were analysed in exome sequence data from 1358 control individuals collected as part of non-cancer studies (UK10K). The identified variants were classified for pathogenicity using online databases, literature and in silico prediction tools. No known pathogenic autosomal dominant or previously described compound heterozygous mutations in autosomal recessive genes were observed in the multiple cancer cohort. Variants typically found somatically in haematological malignancies (in JAK1, JAK2, SF3B1, SRSF2, TET2 and TYK2) were present in lymphocyte DNA of patients with multiple primary cancers, all of whom had a history of haematological malignancy and cutaneous melanoma, as well as colorectal cancer and/or prostate cancer. Other potentially pathogenic variants were discovered in BUB1B, POLE2, ROS1 and DNMT3A. Compared to controls, multiple cancer cases had significantly more likely damaging mutations (nonsense, frameshift ins/del) in tumour suppressor and tyrosine kinase genes and

  5. SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis

    Directory of Open Access Journals (Sweden)

    Bourdon Violaine

    2011-01-01

    Full Text Available Abstract Background Schwannomatosis is a disease characterized by multiple non-vestibular schwannomas. Although biallelic NF2 mutations are found in schwannomas, no germ line event is detected in schwannomatosis patients. In contrast, germline mutations of the SMARCB1 (INI1 tumor suppressor gene were described in familial and sporadic schwannomatosis patients. Methods To delineate the SMARCB1 gene contribution, the nine coding exons were sequenced in a series of 56 patients affected with a variable number of non-vestibular schwannomas. Results Nine variants scattered along the sequence of SMARCB1 were identified. Five of them were classified as deleterious. All five patients carrying a SMARCB1 mutation had more multiple schwannomas, corresponding to 10.2% of patients with schwannomatosis. They were also diagnosed before 35 years of age. Conclusions These results suggest that patients with schwannomas have a significant probability of carrying a SMARCB1 mutation. Combined with data available from other studies, they confirm the clinical indications for genetic screening of the SMARCB1 gene.

  6. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    Science.gov (United States)

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  7. Amelogenesis Imperfecta and Screening of Mutation in Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Fernanda Veronese Oliveira

    2014-01-01

    Full Text Available The aim of this study was to report the clinical findings and the screening of mutations of amelogenin gene of a 7-year-old boy with amelogenesis imperfecta (AI. The genomic DNA was extracted from saliva of patient and his family, followed by PCR and direct DNA sequencing. The c.261C>T mutation was found in samples of mother, father, and brother, but the mutation was not found in the sequence of the patient. This mutation is a silent mutation and a single-nucleotide polymorphism (rs2106416. Thus, it is suggested that the mutation found was not related to the clinical presence of AI. Further research is necessary to examine larger number of patients and genes related to AI.

  8. Mutation analysis of the NRXN1 gene in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Onay H

    2016-12-01

    Full Text Available The aim of this study was to identify the sequence mutations in the Neurexin 1 (NRXN1 gene that has been considered as one of the strong candidate genes. A total of 30 children and adolescents (aged 3-18 with non syndromic autism were enrolled this study. Sequencing of the coding exons and the exon-intron boundaries of the NRXN1 gene was performed. Two known mutations were described in two different cases. Heterozygous S14L was determined in one patient and heterozygous L748I was determined in another patient. The S14L and L748I mutations have been described in the patients with autism before. Both of these mutations were inherited from their father. In this study, two of 30 (6.7% autism spectrum disorder (ASD patients carrying NRXN1 gene mutations were detected. It indicates that variants in the NRXN1 gene might confer a risk of developing nonsyndromic ASD. However, due to the reduced penetrance in the gene, the causal role of the NRXN1 gene mutations must be evaluated carefully in all cases.

  9. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  10. Tumor Suppressor Gene-Based Nanotherapy: From Test Tube to the Clinic

    Directory of Open Access Journals (Sweden)

    Manish Shanker

    2011-01-01

    Full Text Available Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  11. Tumor suppressor gene-based nanotherapy: from test tube to the clinic.

    Science.gov (United States)

    Shanker, Manish; Jin, Jiankang; Branch, Cynthia D; Miyamoto, Shinya; Grimm, Elizabeth A; Roth, Jack A; Ramesh, Rajagopal

    2011-01-01

    Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  12. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  13. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    Science.gov (United States)

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  14. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  15. Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-07-01

    Full Text Available Abstract Introduction Metastasis represents a major adverse step in the progression of breast carcinoma. Lymph node invasion is the most relevant prognostic factor; however little is known on the molecular events associated with lymph node metastasis process. This study is to investigate the status and role of methylation in lymph node metastatic tumors. Materials and methods Bisulfite pyrosequencing is used to screen 6 putative tumor suppressor genes (HIN-1, RASSF1A, RIL, CDH13, RARβ2 and E-cadherin in 38 pairs of primary breast tumors and lymph node metastases. Results We found that HIN-1, CDH13, RIL, RASSF1A and RARβ2 were frequently methylated both in primary and metastatic tissues (range: 55.3%~89.5%. E-cadherin was not frequently methylated in either setting (range: 18.4%~23.7%. The methylation status of HIN-1, CDH13, RIL, and RARβ2 in lymph nodes metastasis were correlated with that in primary tumors. The Pearson correlation values ranged from 0.624 to 0.472 (p values HIN-1 methylation and hormone status in metastatic lymph nodes. Hypermethylation of HIN-1 in metastasis lymph nodes was significantly associated with expression of ER (odds ratio, 1.070; P = 0.024 and with PR (odds ratio, 1.046; P = 0.026. Conclusions This study suggests that hypermethylation of tumor suppressor genes is extended from primary to metastatic tumors during tumor progression.

  16. DNA Fragmentation Factor 45 (DFF45 Gene at 1p36.2 Is Homozygously Deleted and Encodes Variant Transcripts in Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Hong Wei Yang

    2001-01-01

    Full Text Available Recently, loss of heterozygosity (LOH studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p in neuroblastoma (NB. To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1 p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45 gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT-polymerase chain reaction (PCR and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region.

  17. Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study.

    Directory of Open Access Journals (Sweden)

    Ishrat Mahjabeen

    Full Text Available Mitochondrial genes play important roles in cellular energy metabolism, free radical generation, and apoptosis. Dysregulation of these genes have long been suspected to contribute to the generation of reactive oxygen species (ROS, increased proliferation and progression of cancer. A family of orthologues of yeast silent information regulator 3 (SIRT3, 4 (SIRT4 and mitochondrial tumor suppressor 1 (MTUS1 are important mitochondrial tumor suppressor genes which play an important role in the progression of multiple cancers. However, their role in the development of oxidative stress, enhanced proliferation and progression of head and neck squamous cell carcinoma (HNSCC has not yet been studied. In this study we aimed to test the association between reduced mitochondrial tumor suppressor genes' activities and enhancement in tissue oxidative stress and cell proliferation in HNSCC cases. The expression of mitochondrial tumor suppressor genes (SIRT3, SIRT4 and MTUS1, mitochondrial DNA repair gene (OGG1-2a and a proliferation marker (Ki-67 was studied in a study cohort of 120 HNSCC patients and controls with reverse transcriptase polymerase chain reaction (RT-PCR and real-time PCR (qPCR in order to determine the potential prognostic significance of these genes. A statistically significant downregulation of SIRT3 (p<0.001, SIRT4 (p<0.0001, MTUS1 (p<0.002 and OGG1 (p<0.0001 was observed in HNSCC compared to control samples. Ki-67 was also overexpressed (p<0.0001 in HNSCC versus control samples. Additionally, to explore gene-gene relationship, we observed a positive spearmen correlation between SIRT3 versus SIRT4 (r = 0.523***, p<0.0001, SIRT3 versus MTUS1 (r = 0.273***, p<0.001, SIRT3 versus OGG1-2a (r = 0.213*, p<0.03, SIRT4 versus OGG1 (r = 0.338***, p<0.0001 and MTUS1 versus OGG1-2a (r = 0.215*, p<0.03 in HNSCC cases. A negative spearman correlation was observed between OGG1 versus Ki-67 (r = -0.224**, p<0.01 and OGG1-2a versus Ki-67 (r = -0.224**, p<0

  18. Optimization of heteroduplex analysis for the detection of BRCA mutations and SNPs

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2011-02-01

    Full Text Available BRCA1 and BRCA2 are tumour suppressor genes whose mutant phenotypes predispose to breast and ovarian cancer. Screening for mutations in these genes is now standard practice for hereditary breast and ovarian cancer (HBOC cases in Europe, and permits medical follow-up and genetic counselling adapted to the needs of individuals in such families. Currently, most laboratories performing diagnostic analysis of the BRCA genes use PCR of exons and intron-exon boundaries coupled to a pre-screening step to identify anomalous amplicons. The techniques employed for the detection of mutations and SNPs have evolved over time and vary in sensitivity, specificity and cost-effectiveness. As a variant for pre-screening techniques, we chose the recently developed Surveyor® heteroduplex cleavage method as a sensitive and specific technique to reveal anomalous amplicons of the BRCA genes, using only basic laboratory equipment and agarose gel electrophoresis. Here we present the detection of either mutations or SNPs within the BRCA1 exon 7, using heteroduplex analysis (HA by mismatch-specific endonuclease, confirmed by dideoxy sequencing.

  19. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  20. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    Science.gov (United States)

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  1. Association between nucleotide mutation of eNOS gene and serum ...

    African Journals Online (AJOL)

    Various mutation on endothelial nitric oxide synthase (eNOs) gene cause reduced production of NO, the expansion factor (VEF) and may accelerate the process of atherosclerosis. The study was designed to investigate the frequency of T-786C polymorphism of the gene or nucleotide mutation of eNOS gene in patients ...

  2. Gene mutation-based and specific therapies in precision medicine.

    Science.gov (United States)

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    Science.gov (United States)

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Novel mutations in the USH1C gene in Usher syndrome patients.

    Science.gov (United States)

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  5. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    Science.gov (United States)

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  6. Suppressor Analysis of the Fusogenic Lambda Spanins.

    Science.gov (United States)

    Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry

    2017-07-15

    The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such

  7. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    2009-11-01

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  8. A novel mutation of the fibrillin gene causing Ectopia lentis

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. (National Public Health Institute, Helsinki (Finland)); Child, A. (St. George' s Hospital Medical School, London (United Kingdom)); Peltonen, L. (Duncan Guthrie Institute, Glasgow, Scotland (United Kingdom))

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  9. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    Science.gov (United States)

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  10. New Mutation Identified in the SRY Gene High Mobility Group (HMG

    Directory of Open Access Journals (Sweden)

    Feride İffet Şahin

    2013-06-01

    Full Text Available Mutations in the SRY gene prevent the differentiation of the fetal gonads to testes and cause developing female phenotype, and as a result sex reversal and pure gonadal dysgenesis (Swyer syndrome can be developed. Different types of mutations identified in the SRY gene are responsible for 15% of the gonadal dysgenesis. In this study, we report a new mutation (R132P in the High Mobility Group (HMG region of SRY gene was detected in a patient with primary amenorrhea who has 46,XY karyotype. This mutation leads to replacement of the polar and basic arginine with a nonpolar hydrophobic proline residue at aminoacid 132 in the nuclear localization signal region of the protein. With this case report we want to emphasize the genetic approach to the patients with gonadal dysgenesis. If Y chromosome is detected during cytogenetic analysis, revealing the presence of the SRY gene and identification of mutations in this gene by sequencing analysis is become important in.

  11. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  12. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  13. DNA mutation motifs in the genes associated with inherited diseases.

    Directory of Open Access Journals (Sweden)

    Michal Růžička

    Full Text Available Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs rarely associated with mutations (coldspots and frequently associated with mutations (hotspots exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  14. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device... Guidance Document: CFTR Gene Mutation Detection System.” See § 866.1(e) for the availability of this...

  15. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors.

    Science.gov (United States)

    Rehfeld, Anders; Plass, Mireya; Døssing, Kristina; Knigge, Ulrich; Kjær, Andreas; Krogh, Anders; Friis-Hansen, Lennart

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3' untranslated regions. Additionally, APA can also produce mRNAs containing different 3'-terminal coding regions. Therefore, APA alters both the repertoire and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3' truncation of mRNA coding regions or 3' untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1, and DACT2. We validated the APA in three out of three cases with quantitative real-time-PCR. Our findings suggest that changes of APA pattern in these 16 genes could be involved in the tumorigenesis of SI-NETs. Furthermore, they also point to APA as a new target for both diagnostic and treatment of SI-NETs. The identified genes with APA specific to the SI-NETs could be further tested as diagnostic markers and drug targets for disease prevention and treatment.

  16. APC gene mutations and extraintestinal phenotype of familial adenomatous polyposis

    NARCIS (Netherlands)

    Giardiello, F. M.; Petersen, G. M.; Piantadosi, S.; Gruber, S. B.; Traboulsi, E. I.; Offerhaus, G. J.; Muro, K.; Krush, A. J.; Booker, S. V.; Luce, M. C.; Laken, S. J.; Kinzler, K. W.; Vogelstein, B.; Hamilton, S. R.

    1997-01-01

    Familial adenomatous polyposis (FAP) is caused by germline mutation of the adenomatous polyposis coli (APC) gene on chromosome 5q. This study assessed genotype-phenotype correlations for extraintestinal lesions in FAP. Mutations of the APC gene were compared with the occurrence of seven

  17. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  18. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  19. Law-medicine interfacing: patenting of human genes and mutations.

    Science.gov (United States)

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  20. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    Science.gov (United States)

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  1. Dietary fat and risk of colon and rectal cancer with aberrant MLH1 expression, APC or KRAS genes.

    NARCIS (Netherlands)

    Weijenberg, M.P.; Luchtenborg, M.; Goeij, A.F. de; Brink, M.; Muijen, G.N.P. van; Bruine, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den

    2007-01-01

    OBJECTIVE: To investigate baseline fat intake and the risk of colon and rectal tumors lacking MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) repair gene expression and harboring mutations in the APC (adenomatous polyposis coli) tumor suppressor gene and in the KRAS (v-Ki-ras2 Kirsten rat

  2. Genetic susceptibility to cancer

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    1995-01-01

    The normal development and function of tissues are under the regulation of programmed expression of genes involved in the proliferation and differentiation. Tumor development can be identified as the abnormal or deregulated expression of such genes. Two distinct classes of genes have been implicated in cancer development; oncogenes and tumor-suppressor genes. Those genes are potential target for radiation carcinogenesis. However, contemporal view of mutations of oncogenes and tumor-suppressor genes in radiogenic and non-radiogenic human cancers do not match to the spectrum of radiation-induced mutation in the selected genes, and raise the question whether radiations are primarily responsible for the initiation of carcinogenesis by mutation of those genes as primary target. There is now a growing evidence for the radiation to stimulate cell growth, which is followed by suppression. Such stimulatory effects of radiation may evoke the growth-promoting and -suppressing genes, or oncogenes and tumor-suppressor genes. This may lead to a testable proposition that constitutively present gain-of-function mutations in oncogenes and/or loss-of-function mutations in tumor-suppressor genes, accumulated spontaneously or environmentally, may play a significant role in the radiation carcinogenesis. (author)

  3. Mutations of the cystic fibrosis gene, but not cationic trypsinogen gene, are associated with recurrent or chronic idiopathic pancreatitis.

    Science.gov (United States)

    Ockenga, J; Stuhrmann, M; Ballmann, M; Teich, N; Keim, V; Dörk, T; Manns, M P

    2000-08-01

    We investigated whether mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and cationic trypsinogen gene are associated with recurrent acute, or chronic idiopathic pancreatitis. Twenty patients with idiopathic pancreatitis (11 women, nine men; mean age, 30 yr) were studied for the presence of a CFTR mutation by screening the genomic DNA for more than 30 mutations and variants in the CFTR gene. Selected mutations of the cationic trypsinogen gene were screened by Afl III restriction digestion or by a mutation-specific polymerase chain reaction (PCR). In each patient exons 1, 2, and 3 of the cationic trypsinogen gene were sequenced. Patients with a CFTR mutation underwent evaluation of further functional electrophysiological test (intestinal current measurement). No mutation of the cationic trypsinogen gene was detected. A CFTR mutation was detected in 6/20 (30.0%) patients. Three patients (15.0%) had a cystic fibrosis (CF) mutation on one chromosome (deltaF508, I336K, Y1092X), which is known to cause phenotypical severe cystic fibrosis. One patient was heterozygous for the 5T allele. In addition, two possibly predisposing CFTR variants (R75Q, 1716G-->A) were detected on four patients, one of these being a compound heterozygous for the missense mutation I336K and R75Q. No other family member (maternal I336K; paternal R75Q; sister I1336K) developed pancreatitis. An intestinal current measurement in rectum samples of patients with a CFTR mutation revealed no CF-typical constellations. CFTR mutations are associated with recurrent acute, or chronic idiopathic pancreatitis, whereas mutations of the cationic trypsinogen mutation do not appear to be a frequent pathogenetic factor.

  4. p16 mutation spectrum in the premalignant condition Barrett's esophagus.

    Directory of Open Access Journals (Sweden)

    Thomas G Paulson

    Full Text Available BACKGROUND: Mutation, promoter hypermethylation and loss of heterozygosity involving the tumor suppressor gene p16 (CDKN2a/INK4a have been detected in a wide variety of human cancers, but much less is known concerning the frequency and spectrum of p16 mutations in premalignant conditions. METHODS AND FINDINGS: We have determined the p16 mutation spectrum for a cohort of 304 patients with Barrett's esophagus, a premalignant condition that predisposes to the development of esophageal adenocarcinoma. Forty seven mutations were detected by sequencing of p16 exon 2 in 44 BE patients (14.5% with a mutation spectrum consistent with that caused by oxidative damage and chronic inflammation. The percentage of patients with p16 mutations increased with increasing histologic grade. In addition, samples from 3 out of 19 patients (15.8% who underwent esophagectomy were found to have mutations. CONCLUSIONS: The results of this study suggest the environment of the esophagus in BE patients can both generate and select for clones with p16 mutations.

  5. Analysis of APC mutation in human ameloblastoma and clinical significance.

    Science.gov (United States)

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.

  6. Relationship of ultrasonic shear wave velocity with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents

    Directory of Open Access Journals (Sweden)

    Xing Yin1

    2017-06-01

    Full Text Available Objective: To discuss the relationship of ultrasonic shear wave velocity (SWV with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents. Methods: 100 patients with primary liver cancer who underwent surgical treatment in our hospital between March 2014 and September 2016 were collected as observation group, and 50 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. The ultrasonic SWV levels of two groups of subjects were measured before the operation, and the observation groups were further divided into high SWV group and low SWV group, 50 cases in each group. Intraoperative tumor tissue samples were kept and fluorescence quantitative PCR was used to determine the mRNA expression of oncogenes and tumor suppressor genes. Enzymelinked immunosorbent assay was used to determine serum contents of angiogenesis factors in observation group before operation. Results: Hepatic ultrasonic SWV level in observation group was significantly higher than that in normal control group; proto-oncogene CK, Ki67, Gly-3, Survivin and Pokemon mRNA expression in tumor tissue of high SWV group were higher than those of low SWV group while tumor suppressor genes Tg737, p16, p27, PTEN and runx3 mRNA expression were lower than those of low SWV group; serum angiogenesis factors VEGF, MMP-9 and IGF-1R contents were higher than those in low SWV group. Conclusion: The hepatic ultrasonic SWV level increases in patients with primary liver cancer, and the SWV level is directly correlated with oncogene and tumor suppressor gene expression as well as angiogenesis factor contents.

  7. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  8. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  9. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    Science.gov (United States)

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  10. TINF2 Gene Mutation in a Patient with Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    T. W. Hoffman

    2016-01-01

    Full Text Available Pulmonary fibrosis is a frequent manifestation of telomere syndromes. Telomere gene mutations are found in up to 25% and 3% of patients with familial disease and sporadic disease, respectively. The telomere gene TINF2 encodes an eponymous protein that is part of the shelterin complex, a complex involved in telomere protection and maintenance. A TINF2 gene mutation was recently reported in a family with pulmonary fibrosis. We identified a heterozygous Ser245Tyr mutation in the TINF2 gene of previously healthy female patient that presented with progressive cough due to pulmonary fibrosis as well as panhypogammaglobulinemia at age 52. Retrospective multidisciplinary evaluation classified her as a case of possible idiopathic pulmonary fibrosis. Telomere length-measurement indicated normal telomere length in the peripheral blood compartment. This is the first report of a TINF2 mutation in a patient with sporadic pulmonary fibrosis, which represents another association between TINF2 mutations and this disease. Furthermore, this case underlines the importance of telomere dysfunction and not telomere length alone in telomere syndromes and draws attention to hypogammaglobulinemia as a manifestation of telomere syndromes.

  11. Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma

    Science.gov (United States)

    Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.

    2012-01-01

    Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009

  12. Deep learning of mutation-gene-drug relations from the literature.

    Science.gov (United States)

    Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo

    2018-01-25

    Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be

  13. The Analysis Mutation Of The CARD 15 Gene Variants In Chronic Periodontis

    OpenAIRE

    Bahruddin Thalib, Dr.drg. M.Kes,Sp.Pros.

    2014-01-01

    As Conclusion, CARD 15 gene mutation with chronic periodontitis was found to have heterozygote mutation and homozygote mutation variants, and also found genetics variation that changed the composition of C??? T nucleotide at codon 802 in exon 4 amino acid changed from alanine to valine. Purpose of This study was to determine the variant of card 15 gene mutation with periodontitis chronic.

  14. rpoB gene mutations among Mycobacterium tuberculosis isolates from extrapulmonary sites.

    Science.gov (United States)

    Khosravi, Azar Dokht; Meghdadi, Hossein; Ghadiri, Ata A; Alami, Ameneh; Sina, Amir Hossein; Mirsaeidi, Mehdi

    2018-03-01

    The aim of this study was to analyze mutations occurring in the rpoB gene of Mycobacterium tuberculosis (MTB) isolates from clinical samples of extrapulmonary tuberculosis (EPTB). Seventy formalin-fixed, paraffin-embedded samples and fresh tissue samples from confirmed EPTB cases were analyzed. Nested PCR based on the rpoB gene was performed on the extracted DNAs, combined with cloning and subsequent sequencing. Sixty-seven (95.7%) samples were positive for nester PCR. Sequence analysis of the 81 bp region of the rpoB gene demonstrated mutations in 41 (61.2%) of 67 sequenced samples. Several point mutations including deletion mutations at codons 510, 512, 513 and 515, with 45% and 51% of the mutations in codons 512 and 513 respectively were seen, along with 26% replacement mutations at codons 509, 513, 514, 518, 520, 524 and 531. The most common alteration was Gln → His, at codon 513, presented in 30 (75.6%) isolates. This study demonstrated sequence alterations in codon 513 of the 81 bp region of the rpoB gene as the most common mutation occurred in 75.6% of molecularly confirmed rifampin-resistant strains. In addition, simultaneous mutation at codons 512 and 513 was demonstrated in 34.3% of the isolates. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  15. High-resolution Melting Analysis for Gene Scanning of Adenomatous Polyposis Coli (APC) Gene With Oral Squamous Cell Carcinoma Samples.

    Science.gov (United States)

    Chang, Ya-Sian; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng Mao; Chang, Jan-Gowth

    2016-02-01

    There have been many different mutations reported for the large adenomatous polyposis coli (APC) tumor suppressor gene. APC mutations result in inactivation of APC tumor suppressor action, allowing the progression of tumorigenesis. The present study utilized a highly efficient method to identify APC mutations and investigated the association between the APC genetic variants Y486Y, A545A, T1493T, and D1822V and susceptibility to oral squamous cell carcinoma (OSCC). High-resolution melting (HRM) analysis was used to characterize APC mutations. Genomic DNA was extracted from 83 patient specimens of OSCC and 50 blood samples from healthy control subjects. The 14 exons and mutation cluster region of exon 15 were screened by HRM analysis. All mutations were confirmed by direct DNA sequencing. Three mutations and 4 single nucleotide polymorphisms (SNPs) were found in this study. The mutations were c.573T>C (Y191Y) in exon 5, c.1005A>G (L335L) in exon 9, and c.1488A>T (T496T) in exon 11. Two SNPs, c.4479G>A (T1493T) and c.5465A>T (D1822V), were located in exon 15, whereas c.1458T>C (Y486Y) and c.1635G>A (A545A) were located in exon 11 and 13, respectively. There was no observed association between OSCC risk and genotype for any of the 4 APC SNPs. The mutation of APC is rare in Taiwanese patients with OSCC. HRM analysis is a reliable, accurate, and fast screening method for APC mutations.

  16. TP53 Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Akira Mogi

    2011-01-01

    Full Text Available The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC.

  17. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    Science.gov (United States)

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  18. Molecular markers for diagnostic cytology of neoplasms in the head region of the pancreas: mutation of K-ras and overexpression of the p53 protein product

    NARCIS (Netherlands)

    van Es, J. M.; Polak, M. M.; van den Berg, F. M.; Ramsoekh, T. B.; Craanen, M. E.; Hruban, R. H.; Offerhaus, G. J.

    1995-01-01

    To determine the potential efficiency of molecular markers specific for neoplastic change--mutations of the K-ras oncogene and the p53 tumour suppressor gene--in diagnosing pancreatic carcinoma. Archival cytology samples obtained from 17 patients with established pancreatic carcinoma were assayed

  19. Mutational and Evolutionary Analyses of Bovine Reprimo Gene ...

    African Journals Online (AJOL)

    It can therefore be concluded that bovine RPRM gene contained 4 transition mutations and 5 indels that can be used in marker assisted selection. Evolutionary findings also demonstrated the existence of a divergent evolution between bovine RPRM gene and RPRM gene of fishes and frog. Keywords: Identity, phylogeny ...

  20. Loss of heterozygosity on chromosome 11q13 in two families with acromegaly/gigantism is independent of mutations of the multiple endocrine neoplasia type I gene.

    Science.gov (United States)

    Gadelha, M R; Prezant, T R; Une, K N; Glick, R P; Moskal, S F; Vaisman, M; Melmed, S; Kineman, R D; Frohman, L A

    1999-01-01

    Familial acromegaly/gigantism occurring in the absence of multiple endocrine neoplasia type I (MEN-1) or the Carney complex has been reported in 18 families since the biochemical diagnosis of GH excess became available, and the genetic defect is unknown. In the present study we examined 2 unrelated families with isolated acromegaly/gigantism. In family A, 3 of 4 siblings were affected, with ages at diagnosis of 19, 21, and 23 yr. In family B, 5 of 13 siblings exhibited the phenotype and were diagnosed at 13, 15, 17, 17, and 24 yr of age. All 8 affected patients had elevated basal GH levels associated with high insulin-like growth factor I levels and/or nonsuppressible serum GH levels during an oral glucose tolerance test. GHRH levels were normal in affected members of family A. An invasive macroadenoma was found in 6 subjects, and a microadenoma was found in 1 subject from family B. The sequence of the GHRH receptor complementary DNA in 1 tumor from family A was normal. There was no history of consanguinity in either family, and the past medical history and laboratory results excluded MEN-1 and the Carney complex in all affected and unaffected screened subjects. Five of 8 subjects have undergone pituitary surgery to date, and paraffin-embedded pituitary blocks were available for analysis. Loss of heterozygosity on chromosome 11q13 was studied by comparing microsatellite polymorphisms of leukocyte and tumor DNA using PYGM (centromeric) and D11S527 (telomeric), markers closely linked to the MEN-1 tumor suppressor gene. All tumors exhibited a loss of heterozygosity at both markers. Sequencing of the MEN-1 gene revealed no germline mutations in either family, nor was a somatic mutation found in tumor DNA from one subject in family A. The integrity of the MEN-1 gene in this subject was further supported by demonstration of the presence of MEN-1 messenger ribonucleic acid, as assessed by RT-PCR. These data indicate that loss of heterozygosity in these affected family

  1. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  2. GPR143 gene mutation analysis in pediatric patients with albinism.

    Science.gov (United States)

    Trebušak Podkrajšek, Katarina; Stirn Kranjc, Branka; Hovnik, Tinka; Kovač, Jernej; Battelino, Tadej

    2012-09-01

    X-linked ocular albinism type 1 is difficult to differentiate clinically from other forms of albinism in young patients. X-linked ocular albinism type 1 is caused by mutations in the GPR143 gene, encoding melanosome specific G-protein coupled receptor. Patients typically present with moderately to severely reduced visual acuity, nystagmus, strabismus, photophobia, iris translucency, hypopigmentation of the retina, foveal hypoplasia and misrouting of optic nerve fibers at the chiasm. Following clinical ophthalmological evaluation, GPR143 gene mutational analyses were performed in a cohort of 15 pediatric male patients with clinical signs of albinism. Three different mutations in the GPR143 gene were identified in four patients, including a novel c.886G>A (p.Gly296Arg) mutation occurring "de novo" and a novel intronic c.360 + 5G>A mutation, identified in two related boys. Four patients with X-linked ocular albinism type 1 were identified from a cohort of 15 boys with clinical signs of albinism using mutation detection methods. Genetic analysis offers the possibility of early definitive diagnosis of ocular albinism type 1 in a significant portion of boys with clinical signs of albinism.

  3. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    Science.gov (United States)

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  4. Mutations du gene de la filamine et syndromes malformatifs | Koffi ...

    African Journals Online (AJOL)

    Filamin is a cytoskeletal protein that occurs in the control of cytoskeleton structure and activity, the modulation of cell shape and migration as well as in the maintaining of cell shape. Mutations in the genes FLNA and FLNB provoke diverse malformative diseases in human. Mutations in the gene FLNA cause four X-Linked ...

  5. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer

    Directory of Open Access Journals (Sweden)

    Mary Qu Yang

    Full Text Available Clear cell renal cell carcinoma (ccRCC is the most common and most aggressive form of renal cell cancer (RCC. The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1, as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways. Keywords: ccRCC, Causative mutation, Pathways, Protein-protein interaction, Gene module, eQTL

  6. Towards linked open gene mutations data

    Science.gov (United States)

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives

  7. Towards linked open gene mutations data.

    Science.gov (United States)

    Zappa, Achille; Splendiani, Andrea; Romano, Paolo

    2012-03-28

    With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on

  8. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  9. An experimental study of BIGH3 gene mutations in the patients with corneal dystrophies

    International Nuclear Information System (INIS)

    Jin Tao; Zou Liuhe; Yang Ling

    2004-01-01

    Objective: To evaluate BIGH3 gene mutations in Chinese patents with corneal dystrophies. Methods: 2ml peripheral venous blood was collected from 15 patients with granular corneal dystrophies and 5 normal subjects. Leucocytes DNA was extracted with standard method. With two pairs of oligonucleotide primers, exon 4 and exon 12 of the BIGH3 gene were amplified using the polymerase chain reaction. Amplified DNA fragments were purified and sequenced directly. Results: Mutations in BIGH3 gene were detected in all the patients with corneal dystrophies. BIGH3 gene mutations were not found in normal subjects. 12 patients with Avellino corneal dystrophy had the missense mutation R124H in the BIGH3 gene. 3 patients with granular corneal dystrophy had the missense mutation R555W in the BIGH3 gene. Conclusion: R124H and R555W mutations in BIGH3 gene were also found in the Chinese patients with Avellino and granular corneal dystrophies. In China, Avellino corneal dystrophy associated with the R124H mutation is the most common form in the corneal dystrophies resulted by BIGH3 gene mutions. Condon 124 and 555 are also the hot spots for the mutations in the BIGH3 gene in the Chinese patients with corneal dystrophies. Molecular genetic analysis may be repuired for proper diagnosis and subclassification of corneal dystrophies. (authors)

  10. Clinical Utility of promoter methylation of the tumor suppressor genes DKK3, and RASSF1A in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Marwa H. Saied

    2018-04-01

    Full Text Available Background: DNA methylation is the commonest known epigenetic change that results in silencing of tumor suppressor genes. Promoter methylation of tumor suppressor genes has the potential for early detection of breast cancer. Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients and twenty healthy ladies as control group using MSP. Results: Methylation of DKK3 promoter was found in 22.5% of breast cancer patients, while DKK3 methylation was absent in both fibroadenoma patients and control group. Similarly, methylation of RASSF1 promoter was found in 17.5% of breast cancer patients and in none of fibroadenoma and control group. Conclusion: Promoter methylation of DKK3 and RASSF1 was found in breast cancer patients while absent in control group suggesting that tumorspecific methylation of the two genes (DKK3 and RASSF1A might be a valuable biomarker for the early detection of breast cancer. Keywords: DNA methylation, Breast cancer, DKK3, RASSF1

  11. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  12. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides.

    Science.gov (United States)

    Chowdhury, Kaushik; Kumar, Suresh; Sharma, Tanu; Sharma, Ankit; Bhagat, Meenakshi; Kamai, Asangla; Ford, Bridget M; Asthana, Shailendra; Mandal, Chandi C

    2018-01-10

    Complexity in tissues affected by cancer arises from somatic mutations and epigenetic modifications in the genome. The mutation susceptible hotspots present within the genome indicate a non-random nature and/or a position specific selection of mutation. An association exists between the occurrence of mutations and epigenetic DNA methylation. This study is primarily aimed at determining mutation status, and identifying a signature for predicting mutation prone zones of tumor suppressor (TS) genes. Nearby sequences from the top five positions having a higher mutation frequency in each gene of 42 TS genes were selected from a cosmic database and were considered as mutation prone zones. The conserved motifs present in the mutation prone DNA fragments were identified. Molecular docking studies were done to determine putative interactions between the identified conserved motifs and enzyme methyltransferase DNMT1. Collective analysis of 42 TS genes found GC as the most commonly replaced and AT as the most commonly formed residues after mutation. Analysis of the top 5 mutated positions of each gene (210 DNA segments for 42 TS genes) identified that CG nucleotides of the amino acid codons (e.g., Arginine) are most susceptible to mutation, and found a consensus DNA "T/AGC/GAGGA/TG" sequence present in these mutation prone DNA segments. Similar to TS genes, analysis of 54 oncogenes not only found CG nucleotides of the amino acid Arg as the most susceptible to mutation, but also identified the presence of similar consensus DNA motifs in the mutation prone DNA fragments (270 DNA segments for 54 oncogenes) of oncogenes. Docking studies depicted that, upon binding of DNMT1 methylates to this consensus DNA motif (C residues of CpG islands), mutation was likely to occur. Thus, this study proposes that DNMT1 mediated methylation in chromosomal DNA may decrease if a foreign DNA segment containing this consensus sequence along with CG nucleotides is exogenously introduced to dividing

  13. Analysis of gene mutations in children with cholestasis of undefined etiology.

    Science.gov (United States)

    Matte, Ursula; Mourya, Reena; Miethke, Alexander; Liu, Cong; Kauffmann, Gregory; Moyer, Katie; Zhang, Kejian; Bezerra, Jorge A

    2010-10-01

    The discovery of genetic mutations in children with inherited syndromes of intrahepatic cholestasis allows for diagnostic specificity despite similar clinical phenotypes. Here, we aimed to determine whether mutation screening of target genes could assign a molecular diagnosis in children with idiopathic cholestasis. DNA samples were obtained from 51 subjects with cholestasis of undefined etiology and surveyed for mutations in the genes SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 by a high-throughput gene chip. Then, the sequence readouts for all 5 genes were analyzed for mutations and correlated with clinical phenotypes. Healthy subjects served as controls. Sequence analysis of the genes identified 14 (or 27%) subjects with missense, nonsense, deletion, and splice site variants associated with disease phenotypes based on the type of mutation and/or biallelic involvement in the JAG1, ATP8B1, ABCB11, or ABCB4 genes. These patients had no syndromic features and could not be differentiated by biochemical markers or histopathology. Among the remaining subjects, 10 (or ∼20%) had sequence variants in ATP8B1 or ABCB11 that involved only 1 allele, 8 had variants not likely to be associated with disease phenotypes, and 19 had no variants that changed amino acid composition. Gene sequence analysis assigned a molecular diagnosis in 27% of subjects with idiopathic cholestasis based on the presence of variants likely to cause disease phenotypes.

  14. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  15. Geographical distribution of β-globin gene mutations in Syria.

    Science.gov (United States)

    Murad, Hossam; Moasses, Faten; Dabboul, Amir; Mukhalalaty, Yasser; Bakoor, Ahmad Omar; Al-Achkar, Walid; Jarjour, Rami A

    2018-04-11

    Objectives β-Thalassemia disease is caused by mutations in the β-globin gene. This is considered as one of the common genetic disorders in Syria. The aim of this study was to identify the geographical distribution of the β-thalassemia mutations in Syria. Methods β-Globin gene mutations were characterized in 636 affected patients and 94 unrelated carriers using the amplification refractory mutations system-polymerase chain reaction technique and DNA sequencing. Results The study has revealed the presence of 38 β-globin gene mutations responsible for β-thalassemia in Syria. Important differences in regional distribution were observed. IVS-I.110 [G > A] (22.2%), IVS-I.1 [G > A] (17.8%), Cd 39 [C > T] (8.2%), IVS-II.1 [G > A] (7.6%), IVS-I.6 [T > C] (7.1%), Cd 8 [-AA] (6%), Cd 5 [-CT] (5.6%) and IVS-I.5 [G > C] (4.1%) were the eight predominant mutations found in our study. The coastal region had higher relative frequencies (37.9 and 22%) than other regions. A clear drift in the distribution of the third common Cd 39 [C > T] mutation in the northeast region (34.8%) to the northwest region (2.5%) was noted, while the IVS-I.5 [G > C] mutation has the highest prevalence in north regions. The IVS-I.6 [T > C] mutation had a distinct frequency in the middle region. Ten mutations -86 [C > G], -31 [A > G], -29 [A > G], 5'UTR; +22 [G > A], CAP + 1 [A > C], Codon 5/6 [-TG], IVS-I (-3) or codon 29 [C > T], IVS-I.2 [T > A], IVS-I.128 [T > G] and IVS-II.705 [T > G] were found in Syria for the first time. Conclusions These data will significantly facilitate the population screening, genetic counseling and prenatal diagnosis in Syrian population.

  16. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  17. Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma

    Directory of Open Access Journals (Sweden)

    Wong Nora

    2006-01-01

    Full Text Available Abstract Background Germline mutations of the SDHD, SDHB and SDHC genes, encoding three of the four subunits of succinate dehydrogenase, are a major cause of hereditary paraganglioma and pheochromocytoma, and demonstrate that these genes are classic tumor suppressors. Succinate dehydrogenase is a heterotetrameric protein complex and a component of both the Krebs cycle and the mitochondrial respiratory chain (succinate:ubiquinone oxidoreductase or complex II. Methods Using conformation sensitive gel electrophoresis (CSGE and direct DNA sequencing to analyse genomic DNA from peripheral blood lymphocytes, here we describe the mutation analysis of the SDHB and SDHC genes in 37 patients with sporadic (i.e. no known family history head and neck paraganglioma and five pheochromocytoma and/or paraganglioma families. Results Two sporadic patients were found to have a SDHB splice site mutation in intron 4, c.423+1G>A, which produces a mis-spliced transcript with a 54 nucleotide deletion, resulting in an 18 amino acid in-frame deletion. A third patient was found to carry the c.214C>T (p.Arg72Cys missense mutation in exon 4 of SDHC, which is situated in a highly conserved protein motif that constitutes the quinone-binding site of the succinate: ubiquinone oxidoreductase (SQR complex in E. coli. Together with our previous results, we found 27 germline mutations of SDH genes in 95 cases (28% of sporadic head and neck paraganglioma. In addition all index patients of five families showing hereditary pheochromocytoma-paraganglioma were found to carry germline mutations of SDHB: four of which were novel, c.343C>T (p.Arg115X, c.141G>A (p.Trp47X, c.281G>A (p.Arg94Lys, and c.653G>C (p.Trp218Ser, and one reported previously, c.136C>T, p.Arg46X. Conclusion In conclusion, these data indicate that germline mutations of SDHB and SDHC play a minor role in sporadic head and neck paraganglioma and further underline the importance of germline SDHB mutations in cases of

  18. Numerous BAF complex genes are mutated in Coffin-Siris syndrome.

    Science.gov (United States)

    Miyake, Noriko; Tsurusaki, Yoshinori; Matsumoto, Naomichi

    2014-09-01

    Coffin-Siris syndrome (CSS; OMIM#135900) is a rare congenital anomaly syndrome characterized by intellectual disability, coarse face, hypertrichosis, and absence/hypoplasia of the fifth digits' nails. As the majority of patients are sporadic, an autosomal dominant inheritance model has been postulated. Recently, whole exome sequencing (WES) emerged as a comprehensive analytical method for rare variants. We applied WES on five CSS patients and found two de novo mutations in SMARCB1. SMARCB1 was completely sequenced in 23 CSS patients and the mutations were found in two more patients. As SMARCB1 encodes a subunit of the BAF complex functioning as a chromatin remodeling factor, mutations in 15 other subunit genes may cause CSS and thus were analyzed in 23 CSS patients. We identified heterozygous mutations in either of six genes (SMARCA4, SMARCB1, SMARCA2, SMARCE1, ARID1A, and ARID1B) in 20 out of 23 CSS patients. The patient with a SMARCA2 mutation was re-evaluated and identified as having Nicolaides-Baraitser syndrome (OMIM#601358), which is similar to but different from CSS. Additionally, 49 more CSS patients were analyzed as a second cohort. Together with the first cohort, 37 out of 71 (22 plus 49) patients were found to have a mutation in either one of five BAF complex genes. Furthermore, two CSS patients were reported to have a PHF6 abnormality, which can also cause Borjeson-Forssman-Lehmann syndrome (OMIM#301900), an X-linked intellectual disability syndrome with epilepsy and endocrine abnormalities. The current list of mutated genes in CSS is far from being complete and analysis of more patients is required. © 2014 Wiley Periodicals, Inc.

  19. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Diaz-Llopis Manuel

    2011-10-01

    Full Text Available Abstract Background Usher Syndrome type II (USH2 is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP. Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin.

  20. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  1. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    Directory of Open Access Journals (Sweden)

    Jill C Preston

    Full Text Available Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae, many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1 in the short-lived perennial Petunia hybrida (petunia, Solanaceae. Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS and Floral Binding Protein 21 (FBP21, but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  2. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  3. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  4. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population.

    Science.gov (United States)

    Lenato, Gennaro M; Lastella, Patrizia; Di Giacomo, Marilena C; Resta, Nicoletta; Suppressa, Patrizia; Pasculli, Giovanna; Sabbà, Carlo; Guanti, Ginevra

    2006-02-01

    Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation. 2006 Wiley-Liss, Inc.

  5. Use of nfsB, encoding nitroreductase, as a reporter gene to determine the mutational spectrum of spontaneous mutations in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Dunham Stephen

    2009-11-01

    Full Text Available Abstract Background Organisms that are sensitive to nitrofurantoin express a nitroreductase. Since bacterial resistance to this compound results primarily from mutations in the gene encoding nitroreductase, the resulting loss of function of nitroreductase results in a selectable phenotype; resistance to nitrofurantoin. We exploited this direct selection for mutation to study the frequency at which spontaneous mutations arise (transitions and transversions, insertions and deletions. Results A nitroreductase- encoding gene was identified in the N. gonorrhoeae FA1090 genome by using a bioinformatic search with the deduced amino acid sequence derived from the Escherichia coli nitroreductase gene, nfsB. Cell extracts from N. gonorrhoeae were shown to possess nitroreductase activity, and activity was shown to be the result of NfsB. Spontaneous nitrofurantoin-resistant mutants arose at a frequency of ~3 × 10-6 - 8 × 10-8 among the various strains tested. The nfsB sequence was amplified from various nitrofurantoin-resistant mutants, and the nature of the mutations determined. Transition, transversion, insertion and deletion mutations were all readily detectable with this reporter gene. Conclusion We found that nfsB is a useful reporter gene for measuring spontaneous mutation frequencies. Furthermore, we found that mutations were more likely to arise in homopolymeric runs rather than as base substitutions.

  6. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  7. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in cell proliferation, growth and energy metabolic processes important for the neoplastic cells. In deleted regions, genes showing decreased expression included transcription factors or repressors (e.g. SP4, PRDM1, NCOR1 and ZNF10), tumor suppressors or negative regulators of the cell cycle (e.g. CDKN2C...

  8. Hemochromatosis C282Y gene mutation as a potential susceptibility ...

    African Journals Online (AJOL)

    G.M. Mokhtar

    2017-08-12

    Aug 12, 2017 ... Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene's mutation especially the C282Y mutation. The interaction between hemoglo- bin chain synthesis' disorders and the C282Y mutation may worsen the clinical picture of beta-.

  9. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  10. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  11. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    Science.gov (United States)

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  12. A family with hereditary hemochromatosis carrying HFE gene splice site mutation: a case report

    Directory of Open Access Journals (Sweden)

    NING Huibin

    2017-01-01

    Full Text Available ObjectiveTo investigate a new type of HFE gene mutation in a family with hereditary hemochromatosis (HH. MethodsThe analysis of HFE gene was performed for one patient with a confirmed diagnosis of HH and five relatives. Blood genomic DNA was extracted and PCR multiplication was performed for the exon and intron splice sequences of related HFE, HJV, HAMP, transferrin receptor 2 (TfR2, and SLC40A1 genes. After agarose gel electrophoresis and purification, bi-directional direct sequencing was performed to detect mutation sites. ResultsThe proband had abnormal liver function and increases in serum iron, total iron binding capacity, serum ferritin, and transferrin saturation, as well as T→C homozygous mutation in the fourth base of intron 2 in the intervening sequence of the exon EXON2 of HFE gene (IVs 2+4T→C, C/C homozygous, splicing, abnormal. There were no abnormalities in HJV, HAMP, TfR2, and SLC40A1 genes. The proband′s son had the same homozygous mutation, three relatives had heterozygous mutations, and one relative had no abnormal mutations. ConclusionGene detection plays an important role in the diagnosis of hemochromatosis, and IVs 2+4T→C mutation may be a new pathogenic mutation for HH in China.

  13. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis.

    Science.gov (United States)

    Armata, Heather L; Golebiowski, Diane; Jung, Dae Young; Ko, Hwi Jin; Kim, Jason K; Sluss, Hayla K

    2010-12-01

    Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.

  14. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer

    International Nuclear Information System (INIS)

    Campbell, Ian G; Choong, David; Chenevix-Trench, Georgia

    2004-01-01

    Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significanlty between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer

  15. Social Health Insurance-Based Simultaneous Screening for 154 Mutations in 19 Deafness Genes Efficiently Identified Causative Mutations in Japanese Hearing Loss Patients.

    Directory of Open Access Journals (Sweden)

    Kentaro Mori

    Full Text Available Sensorineural hearing loss is one of the most common neurosensory disorders in humans. The incidence of SNHL is estimated to be 1 in 500-1000 newborns. In more than half of these patients, the hearing loss is associated with genetic causes. In Japan, genetic testing for the patients with SNHL using the Invader assay to screen for 46 mutations in 13 deafness genes was approved by the Ministry of Health, Labour and Welfare for inclusion in social health insurance coverage in 2012. Furthermore, from August 2015, this genetic testing has been expanded to screen for 154 mutations in 19 deafness genes using targeted genomic enrichment with massively parallel DNA sequencing combined with the Invader assay and TaqMan genotyping. For this study we analyzed 717 unrelated Japanese hearing loss patients. The total allele frequency of 154 mutations in 19 deafness genes was 32.64% (468/1434 and the total numbers of cases associated with at least one mutation was 44.07% (316/717. Among these, we were able to diagnose 212 (30% patients, indicating that the present screening could efficiently identify causative mutations in hearing loss patients. It is noteworthy that 27 patients (3.8% had coexistent multiple mutations in different genes. Five of these 27 patients (0.7%, 5/717 overall were diagnosed with genetic hearing loss affected by concomitant with responsible mutations in more than two different genes. For patients identified with multiple mutations in different genes, it is necessary to consider that several genes might have an impact on their phenotypes.

  16. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis

    Science.gov (United States)

    2014-01-01

    Background Alterations or mutations in the lipoprotein lipase (LPL) gene contribute to severe hypertriglyceridemia (HTG). This study reported on two patients in a Chinese family with LPL gene mutations and severe HTG and acute pancreatitis. Methods Two patients with other five family members were included in this study for DNA-sequences of hyperlipidemia-related genes (such as LPL, APOC2, APOA5, LMF1, and GPIHBP1) and 43 healthy individuals and 70 HTG subjects were included for the screening of LPL gene mutations. Results Both patients were found to have a compound heterozygote for a novel LPL gene mutation (L279V) and a known mutation (A98T). Furthermore, one HTG subject out of 70 was found to carry this novel LPL L279V mutation. Conclusions The data from this study showed that compound heterozygote mutations of A98T and L279V inactivate lipoprotein lipase enzymatic activity and contribute to severe HTG and acute pancreatitis in two Chinese patients. Further study will investigate how these LPL gene mutations genetically inactivate the LPL enzyme. PMID:24646025

  18. Frequency of common CFTR gene mutations in Venezuelan patients with cystic fibrosis

    OpenAIRE

    Sánchez, Karen; Arcia, Orlando; Matute, Xiorama; Mindiola, Luz; Chaustre, Ismenia; Takiff, Howard

    2014-01-01

    Mutations in the CFTR gene in Cystic Fibrosis (CF) patients have geographic differences and there is scant data on their prevalence in Venezuelan patients. This study determined the frequency of common CFTR gene mutations in these patients. We amplified and sequenced exons 7, 10, 11, 19, 20 and 21, which contain the most common CFTR mutations, from 105 Venezuelan patients in the National CF Program. Eleven different mutations were identified, four with frequencies greater than 1%: p.Phe508del...

  19. Mutator suppression and escape from replication error-induced extinction in yeast.

    Directory of Open Access Journals (Sweden)

    Alan J Herr

    2011-10-01

    Full Text Available Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10⁻³ inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.

  20. Novel mutations in the TBX5 gene in patients with Holt-Oram Syndrome

    Directory of Open Access Journals (Sweden)

    Marianna P.R. Porto

    2010-01-01

    Full Text Available The Holt-Oram syndrome (HOS is an autosomal dominant condition characterized by upper limb and cardiac malformations. Mutations in the TBX5 gene cause HOS and have also been associated with isolated heart and arm defects. Interactions between the TBX5, GATA4 and NKX2.5 proteins have been reported in humans. We screened the TBX5, GATA4, and NKX2.5 genes for mutations, by direct sequencing, in 32 unrelated patients presenting classical (8 or atypical HOS (1, isolated congenital heart defects (16 or isolated upper-limb malformations (7. Pathogenic mutations in the TBX5 gene were found in four HOS patients, including two new mutations (c.374delG; c.678G > T in typical patients, and the hotspot mutation c.835C > T in two patients, one of them with an atypical HOS phenotype involving lower-limb malformations. Two new mutations in the GATA4 gene were found in association with isolated upper-limb malformations, but their clinical significance remains to be established. A previously described possibly pathogenic mutation in the NKX2.5 gene (c.73C > 7 was detected in a patient with isolated heart malformations and also in his clinically normal father.

  1. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  2. Small Mutations of the DMD Gene in Taiwanese Families

    Directory of Open Access Journals (Sweden)

    Hsiao-Lin Hwa

    2008-06-01

    Conclusion: Most identified mutations either led to a predictable premature stop codon or resulted in splicing defects, which caused defective function of dystrophin. Our findings extend the mutation spectrum of the DMD gene. Molecular characterization of the affected families is important for genetic counseling and prenatal diagnosis.

  3. Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Bredberg, A.; Kraemer, K.H.; Seidman, M.M.

    1986-01-01

    A shuttle vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in cultured skin cells from a patient with the skin-cancer-prone, DNA repair-deficient disease xeroderma pigmentosum and in repair-proficient cells. After replication in the human cells, progeny plasmids were purified. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of Escherichia coli carrying a suppressible amber mutation in the beta-galactosidase gene. Plasmid survival in the xeroderma pigmentosum cells was less than that of pZ189 harvested from repair-proficient human cells. The point-mutation frequency in the 150-base-pair tRNA marker gene increased up to 100-fold with ultraviolet dose. Sequence analysis of 150 mutant plasmids revealed that mutations were infrequent at potential thymine-thymine dimer sites. Ninety-three percent of the mutant plasmids from the xeroderma pigmentosum cells showed G X C----A X T transitions, compared to 73% in the normal cells (P less than 0.002). There were significantly fewer transversions (P less than 0.002) (especially G X C----T X A) and multiple base substitutions (P less than 0.00001) than when pZ189 was passaged in repair-proficient cells. The subset of mutational changes that are common to ultraviolet-treated plasmids propagated in both repair-proficient and xeroderma pigmentosum skin cells may be associated with the development of ultraviolet-induced skin cancer in humans

  4. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    Science.gov (United States)

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  5. Major gene mutations and domestication of plants

    International Nuclear Information System (INIS)

    Ashri, A.

    1989-01-01

    From the approximately 200,000 species of flowering plants known, only about 200 have been domesticated. The process has taken place in many regions over long periods. At present there is great interest in domesticating new species and developing new uses for existing ones in order to supply needed food, industrial raw materials, etc. It is proposed that major gene mutations were important in domestication; many key characters distinguishing cultivated from related wild species are controlled by one or very few major genes. The deliberate effort to domesticate new species requires at least the following: identification of needs and potential sources, establishment of suitable niches, choice of taxa to be domesticated, specification of the desired traits and key characters to be modified, as well as the potential role of induced mutations. (author). 14 refs

  6. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    OpenAIRE

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) ...

  7. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    Science.gov (United States)

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  8. The Quest for the 1p36 Tumor Suppressor

    Science.gov (United States)

    Bagchi, Anindya; Mills, Alea A.

    2010-01-01

    Genomic analyses of late-stage human cancers have uncovered deletions encompassing 1p36, thereby providing an extensive body of literature supporting the idea that a potent tumor suppressor resides in this interval. Although a number of genes have been proposed as 1p36 candidate tumor suppressors, convincing evidence that their encoded products protect from cancer has been scanty. A recent functional study identified CHD5 as a novel tumor suppressor mapping to 1p36. Here we discuss evidence supporting CHD5’s tumor suppressive role. Together, these findings suggest that strategies designed to enhance CHD5 activity could provide novel approaches for treating a broad range of human malignancies. PMID:18413720

  9. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    Science.gov (United States)

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  10. Development of Spontaneous Mammary Tumors in BALB/c-p53+-Mice: Detection of Early Genetic Alterations and the Mapping of BALB/c Susceptibility Genes

    National Research Council Canada - National Science Library

    Blackburn, Anneke

    2002-01-01

    The TP53 tumor suppressor gene is defective in the majority of sporadic breast cancers, and breast cancer is the most frequent tumor type in women with Li-Fraumeni syndrome who inherit germline mutations in TP53...

  11. Development of Spontaneous Mammary Tumors in BALB/c-p53+/-Mice: Detection of Early Genetic Alterations and the Mapping of BALB/c Susceptibility Genes

    National Research Council Canada - National Science Library

    Smith, Sallie

    2004-01-01

    The TP53 tumor suppressor gene is defective in the majority of sporadic breast cancers, and breast cancer is the most frequent tumor type in women with Li-Fraumeni syndrome and bear germline mutations in TP53...

  12. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  13. Glaucoma and Cytochrome P4501B1 Gene Mutations

    Directory of Open Access Journals (Sweden)

    Mukesh Tanwar

    2010-01-01

    Full Text Available Developmental anomalies of the ocular anterior chamber angle may lead to an incomplete development of the structures that form the conventional aqueous outflow pathway. Thus, disorders that present with such dysfunction tend to be associated with glaucoma. Among them, Axenfeld-Rieger (ARS malformation is a rare clinical entity with an estimated prevalence of one in every 200,000 individuals. The changes in eye morphogenesis in ARS are highly penetrant and are associated with 50% risk of development of glaucoma. Mutations in the cytochrome P4501B1 (CYP1B1 gene have been reported to be associated with primary congenital glaucoma and other forms of glaucoma and mutations in pituitary homeobox 2 (PITX2 gene have been identified in ARS in various studies. This case was negative for PITX2 mutations and compound heterozygote for CYP1B1 mutations. Clinical manifestations of this patient include bilateral elevated intraocular pressure (>40 mmHg with increased corneal diameter (>14 mm and corneal opacity. Patient also had iridocorneal adhesions, anteriorly displaced Schwalbe line, anterior insertion of iris, broad nasal bridge and protruding umbilicus. This is the first study from north India reporting CYP1B1 mutations in Axenfeld-Rieger syndrome with bilateral buphthalmos and early onset glaucoma. Result of this study supports the role of CYP1B1 as a causative gene in ASD disorders and its role in oculogenesis.

  14. [Gene mutation and clinical phenotype analysis of patients with Noonan syndrome and hypertrophic cardiomyopathy].

    Science.gov (United States)

    Liu, X H; Ding, W W; Han, L; Liu, X R; Xiao, Y Y; Yang, J; Mo, Y

    2017-10-02

    Objective: To analyze the gene mutations and clinical features of patients with Noonan syndrome and hypertrophic cardiomyopathy. Method: Determined the mutation domain in five cases diagnosed with Noonan syndrome and hypertrophic cardiomyopathy and identified the relationship between the mutant domain and hypertrophic cardiomyopathy by searching relevant articles in pubmed database. Result: Three mutant genes (PTPN11 gene in chromosome 12, RIT1 gene in chromosome 1 and RAF1 gene in chromosome 3) in five cases all had been reported to be related to hypertrophic cardiomyopathy. The reported hypertrophic cardiomyopathy relevant genes MYPN, MYH6 and MYBP3 had also been found in case 1 and 2. Patients with same gene mutation had different clinical manifestations. Both case 4 and 5 had RAF1 mutation (c.770C>T). However, case 4 had special face, low IQ, mild pulmonary artery stenosis, and only mild ventricular hypertrophy. Conclusion: Noonan syndrome is a genetic heterogeneity disease. Our study identified specific gene mutations that could result in Noonan syndrome with hypertrophic cardiomyopathy through molecular biology methods. The results emphasize the importance of gene detection in the management of Noonan syndrome.

  15. Periventricular nodular heterotopia in patients with filamin-1 gene mutations: neuroimaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, T.Y. [Dept. of Radiology, Children' s Hospital, Boston, MA (United States); Fox, J.W.; Walsh, C.A. [Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA (United States); Dept. of Neurology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA (United States); Dobyns, W.B. [Department of Human Genetics, The University of Chicago, Chicago, IL (United States); Radtke, R. [Division of Neurology, Duke University Medical Center, Durham, NC (United States); Scheffer, I.E.; Berkovic, S.F. [Department of Neurology, University of Melbourne, Austin and Repatriation Medical Centre, Heidelberg (Australia); Barnes, P.D. [Department of Radiology, Children' s Hospital and Harvard Medical School, Boston, MA (United States); Huttenlocher, P.R. [Department of Pediatrics, University of Chicago, Chicago, Illinois (United States)

    2000-11-01

    Background. The filamin-1 (FLN-1) gene is responsible for periventricular nodular heterotopia (PNH), which is an X-linked dominant neuronal migration disorder. Objective. To review the clinical and imaging findings in a series of patients with documented filamin-1 mutations. Materials and methods. A retrospective review of the medical records and MR studies of a series of patients with PNH and confirmed FLN-1 mutations was done. There were 16 female patients (age range:.67-71 years; mean = 28.6) with filamin-1 gene mutations. Results. In six of the patients the same mutation was inherited in four generations in one pedigree. In a second pedigree, a distinct mutation was found in two patients in two generations. In a third pedigree, a third mutation was found in four patients in two generations. The remaining four patients had sporadic de novo mutations that were not present in the parents. Ten patients had seizures, and all patients had normal intelligence. In all 16 patients MR demonstrated bilateral near-continuous PNH. There were no consistent radiographic or clinical differences between patients carrying different mutations. Conclusion. Patients with confirmed FLN-1 gene mutations are usually female and have a distinctive MR pattern of PNH. Other female patients with this same MR pattern probably harbor FLN-1 mutations and risk transmission to their progeny. This information is important for genetic counseling. (orig.)

  16. Periventricular nodular heterotopia in patients with filamin-1 gene mutations: neuroimaging findings

    International Nuclear Information System (INIS)

    Poussaint, T.Y.; Fox, J.W.; Walsh, C.A.; Dobyns, W.B.; Radtke, R.; Scheffer, I.E.; Berkovic, S.F.; Barnes, P.D.; Huttenlocher, P.R.

    2000-01-01

    Background. The filamin-1 (FLN-1) gene is responsible for periventricular nodular heterotopia (PNH), which is an X-linked dominant neuronal migration disorder. Objective. To review the clinical and imaging findings in a series of patients with documented filamin-1 mutations. Materials and methods. A retrospective review of the medical records and MR studies of a series of patients with PNH and confirmed FLN-1 mutations was done. There were 16 female patients (age range:.67-71 years; mean = 28.6) with filamin-1 gene mutations. Results. In six of the patients the same mutation was inherited in four generations in one pedigree. In a second pedigree, a distinct mutation was found in two patients in two generations. In a third pedigree, a third mutation was found in four patients in two generations. The remaining four patients had sporadic de novo mutations that were not present in the parents. Ten patients had seizures, and all patients had normal intelligence. In all 16 patients MR demonstrated bilateral near-continuous PNH. There were no consistent radiographic or clinical differences between patients carrying different mutations. Conclusion. Patients with confirmed FLN-1 gene mutations are usually female and have a distinctive MR pattern of PNH. Other female patients with this same MR pattern probably harbor FLN-1 mutations and risk transmission to their progeny. This information is important for genetic counseling. (orig.)

  17. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Georgina L Ryland

    Full Text Available MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  18. Hemochromatosis (HFE gene mutations in Brazilian chronic hemodialysis patients

    Directory of Open Access Journals (Sweden)

    F.V. Perícole

    2005-09-01

    Full Text Available Patients with chronic renal insufficiency (CRI have reduced hemoglobin levels, mostly as a result of decreased kidney production of erythropoietin, but the relation between renal insufficiency and the magnitude of hemoglobin reduction has not been well defined. Hereditary hemochromatosis is an inherited disorder of iron metabolism. The importance of the association of hemochromatosis with treatment for anemia among patients with CRI has not been well described. We analyzed the frequency of the C282Y and H63D mutations in the HFE gene in 201 Brazilian individuals with CRI undergoing hemodialysis. The analysis of the effects of HFE mutations on iron metabolism and anemia with biochemical parameters was possible in 118 patients of this study (hemoglobin, hematocrit, ferritin levels, transferrin saturation, and serum iron. A C282Y heterozygous mutation was found in 7/201 (3.4% and H63D homozygous and heterozygous mutation were found in 2/201 (1.0% and 46/201 (22.9%, respectively. The allelic frequencies of the HFE mutations (0.017 for C282Y mutation and 0.124 for H63D mutation did not differ between patients with CRI and healthy controls. Regarding the biochemical parameters, no differences were observed between HFE heterozygous and mutation-negative patients, although ferritin levels were not higher among patients with the H63D mutation (P = 0.08. From what we observed in our study, C282Y/H63D HFE gene mutations are not related to degrees of anemia or iron stores in CRI patients receiving intravenous iron supplementation (P > 0.10. Nevertheless, the present data suggest that the H63D mutation may have an important function as a modulating factor of iron overload in these patients.

  19. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  20. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  1. [Breast cancer genetics. BRCA1 and BRCA2: the main genes for disease predisposition].

    Science.gov (United States)

    Ruiz-Flores, P; Calderón-Garcidueñas, A L; Barrera-Saldaña, H A

    2001-01-01

    Breast cancer is among the most common world cancers. In Mexico this neoplasm has been progressively increasing since 1990 and is expected to continue. The risk factors for this disease are age, some reproductive factors, ionizing radiation, contraceptives, obesity and high fat diets, among other factors. The main risk factor for BC is a positive family history. Several families, in which clustering but no mendelian inheritance exists, the BC is due probably to mutations in low penetrance genes and/or environmental factors. In families with autosomal dominant trait, the BRCA1 and BRCA2 genes are frequently mutated. These genes are the two main BC susceptibility genes. BRCA1 predispose to BC and ovarian cancer, while BRCA2 mutations predispose to BC in men and women. Both are long genes, tumor suppressors, functioning in a cell cycle dependent manner, and it is believed that both switch on the transcription of several genes, and participate in DNA repair. The mutations profile of these genes is known in developed countries, while in Latin America their search has just began. A multidisciplinary group most be responsible of the clinical management of patients with mutations in BRCA1 and BRCA2, and the risk assignment and Genetic counseling most be done carefully.

  2. Analysis of GPR101 and AIP genes mutations in acromegaly: a multicentric study.

    Science.gov (United States)

    Ferraù, Francesco; Romeo, P D; Puglisi, S; Ragonese, M; Torre, M L; Scaroni, C; Occhi, G; De Menis, E; Arnaldi, G; Trimarchi, F; Cannavò, S

    2016-12-01

    This multicentric study aimed to investigate the prevalence of the G protein-coupled receptor 101 (GPR101) p.E308D variant and aryl hydrocarbon receptor interacting protein (AIP) gene mutations in a representative cohort of Italian patients with acromegaly. 215 patients with GH-secreting pituitary adenomas, referred to 4 Italian referral centres for pituitary diseases, have been included. Three cases of gigantism were present. Five cases were classified as FIPA. All the patients have been screened for germline AIP gene mutations and GPR101 gene p.E308D variant. Heterozygous AIP gene variants have been found in 7 patients (3.2 %). Five patients carried an AIP mutation (2.3 %; 4 females): 3 patients harboured the p.R3O4Q mutation, one had the p.R304* mutation and the last one the IVS3+1G>A mutation. The prevalence of AIP mutations was 3.3 % and 2.8 % when considering only the patients diagnosed when they were <30 or <40-year old, respectively. Furthermore, 2.0 % of the patients with a pituitary macroadenoma and 4.2 % of patients resistant to somatostatin analogues treatment were found to harbour an AIP gene mutation. None of the patients was found to carry the GPR101 p.E308D variant. The prevalence of AIP gene mutations among our sporadic and familial acromegaly cases was similar to that one reported in previous studies, but lower when considering only the cases diagnosed before 40 years of age. The GPR101 p.E308D change is unlikely to have a role in somatotroph adenomas tumorigenesis, since none of our sporadic or familial patients tested positive for this variant.

  3. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa

    Science.gov (United States)

    Daiger, Stephen P.; Bowne, Sara J.; Sullivan, Lori S.

    2015-01-01

    Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%–30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families. PMID:25304133

  4. Mutations of alpha-galactosidase A gene in two unusual cases of Fabry disease

    NARCIS (Netherlands)

    Beyer, EM; Kopishinskaya, SV; Van Amstel, JKP; Tsvetkova, [No Value

    1999-01-01

    The mutation analysis of alpha-galactosidase A gene was carried out in two families with Fabry disease described by us earlier. In the family P. a new point mutation E341K (a G to A transition at position 10999 of the gene) was identified. The mutation causes a Glu341Lys substitution in

  5. Recurrent hyperparathyroidism and a novel nonsense mutation in a patient with hyperparathyriodism-jaw tumor syndrome.

    Science.gov (United States)

    Abdulla, Amer G; O'Leary, Erin M; Isorena, Jennifer P; Diaz, Miguel Fernando Palma; Yeh, Michael W

    2013-01-01

    To present the case of a hyperparathyroidism-jaw tumor (HPT-JT) patient with a novel nonsense mutation of the CDC73 gene. We present the case of a patient with a history of three prior maxillectomies and two prior parathyroidectomies who presented with recurrent primary hyperparathyroidism (PHPT). We also briefly review the literature pertaining to HPT-JT. Genetic analysis revealed a novel nonsense mutation (c.85G>T; pGlu29) in exon 1 of CDC73. The patient's son underwent genetic testing for a CDC73 mutation and was found to be negative. HPT-JT is a rare condition characterized by PHPT and benign tumors of the mandible and maxilla. Up to 15% of HPT-JT patients with PHPT have parathyroid carcinoma. HPT-JT is associated with an inactivating mutation of CDC73, a gene that codes for the tumor suppressor protein parafibromin. This report expands our understanding of the genetics underlying this rare disorder and emphasizes the importance of early detection in order to prevent hypercalcemic complications such as parathyroid carcinoma.

  6. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene.

    Science.gov (United States)

    Wu, Wei-Chi; Drenser, Kimberly; Trese, Michael; Capone, Antonio; Dailey, Wendy

    2007-02-01

    To correlate the ophthalmic findings of patients with pediatric vitreoretinopathies with mutations occurring in the Norrie disease gene (NDP). One hundred nine subjects with diverse pediatric vitreoretinopathies and 54 control subjects were enrolled in the study. Diagnoses were based on retinal findings at each patient's first examination. Samples of DNA from each patient underwent polymerase chain reaction amplification and direct sequencing of the NDP gene. Eleven male patients expressing mutations in the NDP gene were identified in the test group, whereas the controls demonstrated wild-type NDP. All patients diagnosed as having Norrie disease had mutations in the NDP gene. Four of the patients with Norrie disease had mutations involving a cysteine residue in the cysteine-knot motif. Four patients diagnosed as having familial exudative vitreoretinopathy were found to have noncysteine mutations. One patient with retinopathy of prematurity had a 14-base deletion in the 5' untranslated region (exon 1), and 1 patient with bilateral persistent fetal vasculature syndrome expressed a noncysteine mutation in the second exon. Mutations disrupting the cysteine-knot motif corresponded to severe retinal dysgenesis, whereas patients with noncysteine mutations had varying degrees of avascular peripheral retina, extraretinal vasculature, and subretinal exudate. Patients exhibiting severe retinal dysgenesis should be suspected of carrying a mutation that disrupts the cysteine-knot motif in the NDP gene.

  7. Identification of cloned genes that complement the rad50-1, rad51-1, rad54-3 and rad55-3 mutations in yeast

    International Nuclear Information System (INIS)

    Calderon, I.L.; Contopoulou, C.R.; Mortimer, R.K.

    1982-01-01

    Plasmids that complement the rad50-1, rad51-1, rad54-3 and rad55-3 mutations in yeast, have been isolated. They were obtained by transforming strains, carrying the leu2-112 leu2-3 alleles and the particular rad mutation, with YEp13 plasmids containing near random yeast DNA inserts. Rad + clones were identified among the Leu + transformants. Integration by targeting into the RAD55 locus showed that the rad55-3 complementing plasmid contained the actual RAD55 gene. BamHI fragments from each of the plasmids that complement rad50-1, rad51-1 and rad54-3, all of which lacked Rad + activity, were subcloned into the integrating plasmid YIp5 and the hybrid plasmids were used to transform a Rad + Ura - strain to Ura + . By genetic mapping, the rad51 and rad54 subclones were shown to integrate at their respective loci. However, the rad50 subclones integrated at a site unlinked to the RAD50 locus. This suggests that no homology exists between this BamHI fragment and the RAD50 gene. Integration at the RAD54 locus of the rad54 subclone made the host cell Ura + but Rad - ; excision of the plasmid was shown to be x-ray inducible and to restore the Ura - Rad + phenotype. These results indicate that the BamHI fragment of the RAD54 plasmid is internal to the RAD54 gene. We can conclude also that the RAD54 gene is not essential as cells bearing a disrupted copy of this gene are able to survive. Additionally, a plasmid carrying an amber suppressor has been isolated and characterized

  8. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  9. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    Science.gov (United States)

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  10. Collodion Baby with TGM1 gene mutation

    Directory of Open Access Journals (Sweden)

    Sharma D

    2015-09-01

    Full Text Available Deepak Sharma,1 Basudev Gupta,2 Sweta Shastri,3 Aakash Pandita,1 Smita Pawar4 1Department of Neonatology, Fernandez Hospital, Hyderguda, Hyderabad, Andhra Pradesh, 2Department of Pediatrics, Civil Hospital, Palwal, Haryana, 3Department of Pathology, NKP Salve Medical College, Nagpur, Maharashtra, 4Department of Obstetrics and Gynaecology, Fernandez Hospital, Hyderguda, Hyderabad, Andhra Pradesh, IndiaAbstract: Collodion baby (CB is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation. The infant was lost to follow-up.Keywords: cellophane membrane, c.984+1G>A mutation, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, parchment membrane, TGM1 gene

  11. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  12. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    Science.gov (United States)

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  13. Gene mutation in ATM/PI3K region of nasopharyngeal carcinoma cell lines

    International Nuclear Information System (INIS)

    Wang Hongmei; Wu Xinyao; Xia Yunfei

    2002-01-01

    Objective: To define the correlation between nasopharyngeal carcinoma (NPC) cell radiosensitivity and gene mutation in the ATM/PI3K coding region. Methods: The gene mutation in the ATM/PI3K region of nasopharyngeal carcinoma cell lines which vary in radiosensitivity, was monitored by reverse transcription-polymerase chain reaction (RT-PCR) and fluorescence-marked ddNTP cycle sequencing technique. Results: No gene mutation was detected in the ATM/PI3K region of either CNE1 or CNE2. Conclusion: Disparity in intrinsic radiosensitivity between different NPC cell lines depends on some other factors and mechanism without being related to ATM/PI3K mutations

  14. Combined cytotoxic effects of tumor necrosis factor-alpha with various cytotoxic agents in tumor cell lines that are drug resistant due to mutated p53

    NARCIS (Netherlands)

    Sleijfer, S; Le, T. K. P.; de Jong, S.; Timmer-Bosscha, H; Withoff, S; Mulder, NH

    Several studies suggest that tumor necrosis factor-alpha (TNF) is able to overcome drug resistance in tumors. Whether TNF is able to do so in tumor cell lines that are drug resistant due to a mutation in the tumor suppressor gene p53 is unclear. Therefore, we studied the in vitro cytotoxic effects

  15. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  16. A novel missense mutation of ADAR1 gene in a Chinese family ...

    Indian Academy of Sciences (India)

    This study was mainlyto explore the pathogenic mutation of ADAR1 gene and provide genetics counselling and prenatal diagnostic testing for childbearing individuals.Mutational analysis of ADAR1 gene was performed by polymerase chain reaction (PCR) and electrophoretic separation of PCR products by 1.5% agarose ...

  17. [Mutations of ACVRL1 gene in a pedigree with hereditary hemorrhagic telangiectasia].

    Science.gov (United States)

    Luo, Jie-wei; Chen, Hui; Yang, Liu-qing; Zhu, Ai-lan; Wu, Yan-an; Li, Jian-wei

    2008-06-01

    To identify the activin A receptor type II-like 1 gene (ACVRL1) mutations in a Chinese family with hereditary hemorrhagic telangiectasia (HHT2). The exons 3, 7 and 8 of ACVRL1 gene of the proband and her five family members were amplified by polymerase chain reaction (PCR), and the PCR products were sequenced. The proband had obvious telangiectasis of gastric mucosa, and small arteriovenous fistula in the right kidney. All the patients in the HHT2 family had iterative epistaxis or bleeding in other sites, and had telangiectasis of nasal mucosa, tunica mucosa oris and finger tips. ACVRL1 gene analysis confirmed that there is frameshift mutation caused by deletion of G145 in exon 3 in the 4 patients, but the mutation is absent in 2 members without HHT2. The HHT2 family is caused by a 145delG mutation of ACVRL1 gene, resulting in frameshift and a new stop codon at codon 53.

  18. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Directory of Open Access Journals (Sweden)

    Dufier Jean-Louis

    2006-04-01

    Full Text Available Abstract Background Ocular albinism type 1 (OA1 is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.

  19. Identification of Genetic Susceptibility to Childhood Cancer through Analysis of Genes in Parallel

    Science.gov (United States)

    Plon, Sharon E.; Wheeler, David A.; Strong, Louise C.; Tomlinson, Gail E.; Pirics, Michael; Meng, Qingchang; Cheung, Hannah C.; Begin, Phyllis R.; Muzny, Donna M.; Lewis, Lora; Biegel, Jaclyn A.; Gibbs, Richard A.

    2011-01-01

    Clinical cancer genetic susceptibility analysis typically proceeds sequentially beginning with the most likely causative gene. The process is time consuming and the yield is low particularly for families with unusual patterns of cancer. We determined the results of in parallel mutation analysis of a large cancer-associated gene panel. We performed deletion analysis and sequenced the coding regions of 45 genes (8 oncogenes and 37 tumor suppressor or DNA repair genes) in 48 childhood cancer patients who also (1) were diagnosed with a second malignancy under age 30, (2) have a sibling diagnosed with cancer under age 30 and/or (3) have a major congenital anomaly or developmental delay. Deleterious mutations were identified in 6 of 48 (13%) families, 4 of which met the sibling criteria. Mutations were identified in genes previously implicated in both dominant and recessive childhood syndromes including SMARCB1, PMS2, and TP53. No pathogenic deletions were identified. This approach has provided efficient identification of childhood cancer susceptibility mutations and will have greater utility as additional cancer susceptibility genes are identified. Integrating parallel analysis of large gene panels into clinical testing will speed results and increase diagnostic yield. The failure to detect mutations in 87% of families highlights that a number of childhood cancer susceptibility genes remain to be discovered. PMID:21356188

  20. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    Science.gov (United States)

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  1. Analysis of HFE and non-HFE gene mutations in Brazilian patients with hemochromatosis.

    Science.gov (United States)

    Bittencourt, Paulo Lisboa; Marin, Maria Lúcia Carnevale; Couto, Cláudia Alves; Cançado, Eduardo Luiz Rachid; Carrilho, Flair José; Goldberg, Anna Carla

    2009-01-01

    Approximately one-half of Brazilian patients with hereditary hemochromatosis (HH) are neither homozygous for the C282Y mutation nor compound heterozygous for the H63D and C282Y mutations that are associated with HH in Caucasians. Other mutations have been described in the HFE gene as well as in genes involved in iron metabolism, such as transferrin receptor 2 (TfR2) and ferroportin 1 (SCL40A1). To evaluate the role of HFE, TfR2 and SCL40A1 mutations in Brazilian subjects with HH. Nineteen male subjects (median age 42 [range: 20-72] years) with HH were evaluated using the Haemochromatosis StripAssay A. This assay is capable of detecting twelve HFE mutations, which are V53M, V59M, H63D, H63H, S65C, Q127H, P160delC, E168Q, E168X, W169X, C282Y and Q283, four TfR2 mutations, which are E60X, M172K, Y250X, AVAQ594-597del, and two SCL40A1 mutations, which are N144H and V162del. In our cohort, nine (47%) patients were homozygous for the C282Y mutation, two (11%) were heterozygous for the H63D mutation, and one each (5%) was either heterozygous for C282Y or compound heterozygous for C282Y and H63D. No other mutations in the HFE, TfR2 or SCL40A1 genes were observed in the studied patients. One-third of Brazilian subjects with the classical phenotype of HH do not carry HFE or other mutations that are currently associated with the disease in Caucasians. This observation suggests a role for other yet unknown mutations in the aforementioned genes or in other genes involved in iron homeostasis in the pathogenesis of HH in Brazil.

  2. Analysis of HFE and non-HFE gene mutations in Brazilian patients with hemochromatosis

    Directory of Open Access Journals (Sweden)

    Paulo Lisboa Bittencourt

    2009-01-01

    Full Text Available BACKGROUND: Approximately one-half of Brazilian patients with hereditary hemochromatosis (HH are neither homozygous for the C282Y mutation nor compound heterozygous for the H63D and C282Y mutations that are associated with HH in Caucasians. Other mutations have been described in the HFE gene as well as in genes involved in iron metabolism, such as transferrin receptor 2 (TfR2 and ferroportin 1 (SCL40A1. AIMS: To evaluate the role of HFE, TfR2 and SCL40A1 mutations in Brazilian subjects with HH. PATIENTS AND METHODS: Nineteen male subjects (median age 42 [range: 20-72] years with HH were evaluated using the Haemochromatosis StripAssay A®. This assay is capable of detecting twelve HFE mutations, which are V53M, V59M, H63D, H63H, S65C, Q127H, P160delC, E168Q, E168X, W169X, C282Y and Q283, four TfR2 mutations, which are E60X, M172K, Y250X, AVAQ594-597del, and two SCL40A1 mutations, which are N144H and V162del. RESULTS: In our cohort, nine (47% patients were homozygous for the C282Y mutation, two (11% were heterozygous for the H63D mutation, and one each (5% was either heterozygous for C282Y or compound heterozygous for C282Y and H63D. No other mutations in the HFE, TfR2 or SCL40A1 genes were observed in the studied patients. CONCLUSIONS: One-third of Brazilian subjects with the classical phenotype of HH do not carry HFE or other mutations that are currently associated with the disease in Caucasians. This observation suggests a role for other yet unknown mutations in the aforementioned genes or in other genes involved in iron homeostasis in the pathogenesis of HH in Brazil.

  3. Molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Lapidus, I.L.; Karpovskij, A.L.

    1996-01-01

    The classical paradigm of spatially unrelated lesions for gene mutations and chromosomal exchange breakpoints induced by ionizing radiations in eukaryotic cells was re-examined in the experiments on the mapping of gamma-ray- or neutron-induced breakpoints in and outside of white (w) and vestigial (vg) genes of Drosophila melanogaster using the in situ hybridization of the large fragments of the genes under study with the polythene chromosomes of the relevant mutants. The results for the random sample of 60 inversion and translocation breakpoints analysed to date have shown that (i) 50% of them are mapped as the hot spots within big introns of both the genes, and (ii) 21 of 60 breaks (35%) are located outside of genes. It is important to note that 26% (16/60) of the breakpoints analysed are flanked by the deletions, the sizes of which vary from the quarter to a whole of the gene. It was found that the deletions flank both the inversion and translocation breakpoints and arise more often after action of neutrons than photons. An unexpectedly high frequency of the multiple-damaged w and vg mutants that have the gene/point mutation and additional, but separate, chromosome exchange (the so-called double- or triple-site mutants) has shown that the genetic danger of ionizing radiation is higher than usually accepted on the base of single gene/point mutation assessments. 11 refs., 3 figs

  4. Association of mutations in the hemochromatosis gene with shorter life expectancy

    DEFF Research Database (Denmark)

    Bathum, L; Christiansen, L; Nybo, H

    2001-01-01

    BACKGROUND: To investigate whether the frequency of carriers of mutations in the HFE gene associated with hereditary hemochromatosis diminishes with age as an indication that HFE mutations are associated with increased mortality. It is of value in the debate concerning screening for hereditary...... hemochromatosis to determine the significance of heterozygosity. METHODS: Genotyping for mutations in exons 2 and 4 of the HFE gene using denaturing gradient gel electrophoresis in 1784 participants aged 45 to 100 years from 4 population-based studies: all 183 centenarians from the Danish Centenarian Study, 601...... in the distribution of mutations in exon 2 in the different age groups. CONCLUSIONS: In a high-carrier frequency population like Denmark, mutations in HFE show an age-related reduction in the frequency of heterozygotes for C282Y, which suggests that carrier status is associated with shorter life expectancy....

  5. Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function

    Science.gov (United States)

    Wang, Tiehui; Gorgoglione, Bartolomeo; Maehr, Tanja; Holland, Jason W.; Vecino, Jose L. González; Wadsworth, Simon; Secombes, Christopher J.

    2011-01-01

    The intracellular suppressors of cytokine signaling (SOCS) family members, including CISH and SOCS1 to 7 in mammals, are important regulators of cytokine signaling pathways. So far, the orthologues of all the eight mammalian SOCS members have been identified in fish, with several of them having multiple copies. Whilst fish CISH, SOCS3, and SOCS5 paralogues are possibly the result of the fish-specific whole genome duplication event, gene duplication or lineage-specific genome duplication may also contribute to some paralogues, as with the three trout SOCS2s and three zebrafish SOCS5s. Fish SOCS genes are broadly expressed and also show species-specific expression patterns. They can be upregulated by cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-21, by immune stimulants such as LPS, poly I:C, and PMA, as well as by viral, bacterial, and parasitic infections in member- and species-dependent manners. Initial functional studies demonstrate conserved mechanisms of fish SOCS action via JAK/STAT pathways. PMID:22203897

  6. HFE Gene Mutations and Iron Status in 100 Healthy Polish Children.

    Science.gov (United States)

    Kaczorowska-Hac, Barbara; Luszczyk, Marcin; Antosiewicz, Jedrzej; Ziolkowski, Wieslaw; Adamkiewicz-Drozynska, Elzbieta; Mysliwiec, Malgorzata; Milosz, Ewa; Kaczor, Jan J

    2017-07-01

    Iron participates in oxygen transport, energetic, metabolic, and immunologic processes. There are 2 main causes of iron overload: hereditary hemochromatosis which is a primary cause, is a metabolic disorder caused by mutations of genes that control iron metabolism and secondary hemochromatosis caused by multitransfusions, chronic hemolysis, and intake of iron rich food. The most common type of hereditary hemochromatosis is caused by HFE gene mutation. In this study, we analyzed iron metabolism in 100 healthy Polish children in relation to their HFE gene status. The wild-type HFE gene was predominant being observed in 60 children (60%). Twenty-five children (25%), presented with heterozygotic H63D mutation, and 15 children (15%), presented with other mutations (heterozygotic C282Y and S65C mutation, compound heterozygotes C282Y/S65C, C282Y/H63D, H63D homozygote). The mean concentration of iron, the level of ferritin, and transferrin saturation were statistically higher in the group of HFE variants compared with the wild-type group. H63D carriers presented with higher mean concentration of iron, ferritin levels, and transferrin saturation compared with the wild-type group. Male HFE carriers presented with higher iron concentration, transferrin saturation, and ferritin levels than females. This preliminary investigation demonstrates allelic impact on potential disease progression from childhood.

  7. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. (Cedars-Sinai Medical Center, Los Angeles, CA (United States))

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  8. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    Science.gov (United States)

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  9. ADAMTS13 Gene Mutations in Children with Hemolytic Uremic Syndrome

    Science.gov (United States)

    Choi, Hyoung Soo; Cheong, Hae Il; Kim, Nam Keun

    2011-01-01

    We investigated ADAMTS13 activity as well as the ADAMTS13 gene mutation in children with hemolytic uremic syndrome (HUS). Eighteen patients, including 6 diarrhea-negative (D-HUS) and 12 diarrhea-associated HUS (D+HUS) patients, were evaluated. The extent of von Willebrand factor (VWF) degradation was assayed by multimer analysis, and all exons of the ADAMTS13 gene were PCR-amplified using Taq DNA polymerase. The median and range for plasma activity of ADAMTS13 in 6 D-HUS and 12 D+HUS patients were 71.8% (22.8-94.1%) and 84.9% (37.9-119.9%), respectively, which were not statistically significantly different from the control group (86.4%, 34.2-112.3%) (p>0.05). Five ADAMTS13 gene mutations, including 2 novel mutations [1584+2T>A, 3941C>T (S1314L)] and 3 polymorphisms (Q448E, P475S, S903L), were found in 2 D-HUS and one D+HUS patients, which were not associated with deficiency of ADAMTS13 activity. Whether these mutations without reduced ADAMTS13 activity are innocent bystanders or predisposing factors in HUS remains unanswered. PMID:21488199

  10. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  11. Study of the effect of HFE gene mutations on iron overload in ...

    African Journals Online (AJOL)

    Background: HFE gene mutations have been shown to be responsible for hereditary hemochromatosis. Their effect on iron load in β-thalassemia patients and carriers remains controversial. Objectives: We aimed to determine the prevalence of HFE gene mutations (C282Y and H63D) in β-thalassemia patients and carriers ...

  12. P53 Gene Mutation as Biomarker of Radiation Induced Cell Injury and Genomic Instability

    International Nuclear Information System (INIS)

    Mukh-Syaifudin

    2006-01-01

    Gene expression profiling and its mutation has become one of the most widely used approaches to identify genes and their functions in the context of identify and categorize genes to be used as radiation effect markers including cell and tissue sensitivities. Ionizing radiation produces genetic damage and changes in gene expression that may lead to cancer due to specific protein that controlling cell proliferation altered the function, its expression or both. P53 protein encoded by p53 gene plays an important role in protecting cell by inducing growth arrest and or cell suicide (apoptosis) after deoxyribonucleic acid (DNA) damage induced by mutagen such as ionizing radiation. The mutant and thereby dysfunctional of this gene was found in more than 50% of various human cancers, but it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. P53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests that alterations in the p53 gene might lead to oncogenic transformation. Current attractive model of carcinogenesis also showed that p53 gene is the major target of radiation. The majority of p53 mutations found so far is single base pair changes ( point mutations), which result in amino acid substitutions or truncated forms of the p53 protein, and are widely distributed throughout the evolutionary conserved regions of the gene. Examination of p53 mutations in human cancer also shows an association between particular carcinogens and

  13. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    Science.gov (United States)

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS.

  14. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    International Nuclear Information System (INIS)

    Mack, Hildegard I.D.; Munger, Karl

    2013-01-01

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer

  15. Spectrum of CFTR gene mutations in Ecuadorian cystic fibrosis patients: the second report of the p.H609R mutation.

    Science.gov (United States)

    Ortiz, Sofía C; Aguirre, Santiago J; Flores, Sofía; Maldonado, Claudio; Mejía, Juan; Salinas, Lilian

    2017-11-01

    High heterogeneity in the CFTR gene mutations disturbs the molecular diagnosis of cystic fibrosis (CF). In order to improve the diagnosis of CF in our country, the present study aims to define a panel of common CFTR gene mutations by sequencing 27 exons of the gene in Ecuadorian Cystic Fibrosis patients. Forty-eight Ecuadorian individuals with suspected/confirmed CF diagnosis were included. Twenty-seven exons of CFTR gene were sequenced to find sequence variations. Prevalence of pathogenic variations were determined and compared with other countries' data. We found 70 sequence variations. Eight of these are CF-causing mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. Also this study is the second report of p.H609R in Ecuadorian population. Mutation prevalence differences between Ecuadorian population and other Latin America countries were found. The panel of mutations suggested as an initial screening for the Ecuadorian population with cystic fibrosis should contain the mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. © 2017 NETLAB Laboratorios Especializados. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  16. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  17. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    Science.gov (United States)

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  18. Application of DNA chips in the analysis of gene mutation in HBV

    International Nuclear Information System (INIS)

    Wang Yongzhong; Ruan Lihua; Zhou Guoping; Wu Guoxiang; Chen Min

    2005-01-01

    Objective: To investigate the clinical applicability of DNA chips for analysis of gene mutation in HBV. Methods: Serum HBV DNA from 47 patients with viral hepatitis type B was amplified with PCR. Possible gene mutations were searched for in site 1896 of pre-C section, sites 1762,1764 of BCP section and sites 528, 552 of P section with DNA chip method based upon membrane coloration. Results: In the 32 patients without lamivudine treatment, the results were as follows: (1) 6 specimens with HBsAg + , HBeAg + , HBeAb - , no mutations observed. (2) 13 specimens with HBsAg + , HBeAg - , HBeAb + , mutations at site 1896, pre- C 4 cases, mutations at sites 1762,1764, BCP 11 cases. (3) 13 specimens with HBsAg + , HBeAg + , HBeAb + , mutations at site 1896 pre -C 4 cases, mutations at sites 1762,1764 BCP 13 cases. In the 15 patients after 48 weeks treatment with lamivudine but remained HBV DNA positive, mutations were observed at: site 1896 pre-C, 5 cases, sites 1762,1764 BCP, 6 cases, site 528 P section, 2 cases, site 552 P section, YVDD 4 cases, YIDD 7 cases. Conclusion: Mutations at sites 1896, 1762,1764 were more frequent in patients with HBeAb + and were related to the negative expression of HBeAg, Mutations at 1762,1764 BCP were closely related to the changes of HBeAg/HBeAb. P section mutations were only observed after lamivadine treatment and were related to resistance against the drug. DNA chip method based upon membrane coloration for detection of gene mutation was expedient and specific and worth popularization. (authors)

  19. Analysis of mutations in the entire coding sequence of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  20. Recurrent pregnancy failure is associated with a polymorphism in the p53 tumour suppressor gene.

    Science.gov (United States)

    Pietrowski, Detlef; Bettendorf, Hertha; Riener, Eva-Katrin; Keck, Christoph; Hefler, Lukas A; Huber, Johannes C; Tempfer, Clemens

    2005-04-01

    The p53 tumour suppressor gene is a well-known factor regulating apoptosis in a wide variety of cells and tissues. Alterations in the p53 gene are among the most common genetic changes in human cancers. In addition, recent data provide evidence that p53 plays a critical role in mediating pregnancy by regulating steroid hormone activation. In idiopathic recurrent miscarriages (IRM), causes and associations are much debated as the exact pathophysiological mechanisms are unknown. In this study, we assess whether an established polymorphism in the p53 gene is associated with the occurrence of IRM. Genotyping was performed by PCR-based amplification of the p53 Arg and Pro variants at codon 72 in 175 cases of IRM and 143 controls. We observed a statistically significant association between carriage of the Pro allele and the occurrence of IRM (P = 0.03, odds ratio 1.49, confidence interval 1.04-2.14). Distribution of genotypes was in Hardy-Weinberg equilibrium. Our results indicate an over-representation of the Pro allele of the p53 gene in women with IRM, giving support to the theory that p53 has a potential role during pregnancy.

  1. [An overview of oculocutaneous albinism: TYR gene mutations in five Colombian individuals].

    Science.gov (United States)

    Sanabria, Diana; Groot, Helena; Guzmán, Julio; Lattig, María Claudia

    2012-06-01

    Oculocutaneus albinism is a pigment-related inherited disorder characterized by hypopigmentation of the skin, hair and eyes, foveal hypoplasia and low vision. To date, 230 mutations in the TYR gene have been reported as responsible for oculocutaneus albinism type 1 worldwide. TYR gene encodes the enzyme tyrosinase involved in the metabolic pathway of melanin synthesis. Mutations were identified in the TYR gene as responsible for oculocutaneous albinism type 1 in five Colombian individuals, and a new ophthalmic system was tested that corrected visual defects and symptoms in a patient with oculocutaneous albinism. Samples were taken from 5 individuals, four of whom belong to a single family, along with a fifth individual not related to the family. Five exons in the TYR gene were sequenced to search for the gene carriers in the family and in the non-related individual. In addition, clinical ophthalmological evaluation and implementation of an new oculo-visual system was undertaken. A G47D and 1379delTT mutation was identified in the family. The unrelated individual carried a compound heterozygote for the G47D and D42N mutations. The oculo-visual corrective system was able to increase visual acuity and to diminish the nystagmus and photophobia. This is the first study in Colombia where albinism mutations are reported. The methods developed will enable future molecular screening studies in Colombian populations.

  2. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    Science.gov (United States)

    2017-12-01

    populations: contributing factor in prostate cancer disparities? PRINCIPAL INVESTIGATOR: Norman H Lee, PhD CONTRACTING ORGANIZATION: George Washington...splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities? 5b...American (AA) versus Caucasian American (CA) prostate cancer (PCa). We focused our efforts on two oncogenes, phosphatidylinositol-4,5-bisphosphate 3

  3. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    Science.gov (United States)

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  4. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    Science.gov (United States)

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  5. HPRT gene locus mutation in peripheral blood lymphocytes induced by internal exposure to radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Jingyong, Zhao; Yongzhong, Xu; Tao, Zhao; Fengmei, Cui; Liuyi, Wang; Qinhua, Lao [Suzhou Univ., Suzhou (China). Radiation Medicine Department

    2001-07-01

    HPRT gene locus mutation in peripheral blood lymphocytes induced by internal exposure to radionuclides was performed and the relationships between mutation frequency and dose were studied. Rats were injected intravenously with radionuclides, the blood was sampled at different time after injection; HPRT gene locus mutation frequency (GMF) were examined by methods of multi-nucleus cell and Brdurd assay, working out the Dose-response function. GMF rose with the increase of dose and dose-rates and were clearly interrelated. The HPRT gene locus mutation is very sensitive to radiation and may be used as a biological dosimeter.

  6. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  7. Mutational Analysis of the TYR and OCA2 Genes in Four Chinese Families with Oculocutaneous Albinism.

    Science.gov (United States)

    Wang, Yun; Wang, Zhi; Chen, Mengping; Fan, Ning; Yang, Jie; Liu, Lu; Wang, Ying; Liu, Xuyang

    2015-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder. The most common type OCA1 and OCA2 are caused by homozygous or compound heterozygous mutations in the tyrosinase gene (TYR) and OCA2 gene, respectively. The purpose of this study was to evaluate the molecular basis of oculocutaneous albinism in four Chinese families. Four non-consanguineous OCA families were included in the study. The TYR and OCA2 genes of all individuals were amplified by polymerase chain reaction (PCR), sequenced and compared with a reference database. Four patients with a diagnosis of oculocutaneous albinism, presented with milky skin, white or light brown hair and nystagmus. Genetic analyses demonstrated that patient A was compound heterozygous for c.1037-7T.A, c.1037-10_11delTT and c.1114delG mutations in the TYR gene; patient B was heterozygous for c.593C>T and c.1426A>G mutations in the OCA2 gene, patients C and D were compound heterozygous mutations in the TYR gene (c.549_550delGT and c.896G>A, c.832C>T and c.985T>C, respectively). The heterozygous c.549_550delGT and c.1114delG alleles in the TYR gene were two novel mutations. Interestingly, heterozygous members in these pedigrees who carried c.1114delG mutations in the TYR gene or c.1426A>G mutations in the OCA2 gene presented with blond or brown hair and pale skin, but no ocular disorders when they were born; the skin of these patients accumulated pigment over time and with sun exposure. This study expands the mutation spectrum of oculocutaneous albinism. It is the first time, to the best of our knowledge, to report that c.549_550delGT and c.1114delG mutations in the TYR gene were associated with OCA. The two mutations (c.1114delG in the TYR gene and c.1426A>G in the OCA2 gene) may be responsible for partial clinical manifestations of OCA.

  8. Analysis of the GCK gene in 79 MODY type 2 patients: A multicenter Turkish study, mutation profile and description of twenty novel mutations.

    Science.gov (United States)

    Aykut, Ayça; Karaca, Emin; Onay, Hüseyin; Gökşen, Damla; Çetinkalp, Şevki; Eren, Erdal; Ersoy, Betül; Çakır, Esra Papatya; Büyükinan, Muammer; Kara, Cengiz; Anık, Ahmet; Kırel, Birgül; Özen, Samim; Atik, Tahir; Darcan, Şükran; Özkınay, Ferda

    2018-01-30

    Maturity onset diabetes is a genetic form of diabetes mellitus characterized by an early age at onset and several etiologic genes for this form of diabetes have been identified in many patients. Maturity onset diabetes type 2 [MODY2 (#125851)] caused by mutations in the glucokinase gene (GCK). Although its prevalence is not clear, it is estimated that 1%-2% of patients with diabetes have the monogenic form. The aim of this study was to evaluate the molecular spectrum of GCK gene mutations in 177 Turkish MODY type 2 patients. Mutations in the GCK gene were identified in 79 out of 177. All mutant alleles were identified, including 45 different GCK mutations, 20 of which were novel. Copyright © 2017. Published by Elsevier B.V.

  9. Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation.

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Robb

    Full Text Available The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter, CENPH (a centromere protein, and CDK7 (a cyclin-dependent kinase, are differentially expressed (compared to normal embryos at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH are considered high-priority candidate based upon studies in other vertebrate model systems.

  10. Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families

    DEFF Research Database (Denmark)

    Hansen, Thomas van Overeem; Jønson, Lars; Albrechtsen, Anders

    2010-01-01

    Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We have recently identified a Greenlandic Inuit BRCA1 nucleotide 234T>G/c.115T>G (p.Cys39Gly) founder mutation, which at that time was the only disease-causing BRCA1/BRCA2 mutation...... identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T......>A/c.130T>A (p.Cys44Ser) mutation in another Greenlandic individual with ovarian cancer. This patient share a 1-2 Mb genomic fragment, containing the BRCA1 gene, with four Danish families harbouring the same mutation, suggesting that the 249T>A/c.130T>A (p.Cys44Ser) mutation originates from a Danish...

  11. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  12. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    Science.gov (United States)

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  13. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    Science.gov (United States)

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  14. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes

    NARCIS (Netherlands)

    Zhou, X.; Hampel, H.; Thiele, H.; Gorlin, R. J.; Hennekam, R. C.; Parisi, M.; Winter, R. M.; Eng, C.

    2001-01-01

    The molecular aetiology of Proteus syndrome (PS) remains elusive. Germline mutations in PTEN cause Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome, which are hereditary hamartoma syndromes. Some features-eg, macrocephaly, lipomatosis, and vascular malformations-can be seen in all three

  15. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    Science.gov (United States)

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  16. Diffusion tensor imaging of brain white matter in Huntington gene mutation individuals

    Directory of Open Access Journals (Sweden)

    Roberta Arb Saba

    Full Text Available ABSTRACT Objective To evaluate the role of the involvement of white matter tracts in huntingtin gene mutation patients as a potential biomarker of the progression of the disease. Methods We evaluated 34 participants (11 symptomatic huntingtin gene mutation, 12 presymptomatic huntingtin gene mutation, and 11 controls. We performed brain magnetic resonance imaging to assess white matter integrity using diffusion tensor imaging, with measurement of fractional anisotropy. Results We observed a significant decrease of fractional anisotropy in the cortical spinal tracts, corona radiate, corpus callosum, external capsule, thalamic radiations, superior and inferior longitudinal fasciculus, and inferior frontal-occipital fasciculus in the Huntington disease group compared to the control and presymptomatic groups. Reduction of fractional anisotropy is indicative of a degenerative process and axonal loss. There was no statistically significant difference between the presymptomatic and control groups. Conclusion White matter integrity is affected in huntingtin gene mutation symptomatic individuals, but other studies with larger samples are required to assess its usefulness in the progression of the neurodegenerative process.

  17. Low Prevalence of TP53 Mutations and MDM2 Amplifications in Pediatric Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Simona Ognjanovic

    2012-01-01

    Full Text Available The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. The reported prevalence of mutations in rhabdomyosarcoma (RMS varies widely, with recent larger studies suggesting that TP53 mutations in pediatric RMS may be extremely rare. Overexpression of MDM2 also attenuates p53 function. We have performed TP53 mutation/MDM2 amplification analyses in the largest series analyzed thus far, including DNA isolated from 37 alveolar and 38 embryonal RMS tumor samples obtained from the Cooperative Human Tissue Network (CHTN. Available samples were frozen tumor tissues (N=48 and histopathology slides. TP53 mutations in exons 4–9 were analyzed by direct sequencing in all samples, and MDM2 amplification analysis was performed by differential PCR on a subset of 22 samples. We found only one sample (1/75, 1.3% carrying a TP53 mutation at codon 259 (p.D259Y and no MDM2 amplification. Two SNPs in the TP53 pathway, associated with accelerated tumor onset in germline TP53 mutation carriers, (TP53 SNP72 (rs no. 1042522 and MDM2 SNP309 (rs no. 2279744, were not found to confer earlier tumor onset. In conclusion, we confirm the extremely low prevalence of TP53 mutations/MDM2 amplifications in pediatric RMS (1.33% and 0%, respectively. The possible inactivation of p53 function by other mechanisms thus remains to be elucidated.

  18. Novel mutations in the SCNN1A gene causing Pseudohypoaldosteronism type 1.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare inherited disease characterized by resistance to the actions of aldosterone. Mutations in the subunit genes (SCNN1A, SCNN1B, SCNN1G of the epithelial sodium channel (ENaC and the NR3C2 gene encoding the mineralocorticoid receptor, result in systemic PHA1 and renal PHA1 respectively. Common clinical manifestations of PHA1 include salt wasting, hyperkalaemia, metabolic acidosis and elevated plasma aldosterone levels in the neonatal period. In this study, we describe the clinical and biochemical manifestations in two Chinese patients with systemic PHA1. Sequence analysis of the SCNN1A gene revealed a compound heterozygous mutation (c.1311delG and c.1439+1G>C in one patient and a homozygous mutation (c.814_815insG in another patient, all three variants are novel. Further analysis of the splicing pattern in a minigene construct showed that the c.1439+1G>C mutation can lead to the retainment of intron 9 as the 5'-donor splice site disappears during post-transcriptional processing of mRNA. In conclusion, our study identified three novel SCNN1A gene mutations in two Chinese patients with systemic PHA1.

  19. High incidence of GJB2 gene mutations among assortatively mating ...

    Indian Academy of Sciences (India)

    High incidence of GJB2 gene mutations among assortatively mating hearing impaired families in Kerala: future implications. Amritkumar Pavithra, Justin Margret Jeffrey, Jayasankaran Chandru, Arabandi Ramesh and C. R. Srikumari Srisailapathy. J. Genet. 93, 207–213. Table 1. Consolidated table of GJB2 mutation status ...

  20. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    Science.gov (United States)

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  1. [Analysis of gene mutation in a Chinese family with Norrie disease].

    Science.gov (United States)

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  2. The spectrum of HNF1A gene mutations in Greek patients with MODY3: relative frequency and identification of seven novel germline mutations.

    Science.gov (United States)

    Tatsi, Christina; Kanaka-Gantenbein, Christina; Vazeou-Gerassimidi, Adriani; Chrysis, Dionysios; Delis, Dimitrios; Tentolouris, Nikolaos; Dacou-Voutetakis, Catherine; Chrousos, George P; Sertedaki, Amalia

    2013-11-01

    Maturity-Onset Diabetes of the Young (MODY) is the most common type of monogenic diabetes accounting for 1-2% of the population with diabetes. The relative incidence of HNF1A-MODY (MODY3) is high in European countries; however, data are not available for the Greek population. The aims of this study were to determine the relative frequency of MODY3 in Greece, the type of the mutations observed, and their relation to the phenotype of the patients. Three hundred ninety-five patients were referred to our center because of suspected MODY during a period of 15 yr. The use of Denaturing Gradient Gel Electrophoresis of polymerase chain reaction amplified DNA revealed 72 patients carrying Glucokinase gene mutations (MODY2) and 8 patients carrying HNF1A gene mutations (MODY3). After using strict criteria, 54 patients were selected to be further evaluated by direct sequencing or by multiplex ligation probe amplification (MLPA) for the presence of HNF1A gene mutations. In 16 unrelated patients and 13 of their relatives, 15 mutations were identified in the HNF1A gene. Eight of these mutations were previously reported, whereas seven were novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. In our cohort of patients fulfilling strict clinical criteria for MODY, 12% carried an HNF1A gene mutation, suggesting that defects of this gene are responsible for a significant proportion of monogenic diabetes in the Greek population. No clear phenotype-genotype correlations were identified. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  4. Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond.

    Science.gov (United States)

    Rosenquist, Richard; Rosenwald, Andreas; Du, Ming-Qing; Gaidano, Gianluca; Groenen, Patricia; Wotherspoon, Andrew; Ghia, Paolo; Gaulard, Philippe; Campo, Elias; Stamatopoulos, Kostas

    2016-09-01

    Similar to the inherent clinical heterogeneity of most, if not all, lymphoma entities, the genetic landscape of these tumors is markedly complex in the majority of cases, with a rapidly growing list of recurrently mutated genes discovered in recent years by next-generation sequencing technology. Whilst a few genes have been implied to have diagnostic, prognostic and even predictive impact, most gene mutations still require rigorous validation in larger, preferably prospective patient series, to scrutinize their potential role in lymphoma diagnostics and patient management. In selected entities, a predominantly mutated gene is identified in almost all cases (e.g. Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma and hairy-cell leukemia), while for the vast majority of lymphomas a quite diverse mutation pattern is observed, with a limited number of frequently mutated genes followed by a seemingly endless tail of genes with mutations at a low frequency. Herein, the European Expert Group on NGS-based Diagnostics in Lymphomas (EGNL) summarizes the current status of this ever-evolving field, and, based on the present evidence level, segregates mutations into the following categories: i) immediate impact on treatment decisions, ii) diagnostic impact, iii) prognostic impact, iv) potential clinical impact in the near future, or v) should only be considered for research purposes. In the coming years, coordinated efforts aiming to apply targeted next-generation sequencing in large patient series will be needed in order to elucidate if a particular gene mutation will have an immediate impact on the lymphoma classification, and ultimately aid clinical decision making. Copyright© Ferrata Storti Foundation.

  5. Utilization of gene mapping and candidate gene mutation screening for diagnosing clinically equivocal conditions: a Norrie disease case study.

    Science.gov (United States)

    Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem

    2014-06-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.

  6. Rapid detection of single nucleotide mutation in p53 gene based on ...

    Indian Academy of Sciences (India)

    mutation.27 Nevertheless, more than 50% of all human tumors contain p53 mutation; ... gene mutation detection in various fields of biology and medicine persuaded us to find ..... Yola M L, Eren T and Atar N 2014 Electrochim. Acta. 125 38. 26.

  7. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    International Nuclear Information System (INIS)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L.

    1991-01-01

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene

  8. Detecting negative selection on recurrent mutations using gene genealogy

    Science.gov (United States)

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their

  9. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  10. Genotyping of BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes in a male patient with secondary breast cancer

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Novakovic, Srdjan; Stegel, Vida; Jereb, Berta

    2011-01-01

    Some tumour suppressor genes (BRCA2) and mismatch repair genes (MSH2, MLH1) are correlated with an increased risk for male breast cancer. Our patient developed secondary breast cancer after the treatment for Hodgkin’s disease in childhood. DNA was isolated from the patients’ blood and screened for mutations, polymorphisms and variants in BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes. We found no mutations but common polymorphisms, and three variants in mismatch repair genes. Nucleotide variants c.2006-6T>C and p.G322D in MSH2 might be correlated with male breast cancer

  11. [Hot spot mutation screening of RYR1 gene in diagnosis of congenital myopathies].

    Science.gov (United States)

    Chang, Xing-zhi; Jin, Yi-wen; Wang, Jing-min; Yuan, Yun; Xiong, Hui; Wang, Shuang; Qin, Jiong

    2014-10-18

    To detect hot spot mutation of RYR1 gene in 15 cases of congenital myopathy with different subtypes, and to discuss the value of RYR1 gene hot spot mutation detection in the diagnosis of the disease. Clinical data were collected in all the patients, including clinical manifestations and signs, serum creatine kinase, electromyography. Fourteen of the patients accepted the muscle biopsy. Hot spot mutation in the C-terminal of RYR1 gene (extron 96-106) had been detected in all the 15 patients. All the patients presented with motor development delay, and they could walk at the age of 1 to 3.5 years,but were always easy to fall and could not run or jump. There were no progressive deteriorations. Physical examination showed different degrees of muscle weakness and hypotonia.High arched palates were noted in 3 patients. The serum levels of creatine kinase were mildly elevated in 3 cases, and normal in 12 cases. Electromyography showed "myogenic" features in 11 patients, being normal in the other 4 patients. Muscle biopsy pathologic diagnosis was the central core disease in 3 patients, the central nuclei in 2 patients, the congenital fiber type disproportion in 2 patients, the nameline myopathy in 3 patient, the multiminicore disease in 1 patient, and nonspecific minimal changes in the other 3 patients; one patient was diagnosed with central core disease according to positive family history and gene mutation. In the family case (Patient 2) of central core disease, the c.14678G>A (p.Arg4893Gln) mutation in 102 extron of RYR1 was identified in three members of the family, which had been reported to be a pathogenic mutation. The c.14596A>G(p.Lys4866Gln) mutation in 101 extron was found in one patient with central core disease(Patient 1), and the c.14719G>A(p.Gly4907Ser) mutation in 102 extron was found in another case of the central core disease(Patient 3).The same novel mutation was verified in one of the patients' (Patient 3) asymptomatic father. Congenital myopathies in

  12.  Mutations of noncollagen genes in osteogenesis imperfecta – implications of the gene products in collagen biosynthesis and pathogenesis of disease

    Directory of Open Access Journals (Sweden)

    Anna Galicka

    2012-06-01

    Full Text Available  Recent investigations revealed that the “brittle bone” phenotype in osteogenesis imperfecta (OI is caused not only by dominant mutations in collagen type I genes, but also by recessively inherited mutations in genes responsible for the post-translational processing of type I procollagen as well as for bone formation. The phenotype of patients with mutations in noncollagen genes overlaps with very severe type III and lethal type II OI caused by mutations in collagen genes. Mutations in genes that encode proteins involved in collagen prolyl 3-hydroxylation (P3H1/CRTAP/CyPB eliminated Pro986 hydroxylation and caused an increase in modification of collagen helix by prolyl 4-hydroxylase and lysyl hydroxylase. However, the importance of these disturbances in the disease pathomechanism is not known. Loss of complex proteins’ function as collagen chaperones may dominate the disease mechanism. The latest findings added to the spectrum of OI-causing and collagen-influencing factors other chaperones (HSP47 and FKBP65 and protein BMP-1, which emphasizes the complexity of collagen folding and secretion as well as their importance in bone formation. Furthermore, mutations in genes encoding transcription factor SP7/Osterix and pigment epithelium-derived factor (PEDF constitute a novel mechanism for OI, which is independent of changes in biosynthesis and processing of collagen.

  13. Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    Directory of Open Access Journals (Sweden)

    Srivastava Satish

    2003-07-01

    Full Text Available Abstract Background PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. Methods Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. Results All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X in homozygous state in affected individuals from these Indian families. Conclusions This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.

  14. Study of hepatitis B virus gene mutations with enzymatic colorimetry-based DNA microarray.

    Science.gov (United States)

    Mao, Hailei; Wang, Huimin; Zhang, Donglei; Mao, Hongju; Zhao, Jianlong; Shi, Jian; Cui, Zhichu

    2006-01-01

    To establish a modified microarray method for detecting HBV gene mutations in the clinic. Site-specific oligonucleotide probes were immobilized to microarray slides and hybridized to biotin-labeled HBV gene fragments amplified from two-step PCR. Hybridized targets were transferred to nitrocellulose membranes, followed by intensity measurement using BCIP/NBT colorimetry. HBV genes from 99 Hepatitis B patients and 40 healthy blood donors were analyzed. Mutation frequencies of HBV pre-core/core and basic core promoter (BCP) regions were found to be significantly higher in the patient group (42%, 40% versus 2.5%, 5%, P colorimetry method exhibited the same level of sensitivity and reproducibility. An enzymatic colorimetry-based DNA microarray assay was successfully established to monitor HBV mutations. Pre-core/core and BCP mutations of HBV genes could be major causes of HBV infection in HBeAg-negative patients and could also be relevant to chronicity and aggravation of hepatitis B.

  15. An identity crisis for fps/fes: oncogene or tumor suppressor?

    Science.gov (United States)

    Sangrar, Waheed; Zirgnibl, Ralph A; Gao, Yan; Muller, William J; Jia, Zongchao; Greer, Peter A

    2005-05-01

    Fps/Fes proteins were among the first members of the protein tyrosine kinase family to be characterized as dominant-acting oncoproteins. Addition of retroviral GAG sequences or other experimentally induced mutations activated the latent transforming potential of Fps/Fes. However, activating mutations in fps/fes had not been found in human tumors until recently, when mutational analysis of a panel of colorectal cancers identified four somatic mutations in sequences encoding the Fps/Fes kinase domain. Here, we report biochemical and theoretical structural analysis demonstrating that three of these mutations result in inactivation, not activation, of Fps/Fes, whereas the fourth mutation compromised in vivo activity. These results did not concur with a classic dominant-acting oncogenic role for fps/fes involving activating somatic mutations but instead raised the possibility that inactivating fps/fes mutations might promote tumor progression in vivo. Consistent with this, we observed that tumor onset in a mouse model of breast epithelial cancer occurred earlier in mice targeted with either null or kinase-inactivating fps/fes mutations. Furthermore, a fps/fes transgene restored normal tumor onset kinetics in targeted fps/fes null mice. These data suggest a novel and unexpected tumor suppressor role for Fps/Fes in epithelial cells.

  16. X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.

    Science.gov (United States)

    Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L

    2017-01-01

    We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.

  17. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.

    Science.gov (United States)

    Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan

    2014-05-15

    Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

  18. Iron overload and HFE gene mutations in Czech patients with chronic liver diseases.

    Science.gov (United States)

    Dostalikova-Cimburova, Marketa; Kratka, Karolina; Stransky, Jaroslav; Putova, Ivana; Cieslarova, Blanka; Horak, Jiri

    2012-01-01

    The aim of the study was to identify the prevalence of HFE gene mutations in Czech patients with chronic liver diseases and the influence of the mutations on iron status. The presence of HFE gene mutations (C282Y, H63D, and S65C) analyzed by the PCR-RFLP method, presence of cirrhosis, and serum iron indices were compared among 454 patients with different chronic liver diseases (51 with chronic hepatitis B, 122 with chronic hepatitis C, 218 with alcoholic liver disease, and 63 patients with hemochromatosis). Chronic liver diseases patients other than hemochromatics did not have an increased frequency of HFE gene mutations compared to controls. Although 33.3% of patients with hepatitis B, 43% of patients with hepatitis C, and 73.2% of patients with alcoholic liver disease had elevated transferrin saturation or serum ferritin levels, the presence of HFE gene mutations was not significantly associated with iron overload in these patients. Additionally, patients with cirrhosis did not have frequencies of HFE mutations different from those without cirrhosis. This study emphasizes the importance, not only of C282Y, but also of the H63D homozygous genetic constellation in Czech hemochromatosis patients. Our findings show that increased iron indices are common in chronic liver diseases but {\\it HFE} mutations do not play an important role in the pathogenesis of chronic hepatitis B, chronic hepatitis C, and alcoholic liver disease.

  19. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    Science.gov (United States)

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. [Characteristics of phenylalanine hydroxylase gene mutations among patients with phenylketonuria from Linyi region of Shandong Province].

    Science.gov (United States)

    Li, Huafeng; Li, Yongli; Zhang, Li

    2017-06-10

    To explore the characteristics of (PAH) gene mutations among patients with phenylketonuria (PKU) from Linyi area of Shandong Province. For 51 children affected with PKU and their parents, the 13 exons and their flanking intronic sequences of the PAH gene were directly sequenced with Sanger method. PAH gene mutations were detected in all of the 102 alleles of the patients, which included 31 types of mutations. Common mutations included R243Q (17/102, 16.67%), IVS4-1G to A (9/102, 8.82%), R241C (8/102, 7.84%), R111X (8/102, 7.84%), and V399V (8/102, 7.84%). In addition, two novel mutations, D101N, 345-347del, have been detected. The 31 types of mutations included missense, nonsense, deletion, and splicing mutations, which were mainly located in exons 7 (29, 28.43%), 11 (18, 17.65%), 3 (16, 15.69%) and 12 (13, 12.75%). Mutations of the PAH gene in Linyi region mainly distributed in exons 7, 11, and 3, and the most common mutation were R243Q. Two novel mutations, D101N and 345-347del, have been detected.

  1. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Directory of Open Access Journals (Sweden)

    Matei Irina

    2001-08-01

    Full Text Available Abstract Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP positive and negative gastric carcinomas (GCs. Methods We analyzed 50 gastric carcinomas (GCs for mutations in the BLM poly(A tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases but not in any of the MMP negative GCs (0/35 cases. The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %, BAX (27%, hMSH6 (20%,hMSH3 (13%, CBL (13%, IGFIIR (7%, RECQL (0% and WRN (0%. Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors.

  2. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Science.gov (United States)

    Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo

    2001-01-01

    Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193

  3. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    Science.gov (United States)

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  4. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  5. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    International Nuclear Information System (INIS)

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-01-01

    Highlights: ► In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. ► We identified three novel PHEX gene mutations in four unrelated families with XLH. ► We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. ► We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  6. Gene alterations in radiation-induced F344 rat lung tumors

    International Nuclear Information System (INIS)

    Kelly, G.; Hahn, F.F.

    1994-01-01

    The p53 tumor suppressor gene is frequently altered in all major histopathologic types of human lung tumors. Reported p53 mutations include base substitutions, allelic loss, rearrangements, and deletions. Point mutations resulting in base substitutions are clustered within a highly conserved region of the gene encoding exons 508, and mutations in this region substantially extend the half-life of the p53 protein. In addition to its prominent importance in lung carcinogenesis, the p53 gene plays a critical role in the cellular response to genetic damage caused by radiation. Specifically, the protein product of p53 induces a pause or block at the G 1 to S boundary of the cell cycle following radiation-caused DNA damage. This G 1 block may allow the cell time to repair the damaged DNA prior to replication. Cells lacking a functional p53 protein fail to pause for repair and consequently accumulate mutations in the genome at an accelerated rate. p53 has also been implicated as a controlling factor in apoptosis or in programmed cell death induced by DNA-damaging agents, such as ionizing radiation. The p53 gene is mutated in approximately 50% of squamous cell carcinomas from uranium miners who inhaled high doses of radon daughters. The purpose of the present study was to determine if a similar percentage of squamous cell carcinomas with p53 mutations developed in the lungs of rats exposed to aerosols of 239 PuO 2

  7. Mutational Analysis of PTPN11 Gene in Taiwanese Children with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Chia-Sui Hung

    2007-01-01

    Full Text Available Noonan syndrome (NS is an autosomal dominant disorder presenting with characteristic facies, short stature, skeletal anomalies, and congenital heart defects. Mutations in protein-tyrosine phosphatase, nonreceptor-type 11 (PTPN11, encoding SHP-2, account for 33-50% of NS. This study screened for mutations in the PTPN11 gene in 34 Taiwanese patients with NS. Mutation analysis of the 15 coding exons and exon/intron boundaries was performed by polymerase chain reaction and direct sequencing of the PTPN11 gene. We identified 10 different missense mutations in 13 (38% patients, including a novel missense mutation (855T > G, F285L. These mutations were clustered in exon 3 (n = 6 encoding the N-SH2 domain, exon 4 (n = 2 encoding the C-SH2 domain, and in exons 8 (n = 2 and 13 (n = 3 encoding the PTP domain. In conclusion, this study provides further support that PTPN11 mutations are responsible for Noonan syndrome in Taiwanese patients. [J Formos Med Assoc 2007;106(2:169-172

  8. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    Science.gov (United States)

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  9. Problems in mechanistic theoretical models for cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Chatterjee, Aloke; Holley, W.R.

    1992-01-01

    A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (i) point mutation events on a regulatory segment of selected oncogenes, (ii) inactivation of suppressor genes, through point mutation, (iii) deletion of a suppressor gene by a single track, and (iv) deletion of a suppressor gene by two tracks. (author)

  10. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands.

    Science.gov (United States)

    Florijn, Ralph J; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J J M; Mannens, Marcel M A M; Tijmes, Nel; Brooks, Simon P; Hardcastle, Alison J; Bergen, Arthur A B

    2006-09-01

    Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the Netherlands, by dHPLC and direct sequencing. We identified an unique mutation in each family. Three out of these four mutations were not reported before. We report here the first splice site sequence alteration mutation and three protein truncating mutations. Our results suggest that X-linked cataract and NHS are allelic disorders.

  11. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    Science.gov (United States)

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  12. MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks.

    Science.gov (United States)

    Hollander, Markus; Hamed, Mohamed; Helms, Volkhard; Neininger, Kerstin

    2018-03-01

    Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to score the impact of individual mutations on gene regulation and function of a given genome. MutaNET performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used MutaNET to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/. volkhard.helms@bioinformatik.uni-saarland.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Mutations in rpoB and katG genes of multidrug resistant ...

    African Journals Online (AJOL)

    Introduction: Tuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location. There is limited information in Zimbabwe on specific antibiotic resistance gene mutation patterns in ...

  14. HFE gene mutations in coronary atherothrombotic disease

    Directory of Open Access Journals (Sweden)

    Calado R.T.

    2000-01-01

    Full Text Available Although iron can catalyze the production of free radicals involved in LDL lipid peroxidation, the contribution of iron overload to atherosclerosis remains controversial. The description of two mutations in the HFE gene (Cys282Tyr and His63Asp related to hereditary hemochromatosis provides an opportunity to address the question of the association between iron overload and atherosclerosis. We investigated the prevalence of HFE mutations in 160 survivors of myocardial infarction with angiographically demonstrated severe coronary atherosclerotic disease, and in 160 age-, gender- and race-matched healthy control subjects. PCR amplification of genomic DNA followed by RsaI and BclI restriction enzyme digestion was used to determine the genotypes. The frequency of the mutant Cys282Tyr allele was identical among patients and controls (0.022; carrier frequency, 4.4%, whereas the mutant His63Asp allele had a frequency of 0.143 (carrier frequency, 27.5% in controls and of 0.134 (carrier frequency, 24.5% in patients. Compound heterozygotes were found in 2 of 160 (1.2% controls and in 1 of 160 (0.6% patients. The finding of a similar prevalence of Cys282Tyr and His63Asp mutations in the HFE gene among controls and patients with coronary atherothrombotic disease, indirectly questions the possibility of an association between hereditary hemochromatosis and atherosclerosis.

  15. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  16. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  17. HPRT gene mutation frequency and the factor of influence in adult peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhao Jingyong; Zheng Siying; Cui Fengmei; Wang Liuyi; Lao Qinhua; Wu Hongliang

    2002-01-01

    Objective: To study the HPRT gene loci mutation frequencies and the factor of influence in peripheral blood lymphocytes of adult with ages ranging from 21-50. Methods: HPRT gene mutation frequency (GMf) were examined by the technique of multinuclear cell assay. Relation between GMf and years were fitted with a computer. Results: Relation could be described by the following equation: y = 0.7555 + 0.0440x, r = 0.9829. Smoking has influence on GMf and sex hasn't. Conclusion: HPRT gene mutation frequency increases with increasing of age. Increasing rate is 0.00440% per year

  18. Isocitrate dehydrogenase 1 and 2 genes mutations and MGMT methylation in gliomas

    Directory of Open Access Journals (Sweden)

    D. V. Tabakov

    2017-01-01

    Full Text Available Gliomas are the most common brain tumors. It is difficult to detect them at early stages of disease and there is a few available therapies providing significant improvement in survival. Mutations of isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2 play significant role in gliomogenesis, diagnostics and selection of patient therapy. We tested the distribution of IDH1 and IDH2 mutations in gliomas of different histological types and grades of malignancy by DNA melting analysis using our protocol with a sensitivity of 5 %. The results of this assay were confirmed by conventional Sanger sequencing. IDH1/2 mutations were detected in 74 % of lower grade gliomas (II and III, World Health Organization and in 14 % of glioblastomas (IV, World Health Organization. Mutation rate in gliomas with oligodendroglioma component were significantly higher then in other glioma types (р = 0.014. The IDH1 mutations was the most common (79 % of general mutation number. IDH1/2 mutations can induce aberrant gene methylation. Detection of methylation rate of the gene encoding for O6-methylguanine-DNA-methyltransferase (MGMT, predictive biomarker for treatment of gliomas with the alkylating agents, has demonstrated a partial association with IDH1/2 mutations. In 73 % of IDH1/2-mutant tumors MGMT promoter methylation were observed. At the same time IDH1/2 mutations were not revealed in 67 % tumors with MGMT promoter methylation. These results indicate existence of another mechanism of MGMT methylation in gliomas. Our data strong support for necessity of both markers testing when patient therapy is selected.

  19. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    Science.gov (United States)

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  20. A novel missense mutation of the DDHD1 gene associated with juvenile amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Chujun Wu

    2016-12-01

    Full Text Available Background: Juvenile amyotrophic lateral sclerosis (jALS is a rare form of ALS with an onset age of less than 25 years and is frequently thought to be genetic in origin. DDHD1 gene mutations have been reported to be associated with the SPG28 subtype of autosomal recessive HSP but have never been reported in jALS patients.Methods: Gene screens for the causative genes of ALS, HSP and CMT using next-generation sequencing (NGS technologies were performed on a jALS patient. Sanger sequencing was used to validate identified variants and perform segregation analysis.Results: We identified a novel c.1483A>G (p.Met495Val homozygous missense mutation of the DDHD1 gene in the jALS patient. All of his parents and young bother were heterozygous for this mutation. The mutation was not found in 800 Chinese control subjects or the data of dbSNP, ExAC and 1000G.Conclusion: The novel c.1483A>G (p.Met495Val missense mutation of the DDHD1 gene could be a causative mutation of autosomal recessive jALS.

  1. Clinical significance of FLG gene mutations in children with atopic dermatitis

    Directory of Open Access Journals (Sweden)

    E. E. Varlamov

    2015-01-01

    Full Text Available Skin barrier dysfunction due to deficiency of the skin protein filaggrin is one of the factors involved in the pathogenesis of atopic dermatitis. Objective: to determine the clinical significance of 2282 del CAGT, R501X, R2447X, and S3247X mutations in the FLG gene in children with atopic dermatitis. The investigation included 58 children with atopic dermatitis. A molecular genetic analysis of the four mutations in the FLG gene was done in all the children. In the patients with FLG gene mutations, there was a tendency towards a higher frequency of sensitization to house dust allergens, significantly more often sensitization to cat epidermal allergen, and significantly higher levels of specific IgE to the cat epidermis. Conclusion. Mutations in the FLG gene encoding the protein filaggrin raise the risk for sensitization to domestic and epidermal allergens and, in case of already existing sensitization to the cat epidermis, the patients are found with a high degree of probability to have the high concentration of specific IgE to this allergen. The above fact justifies the need to place special emphasis on measures to eliminate house dust allergens, and cat epidermis allergen in particular, and to personalize approaches to therapy and prevention of atopic dermatitis in children. 

  2. Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2011-05-01

    Full Text Available AbstractObjective(sThe mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS system. Materials and MethodsWe searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30 FRDA patients and 35 healthy controls.ResultsWe found 3 missense mutations [m.10506A>G (T13A, m.10530G>A (V21M, and m.10653G>A (A62T] in four patients whose m.10530G>A and m.10653G>A were not reported previously. In two patients, heteroplasmic m.10530G>A mutation was detected. They showed a very early ataxia syndrome. Our results showed that the number of mutations in FRDA patients was higher than that in the control cases (P= 0.0287.ConclusionAlthough this disease is due to nuclear gene mutation, the presence of these mutations might be responsible for further mitochondrial defects and the increase of the gravity of the disease. Thus, it should be considered in patients with this disorder.

  3. Common Mediterranean Fever (MEFV Gene Mutations Associated with Ankylosing Spondylitis in Turkish Population

    Directory of Open Access Journals (Sweden)

    Serbulent Yigit

    2012-01-01

    Full Text Available Ankylosing spondylitis (AS is a common inflammatory rheumatic disease. Mediterranean fever (MEFV gene, which has already been identified as being responsible for familial Mediterranean fever (FMF, is also a suspicious gene for AS because of the clinical association of these two diseases. The aim of this study was to explore the frequency and clinical significance of MEFV gene mutations (M694V, M680I, V726A, E148Q and P369S in a cohort of Turkish patients with AS. Genomic DNAs of 103 AS patients and 120 controls were isolated and genotyped using polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLP methods. There was a statistically significant difference of the MEFV gene mutation carrier rates between AS patients and healthy controls (p = 0.004, OR: 2.5, 95% CI: 1.32–4.76. This association was also observed in allele frequencies (p = 0.005, OR: 2.3, 95% CI: 1.27–4.2. A relatively higher frequency was observed for M694V mutation in AS patients than controls (10.7% versus 4.2% , p = 0.060. There were no significant differences between MEFV mutation carriers and non-carriers with respect to the clinical and demographic characteristics. The results of this study suggest that MEFV gene mutations are positively associated with a predisposition to develop AS.

  4. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  5. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    Science.gov (United States)

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  6. WS1 gene mutation analysis of Wolfram syndrome in a Chinese patient and a systematic review of literatures.

    Science.gov (United States)

    Yu, Guang; Yu, Man-li; Wang, Jia-feng; Gao, Cong-rong; Chen, Zhong-jin

    2010-10-01

    Wolfram syndrome is a rare hereditary disease characterized by diabetes mellitus and optic atrophy. The outcome of this disease is always poor. WFS1 gene mutation is the main cause of this disease. A patient with diabetes mellitus, diabetes insipidus, renal tract disorder, psychiatric abnormality, and cataract was diagnosed with Wolfram syndrome. Mutations in open reading frame (ORF) of WFS1 gene was analyzed by sequencing. Mutations in WFS1 gene was also summarized by a systematic review in Pubmed and Chinese biological and medical database. Sequencing of WFS1 gene in this patient showed a new mutation, 1962G>A, and two other non-sense mutations, 2433A>G and 2565G>A. Systematic review included 219 patients in total and identified 172 WFS1 gene mutations, most of which were located in Exon 8. These mutations in WFS1 gene might be useful in prenatal diagnosis of Wolfram syndrome.

  7. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    Science.gov (United States)

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  8. Association between nucleotide mutation of eNOS gene and serum ...

    African Journals Online (AJOL)

    Galaxy

    2013-05-15

    May 15, 2013 ... spasm among Japanese (Nakayama et al., 1999; Casas et al., 2006). It is believed that these mutations might result in altered NO metabolism and impaired .... ship between T-786C mutation of eNOS gene and CAD specifically in the Iranian population. To our knowledge, this polymorphism has never been ...

  9. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    Science.gov (United States)

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  10. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zaw, Myo T; Emran, Nor A; Lin, Zaw

    2018-04-26

    Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR). Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed. The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance. Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. p53 gene mutation hotspots in skin cancer and ultraviolet induced mutation

    International Nuclear Information System (INIS)

    Ikehata, Hironobu

    1998-01-01

    Presence of certain hotspots is known in the mutation of p53 gene in skin cancer, which are codons 177, 196, 245, 248, 278 and 282 located in the exon 5-8. In these regions, mutations like C to T and CC to TT are frequent and thereby suggest that they are resulted from pyrimidine-dimers produced by ultraviolet light (UV). In cyclobutane pyrimidine dimerization (CPD), conversion of cytosine to thymine by deamination is suggested to be the primary reaction. Although studies using UVC (254 nm) suggesting that the mutation hotspots are low repair efficiency regions could not completely explain the all hotspots, those using UVB and sunlight (UVB and UVA) revealed that CPD was efficiently produced even in such regions as not explained by studies with UVC alone. Therefore, the latter studies are conceivably reasonable since the skin cancer is induced by natural sunlight. Exon 5-8 DNA is completely methylated and the absorption coefficient of 5-methylcytosine is 5-6 times as large as that of cytosine at wavelength around 290 nm. These indicate the importance of UVB in mutation of mammalian cells possessing the ability to methylate DNA. (K.H.)

  12. Biochemical Diagnosis of Common Gene Mutations in Galactosemia

    Directory of Open Access Journals (Sweden)

    Farzaneh Mirzajani

    2005-04-01

    Full Text Available Objective: Galactosemia is an inborn error of galactose metabolism that is inherited in an autosomal recessive trait. Classical galactosemia is caused by deficient activity of the galactose-1-phosphate uridyltransferase (GALT enzyme that can result in galactosemia complications. Materials & Methods: 135 unrelated families, clinically suspected to galactosemia, were screened by qualitative measurement of galactose-1-phosphate uridyl transferase (GALT activity in blood RBCs by using Beutler method. Results: Deficient enzyme activity (classical galactosemia were confirmed in 16 families. All of these 16 families were submitted to the diagnosis of six common mutations in GALT gene including Q188R, K285N, S135L, L195P, X380R and Q169K by using PCR-RFLP method which resulted in detection of 68% of the mutated alleles. Eight patients were homozygote for Q188R mutation, while one patient homozygote for S135L mutation and one heterozygote for K285N mutation. Conclusion: Biochemnical diagnosis of Galactosemia in Grand infant hospital is very important and necessary.

  13. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  14. New mutations and an updated database for the patched-1 (PTCH1) gene.

    Science.gov (United States)

    Reinders, Marie G; van Hout, Antonius F; Cosgun, Betûl; Paulussen, Aimée D; Leter, Edward M; Steijlen, Peter M; Mosterd, Klara; van Geel, Michel; Gille, Johan J

    2018-05-01

    Basal cell nevus syndrome (BCNS) is an autosomal dominant disorder characterized by multiple basal cell carcinomas (BCCs), maxillary keratocysts, and cerebral calcifications. BCNS most commonly is caused by a germline mutation in the patched-1 (PTCH1) gene. PTCH1 mutations are also described in patients with holoprosencephaly. We have established a locus-specific database for the PTCH1 gene using the Leiden Open Variation Database (LOVD). We included 117 new PTCH1 variations, in addition to 331 previously published unique PTCH1 mutations. These new mutations were found in 141 patients who had a positive PTCH1 mutation analysis in either the VU University Medical Centre (VUMC) or Maastricht University Medical Centre (MUMC) between 1995 and 2015. The database contains 331 previously published unique PTCH1 mutations and 117 new PTCH1 variations. We have established a locus-specific database for the PTCH1 gene using the Leiden Open Variation Database (LOVD). The database provides an open collection for both clinicians and researchers and is accessible online at http://www.lovd.nl/PTCH1. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  15. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    Science.gov (United States)

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  16. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    Science.gov (United States)

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  17. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    Science.gov (United States)

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  18. USP7 Is a Tumor-Specific WNT Activator for APC-Mutated Colorectal Cancer by Mediating β-Catenin Deubiquitination

    Directory of Open Access Journals (Sweden)

    Laura Novellasdemunt

    2017-10-01

    Full Text Available The tumor suppressor gene adenomatous polyposis coli (APC is mutated in most colorectal cancers (CRCs, resulting in constitutive Wnt activation. To understand the Wnt-activating mechanism of the APC mutation, we applied CRISPR/Cas9 technology to engineer various APC-truncated isogenic lines. We find that the β-catenin inhibitory domain (CID in APC represents the threshold for pathological levels of Wnt activation and tumor transformation. Mechanistically, CID-deleted APC truncation promotes β-catenin deubiquitination through reverse binding of β-TrCP and USP7 to the destruction complex. USP7 depletion in APC-mutated CRC inhibits Wnt activation by restoring β-catenin ubiquitination, drives differentiation, and suppresses xenograft tumor growth. Finally, the Wnt-activating role of USP7 is specific to APC mutations; thus, it can be used as a tumor-specific therapeutic target for most CRCs.

  19. Clonal expansion to anaplasia in Wilms` tumors is associated with p53 mutations

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, J.; Beckwith, B.; Bardeesy, N. [Loma Linda Univ., CA (United States)]|[McGill Univ., Montreal (Canada)

    1994-09-01

    The genetics of Wilms` tumor (WT), a pediatric malignancy of the kidney, is complex. Three loci are implicated in WT initiation and include the WT1 tumor suppressor gene (residing at 11p13), an 11p15 locus, and a non-11p locus. As well, allelic loss at 16q24 in {approximately}20% of sporadic WTs suggests the location of (an) additional gene(s) involved in tumor progression. Initiation and progression in WTs is associated with multiple histological variants. Anaplasia is a rare WT subtype associated with poor prognosis and defined by enlarged and multipolar mitotic figures, a threefold nuclear enlargement (compared with adjacent nuclei of the same cell type), and hyperchromasia of the enlarged nuclei. We have previously demonstrated that p53 gene mutations are exclusively associated with anaplastic WTs, being absent from a large number of non-anaplastic WTs analyzed. To determine if such mutations are involved in clonal progression to anaplasia, we performed a retrospective analysis of histologically defined sections from tumor specimens. Six of ten WTs demonstrated p53 mutations by PCR-single stranded conformational polymorphism analysis. Two of these samples were paired, consisting of geographically demarcated anaplastic cells embedded within a non-anaplastic tumor bed. In these cases, p53 mutations were only present in the anaplastic region of the tumor. An overall decrease in the number of apoptotic cells was found associated with the anaplastic tumor region, compared to adjacent non-anaplastic tumor bed. These results indicate that p53 mutations arise during progression to anaplasia late in Wilms` tumor etiology and are associated with a more aggressive form of this cancer.

  20. A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred.

    LENUS (Irish Health Repository)

    Fernandez, Desiree M

    2012-02-03

    OBJECTIVE: We studied a large Irish Caucasian pedigree with familial hemiplegic migraine (FHM) with the aim of finding the causative gene mutation. BACKGROUND: FHM is a rare autosomal-dominant subtype of migraine with aura, which is linked to 4 loci on chromosomes 19p13, 1q23, 2q24, and 1q31. The mutations responsible for hemiplegic migraine have been described in the CACNA1A gene (chromosome 19p13), ATP1A2 gene (chromosome 1q23), and SCN1A gene (chromosome 2q24). METHODS: We performed linkage analyses in this family for chromosome 1q23 and performed mutation analysis of the ATP1A2 gene. RESULTS: Linkage to the FHM2 locus on chromosome 1 was demonstrated. Mutation screening of the ATP1A2 gene revealed a G to C substitution in exon 22 resulting in a novel protein variant, D999H, which co-segregates with FHM within this pedigree and is absent in 50 unaffected individuals. This residue is also highly conserved across species. CONCLUSIONS: We propose that D999H is a novel FHM ATP1A2 mutation.

  1. Homozygous mutation in the NPHP3 gene causing foetal nephronophthisis

    DEFF Research Database (Denmark)

    Abdullah, Uzma; Farooq, Muhammad; Fatima, Ambrin

    2017-01-01

    We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation...

  2. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Houman Ashrafian

    2010-06-01

    Full Text Available Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM. However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.

  3. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  4. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  5. [Mutation analysis of the PAH gene in children with phenylketonuria from the Qinghai area of China].

    Science.gov (United States)

    He, Jiang; Wang, Hui-Zhen; Xu, Fa-Liang; Yang, Xi; Wang, Rui; Zou, Hong-Yun; Yu, Wu-Zhong

    2015-11-01

    To study the mutation characteristics of the phenylalanine hydroxylase (PAH) gene in children with phenylketonuria (PKU) from the Qinghai area of China, in order to provide basic information for genetic counseling and prenatal diagnosis. Mutations of the PAH gene were detected in the promoter and exons 1-13 and their flanking intronic sequences of PAH gene by PCR and DNA sequencing in 49 children with PKU and their parents from the Qinghai area of China. A total of 30 different mutations were detected in 80 out of 98 mutant alleles (82%), including 19 missense (63%), 5 nonsense (17%), 3 splice-site (10%) and 3 deletions (10%). Most mutations were detected in exons 3, 6, 7, 11 and intron 4 of PAH gene. The most frequent mutations were p.R243Q (19%), IVS4-1G>A (9%), p.Y356X (7%) and p.EX6-96A>G(5%). Two novel mutations p.N93fsX5 (c.279-282delCATC) and p.G171E (c.512G>A) were found. p.H64fsX9(c.190delC) was documented for the second time in Chinese PAH gene. The mutation spectrum of the gene PAH in the Qinghai population was similar to that in other populations in North China while significantly different from that in the populations from some provinces in southern China, Japan and Europe. The mutations of PAH gene in the Qinghai area of China demonstrate a unique diversity, complexity and specificity.

  6. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  7. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  8. Frequency of p53 Gene Mutation and Protein Expression in Oral Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Ara, N.; Atique, M.; Ahmed, S.; Bukhari, S. G. A.

    2014-01-01

    Objective: To determine the frequency of p53 gene mutation and protein expression in Oral Squamous Cell Carcinoma (OSCC) and to establish correlation between the two. Study Design: Analytical study. Place and Duration of Study: Histopathology Department and Molecular Biology Laboratory, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from May 2010 to May 2011. Methodology: Thirty diagnosed cases of OSCC were selected by consecutive sampling. Seventeen were retrieved from the record files of the AFIP, and 13 fresh/frozen sections were selected from patients reporting to the Oral Surgery Department, Armed Forces Institute of Dentistry (AFID). Gene p53 mutation was analyzed in all the cases using PCRSSCP analysis. DNA was extracted from the formalin-fixed and paraffin-embedded tissue sections and fresh/frozen sections. DNA thus extracted was amplified by polymerase chain reaction. The amplified products were denatured and finally analyzed by gel electrophoresis. Gene mutation was detected as electrophoretic mobility shift. The immunohistochemical marker p53 was applied to the same 30 cases and overexpression of protein p53 was recorded. Results: Immunohistochemical expression of marker p53 was positive in 67% (95% Confidence Interval (CI) 48.7 - 80.9) of the cases. Mutations of the p53 gene were detected in 23% (95% CI 11.5 - 41.2) of the OSCC. No statistically significant correlation was found between p53 gene mutation and protein p53 expression (rs = - 0.057, p = 0.765). Conclusion: A substantial number of patients have p53 gene mutation (23%) and protein p53 expression (67%) in oral squamous cell carcinoma (OSCC). (author)

  9. Myeloid malignancies: mutations, models and management

    International Nuclear Information System (INIS)

    Murati, Anne; Brecqueville, Mandy; Devillier, Raynier; Mozziconacci, Marie-Joelle; Gelsi-Boyer, Véronique; Birnbaum, Daniel

    2012-01-01

    Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia) and acute (acute myeloid leukemia) stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS), transcription factors (e.g. CEBPA, ETV6, RUNX1), epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX), tumor suppressors (e.g. TP53), and components of the spliceosome (e.g. SF3B1, SRSF2). Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach

  10. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009-2013).

    Science.gov (United States)

    Mohon, Abu Naser; Alam, Mohammad Shafiul; Bayih, Abebe Genetu; Folefoc, Asongna; Shahinas, Dea; Haque, Rashidul; Pillai, Dylan R

    2014-11-18

    Bangladesh is a malaria hypo-endemic country sharing borders with India and Myanmar. Artemisinin combination therapy (ACT) remains successful in Bangladesh. An increase of artemisinin-resistant malaria parasites on the Thai-Cambodia and Thai-Myanmar borders is worrisome. K13 propeller gene (PF3D7_1343700 or PF13_0238) mutations have been linked to both in vitro artemisinin resistance and in vivo slow parasite clearance rates. This group undertook to evaluate if mutations seen in Cambodia have emerged in Bangladesh where ACT use is now standard for a decade. Samples were obtained from Plasmodium falciparum-infected malaria patients from Upazila health complexes (UHC) between 2009 and 2013 in seven endemic districts of Bangladesh. These districts included Khagrachari (Matiranga UHC), Rangamati (Rajasthali UHC), Cox's Bazar (Ramu and Ukhia UHC), Bandarban (Lama UHC), Mymensingh (Haluaghat UHC), Netrokona (Durgapur and Kalmakanda UHC), and Moulvibazar (Sreemangal and Kamalganj UHC). Out of 296 microscopically positive P. falciparum samples, 271 (91.6%) were confirmed as mono-infections by both real-time PCR and nested PCR. The K13 propeller gene from 253 (93.4%) samples was sequenced bi-directionally. One non-synonymous mutation (A578S) was found in Bangladeshi clinical isolates. The A578S mutation was confirmed and lies adjacent to the C580Y mutation, the major mutation causing delayed parasite clearance in Cambodia. Based on computational modeling A578S should have a significant effect on tertiary structure of the protein. The data suggest that P. falciparum in Bangladesh remains free of the C580Y mutation linked to delayed parasite clearance. However, the mutation A578S is present and based on structural analysis could affect K13 gene function. Further in vivo clinical studies are required to validate the effect of this mutation.

  11. 657del5 mutation of the NBS1 gene in myelodysplastic syndrome

    Directory of Open Access Journals (Sweden)

    Bunjevacki Vera

    2014-01-01

    Full Text Available Myelodysplastic syndromes (MDS are clonal hematologic stem cell disorders with an as yet unknown molecular pathology. Genetic instability has been proposed as a cause of MDS. Mutations in the NBS1 gene, whose product nibrin (p95 is involved in DNA damage repair and cell-cycle control, might be associated with an elevated predisposition to the development of MDS. The aim of the study was to examine truncating 5 bp deletion (657del5, the most frequent NBS1 gene mutation in Slavic populations, in MDS patients. Among 71 MDS patients, we found one case that was heterozygous for the NBS1 657del5 mutation. To the best of our knowledge, this is the first report of a NBS1 mutation in MDS. [Projekat Ministarstva nauke Republike Srbije, br. 175091

  12. Mutations in the dihydropteroate synthase gene of Pneumocystis jiroveci isolates from Portuguese patients with Pneumocystis pneumonia

    DEFF Research Database (Denmark)

    Costa, M C; Helweg-Larsen, J; Lundgren, Bettina

    2003-01-01

    The aim of this study was to evaluate the frequency of mutations of the P. jiroveci dihydropteroate synthase (DHPS) gene in an immunocompromised Portuguese population and to investigate the possible association between DHPS mutations and sulpha exposure. In the studied population, DHPS gene...... mutations were not significantly more frequent in patients exposed to sulpha drugs compared with patients not exposed (P=0.390). The results of this study suggest that DHPS gene mutations are frequent in the Portuguese immunocompromised population but do not seem associated with previous sulpha exposure...

  13. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    Science.gov (United States)

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  14. A novel germline mutation (c.A527G) in STK11 gene causes Peutz-Jeghers syndrome in a Chinese girl: A case report.

    Science.gov (United States)

    Zhao, Zi-Ye; Jiang, Yu-Liang; Li, Bai-Rong; Yang, Fu; Li, Jing; Jin, Xiao-Wei; Sun, Shu-Han; Ning, Shou-Bin

    2017-12-01

    Peutz-Jeghers syndrome (PJS) is a Mendelian autosomal dominant disease caused by mutations in the tumor suppressor gene, serine/threonine kinase 11 (STK11). The features of this syndrome include gastrointestinal (GI) hamartomas, melanin spots on the lips and the extremities, and an increased risk of developing cancer. Early onset of disease is often characterized by mucocutaneous pigmentation and intussusception due to GI polyps in childhood. A girl with a positive family history grew oral pigmentation at 1 and got intussusception by small bowel hamartomas at 5. She was diagnosed with PJS based on oral pigmentation and a positive family history of PJS. Enteroscopy was employed to treat the GI polyps. Sanger sequencing was used to investigate STK11 mutation in this family. A large jejunal polyp together with other smaller ones was resected, and the girl recovered uneventfully. We discovered a heterozygous substitution in STK11, c.A527G in exon 4, in the girl and her father who was also a PJS patient, and the amine acid change was an aspartic acid-glycine substitution in codon 176. This mutation was not found in other healthy family members and 50 unrelated non-PJS controls, and it is not recorded in databases, which prove it a novel mutation. Evolutionary conservation analysis of amino acid residues showed this aspartic acid is a conserved one between species, and protein structure prediction by SWISS-MODEL indicated an obvious change in local structure. In addition, PolyPhen-2 score for this mutation is 1, which indicates it probably damaging. PJS can cause severe complication like intussusception in young children, and early screening for small bowel may be beneficial for these patients. The mutation of STK11 found in this girl is a novel one, which enlarges the spectrum of STK11. Our analysis supported it a causative one in PJS.

  15. NDP gene mutations in 14 French families with Norrie disease.

    Science.gov (United States)

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  16. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, E.A.; Cho, M.; Milewicz, D.M. [Univ. of Texas-Houston Medical School, Houston, TX (United States)] [and others

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  17. Investigation of mutations in the HBB gene using the 1,000 genomes database.

    Science.gov (United States)

    Carlice-Dos-Reis, Tânia; Viana, Jaime; Moreira, Fabiano Cordeiro; Cardoso, Greice de Lemos; Guerreiro, João; Santos, Sidney; Ribeiro-Dos-Santos, Ândrea

    2017-01-01

    Mutations in the HBB gene are responsible for several serious hemoglobinopathies, such as sickle cell anemia and β-thalassemia. Sickle cell anemia is one of the most common monogenic diseases worldwide. Due to its prevalence, diverse strategies have been developed for a better understanding of its molecular mechanisms. In silico analysis has been increasingly used to investigate the genotype-phenotype relationship of many diseases, and the sequences of healthy individuals deposited in the 1,000 Genomes database appear to be an excellent tool for such analysis. The objective of this study is to analyze the variations in the HBB gene in the 1,000 Genomes database, to describe the mutation frequencies in the different population groups, and to investigate the pattern of pathogenicity. The computational tool SNPEFF was used to align the data from 2,504 samples of the 1,000 Genomes database with the HG19 genome reference. The pathogenicity of each amino acid change was investigated using the databases CLINVAR, dbSNP and HbVar and five different predictors. Twenty different mutations were found in 209 healthy individuals. The African group had the highest number of individuals with mutations, and the European group had the lowest number. Thus, it is concluded that approximately 8.3% of phenotypically healthy individuals from the 1,000 Genomes database have some mutation in the HBB gene. The frequency of mutated genes was estimated at 0.042, so that the expected frequency of being homozygous or compound heterozygous for these variants in the next generation is approximately 0.002. In total, 193 subjects had a non-synonymous mutation, which 186 (7.4%) have a deleterious mutation. Considering that the 1,000 Genomes database is representative of the world's population, it can be estimated that fourteen out of every 10,000 individuals in the world will have a hemoglobinopathy in the next generation.

  18. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    Science.gov (United States)

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  19. Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, M.; Osborn, M.; Maynard, J.; Harper, P. [Institute of Medical Genetics, Cardiff, Wales (United Kingdom)

    1996-07-26

    Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detected in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.

  20. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  1. Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Watanabe

    Full Text Available MLL3 is a histone 3-lysine 4 methyltransferase with tumor-suppressor properties that belongs to a family of chromatin regulator genes potentially altered in neoplasia. Mutations in MLL3 were found in a whole genome analysis of colorectal cancer but have not been confirmed by a separate study.We analyzed mutations of coding region and promoter methylation in MLL3 using 126 cases of colorectal cancer. We found two isoforms of MLL3 and DNA sequencing revealed frameshift and other mutations affecting both isoforms of MLL3 in colorectal cancer cells and 19 of 134 (14% primary colorectal samples analyzed. Moreover, frameshift mutations were more common in cases with microsatellite instability (31% both in CRC cell lines and primary tumors. The largest isoform of MLL3 is transcribed from a CpG island-associated promoter that has highly homology with a pseudo-gene on chromosome 22 (psiTPTE22. Using an assay which measured both loci simultaneously we found prominent age related methylation in normal colon (from 21% in individuals less than 25 years old to 56% in individuals older than 70, R = 0.88, p<0.001 and frequent hypermethylation (83% in both CRC cell lines and primary tumors. We next studied the two loci separately and found that age and cancer related methylation was solely a property of the pseudogene CpG island and that the MLL3 loci was unmethylated.We found that frameshift mutations of MLL3 in both CRC cells and primary tumor that were more common in cases with microsatellite instability. Moreover, we have shown CpG island-associated promoter of MLL3 gene has no DNA methylation in CRC cells but also primary tumor and normal colon, and this region has a highly homologous of pseudo gene (psiTPTE22 that was age relate DNA methylation.

  2. Giant Subependymoma Developed in a Patient with Aniridia: Analyses of PAX6 and Tumor-relevant Genes

    Science.gov (United States)

    Maekawa, Motoko; Fujisawa, Hironori; Iwayama, Yoshimi; Tamase, Akira; Toyota, Tomoko; Osumi, Noriko; Yoshikawa, Takeo

    2010-01-01

    We observed an unusually large subependymoma in a female patient with congenital aniridia. To analyze the genetic mechanisms of tumorigenesis, we first examined the paired box 6 (PAX6) gene using both tumor tissue and peripheral lymphocytes. Tumor suppressor activity has been proposed for PAX6 in gliomas, in addition to its well-known role in the eye development. Using genomic quantitative PCR and loss of heterozygosity analysis, we identified hemizygous deletions in the 5′-region of PAX6. In lymphocytes, the deletion within PAX6 spanned from between exons 6 and 7 to the 5′-upstream region of the gene, but did not reach the upstream gene, RNC1, which is reported to be associated with tumors. The subependymoma had an additional de novo deletion spanning from the intron 4 to intron 6 of PAX6, although we could not completely determine whether these two deletions are on the same chromosome or not. We also examined other potentially relevant tumor suppressor genes: PTEN, TP53 and SOX2. However, we detected no exonic mutations or deletions in these genes. Collectively, we speculate that the defect in PAX6 may have contributed to the extremely large size of the subependymoma, due to a loss of tumor suppressor activity in glial cell lineage. PMID:20500513

  3. FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Rene L. Begay, BS

    2016-08-01

    Full Text Available A genetic etiology has been identified in 30% to 40% of dilated cardiomyopathy (DCM patients, yet only 50% of these cases are associated with a known causative gene variant. Thus, in order to understand the pathophysiology of DCM, it is necessary to identify and characterize additional genes. In this study, whole exome sequencing in combination with segregation analysis was used to identify mutations in a novel gene, filamin C (FLNC, resulting in a cardiac-restricted DCM pathology. Here we provide functional data via zebrafish studies and protein analysis to support a model implicating FLNC haploinsufficiency as a mechanism of DCM.

  4. Somatic gene mutation in the human in relation to radiation risk

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1992-01-01

    This report discusses the measurement of somatic gene-mutation frequencies in the human. We ask the following questions. How well can they be measured? Do they respond to radiation? Can they also function as a dosimeter? What do they tell us about the somatic mutation theory of carcinogenesis?

  5. Tumor-specific mutations in low-frequency genes affect their functional properties

    NARCIS (Netherlands)

    L. Erdem-Eraslan (Lale); D. Heijsman (Daphne); M. De Wit (Maurice); A.E. Kremer (Andreas); A. Sacchetti (Andrea); P.J. van der Spek (Peter); P.A.E. Sillevis Smitt (Peter); P.J. French (Pim)

    2015-01-01

    textabstractCausal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes

  6. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  7. PROP1 gene mutations in a 36-year-old female presenting with psychosis

    Directory of Open Access Journals (Sweden)

    Durgesh Prasad Chaudhary

    2017-03-01

    Full Text Available Combined pituitary hormonal deficiency (CPHD is a rare disease that results from mutations in genes coding for transcription factors that regulate the differentiation of pituitary cells. PROP1 gene mutations are one of the etiological diagnoses of congenital panhypopituitarism, however symptoms vary depending on phenotypic expression. We present a case of psychosis in a 36-year-old female with congenital panhypopituitarism who presented with paranoia, flat affect and ideas of reference without a delirious mental state, which resolved with hormone replacement and antipsychotics. Further evaluation revealed that she had a homozygous mutation of PROP1 gene. In summary, compliance with hormonal therapy for patients with hypopituitarism appears to be effective for the prevention and treatment of acute psychosis symptoms.

  8. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  9. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    Science.gov (United States)

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  10. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  11. Should all patients with hyperparathyroidism be screened for a CDC73 mutation?

    Directory of Open Access Journals (Sweden)

    Caroline Bachmeier

    2018-03-01

    Full Text Available Primary hyperparathyroidism (PH is a common endocrine abnormality and may occur as part of a genetic syndrome. Inactivating mutations of the tumour suppressor gene CDC73 have been identified as accounting for a large percentage of hyperparathyroidism-jaw tumour syndrome (HPT-JT cases and to a lesser degree account for familial isolated hyperparathyroidism (FIHP cases. Reports of CDC73 whole gene deletions are exceedingly rare. We report the case of a 39 year-old woman with PH secondary to a parathyroid adenoma associated with a large chromosomal deletion (2.5 Mb encompassing the entire CDC73 gene detected years after parathyroidectomy. This case highlights the necessity to screen young patients with hyperparathyroidism for an underlying genetic aetiology. It also demonstrates that molecular testing for this disorder should contain techniques that can detect large deletions.

  12. [Analysis of gene mutation of early onset epileptic spasm with unknown reason].

    Science.gov (United States)

    Yang, X; Pan, G; Li, W H; Zhang, L M; Wu, B B; Wang, H J; Zhang, P; Zhou, S Z

    2017-11-02

    Objective: To summarize the gene mutation of early onset epileptic spasm with unknown reason. Method: In this prospective study, data of patients with early onset epileptic spasm with unknown reason were collected from neurological department of Children's Hospital of Fudan University between March 2016 and December 2016. Patients with known disorders such as infection, metabolic, structural, immunological problems and known genetic mutations were excluded. Patients with genetic disease that can be diagnosed by clinical manifestations and phenotypic characteristics were also excluded. Genetic research methods included nervous system panel containing 1 427 epilepsy genes, whole exome sequencing (WES), analysis of copy number variation (CNV) and karyotype analysis of chromosome. The basic information, phenotypes, genetic results and the antiepileptic treatment of patients were analyzed. Result: Nine of the 17 cases with early onset epileptic spasm were boys and eight were girls. Patients' age at first seizure onset ranged from 1 day after birth to 8 months (median age of 3 months). The first hospital visit age ranged from 1 month to 2 years (median age of 4.5 months). The time of following-up ranged from 8 months to 3 years and 10 months. All the 17 patients had early onset epileptic spasm. Video electroencephalogram was used to monitor the spasm seizure. Five patients had Ohtahara syndrome, 10 had West syndrome, two had unclear classification. In 17 cases, 10 of them had detected pathogenic genes. Nine cases had point mutations, involving SCN2A, ARX, UNC80, KCNQ2, and GABRB3. Except one case of mutations in GABRB3 gene have been reported, all the other cases had new mutations. One patient had deletion mutation in CDKL5 gene. One CNV case had 6q 22.31 5.5MB repeats. Ten cases out of 17 were using 2-3 antiepileptic drugs (AEDs) and the drugs had no effect. Seven cases used adrenocorticotropic hormone (ACTH) and prednisone besides AEDs (a total course for 8 weeks

  13. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  14. The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC tumor syndrome and congenital fumarase deficiency

    Directory of Open Access Journals (Sweden)

    Tomlinson Ian PM

    2008-03-01

    Full Text Available Abstract Background Fumarate hydratase (HGNC approved gene symbol – FH, also known as fumarase, is an enzyme of the tricarboxylic acid (TCA cycle, involved in fundamental cellular energy production. First described by Zinn et al in 1986, deficiency of FH results in early onset, severe encephalopathy. In 2002, the Multiple Leiomyoma Consortium identified heterozygous germline mutations of FH in patients with multiple cutaneous and uterine leiomyomas, (MCUL: OMIM 150800. In some families renal cell cancer also forms a component of the complex and as such has been described as hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839. The identification of FH as a tumor suppressor was an unexpected finding and following the identification of subunits of succinate dehydrogenase in 2000 and 2001, was only the second description of the involvement of an enzyme of intermediary metabolism in tumorigenesis. Description The FH mutation database is a part of the TCA cycle gene mutation database (formerly the succinate dehydrogenase gene mutation database and is based on the Leiden Open (source Variation Database (LOVD system. The variants included in the database were derived from the published literature and annotated to conform to current mutation nomenclature. The FH database applies HGVS nomenclature guidelines, and will assist researchers in applying these guidelines when directly submitting new sequence variants online. Since the first molecular characterization of an FH mutation by Bourgeron et al in 1994, a series of reports of both FH deficiency patients and patients with MCUL/HLRRC have described 107 variants, of which 93 are thought to be pathogenic. The most common type of mutation is missense (57%, followed by frameshifts & nonsense (27%, and diverse deletions, insertions and duplications. Here we introduce an online database detailing all reported FH sequence variants. Conclusion The FH mutation database strives to systematically

  15. PROP1 gene mutations in a 36-year-old female presenting with psychosis

    Science.gov (United States)

    Rijal, Tshristi; Jha, Kunal Kishor; Saluja, Harpreet

    2017-01-01

    Summary Combined pituitary hormonal deficiency (CPHD) is a rare disease that results from mutations in genes coding for transcription factors that regulate the differentiation of pituitary cells. PROP1 gene mutations are one of the etiological diagnoses of congenital panhypopituitarism, however symptoms vary depending on phenotypic expression. We present a case of psychosis in a 36-year-old female with congenital panhypopituitarism who presented with paranoia, flat affect and ideas of reference without a delirious mental state, which resolved with hormone replacement and antipsychotics. Further evaluation revealed that she had a homozygous mutation of PROP1 gene. In summary, compliance with hormonal therapy for patients with hypopituitarism appears to be effective for the prevention and treatment of acute psychosis symptoms. Learning points: Patients with PROP1 gene mutation may present with psychosis with no impairment in orientation and memory. There is currently inadequate literature on this topic, and further study on the possible mechanisms of psychosis as a result of endocrine disturbance is required. Compliance with hormonal therapy for patients with hypopituitarism appears to be effective for prevention and treatment of acute psychosis symptoms. PMID:28458894

  16. Study of Deafness Associated with DFNB59 Gene (pejvakin Mutation in Fars Province

    Directory of Open Access Journals (Sweden)

    S Raeisi

    2012-05-01

    Full Text Available

    Background and Objectives: Hearing loss is the most frequent sensory disorder affecting 1 in 500 neonates with more than 50% of inherited cases. This trait is a very heterogeneous disorder and happens due to genetic or environmental causes or both. More than 46 genes may be involved in non-syndromic hearing loss. Recently, DFNB59 gene has been shown to cause deafness in some Iranian populations. The aim of this study was to determine the role of DFNB59 gene mutations causing deafness in a group of 130 deaf pupils in Fars province. Methods: This descriptive-laboratory based study investigated the frequency of DFNB59 gene mutations using PCR-SSCP/HA strategy. Results: Two different DFNB59 polymorphism including 874G>A and 793C>G were found in 1 and 9 of 130 patients studied respectively. However, no DFNB59 mutation was identified. Conclusion: The results of this study shows that the association of DFNB59 mutations with deafness in Fars province is very low.

  17. Analysis of P gene mutations in patients with type II (tyrosinase-positive) oculocutaneous albinism (OCA2)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.T.; Nicholls, R.D.; Schnur, R. [Univ. of Wisconsin, Madison, WI (United States)]|[Case Western Reserve Univ., Cleveland, OH (United States)]|[Children`s Hospital of Philadelphia, PA (United States)] [and others

    1994-09-01

    OCA2 is an autosomal recessive disorder in which the biosynthesis of melanin pigment is greatly reduced in the skin, hair, and eyes. Recently, we showed that OCA2 results from mutations of the P gene, in chromosome segment 15q11-q13. In addition to OCA2, mutations of P account for OCA associated with the Prader-Willi syndrome and some cases of {open_quotes}autosomal recessive ocular albinism{close_quotes} (AROA). We have now studied 38 unrelated patients with various forms of OCA2 or AROA from a variety of different ethnic groups. None of these patients had detectable abnormalities of the tyrosinase (TYR) gene. Among 8 African-American patients with OCA2 we observed apparent locus homogeneity. We detected abnormalities of the P gene in all 8 patients, including 12 different mutations and deletions, most of which are unique to this group and none of which is predominant. In contrast, OCA2 in other populations appears to be genetically heterogeneous. Among 21 Caucasian patients we detected abnormalities of the P gene in only 8, comprising 9 different point mutations and deletions, some of which also occurred among the African-American patients. Among 3 Middle-Eastern, 3 Indo-Pakistani, and 3 Asian patients we detected mutations of the P gene in only one from each group. In a large Indo-Pakistani kindred with OCA2 we have excluded both the TYR and P genes on the basis of genetic linkage. The prevalence of mutations of the P gene thus appears to be much higher among African-Americans with OCA2 than among patients from other ethnic groups. The incidence of OCA2 in some parts of equatorial Africa is extremely high, as frequent as 1 per 1100, and the disease has been linked to P in South African Bantu. The eventual characterization of P gene mutations in Africans will be informative with regard to the origins of P gene mutations in African-American patients.

  18. Inactivation of the Tumor Suppressor Genes Causing the Hereditary Syndromes Predisposing to Head and Neck Cancer via Promoter Hypermethylation in Sporadic Head and Neck Cancers

    OpenAIRE

    Smith, Ian M.; Mithani, Suhail K.; Mydlarz, Wojciech K.; Chang, Steven S.; Califano, Joseph A.

    2010-01-01

    Fanconi anemia (FA) and dyskeratosis congenita (DC) are rare inherited syndromes that cause head and neck squamous cell cancer (HNSCC). Prior studies of inherited forms of cancer have been extremely important in elucidating tumor suppressor genes inactivated in sporadic tumors. Here, we studied whether sporadic tumors have epigenetic silencing of the genes causing the inherited forms of HNSCC. Using bisulfite sequencing, we investigated the incidence of promoter hypermethylation of the 17 Fan...

  19. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene

    International Nuclear Information System (INIS)

    Romeo, G.; Hassan, H.J.; Staempfli, S.

    1987-01-01

    The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHi digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ∼50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed the authors to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees

  20. Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene.

    Science.gov (United States)

    Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A

    2017-02-01

    There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.

  1. Iron overload and HFE gene mutations in Polish patients with liver cirrhosis.

    Science.gov (United States)

    Sikorska, Katarzyna; Romanowski, Tomasz; Stalke, Piotr; Iżycka-Świeszewska, Ewa; Bielawski, Krzysztof Piotr

    2011-06-01

    Increased liver iron stores may contribute to the progression of liver injury and fibrosis, and are associated with a higher risk of hepatocellular carcinoma development. Pre-transplant symptoms of iron overload in patients with liver cirrhosis are associated with higher risk of infectious and malignant complications in liver transplant recipients. HFE gene mutations may be involved in the pathogenesis of liver iron overload and influence the progression of chronic liver diseases of different origins. This study was designed to determine the prevalence of iron overload in relation to HFE gene mutations among Polish patients with liver cirrhosis. Sixty-one patients with liver cirrhosis included in the study were compared with a control group of 42 consecutive patients subjected to liver biopsy because of chronic liver diseases. Liver function tests and serum iron markers were assessed in both groups. All patients were screened for HFE mutations (C282Y, H63D, S65C). Thirty-six of 61 patients from the study group and all controls had liver biopsy performed with semiquantitative assessment of iron deposits in hepatocytes. The biochemical markers of iron overload and iron deposits in the liver were detected with a higher frequency (70% and 47% respectively) in patients with liver cirrhosis. There were no differences in the prevalence of all HFE mutations in both groups. In patients with a diagnosis of hepatocellular carcinoma, no significant associations with iron disorders and HFE gene mutations were found. Iron disorders were detected in patients with liver cirrhosis frequently but without significant association with HFE gene mutations. Only the homozygous C282Y mutation seems to occur more frequently in the selected population of patients with liver cirrhosis. As elevated biochemical iron indices accompanied liver iron deposits more frequently in liver cirrhosis compared to controls with chronic liver disease, there is a need for more extensive studies searching for

  2. Case report of novel CACNA1A gene mutation causing episodic ataxia type 2

    Directory of Open Access Journals (Sweden)

    David Alan Isaacs

    2017-05-01

    Full Text Available Background: Episodic ataxia type 2 (OMIM 108500 is an autosomal dominant channelopathy characterized by paroxysms of ataxia, vertigo, nausea, and other neurologic symptoms. More than 50 mutations of the CACNA1A gene have been discovered in families with episodic ataxia type 2, although 30%–50% of all patients with typical episodic ataxia type 2 phenotype have no detectable mutation of the CACNA1A gene. Case: A 46-year-old Caucasian man, with a long history of bouts of imbalance, vertigo, and nausea, presented to our hospital with 2 weeks of ataxia and headache. Subsequent evaluation revealed a novel mutation in the CACNA1A gene: c.1364 G > A Arg455Gln. Acetazolamide was initiated with symptomatic improvement. Conclusion: This case report expands the list of known CACNA1A mutations associated with episodic ataxia type 2.

  3. Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients.

    Science.gov (United States)

    Zhao, Ying; Zhang, Xiaoying; Bao, Xinhua; Zhang, Qingping; Zhang, Jingjing; Cao, Guangna; Zhang, Jie; Li, Jiarui; Wei, Liping; Pan, Hong; Wu, Xiru

    2014-02-25

    Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. Mutations in CDKL5 gene are responsible for 7 with

  4. Intellectual Ability in the Duchenne Muscular Dystrophy and Dystrophin Gene Mutation Location

    Directory of Open Access Journals (Sweden)

    Rasic Milic V.

    2014-12-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation- dependent probe amplification (MLPA, polymerase chain reaction (PCR] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale. In 37 patients with an estimated full scale intelligence quotient (FSIQ, six (16.22% had borderline intelligence (70mutations when boundaries were set at exons 30 and 45. However, FSIQ was statistically significantly associated with mutation location when we assumed their functional consequence on dystrophin isoforms and when mutations in the 5’-untranslated region (5’UTR of Dp140 (exons 45-50 were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients.

  5. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity.

    Science.gov (United States)

    Shastry, B S; Pendergast, S D; Hartzer, M K; Liu, X; Trese, M T

    1997-05-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease occurring in infants with short gestational age and low birth weight and can lead to retinal detachment (ROP stages 4 and 5). X-linked familial exudative vitreoretinopathy is phenotypically similar to ROP and has been associated with mutations in the Norrie disease (ND) gene in some cases. To determine if similar mutations in the ND gene may play a role in the development of advanced ROP. Clinical examination and molecular genetic analysis were performed on 16 children, including 2 dizygotic and 1 monozygotic twin pairs, and their parents from 13 families. Sequencing of the amplified products revealed missense mutations (R121W and L108P) in the third exon of the ND gene in 4 patients. These mutations were not present in an unaffected premature twin, 2 children with regressed stage 3 ROP, the parents, or in 50 unrelated healthy control subjects. These findings suggest that mutations in the ND gene may play a role in the development of severe ROP in premature infants.

  6. A mutation in the MATP gene causes the cream coat colour in the horse

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2003-01-01

    Full Text Available Abstract In horses, basic colours such as bay or chestnut may be partially diluted to buckskin and palomino, or extremely diluted to cream, a nearly white colour with pink skin and blue eyes. This dilution is expected to be controlled by one gene and we used both candidate gene and positional cloning strategies to identify the "cream mutation". A horse panel including reference colours was established and typed for different markers within or in the neighbourhood of two candidate genes. Our data suggest that the causal mutation, a G to A transition, is localised in exon 2 of the MATP gene leading to an aspartic acid to asparagine substitution in the encoded protein. This conserved mutation was also described in mice and humans, but not in medaka.

  7. Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression

    International Nuclear Information System (INIS)

    Ostrowski, Jerzy; Dobosz, Anna Jerzak Vel; Jarosz, Dorota; Ruka, Wlodzimierz; Wyrwicz, Lucjan S; Polkowski, Marcin; Paziewska, Agnieszka; Skrzypczak, Magdalena; Goryca, Krzysztof; Rubel, Tymon; Kokoszyñska, Katarzyna; Rutkowski, Piotr; Nowecki, Zbigniew I

    2009-01-01

    Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP ® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR. Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling. Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status

  8. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    Science.gov (United States)

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  9. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    with androgen insensitivity syndrome in sex-reversed XY female patients. BALACHANDRAN .... Three novel AR gene mutations associated with AIS in XY sex-reversed females. Ta b le. 1 . ( contd. ) ..... disease, 1st edition. Springer Science + ...

  10. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    Science.gov (United States)

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  11. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients

    OpenAIRE

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among t...

  12. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Directory of Open Access Journals (Sweden)

    Dinić Jelena

    2007-01-01

    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  13. Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ.

    Science.gov (United States)

    Di Matteo, A; Franceschini, M; Paiardini, A; Grottesi, A; Chiarella, S; Rocchio, S; Di Natale, C; Marasco, D; Vitagliano, L; Travaglini-Allocatelli, C; Federici, L

    2017-09-18

    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.

  14. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2017-02-01

    Full Text Available Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  15. X-linked juvenile retinoschisis: mutations at the retinoschisis and Norrie disease gene loci?

    Science.gov (United States)

    Hiraoka, M; Rossi, F; Trese, M T; Shastry, B S

    2001-01-01

    Juvenile retinoschisis (RS) and Norrie disease (ND) are X-linked recessive retinal disorders. Both disorders, in the majority of cases, are monogenic and are caused by mutations in the RS and ND genes, respectively. Here we report the identification of a family in which mutations in both the RS and ND genes are segregating with RS pathology. Although the mutations identified in this report were not functionally characterized with regard to their pathogenicity, it is likely that both of them are involved in RS pathology in the family analyzed. This suggests the complexity and digenic nature of monogenic human disorders in some cases. If this proves to be a widespread problem, it will complicate the strategies used to identify the genes involved in diseases and to develop methods for intervention.

  16. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC. Our data suggested that the

  17. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations.

    Science.gov (United States)

    Khordadpoor-Deilamani, Faravareh; Akbari, Mohammad Taghi; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. TYR gene mutations were identified in 14 (app. 60%) albinism patients. We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism.

  18. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

    DEFF Research Database (Denmark)

    Gribouval, Olivier; Morinière, Vincent; Pawtowski, Audrey

    2012-01-01

    , pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review...... the series of 54 distinct mutations identified in 48 unrelated families. Most of them are novel and ACE mutations are the most frequent, observed in two-thirds of families (64.6%). The severity of the clinical course was similar whatever the mutated gene, which underlines the importance of a functional RAS...

  19. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    OpenAIRE

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and sev...

  1. The genetic alteration of retinoblastoma gene in esophageal cancer

    International Nuclear Information System (INIS)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it's alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author)

  2. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  3. Staphylococcus aureus colonization in atopic eczema and its association with filaggrin gene mutations

    DEFF Research Database (Denmark)

    Clausen, M. L.; Edslev, S. M.; Andersen, P. S.

    2017-01-01

    was to assess differences in S. aureus colonization in patients with AD with and without filaggrin gene mutations. The secondary aim was to assess disease severity in relation to S. aureus colonization. Exploratory analyses were performed to investigate S. aureus genetic lineages in relation to filaggrin gene...... were characterized with respect to disease severity (Scoring Atopic Dermatitis) and FLG mutations (n = 88). Fisher's exact test was used to analyse differences in S. aureus colonization in relation to FLG mutations. Results: Of the 101 patients included, 74 (73%) were colonized with S. aureus....... Of the colonized patients, 70 (95%) carried only one CC type in all three different sampling sites. In lesional skin, S. aureus was found in 24 of 31 patients with FLG mutations vs. 24 of 54 wild-type patients (P = 0·0004). Staphylococcus aureusCC1 clonal lineage was more prevalent in patients with FLG mutations...

  4. MUTATIONS IN THE ARX GENE: CLINICAL, ELECTROENCEPHALOGRAPHIC AND NEUROIMAGING FEATURES IN 3 PATIENTS

    Directory of Open Access Journals (Sweden)

    I. V. Ivanova

    2017-01-01

    Full Text Available The Aristaless-related homeobox (ARX gene is a member of the paired-type homeodomain transcription factor family with critical roles in embryonic development, particularly in the developing brain. Mutations in ARX gene demonstrate striking intra- and interfamilial pleiotropy together with genetic heterogeneity and lead to a broad spectrum of diseases. They give rise to 4 key phenotypic features: a different types of brain malformation, abnormal genitalia, epilepsy and intellectual disability. Authors present 3 clinical cases: a girl with duplication on the short arm of X-chromosome (Xp11.22-p22.33, which include genes ARX and CDKL5; a girl and a boy with a missense mutation in ARX gene that have not been previously described (chrX:25031522C>A, causes the substitution of an amino acid in the 197 protein position (p.Gly197Val, NM_139058.2. All patients suffer from severe epilepsy, that is refractory to antiepileptic drugs, and all of them have different degrees of psychomotor delay. The patients with missense mutation also have movement disorders: stereotypic movements in the girl and choreo athetosis and dystonia in the boy. Electroencephalographic abnormalities have been identified in all patients, and there were not significant abnormalities on magnetic resonance imaging in all cases. The described cases broaden the clinical spectrum of mutations in ARX gene.

  5. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  6. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  7. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco

    2015-01-01

    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  8. Mutational profile of KIT and PDGFRA genes in gastrointestinal stromal tumors in Peruvian samples

    Directory of Open Access Journals (Sweden)

    José Buleje

    2015-02-01

    Full Text Available Introduction: Gastrointestinal stromal tumors (GISTs are mesenchymal neoplasms usually caused by somatic mutations in the genes KIT (c-KIT or PDGFRA. Mutation characterization has become an important exam for GIST patients because it is useful in predicting the response to the inhibitors of receptor tyrosine kinase (RTK. Objectives: The aim of this study was to determine the frequency of KIT and PDGFRA mutations in 25 GIST samples collected over two years at two national reference hospitals in Peru. There were 21 samples collected from the Instituto Nacional de Enfermedades Neoplásicas (INEN, national cancer center and 4 samples collected from Hospital A. Loayza. Methods and materials: In this retrospective study, we performed polymerase chain reaction (PCR amplification and deoxyribonucleic acid (DNA sequencing of KIT (exons 9, 11, 13, and 17 and PDGFRA (exons 12 and 18 genes in 20 FFPE (formalin-fixed, paraffin-embedded and 5 frozen GIST samples. Results: We report 21 mutations, including deletions, duplications, and missense, no mutations in 2 samples, and 2 samples with no useful DNA for further analysis. Eighty-six percent of these mutations were located in exon 11 of KIT, and 14 % were located in exon 18 of PDGFRA. Conclusions: Our study identified mutations in 21 out of 25 GIST samples from 2 referential national hospitals in Peru, and the mutation proportion follows a global tendency observed from previous studies (i.e., the majority of samples presented KIT mutations followed by a minor percentage of PDGFRA mutations. This study presents the first mutation data of the KIT and PDGFRA genes from Peruvian individuals with GIST.

  9. A patient with Werner syndrome and adiponectin gene mutation.

    Science.gov (United States)

    Hashimoto, Naotake; Hatanaka, Sachiko; Yokote, Koutaro; Kurosawa, Hiroko; Yoshida, Tomohiko; Iwai, Rie; Takahashi, Hidenori; Yoshida, Katsuya; Horie, Atsuya; Sakurai, Kenichi; Yagui, Kazuo; Saito, Yasushi; Yoshida, Shouji

    2007-01-01

    Werner syndrome is a premature aging disease characterized by genomic instability and increased cancer risk. Here, we report a 45-year-old diabetic man as the first Werner syndrome patient found to have an adiponectin gene mutation. Showing graying and loss of hair, skin atrophy, and juvenile cataract, he was diagnosed with Werner syndrome type 4 by molecular analysis. His serum adiponectin concentration was low. In the globular domain of the adiponectin gene, I164T in exon 3 was detected. When we examined effects of pioglitazone (15 mg/day) on serum adiponectin multimer and monomer concentrations using selective assays, the patient's relative percentage increased in adiponectin concentration was almost same as that in the 18 diabetic patients without an adiponectin mutation, but the absolute adiponectin concentration was half of those seen in diabetic patients treated with the same pioglitazone dose who had no adiponectin mutation. The response suggested that pioglitazone treatment might help to prevent future Werner syndrome-related acceleration of atherosclerosis. Present and further clinical relevant to atherosclerosis in this patient should be imformative concerning the pathogenesis and treatment of atherosclerosis in the presence of hypoadiponectinemia and insulin resistance.

  10. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.

    Science.gov (United States)

    Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F

    2015-03-01

    Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH

  11. Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation

    Science.gov (United States)

    Trantow, Colleen M.; Cuffy, Tryphena L.; Fingert, John H.; Kuehn, Markus H.

    2011-01-01

    Purpose. Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. Methods. Iris samples from albino mice with a Tyr mutation, pigment dispersion–prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. Results. Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion–prone irides, and 460 in exfoliative-like irides. Conclusions. Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion–prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset. PMID:20739468

  12. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  13. Mutation analysis of the adenomatous polyposis coli (APC) gene in Danish patients with familial adenomatous polyposis (FAP)

    DEFF Research Database (Denmark)

    Bisgaard, Marie Luise; Ripa, Rasmus S; Bülow, Steffen

    2004-01-01

    Development of one hundred or more adenomas in the colon and rectum is diagnostic for the dominantly inherited, autosomal disease Familial Adenomatous Polyposis (FAP). It is possible to identify a mutation in the Adenomatous Polyposis Coli (APC) gene in approximately 80% of the patients, and almost...... 1,000 different pathogenic mutations have been identified in the APC gene up till now. We report 12 novel and 24' previously described germline APC mutations from 48 unrelated Danish families. Four families with the mutation localized in the 3' region of the gene showed great variance in phenotypic...

  14. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    OpenAIRE

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.; Papadopoulos, Nickolas; Malek, Sami N.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell...

  15. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  16. Clinical and Prognostic Profiles of Cardiomyopathies Caused by Mutations in the Troponin T Gene.

    Science.gov (United States)

    Ripoll-Vera, Tomás; Gámez, José María; Govea, Nancy; Gómez, Yolanda; Núñez, Juana; Socías, Lorenzo; Escandell, Ángela; Rosell, Jorge

    2016-02-01

    Mutations in the troponin T gene (TTNT2) have been associated in small studies with the development of hypertrophic cardiomyopathy characterized by a high risk of sudden death and mild hypertrophy. We describe the clinical course of patients carrying mutations in this gene. We analyzed the clinical characteristics and prognosis of patients with mutations in the TNNT2 gene who were seen in an inherited cardiac disease unit. Of 180 families with genetically studied cardiomyopathies, 21 families (11.7%) were identified as having mutations in TNNT2: 10 families had Arg92Gln, 5 had Arg286His, 3 had Arg278Cys, 1 had Arg92Trp, 1 had Arg94His, and 1 had Ile221Thr. Thirty-three additional genetic carriers were identified through family assessment. The study included 54 genetic carriers: 56% were male, and the mean average age was 41 ± 17 years. There were 33 cases of hypertrophic cardiomyopathy, 9 of dilated cardiomyopathy, and 1 of noncompaction cardiomyopathy, and maximal myocardial thickness was 18.5 ± 6mm. Ventricular dysfunction was present in 30% of individuals and a history of sudden death in 62%. During follow-up, 4 patients died and 14 (33%) received a defibrillator (8 probands, 6 relatives). Mean survival was 54 years. Carriers of Arg92Gln had early disease development, high penetrance, a high risk of sudden death, a high rate of defibrillator implantation, and a high frequency of mixed phenotype. Mutations in the TNNT2 gene were more common in this series than in previous studies. The clinical and prognostic profiles depended on the mutation present. Carriers of the Arg92Gln mutation developed hypertrophic or dilated cardiomyopathy and had a significantly worse prognosis than those with other mutations in TNNT2 or other sarcomeric genes. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  18. Investigation of the Mitochondrial ATPase 6/8 and tRNA(Lys) Genes Mutations in Autism.

    Science.gov (United States)

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNA(Lys) genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  19. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Directory of Open Access Journals (Sweden)

    Jose Miguel Moreno-Ortiz

    2016-01-01

    Full Text Available Background. Lynch Syndrome (LS is characterized by germline mutations in the DNA mismatch repair (MMR genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC, and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del and c.1852_1853delinsGC (p.K618A in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  20. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways.

    Science.gov (United States)

    Magotra, Minoti; Sakhdari, Ali; Lee, Paul J; Tomaszewicz, Keith; Dresser, Karen; Hutchinson, Lloyd M; Woda, Bruce A; Chen, Benjamin J

    2016-12-01

    Genes affecting epigenetic pathways are frequently mutated in myeloid malignancies, including acute myeloid leukaemia (AML). The genes encoding TET2, IDH1 and IDH2 are among the most commonly mutated genes, and cause defective conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), impairing demethylation of DNA, and presumably serving as driver mutations in leukaemogenesis. The aim of this study was to correlate 5hmC immunohistochemical loss with the mutation status of genes involved in epigenetic pathways in AML. Immunohistochemical staining with an anti-5hmC antibody was performed on 41 decalcified, formalin-fixed paraffin-embedded (FFPE) bone marrow biopsies from patients with AML. Archived DNA was subjected to next-generation sequencing for analysis of a panel of genes, including TET2, IDH1, IDH2, WT1 and DNMT3A. TET2, IDH1, IDH2, WT1 and DNMT3A mutations were found in 46% (19/41) of the cases. Ten of 15 cases (67%) with TET2, IDH1, IDH2 or WT1 mutations showed deficient 5hmC staining, whereas nine of 26 cases (35%) without a mutation in these genes showed loss of 5hmC. It is of note that all four cases with TET2 mutations showed deficient 5hmC staining. Overall, somatic mutations in TET2, IDH1, IDH2, WT1 and DNMT3A were common in our cohort of AML cases. Immunohistochemical staining for 5hmC was lost in the majority of cases harbouring mutations in these genes, reflecting the proposed relationship between dysfunctional epigenetic pathways and leukaemogenesis. © 2016 John Wiley & Sons Ltd.