WorldWideScience

Sample records for suppressor cell precursors

  1. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N

    2017-03-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia ( P =0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival ( P =0.0003) and a higher 5-year cumulative incidence of relapse ( P =0.005), when compared with IKZF1 -deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1 , did not affect the outcome of IKZF1 -deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1 -deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1 +/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1 +/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.

  2. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  3. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  4. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  5. History of myeloid-derived suppressor cells.

    Science.gov (United States)

    Talmadge, James E; Gabrilovich, Dmitry I

    2013-10-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.

  6. Induction of suppressor cells in vitro by Candida albicans.

    Science.gov (United States)

    Cuff, C F; Rogers, C M; Lamb, B J; Rogers, T J

    1986-06-01

    Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.

  7. Concanavalin A-induced and spontaneous suppressor cell activities in peripheral blood lymphocytes and spleen cells from gastric cancer patients.

    Science.gov (United States)

    Toge, T; Hamamoto, S; Itagaki, E; Yajima, K; Tanada, M; Nakane, H; Kohno, H; Nakanishi, K; Hattori, T

    1983-11-01

    In 173 gastric cancer patients, activities of Concanavalin-A-induced suppressor cells (Con-AS) and spontaneous suppressor cells (SpS) in peripheral blood lymphocytes (PBL), splenic vein lymphocytes (SVL), and spleen cells (SCs) were investigated. Suppressions by Con-AS in PBL were significantly effective in patients of Stages III and IV, while suppressions by SpS were effective in patients with recurrent tumors. Thus, in PBLs of cancer patients, suppressor precursors, which are considered to be activated in vitro by Concanavalin-A, seemed to appear with the advances of the disease, and SpS activities, which could be already activated in vivo, seemed to increase in the terminal stage. In SCs, increased activities of Con-AS, but normal activities of SpS, were observed, and these suppressor-cell populations consisted of glass nonadherent cells. Suppressor activities of SCs would be due to suppressor T-cells, not to other types of cells. Furthermore, Con-AS existed in the medium-sized lymphocytes, which were fractionated on the basis of cell size, while SpS in the large-sized lymphocytes. A higher proportion of T-cells, bearing Fc receptors for IgG, was observed in the larger-sized lymphocyte fractions. Cell numbers in the large-sized lymphocyte fraction tended to increase with the advances of tumors. From these results, it is suggested that higher presence of suppressor precursors and the increase of SpS activities may occur in cancer patients, depending on the tumor advancing.

  8. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  9. Characteristics of DTH suppressor cells in mice infected with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, O E; Sirena, A; de Alderete, N G

    1987-05-01

    Inoculation of 10(8) C. albicans intraperitoneally into Balb/c mice at given dosage was reported to induce suppression of antigen-specific delayed-type hypersensitivity. Adoptive transfer of spleen cells into normal syngeneic mice pre-treated with Cyclophosphamide confirmed the existence of suppressor cells in mice. Such cells were sensitive to treatment with anti-theta serum and complement, non-adherent to Sephadex G-10. A pretreatment of the mice with Cyclophosphamide eliminated DTH suppression. Treatment with antimacrophage agents via intraperitoneal abrogated suppression only if being effected before inoculation of alive 10(8) Candida albicans. It is concluded that the spleen suppressor cell is a T-lymphocyte whose precursor is Cyclophosphamide-sensitive, requiring the macrophage to be induced.

  10. Induction of specific suppressor T cells in vitro

    International Nuclear Information System (INIS)

    Eardley, D.D.; Gershon, R.K.

    1976-01-01

    We describe conditions for generating sheep red blood cell-specific suppressor T cells in Mishell-Dutton cultures. The production of specific suppressor cells is favored by increasing antigen dose in the initial culture but can be produced by transferring more cells when lower doses of antigen are used. Transfer of small numbers of cells cultured with low doses of antigen leads to a specific helper effect. Transfer of large numbers of educated cells leads to nonspecific suppression. Suppression can be effected by the effluent cells from nylon wool columns which do not make detectable PFC. A fraction of these cells become resistant to treatment with anti-T cell sera and complement after culture. The suppressor cells are radiation sensitive and must be able to synthesize protein to suppress. They take 2 to 3 days of education to reach maximum suppressive efficiency and will not suppress cultures if added 2 to 3 days after culture initiation. Their production is favored by the absence of mercaptoethanol, suggesting that the observed suppression is not ''too much help.'' The ability to generate specific suppressor cells in vitro should be of great benefit in determining the factors that regulate their appearance in vivo

  11. Human cord blood suppressor T lymphocytes. II. Characterization of inducer of suppressor cells

    International Nuclear Information System (INIS)

    Cheng, H.; Delespesse, G.

    1986-01-01

    Previously, we reported an antigen nonspecific inducer of T suppressor cell factor (TisF) produced by cord blood mononuclear cells (MNC) in 48-hr, two-way mixed lymphocyte cultures (MLC). The target of this factor was a radiosensitive, T4+ (T8-) adult suppressor T cell subset. The cellular origin of this TisF was examined in the present study. IgG production by pokeweed mitogen (PWM)-stimulated adult MNC was used as an assay for TisF activity. It was found that TisF-producing cells formed rosettes with sheep erythrocytes (E+) and were independent of adherent cells (AC) in the production of TisF. They were resistant to irradiation (2500 rads) and phenotypic characterization with T cell reactive monoclonal antibodies indicated that they resided in the T8- (T4+) population. Furthermore, both TQ1- and TQ1+ cells were required for the production of TisF activity and such activity could not be reconstituted by supernatants from TQ1- MLC and TQ1+ MLC. These results indicate that the production of TisF is dependent upon interactions between radioresistant E+, T8-, TQ1- and radioresistant E+, T8-, TQ1+ cells

  12. Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells

    International Nuclear Information System (INIS)

    Atluru, D.; Goodwin, J.S.

    1984-01-01

    We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4

  13. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  14. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  15. Immunoregulatory T cells in man. Histamine-induced suppressor T cells are derived from a Leu 2+ (T8+) subpopulation distinct from that which gives rise to cytotoxic T cells

    International Nuclear Information System (INIS)

    Sansoni, P.; Silverman, E.D.; Khan, M.M.; Melmon, K.L.; Engleman, E.G.

    1985-01-01

    One mechanism of histamine-mediated inhibition of the immune response in man is to activate T suppressor cells that bear the Leu 2 (OKT8) marker. The current study was undertaken to characterize the histamine-induced suppressor cell using a monoclonal antibody (9.3) shown previously to distinguish cytotoxic T cells from antigen-specific suppressor T cells. Leu 2+ cells isolated from peripheral blood were further separated with antibody 9.3 into Leu 2+, 9.3+, and Leu 2+, 9.3- subsets and each subset was incubated with different concentrations of histamine before determining their ability to suppress immune responses in vitro. The results indicate that the Leu 2+, 9.3- subpopulation includes all histamine-induced suppressor cells, that 10(-4) M histamine is the optimal concentration for suppressor cell induction, and that exposure of Leu 2+, 9.3- cells to histamine for 30 s is sufficient to initiate the induction process. After treatment with histamine these cells inhibit both phytohemagglutinin-induced T cell proliferation and pokeweed mitogen-induced B cell differentiation. The suppression of phytohemagglutinin-induced proliferation was resistant to x-irradiation with 1,200 rad, either before or after histamine exposure, suggesting that Leu 2+, 9.3- cells need not proliferate to become suppressor cells or exert suppression. Moreover, suppression by these cells was not due to altered kinetics of the response. Finally, a histamine type 2 receptor antagonist (cimetidine) but not a type 1 receptor antagonist (mepyramine) blocked the induction of suppressor cells. On the basis of these results and our previous studies of antigen specific suppressor cells, we conclude that Leu 2+ suppressor cells in man are derived from a precursor pool that is phenotypically distinct from cells that can differentiate into cytotoxic T cells

  16. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Science.gov (United States)

    Fang, Su-Chiung; de los Reyes, Chris; Umen, James G

    2006-10-13

    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  17. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman

    2014-12-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  18. Nonspecific suppressor T cells cause decreased mixed lymphocyte culture reactivity in bone marrow transplant patients

    International Nuclear Information System (INIS)

    Harada, M.; Ueda, M.; Nakao, S.; Kondo, K.; Odaka, K.; Shiobara, S.; Matsue, K.; Mori, T.; Matsuda, T.

    1986-01-01

    Decreased reactivity in mixed lymphocyte culture (MLC) was observed in patients within 1 yr after allogeneic and autologous bone marrow transplantation. Suppressor activity of peripheral blood mononuclear cells (PBMC) from transplant patients was studied by adding these cells as modulator cells to a bidirectional MLC with cells from normal individuals. PBMC from transplant patients markedly suppressed MLC reactivity in a dose-dependent manner. Suppressor activity was present in cells forming rosettes with sheep erythrocytes. Treatment of modulator cells with monoclonal antibodies against T cell differentiation antigens (OKT8, OKIa1) and complement completely abolished suppression of MLC. Suppressor activity was unaffected by 30 Gy irradiation. Suppressor activity declined gradually after transplantation and was inversely correlated with MLC reactivity of each patient at a significant level (p less than 0.01). These observations suggest that OKT8+ Ia+ radioresistant suppressor T cells play a role in the development of decreased MLC reactivity observed during the early post-transplant period

  19. Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Hiroshi Katoh

    2015-01-01

    Full Text Available Development of solid cancer depends on escape from host immunosurveillance. Various types of immune cells contribute to tumor-induced immune suppression, including tumor associated macrophages, regulatory T cells, type 2 NKT cells, and myeloid-derived suppressor cells (MDSCs. Growing body of evidences shows that MDSCs play pivotal roles among these immunosuppressive cells in multiple steps of cancer progression. MDSCs are immature myeloid cells that arise from myeloid progenitor cells and comprise a heterogeneous immune cell population. MDSCs are characterized by the ability to suppress both adaptive and innate immunities mainly through direct inhibition of the cytotoxic functions of T cells and NK cells. In clinical settings, the number of circulating MDSCs is associated with clinical stages and response to treatment in several cancers. Moreover, MDSCs are reported to contribute to chemoresistant phenotype. Collectively, targeting MDSCs could potentially provide a rationale for novel treatment strategies in cancer. This review summarizes recent understandings of MDSCs in cancer and discusses promissing clinical approaches in cancer patients.

  20. Myeloid-derived suppressor cells in breast cancer.

    Science.gov (United States)

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R; Carson, William E

    2013-07-01

    Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.

  1. Metastasis suppressor proteins in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer; Atasoy, Pınar; Yulug, Isik G

    2016-07-01

    Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. Characterization of a soluble suppressor of B cell immunoglobulin production

    International Nuclear Information System (INIS)

    Fleisher, T.A.; Greene, W.C.; Blaese, R.M.; Waldmann, T.A.

    1981-01-01

    Human peripheral blood mononuclear cells (PBMC) activated with the mitogenic lectin concanavalin A (Con A) elaborate a soluble immune suppressor supernatant (SISS) that contains at least 2 distinct suppressor factors. One of these, SISS-B, inhibits polyclonal B cell immunoglobulin production, whereas the other, SISS-T, suppresses T cell proliferation to both mitogens and antigens. The latter mediator is discussed in the companion paper. Characteristics of the human soluble suppressor of B cell immunoglobulin production (SISS-B) include: 1) inhibition by a noncytotoxic mechanism, 2) loss of activity in the presence of the monosaccharide L-rhamnose, 3) appearance within 8 to 16 hr after the addition of Con A, 4) elaboration by cells irradiated with 500 or 2000 rads, 5) production by highly purified T cells, 6) stability at pH 2.5 but instability at 56/sup o/C, and 7) m.w. of 60 to 80,000. These data indicate that after Con A activation, selected T cells not only become potent suppressor cells, but also generate a soluble saccharide-specific factor(s) that inhibits polyclonal immunoglobulin production by human B cells

  3. Regulatory role for the memory B cell as suppressor-inducer of feedback control

    International Nuclear Information System (INIS)

    Kennedy, M.W.; Thomas, D.B.

    1983-01-01

    A regulatory role is proposed for the antigen-responsive B cell, as suppressor-inducer of feedback control during the secondary response in vivo. In a double adoptive transfer of memory cells primed to a thymus-dependent antigen from one irradiated host to another, antigen-specific suppressors are generated after a critical time in the primary recipient, able to entirely ablate a secondary anti-hapten response. Positive cell selection in the fluorescence-activated cell sorter confirmed that suppression was mediated by an Lyt-2+ T cell; however, positively selected B cells were also inhibitory and able to induce suppressors in a carrier-specific manner: B hapten induced suppressors in a carrier-primed population, and B carrier induced suppressors in a hapten-carrier population. At the peak of the antibody response in the primary host, memory B cells and their progeny were unable to differentiate further to plasma cells due to their intrinsic suppressor-inducer activity, but this autoregulatory circuit could be severed by adoptive transfer to carrier-primed, X-irradiated recipients

  4. Suppressor cells in transplantation tolerance. III. The role of antigen in the maintenance of transplantation tolerance

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Hess, A.D.; Beschorner, W.E.; Santos, G.W.

    1982-01-01

    Suppressor cells, which in an alloantigen-specific manner inhibit proliferation of donor cells to host antigens in a mixed lymphocyte culture and adoptively transfer the suppression of graft-versus-host disease (GVHD), undergo a gradual clonal reduction in long-term, allogeneic, histoincompatible rat radiation chimeras until they can no longer be measured in an in vitro suppressor cell assay. When lymphohematopoietic cells from these chimeras are transferred into lethally irradiated secondary recipients of original donor strain, the suppressor cells, now in a target antigen-free environment, undergo a further clonal reduction. After parking for 120 days, the chimeric cells are specifically tolerant to original host antigens, but cannot adoptively transfer suppression of GVHD. When chimeric cells, parked for 120 days in secondary recipients of original donor strain, are stimulated with original host-type antigen repeatedly during or once at the end of the parking period, the suppressor cell clone is expanded, suppressor cells can be identified in vitro, and suppression of GVHD can adoptively be transferred to tertiary recipients

  5. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response...... nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function......RNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts...

  6. Immune suppression with supraoptimal doses of antigen in contact sensitivity. I. Demonstration of suppressor cells and their sensitivity to cyclophosphamide.

    Science.gov (United States)

    Sy, M S; Miller, S D; Claman, H N

    1977-07-01

    Immunologic suppression was induced in a mouse model of contact sensitization to DNFB by using supraoptimal doses of antigen. In these studies, in vivo measurement of ear swelling as an indication of immunologic responsiveness correlated well with measurement of in vitro antigen-induced cell proliferation. This unresponsiveness was specific, since supraoptimal doses of DNFB did not interfere with the development of contact sensitivity to another contactant, oxazolone. The decrease in responsiveness is a form of active suppression, as lymphoid cells from supraoptimally sensitized donors transferred suppression to normal recipients. Furthermore, pretreatment with cyclophosphamide (Cy) reversed the suppression seen in supraoptimally sensitized animals but had no effect on the optimal sensitization regimen. These results indicate that supraoptimal doses of contactants can activate suppressor cells and that precursors of these cells are sensitive to Cy. Such suppressors regenerate within 7 to 14 days after Cy treatment. The ability of Cy pretreatment to affect supraoptimal sensitization without affecting optimal sensitization confirms other reports indicating that the observed results of Cy treatment depend critically upon the dose of antigen used.

  7. Clinical impact of the immunome in lymphoid malignancies: the role of Myeloid-Derived Suppressor Cells

    Directory of Open Access Journals (Sweden)

    Calogero eVetro

    2015-05-01

    Full Text Available The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of myeloid-derived suppressor cells in the settings of lymphoid malignancies.

  8. Innate lymphoid cells, precursors and plasticity.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Inhibition of tumor growth in syngenetic chimeric mice mediated by a depletion of suppressor T cells

    International Nuclear Information System (INIS)

    Rotter, V.; Trainin, N.

    1975-01-01

    Syngeneic chimeric (lethally irradiated and reconstituted with syngeneic bone marrow cells) mice manifested an increased resistance to the development of Lewis lung carcinoma. In addition, these mice had a higher response to polyvinylpyrrolidone and a reduced reactivity to T mitogens. The present findings suggest that syngeneic chimeric mice lack suppressor T cells shown to regulate the development of Lewis lung tumor and the response to polyvinylpyrrolidone. Other components of the T cell population, such as helper cells responding to sheep red blood cells or cells involved in allograft rejection, assayed in these syngeneic chimeras were found unaffected. The fact that chimeric mice are deficient in a certain suppressor T cell population whereas other T activities are normal suggests the existence of different cell lines within the T cell population. (U.S.)

  10. Identification of an MLC suppressor cell population in acute leukemia

    International Nuclear Information System (INIS)

    Bryan, C.F.; Broxmeyer, H.E.; Hansen, J.; Pollack, M.; Dupont, B.

    1978-01-01

    The MLC data from the 20 nonsuppressing patients and the 10 suppressing leukemia patients were analyzed with regard to HLA-A, -B, and -C antigens in the leukemia patients and compared with the presence or absence of suppression. These results demonstrate a significant increase (p < 0.02, Mann-Whitney U test) of HLA antigens Al, A3, and A11 in the leukemia suppressor group. Seven of the 10 leukemia patients showing suppression were A1, A3, or A11, while only 4 of the 20 nonsuppressing leukemia patients carried any of these three HLA-A antigens. The studies demonstrate that a nonspecific suppression of MLC responses is observed in 33% of the patients with acute leukemia

  11. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  12. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  13. Alloantigen-specific suppressor T cells are not inhibited by cyclosporin A, but do require IL 2 for activation

    International Nuclear Information System (INIS)

    Bucy, R.P.

    1986-01-01

    Alloantigen-specific suppressor T cells are activated from normal murine spleen cells in mixed lymphocyte reactions (MLR). These T cells are radioresistant and suppress the activation of cytotoxic T lymphocytes (CTL) in second primary MLR cultures. This report demonstrates that cyclosporin A (CsA) blocks the activation of these suppressor cells at a dose of 1 microgram/ml. However, reconstitution of CsA blocked cultures with IL 2 restores the activation of the suppressor T cells, but fails to significantly restore the activation of CTL in these same cultures. This differential activation requirement was used to establish T cell lines that demonstrate enriched suppressor cell activity but depletion of CTL activity. These findings are discussed in terms of the mechanism of action of CsA in these distinct T cell subsets and the relevance to models of allograft unresponsiveness

  14. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  15. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  16. Clinical Impact of the Immunome in Lymphoid Malignancies: The Role of Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Vetro, Calogero; Romano, Alessandra; Ancora, Flavia; Coppolino, Francesco; Brundo, Maria V.; Raccuia, Salvatore A.; Puglisi, Fabrizio; Tibullo, Daniele; La Cava, Piera; Giallongo, Cesarina; Parrinello, Nunziatina L.

    2015-01-01

    The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of MDSCs in the settings of lymphoid malignancies. PMID:26052505

  17. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384 ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  18. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    International Nuclear Information System (INIS)

    Nakajima, Hideaki; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-01-01

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix

  19. Induction of CD4 suppressor T cells with anti-Leu-8 antibody

    International Nuclear Information System (INIS)

    Kanof, M.E.; Strober, W.; James, S.P.

    1987-01-01

    To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody

  20. HLA-DR-specific suppressor cells after repeated allogeneic sensitizations of human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Sasportes, M.; Fradelizi, D.; Dausset, J.

    1978-01-01

    In conclusion, DR-specific suppressor cells can be induced by repeated in vitro sensitizations. They were able to decrease a secondary proliferation, to suppress consistently, in a primary proliferative assay, when added as third cells (primed twice against a DR antigen [PLT II] and γ-irradiated), the response of unprimed cells towards stimulating cells, which share a DR specificity with the priming cell of the PLT II. The suppression follows the D part of the recombinant haplotype within an HLA-B/D recombinant family and is specific for the DR antigen used twice as stimulator for production of the PLT II

  1. Hemopoietic precursor cell regeneration following irradiation and syngeneic marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Melchner, H. von

    1983-01-01

    The transplantation of hemopoietic cells into adequately pretreated recipients represents one of the most promising approaches in the treatment of immunohematological disorders such as aplastic anemia, immunodeficiency diseases, leukemias and malignant lymphomas. The basic property of the hemopoietic cells permitting such therapeutic procedure, namely, the capacity of hemopoietic precursors to actively proliferate and differentiate in recipients suffering the consequences of various kinds of hemopoietic failure, represents the subject of the present review. The main cell populations addressed in the subsequent sections are the hemopoietic precursor cells. Mature end cells and in particular lymphocytes did not receive as much attention.

  2. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy.

    Directory of Open Access Journals (Sweden)

    Daniel Rodríguez-Martínez

    Full Text Available Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE, a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80% and yield (>70%. Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies.

  3. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes.

    Directory of Open Access Journals (Sweden)

    Eulalie Buffin

    Full Text Available BACKGROUND: In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP. Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. CONCLUSIONS/SIGNIFICANCE: These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.

  4. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma.

    Science.gov (United States)

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro

    2015-03-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

  5. Dissecting functions of the retinoblastoma tumor suppressor and the related pocket proteins by integrating genetic, cell biology, and electrophoretic techniques

    DEFF Research Database (Denmark)

    Hansen, Klaus; Lukas, J; Holm, K

    1999-01-01

    The members of the 'pocket protein' family, comprising the retinoblastoma tumor suppressor (pRB) and its relatives, p107 and p130, negatively regulate cell proliferation and modulate fundamental biological processes including embryonic development, differentiation, homeostatic tissue renewal...

  6. Induced pluripotent stem cells-derived myeloid-derived suppressor cells regulate the CD8+ T cell response

    Directory of Open Access Journals (Sweden)

    Daniel Joyce

    2018-05-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are markedly increased in cancer patients and tumor-bearing mice and promote tumor growth and survival by inhibiting host innate and adaptive immunity. In this study, we generated and characterized MDSCs from murine-induced pluripotent stem cells (iPSCs. The iPSCs were co-cultured with OP9 cells, stimulated with GM-CSF, and became morphologically heterologous under co-culturing with hepatic stellate cells. Allogeneic and OVA-specific antigen stimulation demonstrated that iPS-MDSCs have a T-cell regulatory function. Furthermore, a popliteal lymph node assay and autoimmune hepatitis model showed that iPS-MDSCs also regulate immune responsiveness in vivo and have a therapeutic effect against hepatitis. Taken together, our results demonstrated a method of generating functional MDSCs from iPSCs and highlighted the potential of iPS-MDSCs as a key cell therapy resource for transplantation and autoimmune diseases. Keywords: Myeloid-derived suppressor cells, Induced pluripotent stem cells, T cell response

  7. Early postradiation recovery of precursor cells of hemopoietic stroma

    International Nuclear Information System (INIS)

    Todriya, T.V.

    1984-01-01

    Ability of stroma precursor cells to early postradiation recovery was studied in male mices using the method of fraction irradiation of bone marrow. Donor mices of bone marrow were irradiated in vivo once by the total dose (nonfraction irradiation) and fractionally with 6 h interval between two irradiation doses. The cumulative irradiation doses equal to 10, 12, 14, 16 Gr were investigated. Irradiation was carried out using gamma facility. Bone marrow of the femur was implanted immediately after irradiation under kidney capsule of nonirradiated syngeneic recipient. The ability of stroma precursor cells to intracellular repair (repair index) was evaluated according to the ratio of the number of hemopoietic cells formed in heterotropic transplants in groups with fraction irradiation to the same one in groups with nonfraction irradiation. The obtained results testify to the fact that slowly regenerated highly radioresistant population of precursor cells of hemopoietic stroma is capable to early postradiation recovery

  8. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0517 TITLE: IL-9-Producing Mast Cell Precursors and Food Allergy PRINCIPAL INVESTIGATOR: Dr. Simon P. Hogan PhD...IL-9-Producing Mast Cell Precursors and Food Allergy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yui Hsi Wang, Sunil...threatening anaphylaxis. We have identified a novel multi-functional IL-9-producing mucosal mast cells (MMC9s) that produce large amounts of IL-9, IL

  9. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  10. Suppressors of Hyperinitiation in Escherichia coli Couple DNA Replication to Precursor Biosynthesis and Energy Metabolism

    DEFF Research Database (Denmark)

    Bjørn, Louise

    The Hda protein plays an essential role in inactivation of the initiator protein DnaA from its active, ATP bound form to the inactive DnaA-ADP in E. coli. Cells deficient in Hda suffer from overinitiation, asynchronous initiation and cell death as a consequence of an increased DnaAATP/ Dna......A-ADP ratio . E. coli can suppress the growth defects caused by Hda deficiency by several different mechanisms. The focus of this Ph.d. thesis is to understand the mechanisms that underlie suppression of Hda deficiency in E. coli. These approaches are described in two manuscripts and one published paper. Over...... expression of Ribonucleotide reductase encoded by either nrdAB or nrdEF has been shown to suppress Hda deficiency. The nrdAB promoter contains four consensus binding sequences for DnaA and a 45bp inverted repeat important for cell cycle regulation of nrdAB transcription. In manuscript 1 we show...

  11. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  12. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  13. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  14. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  15. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells

    NARCIS (Netherlands)

    Maldonado, Paloma P; Angulo, María Cecilia

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity

  16. Polysaccharide from Lentinus edodes inhibits the immunosuppressive function of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs. MPSSS is composed of glucose (75.0%, galactose (11.7%, mannose (7.8%, and xylose (0.4%. In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4(+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs.

  17. Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Xiao-Yan He

    2017-10-01

    Full Text Available Calreticulin (CRT, a multifunctional Ca2+-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272 in secreted form (B16-CRT, or recombinant enhanced green fluorescence protein (rEGFP (B16-EGFP, were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC-dependent manner. The B16-CRT-bearing mice showed increased Gr1+ MDSC infiltration in tumor tissues, accelerated proliferation of CD11b+Ly6G+Ly6Clow (G-MDSC precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC in periphery. In in vitro studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs via interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.

  18. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Junling Zhuang

    Full Text Available Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA, a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.

  19. Evidence against suppressor cell involvement in naturally acquired tolerance of a minor histocompatibility antigen

    International Nuclear Information System (INIS)

    Johnson, L.L.

    1991-01-01

    The hypothesis was investigated that suppressor cells may be responsible for maintenance of immunologic tolerance of a minor H3 antigen in mice that express the antigen naturally. Lymphoid cell populations from B6.C-H-24c (HW54) mice, a congenic-resistant strain histoincompatible with H-24b-expressing C57BL/6 (B6) mice only with respect to the H-24 locus, were examined in cell-transfer experiments to see if they contained naturally arising H-24c-specific suppressor cells. The H-24 antigen was chosen for these studies because, unlike most other minor and major histocompatibility (H) antigens, it is not detectable on mature lymphoid cells by any of several functional criteria. Thus transfer of HW54 lymphoid cells to B6 hosts could be done without the complication of inducing hyporesponsiveness de novo in the host, as occurs with other minor H antigens that are expressed on lymphocytes. B6 hosts were given HW54 skin grafts along with HW54 lymphoid cells to assess their tolerance of the H-24c-encoded antigen. The hosts were either (1) normal, nonimmune B6 mice; (2) B6 mice rendered immunodeficient by thymectomy and irradiation (TxB) and repopulated with H-24c-immune B6 lymphocytes; or (3) TxB B6 hosts repopulated with nonimmune B6 lymphocytes. In each case it was found that the additionally infused HW54 lymphoid cells did not suppress the ability of these hosts to reject HW54 skin grafts. In other words, HW54 lymphoid cells appear not to possess suppressive activity specific for the H-24c antigen that might maintain antigen-specific natural tolerance. Additional experiments were performed to determine whether HW54 lymphoid cells can inhibit the ability of sublethally irradiated B6 mice to regain the capacity to reject HW54 skin

  20. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Wilson, A.; Chen, W.-F.; Scollay, R.; Shortman, K.

    1982-01-01

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic 111 In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2 + T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects. (Auth.)

  1. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.; Chen, W.F.; Scollay, R.; Shortman, K. (Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia))

    1982-08-13

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic /sup 111/In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2/sup +/ T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects.

  2. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    International Nuclear Information System (INIS)

    Gualde, N.; Goodwin, J.S.

    1984-01-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [ 3 H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [ 3 H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset

  3. Status of T- and B-cell cooperation in radiation chimeras: evidence for a suppressor effect

    International Nuclear Information System (INIS)

    Gengozian, N.; Urso, P.

    1976-01-01

    Absolute tolerance may not be in operation in the allogeneic bone marrow chimera, but rather a dynamic state involving interaction not only between the donor and host but also among the donor-lymphoid cells themselves may exist. Whether this observation made in one allogeneic chimera, CD2F 1 → C3BF 1 , will be true for other chimeras (different strain combinations, species) remains to be shown. Thus, the tempo, mode, and requirement for the generation of suppressor T cells are factors that may vary for any specific allogeneic bone marrow transplant. Finally, the manner and degree to which the tolerance-inducing mechanism may affect T- and B-cell functions of the chimera with respect to third-party antigens are yet to be determined

  4. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    International Nuclear Information System (INIS)

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-01-01

    Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNFα, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNFα-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNFα on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

  5. Murine neonatal spleen contains natural T and non-T suppressor cells capable of inhibiting adult alloreactive and newborn autoreactive T-cell proliferation.

    Science.gov (United States)

    Hooper, D C; Hoskin, D W; Gronvik, K O; Murgita, R A

    1986-05-01

    The spleen of neonatal mice is known to be a rich source of cells capable of suppressing a variety of immune functions of adult lymphocytes in vitro. From such observations has emerged the concept that the gradual development in ability to express immune functions after birth is due in part to the parallel normal physiological decay of naturally occurring regulatory suppressor cells. There is, however, some confusion in the literature as to the exact nature of the newborn of the newborn inhibitory cell type(s). In contrast to most previous reports which detect only a single type of neonatal suppressor cell, usually a T cell, we show here that newborn spleen harbors both T and non-T inhibitory cells. Both types of suppressor cells could be shown to suppress the proliferative response of adult spleen to alloantigens as well as newborn T cells reacting against self-Ia antigen in the autologous mixed lymphocyte reaction (AMLR). Newborn suppressor T cells were characterized as being non-adherent to Ig-anti-Ig affinity columns, soybean agglutinin receptor negative (SBA-), and susceptible to lysis by anti-T-cell specific antiserum plus complement. Non-T suppressor cells were identified as non-phagocytic, SBA receptor positive (SBA+), and resistant to cytotoxic treatment with anti-T-cell antibodies and complement. The apparent controversy surrounding previous reports as to the T versus non-T nature of newborn suppressor cells can be reconciled by the present observation that both types of inhibitory cells coexist in the spleen. Furthermore, the demonstration that newborn suppressor cells can effectively regulate T-cell proliferative activity mediated by other newborn cells provides more direct support for the contention that such inhibitory cells play a physiological role in controlling immune responsiveness during early ontogeny.

  6. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  7. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate

    Directory of Open Access Journals (Sweden)

    Luigi Tortola

    2016-05-01

    Full Text Available Summary: The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway. : Tortola et al. report that the E3 ubiquitin ligase HACE1 is a gatekeeper of TNFR1-mediated cell fate. Hace1 deficiency impairs TNF-driven NF-κB activation and apoptosis and predisposes cells to necroptosis. Consequently, hace1–/– mice show enhanced colitis and colon cancer, which can be reverted by inactivation of pro-necroptotic kinase RIP3 and TNFR1.

  8. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    Rossana Domenis

    Full Text Available A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression, proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs. Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  9. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    International Nuclear Information System (INIS)

    Nakamura, M.; Ogawa, H.; Tsunematsu, T.

    1990-01-01

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125 I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125 I-MNSF. 125 I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF

  10. The von Hippel-Lindau tumor suppressor regulates programmed cell death 5-mediated degradation of Mdm2

    NARCIS (Netherlands)

    Essers, P B; Klasson, T D; Pereboom, T C; Mans, D A; Nicastro, M; Boldt, K; Giles, R H; MacInnes, A W

    2015-01-01

    Functional loss of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL), which is part of an E3-ubiquitin ligase complex, initiates most inherited and sporadic clear-cell renal cell carcinomas (ccRCC). Genetic inactivation of the TP53 gene in ccRCC is rare, suggesting that an alternate

  11. NDRG2 is a candidate tumor-suppressor for oral squamous-cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Hiroshi; Kondo, Yuudai [Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Nakahata, Shingo; Hamasaki, Makoto [Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Sakoda, Sumio [Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Morishita, Kazuhiro, E-mail: kmorishi@med.miyazaki-u.ac.jp [Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan)

    2010-01-22

    Oral cancer is one of the most common cancers worldwide, and squamous-cell carcinoma (OSCC) is the most common phenotype of oral cancer. Although patients with OSCC have poor survival rates and a high incidence of metastasis, the molecular mechanisms of OSCC development have not yet been elucidated. This study investigated whether N-myc downstream-regulated gene 2 (NDRG2) contributes to the carcinogenesis of OSCC, as NDRG2 is reported to be a candidate tumor-suppressor gene in a wide variety of cancers. The down-regulation of NDRG2 mRNA, which was dependent on promoter methylation, was seen in the majority of OSCC cases and in several cases of precancerous leukoplakia with dysplasia. Induction of NDRG2 expression in an HSC-3/OSCC cell line significantly inhibited cell proliferation and decreased colony formation ability on soft agar. The majority of OSCC cell lines showed an activation of PI3K/Akt signaling, and enforced expression of NDRG2 in HSC-3 cells decreased the level of phosphorylated Akt at Serine 473 (p-Akt). Immunohistochemical p-Akt staining was detected in 56.5% of the OSCC tumors, and 80.4% of the tumors were negative for NDRG2 staining. Moreover, positive p-Akt staining was inversely correlated with decreased NDRG2 expression in OSCC tumors with moderate to poor differentiation (p < 0.005). Therefore, NDRG2 is a candidate tumor-suppressor gene for OSCC development and probably contributes to the tumorigenesis of OSCC partly via the modulation of Akt signaling.

  12. Acquisition of repertoires of suppressor T cells under the influence of macrophages

    International Nuclear Information System (INIS)

    Soejima, T.; Nagayama, A.; Sado, T.; Taniguchi, M.

    1988-01-01

    Acquisition of repertoires and genetic restriction specificities of suppressor T cells (Ts) and their factors were studied by using full allogeneic radiation bone marrow chimera and H-2 congenic pairs, B10.A(3R) and B10.A(5R), which received conventional or cloned macrophages by cell transfer. Suppressor T-cell factor (TsF) from C3H----C57BL/6 or C57BL/6----C3H chimera suppressed only donor but not host-type responses of either C3H or C57BL/6, in an antigen-specific fashion. However, if chimera mice were given conventional or cloned macrophages of the host type, the chimera TsF in turn suppressed both the responses of C3H and C57BL/6 mice but not those of the third party, BALB/c, indicating that macrophages are responsible for the acquisition of host restriction specificity. Similarly, B10.A(5R) mice developed I-Jb restricted Ts or TsF when the B10.A(3R) macrophage cell line was injected at the time of antigen priming. The reverse was also true. B10.A(3R) mice did generate I-Jk restricted Ts when they received the B10.A(5R) macrophage cell line. Thus, the results clearly demonstrated that B10.A(3R) or B10.A(5R) mice potentially possessed their ability to express both I-Jk and I-Jb determinants and that repertoires and genetic restriction specificity of Ts and their TsF were acquired at a macrophage level at the time of antigen-priming

  13. Suppressor cells in transplantation tolerance: I. analysis of the suppressor status of neonatally and adoptively tolerized rats

    International Nuclear Information System (INIS)

    Dorsch, S.; Roser, B.

    1982-01-01

    The lymphocytes from neonatally tolerant rats which adoptively transfer tolerance to sublethally irradiated recipients do so by specificallly suppressing the regeneration of alloreactivity which normally occurs after irradiation. Although tolerant cells will only partially suppress normal alloreactive cells when the two are mixed in near equivalent numbers, experiments in which the interval between injection of tolerant and normal cells into irradiated recipients was gradually extended, indicated that total suppression of normally alloreactive cells was achieved after 8 weeks of prior residence of tolerant cells in the adoptive host. Further evidence that tolerant cells would only suppress if present in excess of normal cells was obtained by reducing the tolerant cell populaton in tolerant donor rats by whole body irradiation. The persistence of tolerance through repeated adoptive transfers was correlated with the persistence of donor (chimeric) cells and the indicator skin graft on adoptive recipients only amplified tolerance expression where the inocula of tolerant cells given was weakly suppressive

  14. Characterization of membrane determinant in old T-cells with suppressor activity

    International Nuclear Information System (INIS)

    Hendricks, L.C.; Heidrick, M.L.

    1986-01-01

    T-cell function declines with age. Many T-cell functions are initiated at the cell membrane; therefore, age-related membrane alterations may contribute to loss of function. They have previously reported developing a monoclonal antibody, HH-AGE-T(1), which recognizes a cell with suppressor activity and binds to 15-20% of the T-cells from old BC3F 1 mice, but only to 0-4% of young T-cells. To further characterize the determinant recognized by HH-AGE-T(1), they analyzed immunoprecipitates (IP) of young and old T-cell membranes by 2D-SDS PAGE, followed by Western blotting. Immunodetection of the blots showed that HH-AGE-T(1) bound a heterodimer (66 kD, pI 8.44 and 36 kD, pI 5.82-7.12 subunits) in IP from old mice; but not young mice. Monoclonal anti-Lyt 2 antibody did not bind the determinant. When IP of iodinated T-cells were run on SDS-PAGE gels followed by blotting and autoradiography of the blots, very prominent bands were detected in the old sample and faint bands were detected in the young sample. These results suggest that HH-AGE-T(1) recognizes a membrane protein which is present in small amounts on young T-cells but which increases markedly with age. Further studies are needed to determine the significance of this age-related membrane change

  15. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    Science.gov (United States)

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  16. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Viktor Fleming

    2018-03-01

    Full Text Available The immune system has many sophisticated mechanisms to balance an extensive immune response. Distinct immunosuppressive cells could protect from excessive tissue damage and autoimmune disorders. Tumor cells take an advantage of those immunosuppressive mechanisms and establish a strongly immunosuppressive tumor microenvironment (TME, which inhibits antitumor immune responses, supporting the disease progression. Myeloid-derived suppressor cells (MDSC play a crucial role in this immunosuppressive TME. Those cells represent a heterogeneous population of immature myeloid cells with a strong immunosuppressive potential. They inhibit an antitumor reactivity of T cells and NK cells. Furthermore, they promote angiogenesis, establish pre-metastatic niches, and recruit other immunosuppressive cells such as regulatory T cells. Accumulating evidences demonstrated that the enrichment and activation of MDSC correlated with tumor progression, recurrence, and negative clinical outcome. In the last few years, various preclinical studies and clinical trials targeting MDSC showed promising results. In this review, we discuss different therapeutic approaches on MDSC targeting to overcome immunosuppressive TME and enhance the efficiency of current tumor immunotherapies.

  17. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  18. Hemopoietic cell precursor responses to erythropoietin in plasma clot cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.L.

    1979-01-01

    The time dependence of the response of mouse bone marrow cells to erythropoietin (Ep) in vitro was studied. Experiments include studies on the Ep response of marrow cells from normal, plethoric, or bled mice. Results with normal marrow reveal: (1) Not all erythroid precursors (CFU-E) are alike in their response to Ep. A significant number of the precursors develop to a mature erythroid colony after very short Ep exposures, but they account for only approx. 13% of the total colonies generated when Ep is active for 48 hrs. If Ep is active more than 6 hrs, a second population of erythroid colonies emerges at a nearly constant rate until the end of the culture. Full erythroid colony production requires prolonged exposure to erythropoietin. (2) The longer erythropoietin is actively present, the larger the number of erythroid colonies that reach 17 cells or more. Two distinct populations of immediate erythroid precursors are also present in marrow from plethoric mice. In these mice, total colony numbers are equal to or below those obtained from normal mice. However, the population of fast-responding CFU-E is consistently decreased to 10 to 20% of that found in normal marrow. The remaining colonies are formed from plethoric marrow at a rate equal to normal marrow. With increasing Ep exposures, the number of large colonies produced increases. From the marrow of bled mice, total erythroid colony production is equal to or above that of normal marrow. Two populations of colony-forming cells are again evident, with the fast-responding CFU-E being below normal levels. The lack of colonies from this group was compensated in bled mice by rapid colony production in the second population. A real increase in numbers of precursors present in this pool increased the rate of colony production in culture to twice that of normal marrow. The number of large colonies obtained from bled mice was again increased as the Ep exposure was lengthened. (ERB)

  19. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    Science.gov (United States)

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development

    Science.gov (United States)

    Benz, Claudia; Martins, Vera C.; Radtke, Freddy; Bleul, Conrad C.

    2008-01-01

    T cell development in the thymus depends on continuous colonization by hematopoietic precursors. Several distinct T cell precursors have been identified, but whether one or several independent precursor cell types maintain thymopoiesis is unclear. We have used thymus transplantation and an inducible lineage-tracing system to identify the intrathymic precursor cells among previously described thymus-homing progenitors that give rise to the T cell lineage in the thymus. Extrathymic precursors were not investigated in these studies. Both approaches show that the stream of T cell lineage precursor cells, when entering the thymus, selectively passes through the early T lineage precursor (ETP) stage. Immigrating precursor cells do not exhibit characteristics of double-negative (DN) 1c, DN1d, or DN1e stages, or of populations containing the common lymphoid precursor 2 (CLP-2) or the thymic equivalent of circulating T cell progenitors (CTPs). It remains possible that an unknown hematopoietic precursor cell or previously described extrathymic precursors with a CLP, CLP-2, or CTP phenotype feed into T cell development by circumventing known intrathymic T cell lineage progenitor cells. However, it is clear that of the known intrathymic precursors, only the ETP population contributes significant numbers of T lineage precursors to T cell development. PMID:18458114

  1. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Directory of Open Access Journals (Sweden)

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  2. Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell

    International Nuclear Information System (INIS)

    Hall, B.M.

    1985-01-01

    DA rats treated with hyperimmune anti-PVG serum and grafted with (DA X PVG)F1 heart grafts in which graft survival was prolonged for greater than 75 d were used to examine the cellular mechanisms that maintain the state of specific unresponsiveness found in these animals. The capacity of lymphocytes from these animals to effect or inhibit graft rejection on adoptive transfer to irradiated heart-grafted hosts was tested. Spleen cell populations and the T cell subpopulation separated from spleen cells in vitro failed to restore rejection of PVG heart grafts in irradiated DA recipients but restored third party Lew graft rejection. Whole spleen cells had the capacity to suppress the ability of normal DA LNC to cause graft rejection, but T cells from spleen only delayed the restoration of rejection. LNC and recirculating T cells from rats with enhanced grafts adoptively restored PVG rejection, however. These studies show that the state of specific unresponsiveness that follows the induction of passive enhancement is dependent in part upon active suppression, which is induced or mediated by T lymphocytes. The recirculating pool of lymphocytes in these animals is not depleted of specific alloreactive cells with the capacity to initiate and effect rejection. Thus, these animals responsiveness is not like that found in transplantation tolerance induced in neonatal rats, but is, in part, due to a suppressor response that can inhibit normal alloreactive cells capacity to initiate and effect rejection

  3. Cell adhesion signaling regulates RANK expression in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Ayako Mochizuki

    Full Text Available Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK differentiate into osteoclasts following stimulation with the RANK ligand (RANKL. Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition. BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS and tumor necrosis factor -αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6 in BMMs induced their differentiation into osteoclasts even under the non

  4. A virus-sensitive suppressor cell is involved in the regulation of human allospecific T cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Muluk, S.C.; Bernstein, D.C.; Shearer, G.M.

    1989-01-01

    The in vitro generation of allospecific CTL by human PBMC was enhanced 4- to 16-fold by sequential plastic and nylon wool adherence, which depleted the PBMC of macrophages and B cells. The enhanced CTL response was suppressed by adding back irradiated, unfractionated PBMC or adherent cells to the depleted cells. This finding suggests that the enhanced CTL response was not simply a consequence of enrichment of T cells, but was instead due to active suppression by radioresistant cells contained in the adherent fraction. Of note is the finding that, unlike the CTL response, the proliferative response to allostimulation was not affected by the removal of adherent cells. The suppressor function could be abrogated by preincubation of irradiated PBMC with influenza A virus before the coculture with depleted cells. Furthermore, costimulation of unfractionated PBMC with influenza A virus and allogeneic stimulators augmented allospecific CTL activity. Thus, in the adherent fraction of human PBMC, there appears to be a native suppressor population that can be functionally inactivated by virus. This result may account for the clinical observation of increased allograft rejection after certain viral infections

  5. Suppressor cells in transplantation tolerance. I. Analysis of the suppressor status of neonatally and adoptively tolerized rats

    International Nuclear Information System (INIS)

    Dorsch, S.; Roser, B.

    1982-01-01

    The lymphocytes from neonatally tolerant rats which adoptively transfer tolerance to sublethally irradiated recipients do so by specifically suppressing the regeneration of alloreactivity which normally occurs after irradiation. Although tolerant cells will only partially suppress normal alloreactive cells when the two are mixed in near equivalent numbers, experiments in which the interval between injection of tolerant and normal cells into irradiated recipients was gradually extended, indicated that total suppression of normally alloreactive cells was achieved after 8 weeks of prior residence of tolerant cells in the adoptive host. Further evidence that tolerant cells would only suppress if present in excess of normal cells was obtained by reducing the tolerant cell population in tolerant donor rats by whole body irradiation. These animals then lost their ability to suppress normal alloreactive cells administered to them. The immune status of adoptively tolerized animals did not mimic that of the donors of the tolerant cells. Even where full tolerance, as measured by skin graft survival, failure to synthesize alloantibodies, and capacity to further transfer skin graft tolerance to secondary recipients, was evident the lymphocytes of these animals showed considerable graft-versus-host (GVH) reactivity. The persistence of tolerance through repeated adoptive transfers was correlated with the persistence of donor (chimeric) cells and the indicator skin graft on adoptive recipients only amplified tolerance expression where the inocula of tolerant cells given was weakly suppressive. Finally, removal of the minor population of chimeric cells from tolerant inocula using cytotoxic alloantisera abolished the capacity to transfer tolerance. These results imply an active role for chimeric cells which is best understood as an immune response involving proliferation driven by the idiotypes of the alloreceptors on host cells

  6. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    Science.gov (United States)

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  7. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  8. LEPREL1 Expression in Human Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jianguo Wang

    2013-01-01

    Full Text Available Background. Hepatocellular carcinoma (HCC is one of the most aggressive malignancies worldwide. It is characterized by its high invasive and metastatic potential. Leprecan-like 1 (LEPREL1 has been demonstrated to be downregulated in the HCC tissues in previous proteomics studies. The present study is aimed at a new understanding of LEPREL1 function in HCC. Methods. Quantitative RT-PCR, immunohistochemical analysis, and western blot analysis were used to evaluate the expression of LEPREL1 between the paired HCC tumor and nontumorous tissues. The biology function of LEPREL1 was investigated by Cell Counting Kit-8 (CCK8 assay and colony formation assay in HepG2 and Bel-7402 cells. Results. The levels of LEPREL1 mRNA and protein were significantly lower in the HCC tissues as compared to those of the nontumorous tissues. Reduced LEPREL1 expression was not associated with conventional clinical parameters of HCC. Overexpression of LEPREL1 in HepG2 and Bel-7402 cells inhibited cell proliferation (P<0.01 and colony formation (P<0.05. LEPREL1 suppressed tumor cell proliferation through regulation of the cell cycle by downregulation of cyclins. Conclusions. Clinical parameters analysis suggested that LEPREL1 was an independent factor in the development of HCC. The biology function experiments showed that LEPREL1 might serve as a potential tumor suppressor gene by inhibiting the HCC cell proliferation.

  9. Reduction of Myeloid-derived Suppressor Cells and Lymphoma Growth by a Natural Triterpenoid

    Science.gov (United States)

    Radwan, Faisal F. Y.; Hossain, Azim; God, Jason M.; Leaphart, Nathan; Elvington, Michelle; Nagarkatti, Mitzi; Tomlinson, Stephen; Haque, Azizul

    2016-01-01

    Lymphoma is a potentially life threatening disease. The goal of this study was to investigate the therapeutic potential of a natural triterpenoid, Ganoderic acid A (GA-A) in controlling lymphoma growth both in vitro and in vivo. Here, we show that GA-A treatment induces caspase-dependent apoptotic cell death characterized by a dose-dependent increase in active caspases 9 and 3, up-regulation of pro-apoptotic BIM and BAX proteins, and a subsequent loss of mitochondrial membrane potential with release of cytochrome c. In addition to GA-A’s anti-growth activity, we show that lower doses of GA-A enhance HLA class II-mediated antigen presentation and CD4+ T cell recognition of lymphoma in vitro. The therapeutic relevance of GA-A treatment was also tested in vivo using the EL4 syngeneic mouse model of metastatic lymphoma. GA-A-treatment significantly prolonged survival of EL4 challenged mice and decreased tumor metastasis to the liver, an outcome accompanied by a marked down-regulation of STAT3 phosphorylation, reduction myeloid-derived suppressor cells (MDSCs), and enhancement of cytotoxic CD8+ T cells in the host. Thus, GA-A not only selectively induces apoptosis in lymphoma cells, but also enhances cell-mediated immune responses by attenuating MDSCs, and elevating Ag presentation and T cell recognition. The demonstrated therapeutic benefit indicates that GA-A is a candidate for future drug design for the treatment of lymphoma. PMID:25142864

  10. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    International Nuclear Information System (INIS)

    Mack, Hildegard I.D.; Munger, Karl

    2013-01-01

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer

  11. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J; Markowitz, Sanford D; Kusner, Linda L; Kaminski, Henry J; Lu, Lina; Lin, Feng

    2014-09-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Myeloid-Derived Suppressor Cells Specifically Suppress IFN-γ Production and Antitumor Cytotoxic Activity of Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Sacchi

    2018-06-01

    Full Text Available γδ T cells represent less than 5% of circulating T cells; they exert a potent cytotoxic function against tumor or infected cells and secrete cytokines like conventional αβ T cells. As αβ T cells γδ T cells reside in the typical T cell compartments (the lymph nodes and spleen, but are more widely distributed in tissues throughout the body. For these reasons, some investigators are exploring the possibility of immunotherapies aimed to expand and activate Vδ2 T cells, or using them as Chimeric Antigen Receptor carriers. However, the role of immunosuppressive microenvironment on Vδ2 T cells during infections and cancers has not been completely elucidated. In particular, the effects of myeloid-derived suppressor cells (MDSC, largely expanded in such pathologies, were not explored. In the present work, we demonstrated that MDSC may inhibit IFN-γ production and degranulation of phosphoantigen-activated Vδ2 T cells. Moreover, the Vδ2 T cells cytotoxic activity against the Burkitt lymphoma cell line Daudi and Jurkat cell line were impaired by MDSC. The Arginase I seems to be involved in the impairment of Vδ2 T cell function induced by both tumor cells and MDSC. These data open a key issue in the context of Vδ2-targeted immunoteraphy, suggesting the need of combined strategies aimed to boost Vδ2 T cells circumventing tumor- and MDSC-induced Vδ2 T cells suppression.

  13. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade.

    Science.gov (United States)

    Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S; Cowell, John K; Korkaya, Hasan

    2017-04-06

    It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced 'metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression.

  14. Engineered reversal of drug resistance in cancer cells--metastases suppressor factors as change agents.

    Science.gov (United States)

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.

  15. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  16. Nature of the suppressor cells mediating prolonged graft survival after administration of extracted histocompatibility antigen and cyclosporine

    International Nuclear Information System (INIS)

    Yoshimura, N.; Kahan, B.D.

    1985-01-01

    Antigen-specific suppressor T cells are induced by donor histocompatibility antigen extracted from spleen cells with 3M KCl combined with cyclosporine (Ag-CsA). A single i.v. injection of 5 mg 3M-KCl-extracted donor Buffalo (Buf, RT1b) antigen (Ag) combined with a three day course of CsA prolonged renal allograft survival in Wistar-Furth (WFu, RT1u) hosts to a greater extent (MST 26.5 days) than CsA alone (MST 11.8 days). Peripheral blood lymphocytes (PBL) or spleen cells harvested from Ag-CsA-treated recipients ten days after transplantation inhibited the mixed lymphocyte reaction (MLR) between normal responder WFu cells and irradiated Buf cells (55.6% and 64.4% suppression, respectively, P less than 0.025), but not third-party Brown-Norway (BN, RT1n) stimulator cells (13.6% and -18.3% suppression, respectively, NS). The suppressor effect was not mediated by cytolytic cells; there was neither primary nor secondary cytolytic activity against 51 Cr-labeled Con-A blastoid Buf cells. The suppressor cells were neither adherent to plastic dishes nor to nylon-wool columns. PBL irradiated with 800 rads, but not 1500 rads, suppressed the MLR. A single injection of cyclophosphamide (CY, 25 mg/kg) seven days after transplantation abrogated the suppression induced by Ag-CsA treatment. Moreover, PBL from Ag-CsA recipients failed to suppress the MLR, if depleted either of all T cells by treatment with monoclonal antibody (Mab) W3/13 HLK (pan T cells; % suppression -15.8), or of cytotoxic/suppressor cells with Mab OX-8 (-19.3% suppression) together with rabbit antimouse immunoglobulin and complement

  17. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer

    Directory of Open Access Journals (Sweden)

    Srivastava MK

    2012-10-01

    Full Text Available Minu K Srivastava,1,2 Li Zhu,1,2 Marni Harris-White,2 Min Huang,1–3 Maie St John,1,3 Jay M Lee,1,3 Ravi Salgia,4 Robert B Cameron,1,3,5 Robert Strieter,6 Steven Dubinett,1–3 Sherven Sharma1–31Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 4Department of Medicine, University of Chicago, Chicago, IL, 5Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 6Department of Medicine, University of Virginia, Charlottesville, VA, USAAbstract: Lung cancer evades host immune surveillance by dysregulating inflammation. Tumors and their surrounding stromata produce growth factors, cytokines, and chemokines that recruit, expand, and/or activate myeloid-derived suppressor cells (MDSCs. MDSCs regulate immune responses and are frequently found in malignancy. In this review the authors discuss tumor-MDSC interactions that suppress host antitumor activities and the authors' recent findings regarding MDSC depletion that led to improved therapeutic vaccination responses against lung cancer. Despite the identification of a repertoire of tumor antigens, hurdles persist for immune-based anticancer therapies. It is likely that combined therapies that address the multiple immune deficits in cancer patients will be required for effective therapy. MDSCs play a major role in the suppression of T-cell activation and they sustain tumor growth, proliferation, and metastases. Regulation of MDSC recruitment, differentiation or expansion, and inhibition of the MDSC suppressive function with pharmacologic agents will be useful in the control of cancer growth and progression. Pharmacologic agents that regulate MDSCs may be more effective when combined with

  18. Suppressor of fused (Sufu) promotes epithelial-mesenchymal transition (EMT) in cervical squamous cell carcinoma

    Science.gov (United States)

    Zhang, Ziyu; Zou, Yang; Liang, Meirong; Chen, Yuanting; Luo, Yong; Yang, Bicheng; Liu, Faying; Qin, Yunna; He, Deming; Wang, Feng; Huang, Ouping

    2017-01-01

    Suppressor of fused is essential for the maximal activation of Sonic Hedgehog signaling in development and tumorigenesis. However, the role of Sufu in cervical carcinoma remains unknown. Here, we report new findings of Sufu in regulating the epithelial-to-mesenchymal transition through the FoxM1 transcriptional modulation by 14-3-3ζ protein in cervical carcinoma. Sufu is overexpressed in cervical squamous cell carcinoma and its level in clinical tumor tissues is positively correlated with 14-3-3ζ. Functionanlly, siSufu remarkably prevents the cancer cell migration and invasion. We further demonstrate that the transcriptional activity of Sufu is increased by FoxM1, of which stability is promoted by 14-3-3ζ. Knockdown FoxM1 decreases the invasion of SiHa cells and reconstitution of Sufu rescues the invasion of these cells.Finally, overexpression of Sufu is significantly associated with differentiation grade, FIGO stage, Depth of stromal invasion and vascular cancer embolus. Our findings highlight a novel role for Sufu in cervical carcinogenesis. PMID:29371981

  19. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gemfibrozil, a Lipid-lowering Drug, Induces Suppressor of Cytokine Signaling 3 in Glial Cells

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-01-01

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders. PMID:22685291

  1. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    Science.gov (United States)

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  2. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid.

    Science.gov (United States)

    Radwan, Faisal F Y; Hossain, Azim; God, Jason M; Leaphart, Nathan; Elvington, Michelle; Nagarkatti, Mitzi; Tomlinson, Stephen; Haque, Azizul

    2015-01-01

    Lymphoma is a potentially life threatening disease. The goal of this study was to investigate the therapeutic potential of a natural triterpenoid, Ganoderic acid A (GA-A) in controlling lymphoma growth both in vitro and in vivo. Here, we show that GA-A treatment induces caspase-dependent apoptotic cell death characterized by a dose-dependent increase in active caspases 9 and 3, up-regulation of pro-apoptotic BIM and BAX proteins, and a subsequent loss of mitochondrial membrane potential with release of cytochrome c. In addition to GA-A's anti-growth activity, we show that lower doses of GA-A enhance HLA class II-mediated antigen (Ag) presentation and CD4+ T cell recognition of lymphoma cells in vitro. The therapeutic relevance of GA-A treatment was also tested in vivo using the EL4 syngeneic mouse model of metastatic lymphoma. GA-A-treatment significantly prolonged survival of EL4 challenged mice and decreased tumor metastasis to the liver, an outcome accompanied by a marked down-regulation of STAT3 phosphorylation, reduction myeloid-derived suppressor cells (MDSCs), and enhancement of cytotoxic CD8+ T cells in the host. Thus, GA-A not only selectively induces apoptosis in lymphoma cells, but also enhances cell-mediated immune responses by attenuating MDSCs, and elevating Ag presentation and T cell recognition. The demonstrated therapeutic benefit indicates that GA-A is a candidate for future drug design for the treatment of lymphoma. © 2014 Wiley Periodicals, Inc.

  3. Proteomic analysis of osteogenic differentiation of dental follicle precursor cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Petersen, Jørgen; Völlner, Florian

    2009-01-01

    of differentiation. In the present study we applied 2-DE combined with capillary-LC-MS/MS analysis to profile differentially regulated proteins upon differentiation of dental follicle precursor cells (DFPCs). Out of 115 differentially regulated proteins, glutamine synthetase, lysosomal proteinase cathepsin B....... The bioinformatic analyses suggest that proteins associated with cell cycle progression and protein metabolism were down-regulated and proteins involved in catabolism, cell motility and biological quality were up-regulated. These results display the general physiological state of DFPCs before and after osteogenic...... proteins, plastin 3 T-isoform, beta-actin, superoxide dismutases, and transgelin were found to be highly up-regulated, whereas cofilin-1, pro-alpha 1 collagen, destrin, prolyl 4-hydrolase and dihydrolipoamide dehydrogenase were found to be highly down-regulated. The group of up-regulated proteins...

  4. Circulating osteogentic precursor cells in non-hereditary heterotopic ossification.

    Science.gov (United States)

    Egan, Kevin P; Duque, Gustavo; Keenan, Mary Ann; Pignolo, Robert J

    2018-04-01

    Non-hereditary heterotopic ossification (NHHO) may occur after musculoskeletal trauma, central nervous system (CNS) injury, or surgery. We previously described circulating osteogenic precursor (COP) cells as a bone marrow-derived type 1 collagen + CD45 + subpopulation of mononuclear adherent cells that are able of producing extraskeletal ossification in a murine in vivo implantation assay. In the current study, we performed a tissue analysis of COP cells in NHHO secondary to defined conditions, including traumatic brain injury, spinal cord injury, cerebrovascular accident, trauma without neurologic injury, and joint arthroplasty. All bone specimens revealed the presence of COP cells at 2-14 cells per high power field. COP cells were localized to early fibroproliferative and neovascular lesions of NHHO with evidence for their circulatory status supported by their presence near blood vessels in examined lesions. This study provides the first systematic evaluation of COP cells as a contributory histopathological finding associated with multiple forms of NHHO. These data support that circulating, hematopoietic-derived cells with osteogenic potential can seed inflammatory sites, such as those subject to soft tissue injury, and due to their migratory nature, may likely be involved in seeding sites distant to CNS injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Cai

    2017-07-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are expanded in tumor microenvironments, including that of Epstein-Barr virus (EBV-associated nasopharyngeal carcinoma (NPC. The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1 promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1 and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3 inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC.

  6. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  7. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  8. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    Science.gov (United States)

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  9. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    suppressor gene, can contribute to human epithelial cell carcinoma and may be served as a biomarker in HNSCC.

  10. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  11. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa, E-mail: seya-tu@pop.med.hokudai.ac.jp

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  12. Suppressor of cytokine signaling 1 modulates invasion and metastatic potential of colorectal cancer cells.

    Science.gov (United States)

    David, Muriel; Naudin, Cécile; Letourneur, Martine; Polrot, Mélanie; Renoir, Jack-Michel; Lazar, Vladimir; Dessen, Philippe; Roche, Serge; Bertoglio, Jacques; Pierre, Josiane

    2014-07-01

    Suppressor of cytokine signaling (SOCS) 1 is an inducible negative regulator of cytokine signaling but its role in human cancer is not completely established. Here we report that, while SOCS1 is expressed in normal colonic epithelium and colon adenocarcinomas, its level decreases during progression of colon adenocarcinomas, the lowest level being found in the most aggressive stage and least differentiated carcinomas. Forced expression of SOCS1 in metastatic colorectal SW620 cells reverses many characteristics of Epithelial-Mesenchymal Transition (EMT), as highlighted by the disappearance of the transcription factor ZEB1 and the mesenchymal form of p120ctn and the re-expression of E-cadherin. Furthermore, miRNA profiling indicated that SOCS1 also up-regulates the expression of the mir-200 family of miRNAs, which can promote the mesenchymal-epithelial transition and reduce tumor cell migration. Accordingly, overexpression of SOCS1 induced cell morphology changes and dramatically reduced tumor cell invasion in vitro. When injected in nude mice, SOCS1-expressing SW620 cells induced metastases in a smaller number of animals than parental SW620 cells, and did not generate any adrenal gland or bone metastasis. Overall, our results suggest that SOCS1 controls metastatic progression of colorectal tumors by preventing the mesenchymal-epithelial transition (MET), including E-cadherin expression. This pathway may be associated with survival to colorectal cancer by reducing the capacity of generating metastases. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Expansion of monocytic myeloid-derived suppressor cells in endometriosis patients: A pilot study.

    Science.gov (United States)

    Chen, Haiwen; Qin, Shuang; Lei, Aihua; Li, Xing; Gao, Qi; Dong, Jingyin; Xiao, Qing; Zhou, Jie

    2017-06-01

    Endometriosis is a chronic inflammation disease and is closely associated with immune dysregulation. Myeloid-derived suppressor cells (MDSCs) are a negative regulator of the immune system. The aim of this study was to evaluate the possible role of MDSCs in endometriosis patients. We collected the peripheral blood and peritoneal fluid from endometriosis patients and controls and analyzed M-MDSCs level using specific monoclonal antibodies recognizing HLA-DR, CD33, CD11b, CD14 markers by flow cytometry. We found that there existed abnormal expansion of monocytic MDSCs (M-MDSCs) (HLA-DR -/low CD33 + CD11b + CD14 + ) in peripheral blood and peritoneal fluid of patients with endometriosis. Functional studies revealed that M-MDSCs from endometriosis patients significantly suppressed T-cell responses and produced high level of reactive oxygen species (ROS). The elevation of M-MDSCs from endometriosis patients may contribute to the disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  15. History of myeloid derived suppressor cells (MDSCs) in the macro- and micro-environment of tumour-bearing hosts

    Science.gov (United States)

    Talmadge, James E.; Gabrilovich, Dmitry I.

    2015-01-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T-cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies revealed that this hyperplasia was associated with populations of multi-potent progenitor cells identified as myeloid-derived suppressor cells (MDSCs). The discovery and study of MDSCs have provided a wealth of information regarding tumour pathobiology, extended our understanding of neoplastic progression, and modified our approaches to immune adjuvant therapy. In this perspective, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs, and the host macroenvironment. PMID:24060865

  16. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2018-04-01

    Full Text Available The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.

  17. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  18. GBM secretome induces transient transformation of human neural precursor cells.

    Science.gov (United States)

    Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K

    2012-09-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.

  19. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  20. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  1. Precursors of executive function in infants with sickle cell anemia.

    Science.gov (United States)

    Hogan, Alexandra M; Telfer, Paul T; Kirkham, Fenella J; de Haan, Michelle

    2013-10-01

    Executive dysfunction occurs in sickle cell anemia, but there are few early data. Infants with sickle cell anemia (n = 14) and controls (n = 14) performed the "A-not-B" and Object Retrieval search tasks, measuring precursors of executive function at 9 and 12 months. Significant group differences were not found. However, for the A-not-B task, 7 of 11 sickle cell anemia infants scored in the lower 2 performance categories at 9 months, but only 1 at 12 months (P = .024); controls obtained scores at 12 months that were statistically comparable to the scores they had already obtained at 9 months. On the Object Retrieval task, 9- and 12-month controls showed comparable scores, whereas infants with sickle cell anemia continued to improve (P = .027); at 9 months, those with lower hemoglobin oxygen saturation passed fewer trials (R s = 0.670, P = .024) and took longer to obtain the toy (R s = -0.664, P = .013). Subtle delays in acquiring developmental skills may underlie abnormal executive function in childhood.

  2. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  3. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells.

    Science.gov (United States)

    Maldonado, Paloma P; Angulo, María Cecilia

    2015-06-01

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity is a signaling pathway controlling OPC proliferation/differentiation, influencing the myelination process. However, new evidences describing non-synaptic mechanisms of communication between neurons and OPCs have revealed that neuron-OPC interactions are more complex than expected. The activation of extrasynaptic receptors by ambient neurotransmitter or local spillover and the ability of OPCs to sense neuronal activity through a potassium channel suggest that distinct modes of communication mediate different functions of OPCs in the CNS. This review discusses different mechanisms used by OPCs to interact with neurons and their potential roles during postnatal development and in brain disorders. © The Author(s) 2014.

  4. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  5. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs

    Directory of Open Access Journals (Sweden)

    Sherger Matthew

    2012-10-01

    Full Text Available Abstract Background Myeloid derived suppressor cells (MDSCs are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investigated in veterinary oncology. The treatment of canine cancer not only benefits dogs, but is being used for translational studies evaluating and modifcying candidate therapies for use in humans. Thus, it is necessary to understand the immune alterations seen in canine cancer patients which, to date, have been relatively limited. This study investigates the use of commercially available canine antibodies to detect an immunosuppressive (CD11blow/CADO48low cell population that is increased in the peripheral blood of tumor-bearing dogs. Results Commercially available canine antibodies CD11b and CADO48A were used to evaluate white blood cells from the peripheral blood cells of forty healthy control dogs and forty untreated, tumor-bearing dogs. Tumor-bearing dogs had a statistically significant increase in CD11blow/CADO48Alow cells (7.9% as compared to the control dogs (3.6%. Additionally, sorted CD11blow/CADO48Alow generated in vitro suppressed the proliferation of canine lymphocytes. Conclusions The purpose of this study was aimed at identifying potential canine specific markers for identifying MDSCs in the peripheral blood circulation of dogs. This study demonstrates an increase in a unique CD11blow/CADO48Alow cell population in tumor-bearing dogs. This immunophenotype is consistent with described phenotypes of MDSCs in other species (i.e. mice and utilizes commercially available canine-specific antibodies. Importantly, CD11blow/CADO48Alow from a tumor environment

  6. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice.

    Science.gov (United States)

    Wu, Danxiao; Shi, Yu; Wang, Cheng; Chen, Hanwen; Liu, Qiaoyun; Liu, Jianhua; Zhang, Lihuang; Wu, Yihua; Xia, Dajing

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) confer immunosuppressive properties, but their roles in fulminant hepatitis have not been well defined. In this study, we systematically examined the distribution of MDSCs in bone marrow (BM), liver and spleen, and their functional and differentiation status in an acute fulminant hepatitis mouse model induced by lipopolysaccharide and D-galactosamine (LPS-GalN). Moreover, the interaction between NKT cells and MDSCs was determined. Our study revealed that BM contained the largest pool of MDSCs during pathogenesis of fulminant hepatitis compared with liver and spleen. MDSCs in liver/spleen expressed higher levels of chemokine receptors such as CCR2, CX3CR1 and CXCR2. At inflamed tissues such as liver or spleen, activated NKT cells induced differentiation of MDSCs through cell-cell interaction, which markedly dampened the immunosuppressive effects and promoted MDSCs to produce pro-inflammatory cytokines and activate inflammatory cells. Our findings thus demonstrated an unexpected pro-inflammatory state for MDSCs, which was mediated by the activated NKT cells that precipitated the differentiation and functional evolution of these MDSCs at sites of inflammation. Copyright © 2016. Published by Elsevier GmbH.

  7. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    Science.gov (United States)

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  8. Are Haemopoietic Stem Cells Precursor Cells in Secondary Disease?

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, J. L. [Central Institute of Haematology and Blood Transfusion, Moscow, USSR (Russian Federation)

    1969-07-15

    The paper gives data on acute secondary disease developing in supra-lethally irradiated dogs and monkeys after transplantation of allogenic bone marrow. On the basis of the experimental data obtained, the author discusses the question whether haemopoietic stem cells play a role as first links in the histogenesis of the lymphoid elements responsible for acute secondary disease. (author)

  9. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-01-01

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  10. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  11. Simultaneous Infiltration of Polyfunctional Effector and Suppressor T Cells into Renal Cell Carcinomas

    NARCIS (Netherlands)

    Attig, Sebastian; Hennenlotter, Jörg; Pawelec, Graham; Klein, Gerd; Koch, Sven D.; Pircher, Hanspeter; Feyerabend, Susan; Wernet, Dorothee; Stenzl, Arnulf; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2009-01-01

    Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell

  12. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis | Center for Cancer Research

    Science.gov (United States)

    We demonstrate a novel tumor-promoting role of myeloid immune suppressor Gr+CD11b+ cells, which are evident in cancer patients and tumor-bearing animals. These cells constitute approximately 5% of total cells in tumors. Tumors coinjected with Gr+CD11b+ cells exhibited increased vascular density, vascular maturation, and decreased necrosis. These immune cells produce high

  13. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    Science.gov (United States)

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  14. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  15. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells

    International Nuclear Information System (INIS)

    Thiem, Suzanne M.; Chejanovsky, Nor

    2004-01-01

    Infecting the insect cell line IPLB-Ld652Y with the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, which correlates with the presence of the AcMNPV apoptotic suppressor, p35. In this study, we investigated the role of apoptotic suppression on AcMNPV-induced translation arrest. Infecting cells with AcMNPV bearing nonfunctional mutant p35 did not result in global translation arrest. In contrast, global translation arrest was observed in cells infected with AcMNPV in which p35 was replaced with Opiap, Cpiap, or p49, baculovirus apoptotic suppressors that block apoptosis by different mechanisms than p35. These results indicated that suppressing apoptosis triggered translation arrest in AcMNPV-infected Ld652Y cells. Experiments using the DNA synthesis inhibitor aphidicolin and temperature shift experiments, using the AcMNPV replication mutants ts8 and ts8Δp35, indicated that translation arrest initiated during the early phase of infection, but events during the late phase were required for global translation arrest. Peptide caspase inhibitors could not substitute for baculovirus apoptotic suppressors to induce translation arrest in Ld652Y cells infected with a p35-null virus. However, if the p35-null-AcMNPV also carried hrf-1, a novel baculovirus host range gene, progeny virus was produced and treatment with peptide caspase inhibitors enhanced translation of a late viral gene transcript. Together, these results indicate that translation arrest in AcMNPV-infected Ld652Y cells is due to the anti-apoptotic function of p35, but suggests that rather than simply preventing caspase activation, its activity enhances signaling to a separate translation arrest pathway, possibly by stimulating the late stages of the baculovirus infection cycle

  16. No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

    DEFF Research Database (Denmark)

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I

    2017-01-01

    BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic...... tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype...

  17. Comparison of the suppressor cells found in the spleens of 89Sr-treated mice and in normal murine bone marrow

    International Nuclear Information System (INIS)

    Levy, E.M.; Corvese, J.S.; Bennett, M.

    1981-01-01

    Normal murine bone marrow cells and spleen cells of mice treated with 89 Sr both have suppressive activity. These nonspecific suppressor cells inhibit the ability of normal spleen cells to undergo antibody responses in vitro. After being precultured for 24 hr, these cells will also suppress antibody responses in vivo and the responses of normal spleen cells to T and B cell mitogens in vitro. These cells have previously been shown not to be mature T or B lymphocytes or macrophages. Velocity sedimentation and cell-size analysis indicated that both suppressor cells are large (approx. =206 μ 3 ). Mitomycin C treatment eliminated the ability of both suppressor cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to suppress a mitogenic response. Irradiation (1000 R) was also ineffective in eliminating the ability of either cell to suppress a mitogenic response. We conclude that the 2 suppressor cells are closely related if not identical, and we speculate that these cells may function in vivo to suppress immune reactivity in areas of intense hematopoiesis

  18. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells.

    Science.gov (United States)

    Han, Sora; Jeong, Ae Lee; Lee, Sunyi; Park, Jeong Su; Kim, Kwang Dong; Choi, Inpyo; Yoon, Suk Ran; Lee, Myung Sok; Lim, Jong-Seok; Han, Seung Hyun; Yoon, Do Young; Yang, Young

    2013-05-01

    Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.

  19. Immunoregulatory changes induced by total lymphoid irradiation. II. Development of thymus-leukemia antigen-positive and -negative suppressor T cells that differ in their regulatory function

    International Nuclear Information System (INIS)

    King, D.P.; Strober, S.

    1981-01-01

    BALB/c mice treated with total lymphoid irradiation (TLI) develop non-antigen-specific suppressor cells of the adoptive secondary antibody response and of the mixed leukocyte reaction. Suppressors of the adoptive anti-DNP response were eliminated by incubation of spleen cells with anti-Thy-1.2 or anti-thymus-leukemia (TL) antiserum and complement before cell transfer. Thymectomy before TLI prevented the appearance of the latter suppressor cells. On the other hand, suppressors of the MLR were eliminated by incubation of spleen cells with anti-Thy-1.2 but not anti-TL antiserum and complement. Thymectomy before TLI did not prevent their subsequent development. Thus, two subpopulations of suppressor T cells that differ in the expression of the TL surface antigen, dependence on the presence of the thymus, and in regulatory functions develop after TLI. The TL+, thymus-dependent cell suppresses the adoptive antibody response, and the TL-, thymus-independent cell suppresses the MLR

  20. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  1. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  2. Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function.

    Directory of Open Access Journals (Sweden)

    Maria Sophia Mackroth

    2016-11-01

    Full Text Available In acute Plasmodium falciparum (P. falciparum malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections.

  3. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  4. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  5. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  6. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    Science.gov (United States)

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  7. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D 0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F 1 +/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D 0 value was about 100 rad for the former and about 800 rad for the latter

  8. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter

  9. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in cell proliferation, growth and energy metabolic processes important for the neoplastic cells. In deleted regions, genes showing decreased expression included transcription factors or repressors (e.g. SP4, PRDM1, NCOR1 and ZNF10), tumor suppressors or negative regulators of the cell cycle (e.g. CDKN2C...

  10. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  11. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  12. Identification of early B cell precursors (stage 1 and 2 hematogones) in the peripheral blood.

    Science.gov (United States)

    Kurzer, Jason H; Weinberg, Olga K

    2018-05-25

    Differentiating malignant B-lymphoblasts from early benign B cell precursors (hematogones) is a vital component of the diagnosis of B-lymphoblastic leukaemia. It has been previously reported that only late-stage B cell precursors circulate in the peripheral blood. Consequently, flow cytometric detection of cells with immunophenotypic findings similar to earlier stage precursors in the peripheral blood justifiably raises concern for involvement by B-lymphoblastic leukaemia. We report here, however, that benign early B cell precursors can indeed be detected in the peripheral blood, thus complicating the interpretation of flow cytometric findings derived from these sample types. A retrospective search of our collective databases identified 13 cases containing circulating early stage B cell precursors. The patients ranged in age from 15 days to 85 years old. All positive cases demonstrated that the earlier B cell precursors were associated with later stage precursors, a finding that could help differentiate these cells from B-lymphoblastic leukaemia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel G Blackmore

    Full Text Available Here we demonstrate, both in vivo and in vitro, that growth hormone (GH mediates precursor cell activation in the subventricular zone (SVZ of the aged (12-month-old brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.

  14. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    Science.gov (United States)

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  15. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors

    Directory of Open Access Journals (Sweden)

    Pastor Maria

    2010-06-01

    Full Text Available Abstract Background Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.

  16. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  17. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  18. The Neurofibromatosis 2 Tumor Suppressor Gene Product, Merlin, Regulates Human Meningioma Cell Growth by Signaling through YAP

    Directory of Open Access Journals (Sweden)

    Katherine Striedinger

    2008-11-01

    Full Text Available Neurofibromatosis type 2 (NF2 is an autosomal dominant disorder characterized by the occurrence of schwannomas and meningiomas. Several studies have examined the ability of the NF2 gene product, merlin, to function as a tumor suppressor in diverse cell types; however, little is known about merlin growth regulation in meningiomas. In Drosophila, merlin controls cell proliferation and apoptosis by signaling through the Hippo pathway to inhibit the function of the transcriptional coactivator Yorkie. The Hippo pathway is conserved in mammals. On the basis of these observations, we developed human meningioma cell lines matched for merlin expression to evaluate merlin growth regulation and investigate the relationship between NF2 status and Yes-associated protein (YAP, the mammalian homolog of Yorkie. NF2 loss in meningioma cells was associated with loss of contact-dependent growth inhibition, enhanced anchorage-independent growth and increased cell proliferation due to increased S-phase entry. In addition, merlin loss in both meningioma cell lines and primary tumors resulted in increased YAP expression and nuclear localization. Finally, siRNA-mediated reduction of YAP in NF2-deficient meningioma cells rescued the effects of merlin loss on cell proliferation and S-phase entry. Collectively, these results represent the first demonstration that merlin regulates cell growth in human cancer cells by suppressing YAP.

  19. Tumor suppressor KAI1 affects integrin αvβ3-mediated ovarian cancer cell adhesion, motility, and proliferation

    International Nuclear Information System (INIS)

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-01-01

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin αvβ3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin αvβ3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with β1-integrins, also colocalizes with integrin αvβ3. Functionally, elevated KAI1 levels drastically increased integrin αvβ3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin αvβ3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin αvβ3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  20. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  1. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest

    International Nuclear Information System (INIS)

    Andries, Vanessa; Vandepoele, Karl; Staes, Katrien; Berx, Geert; Bogaert, Pieter; Van Isterdael, Gert; Ginneberge, Daisy; Parthoens, Eef; Vandenbussche, Jonathan; Gevaert, Kris; Roy, Frans van

    2015-01-01

    NBPF1 (Neuroblastoma Breakpoint Family, member 1) was originally identified in a neuroblastoma patient on the basis of its disruption by a chromosomal translocation t(1;17)(p36.2;q11.2). Considering this genetic defect and the frequent genomic alterations of the NBPF1 locus in several cancer types, we hypothesized that NBPF1 is a tumor suppressor. Decreased expression of NBPF1 in neuroblastoma cell lines with loss of 1p36 heterozygosity and the marked decrease of anchorage-independent clonal growth of DLD1 colorectal carcinoma cells with induced NBPF1 expression further suggest that NBPF1 functions as tumor suppressor. However, little is known about the mechanisms involved. Expression of NBPF was analyzed in human skin and human cervix by immunohistochemistry. The effects of NBPF1 on the cell cycle were evaluated by flow cytometry. We investigated by real-time quantitative RT-PCR the expression profile of a panel of genes important in cell cycle regulation. Protein levels of CDKN1A-encoded p21 CIP1/WAF1 were determined by western blotting and the importance of p53 was shown by immunofluorescence and by a loss-of-function approach. LC-MS/MS analysis was used to investigate the proteome of DLD1 colon cancer cells with induced NBPF1 expression. Possible biological interactions between the differentially regulated proteins were investigated with the Ingenuity Pathway Analysis tool. We show that NBPF is expressed in the non-proliferative suprabasal layers of squamous stratified epithelia of human skin and cervix. Forced expression of NBPF1 in HEK293T cells resulted in a G1 cell cycle arrest that was accompanied by upregulation of the cyclin-dependent kinase inhibitor p21 CIP1/WAF1 in a p53-dependent manner. Additionally, forced expression of NBPF1 in two p53-mutant neuroblastoma cell lines also resulted in a G1 cell cycle arrest and CDKN1A upregulation. However, CDKN1A upregulation by NBPF1 was not observed in the DLD1 cells, which demonstrates that NBPF1 exerts cell

  2. Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors

    Directory of Open Access Journals (Sweden)

    Matthew P. Krause

    2014-07-01

    Full Text Available Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs, a dermally derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from neural crest-derived facial and mesodermally derived foreskin dermis and the foreskin SKPs can make myelinating Schwann cells. Thus, nonneural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally defined lineage boundaries are more flexible than widely thought.

  3. ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaohan Li

    2011-01-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.

  4. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  5. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  6. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells.

    Science.gov (United States)

    Kim, Myeong-Ok; Choe, Min Ho; Yoon, Yi Na; Ahn, Jiyeon; Yoo, Minjin; Jung, Kwan-Young; An, Sungkwan; Hwang, Sang-Gu; Oh, Jeong Su; Kim, Jae-Sung

    2017-11-15

    Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Potential of bursa-immigrated hematopoietic precursor cells to differentiate to functional B and T cells

    International Nuclear Information System (INIS)

    Weber, W.T.; Alexander, J.E.

    1978-01-01

    The potential of hematopoietic precursor cells, recently immigrated into the 13- and 14-day-old embryonic bursa, to migrate to the thymus and to differentiate to functional T cells was investigated. Chromosomally marked cell populations obtained from 13- and 14-day-old embryonic bursas were transferred i.v. to 780 R γ-irradiated chick embryos of equivalent age. When appropriate chimeras were examined at 4 to 12 weeks after cell transfer, donor cells were found to proliferate primarily in the bursa. Significant donor cell influx into the thymus was not detected. In correlation with these findings, Con A- and PHA-responsive T cells in thymus and spleen cell cultures of recipients remained of host origin whereas the number of anti-CIg responsive B cells of donor type increased gradually in the spleens of recipients. An initial lag period preceded the accumulation of functional donor B cells in the spleens of recipients, despite the predominant presence of dividing donor cells in the bursa. This suggests that the transferred bursal cell population required substantially longer to mature and emigrate from the bursa as functional B cells than the host cell population remaining in the irradiated bursas at time of cell transfer. The failure to detect significant influx of donor cells into the thymus and their failure to differentiate to functional T cells suggest that the recently bursa-immigrated hematopoietic stem cells of 13- and 14-day-old embryos may not be pluripotential cells, but rather cells already committed to the B cell line of differentiation

  8. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  9. Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts

    Directory of Open Access Journals (Sweden)

    Oberland Julia

    2010-11-01

    Full Text Available Abstract Background It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion. Results Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14. These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct. Conclusions Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.

  10. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    Science.gov (United States)

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  11. The role of tumor suppressor p15Ink4b in the regulation of hematopoietic progenitor cell fate

    International Nuclear Information System (INIS)

    Humeniuk, R; Rosu-Myles, M; Fares, J; Koller, R; Bies, J; Wolff, L

    2013-01-01

    Epigenetic silencing of the tumor suppressor gene p15Ink4b (CDKN2B) is a frequent event in blood disorders like acute myeloid leukemia and myelodysplastic syndromes. The molecular function of p15Ink4b in hematopoietic differentiation still remains to be elucidated. Our previous study demonstrated that loss of p15Ink4b in mice results in skewing of the differentiation pattern of the common myeloid progenitor towards the myeloid lineage. Here, we investigated a function of p15Ink4b tumor suppressor gene in driving erythroid lineage commitment in hematopoietic progenitors. It was found that p15Ink4b is expressed more highly in committed megakaryocyte–erythroid progenitors than granulocyte–macrophage progenitors. More importantly, mice lacking p15Ink4b have lower numbers of primitive red cell progenitors and a severely impaired response to 5-fluorouracil- and phenylhydrazine-induced hematopoietic stress. Introduction of p15Ink4b into multipotential progenitors produced changes at the molecular level, including activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling, increase GATA-1, erythropoietin receptor (EpoR) and decrease Pu1, GATA-2 expression. These changes rendered cells more permissive to erythroid commitment and less permissive to myeloid commitment, as demonstrated by an increase in early burst-forming unit-erythroid formation with concomitant decrease in myeloid colonies. Our results indicate that p15Ink4b functions in hematopoiesis, by maintaining proper lineage commitment of progenitors and assisting in rapid red blood cells replenishment following stress

  12. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    Science.gov (United States)

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  13. C-reactive protein bearing cells are a subpopulation of natural killer cell precursors

    International Nuclear Information System (INIS)

    Baum, L.L.; Krueger, N.X.

    1986-01-01

    Cell surface C-reactive protein (S-CRP) is expressed on the surface membrane of a small percentage of lymphocytes. Anti-CRP inhibits natural killer (NK) function. Since NK effectors are heterogeneous, they suspected that the cells expressing S-CRP (CRP + ) might respond differently to stimulation than the NK effectors lacking S-CRP (CRP - ). Methods were developed to separate CRP + and CRP - lymphocytes and their functional responses were examined and compared. These techniques are dependent upon the binding of CRP to its ligands, C-polysaccharide (CPS) or Phosphocholine (PC). The first method involves rosette formation with CPS coupled autologous red blood cells; the second method utilizes the binding of CRP + lymphocytes to PC-sepharose. Lymphocytes separated using either of these techniques yield similar results. CRP - lymphocytes respond to 3 day incubation with PHA or Il-2 by producing effectors which kill 51 Cr labeled K562 tumor cells, CRP + precursors do not. CRP + lymphocytes respond to a 5 day incubation with inactivated K562 by producing effectors which kill K562; CRP - precursors do not. NK functional activity of both is increased by incubation with interferon. This ability to respond differently to stimulation suggests that CRP + and CRP - cells are functionally distinct

  14. Naturally death-resistant precursor cells revealed as the origin of retinoblastoma

    DEFF Research Database (Denmark)

    Trinh, Emmanuelle; Lazzerini Denchi, Eros; Helin, Kristian

    2004-01-01

    The molecular mechanisms and the cell-of-origin leading to retinoblastoma are not well defined. In this issue of Cancer Cell, Bremner and colleagues describe the first inheritable model of retinoblastoma, revealing that loss of the pocket proteins pRb and p107 deregulates cell cycle exit in retinal...... precursors. The authors show that a subset of these precursors contain an inherent resistance to apoptosis, and that while most terminally differentiate, some are likely to acquire additional mutations, leading to tumor formation. Thus, this work defines the cell-of-origin of retinoblastoma and suggests...... that mutations giving increased proliferative capacity are required for retinoblastoma development....

  15. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma.

    LENUS (Irish Health Repository)

    Tivnan, Amanda

    2011-01-01

    Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis.

  16. Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang

    2015-06-01

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

  17. A novel transcriptional factor Nkapl is a germ cell-specific suppressor of Notch signaling and is indispensable for spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Hidenobu Okuda

    Full Text Available Spermatogenesis is an elaborately regulated system dedicated to the continuous production of spermatozoa via the genesis of spermatogonia. In this process, a variety of genes are expressed that are relevant to the differentiation of germ cells at each stage. Although Notch signaling plays a critical role in germ cell development in Drosophila and Caenorhabditis elegans, its function and importance for spermatogenesis in mammals is controversial. We report that Nkapl is a novel germ cell-specific transcriptional suppressor in Notch signaling. It is also associated with several molecules of the Notch corepressor complex such as CIR, HDAC3, and CSL. It was expressed robustly in spermatogonia and early spermatocytes after the age of 3 weeks. Nkapl-deleted mice showed complete arrest at the level of pachytene spermatocytes. In addition, apoptosis was observed in this cell type. Overexpression of NKAPL in germline stem cells demonstrated that Nkapl induced changes in spermatogonial stem cell (SSC markers and the reduction of differentiation factors through the Notch signaling pathway, whereas testes with Nkapl deleted showed inverse changes in those markers and factors. Therefore, Nkapl is indispensable because aberrantly elevated Notch signaling has negative effects on spermatogenesis, affecting SSC maintenance and differentiation factors. Notch signaling should be properly regulated through the transcriptional factor Nkapl.

  18. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  19. A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines.

    Science.gov (United States)

    Oliveira, Virgínia Carla; Bartasson, Lorrainy; de Castro, Maria Elita Batista; Corrêa, José Raimundo; Ribeiro, Bergmann Morais; Resende, Renato Oliveira

    2011-01-01

    The nonstructural protein (NSs) of the Tomato spotted wilt virus (TSWV) has been identified as an RNAi suppressor in plant cells. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) designated vAcNSs, containing the NSs gene under the control of the viral polyhedrin (polh) gene promoter, was constructed and the effects of NSs in permissive, semipermissive and nonpermissive insect cells to vAcNSs infection were evaluated. vAcNSs produced more budded virus when compared to wild type in semipermissive cells. Co-infection of vAcNSs with wild type baculoviruses clearly enhanced polyhedra production in all host cells. Confocal microscopy analysis showed that NSs accumulated in abundance in the cytoplasm of permissive and semipermissive cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Co-infection of vAcNSs with a recombinant AcMNPV containing the enhanced green fluorescent protein (egfp) gene, significantly increased EGFP expression in semipermissive cells and in Anticarsia gemmatalis-hemocytes. Absence of small RNA molecules of egfp transcripts in this cell line and in a permissive cell line indicates the suppression of gene silencing activity. On the other hand, vAcNSs was not able to suppress RNAi in a nonpermissive cell line. Our data showed that NSs protein of TSWV facilitates baculovirus replication in different lepidopteran cell lines, and these results indicate that NSs could play a similar role during TSWV-infection in its thrips vector. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix.

    Science.gov (United States)

    Khotskaya, Yekaterina B; Beck, Benjamin H; Hurst, Douglas R; Han, Zhenbo; Xia, Weiya; Hung, Mien-Chie; Welch, Danny R

    2014-12-01

    Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  1. Lethal giant larvae 1 tumour suppressor activity is not conserved in models of mammalian T and B cell leukaemia.

    Directory of Open Access Journals (Sweden)

    Edwin D Hawkins

    Full Text Available In epithelial and stem cells, lethal giant larvae (Lgl is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1⁻/⁻ mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.

  2. Lethal Giant Larvae 1 Tumour Suppressor Activity Is Not Conserved in Models of Mammalian T and B Cell Leukaemia

    Science.gov (United States)

    Hawkins, Edwin D.; Oliaro, Jane; Ramsbottom, Kelly M.; Ting, Stephen B.; Sacirbegovic, Faruk; Harvey, Michael; Kinwell, Tanja; Ghysdael, Jacques; Johnstone, Ricky W.; Humbert, Patrick O.; Russell, Sarah M.

    2014-01-01

    In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1−/− mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts. PMID:24475281

  3. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  4. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Salem, Mohamed Labib; El-Shanshory, Mohamed R; Abdou, Said H; Attia, Mohamed S; Sobhy, Shymaa M; Zidan, Mona F; Zidan, Abdel-Aziz A

    2018-04-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children. The precise mechanism behind the relapse in this disease is not clearly known. One possible mechanism could be the accumulation of immunosuppressive cells, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (T regs ) which we and others have reported to mediate suppression of anti-tumor immune responses. In this study, we aimed to analyze the numbers of these cells in a population of B-ALL pediatric patients. Peripheral blood samples withdrawn from B-ALL pediatric patients (n = 45 before, during and after the induction phase of chemotherapy. Using multi parametric flow cytometric analysis. MDSCs were identified as Lin - HLA-DR - CD33 + CD11b + ; and T reg cells were defined as CD4 + CD25 + CD127 -/low . Early diagnosed B-ALL patients showed significant increases in the numbers of MDSCs and T regs as compared to healthy volunteers. During induction of chemotherapy, however, the patients showed higher and lower numbers of MDSCs and T reg cells, respectively as compared to early diagnosed patients (i.e., before chemotherapy). After induction of chemotherapy, the numbers of MDSCs and T reg cells showed higher increases and decreases, respectively as compared to the numbers in patients during chemotherapy. Our results indicate that B-ALL patients harbor high numbers of both MDSCs and T regs cells. This pilot study opens a new avenue to investigate the mechanism mediating the emergence of these cells on larger number of B-ALL patients at different treatment stages.

  5. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Science.gov (United States)

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas.

    Science.gov (United States)

    Noguchi, S; Mori, T; Hoshino, Y; Yamada, N; Maruo, K; Akao, Y

    2013-06-01

    Malignant melanoma (MM) is one of the most aggressive cancers in dogs and in humans. However, the molecular mechanisms of its development and progression remain unclear. Presently, we examined the expression profile of microRNAs (miRs) in canine oral MM tissues and paired normal oral mucosa tissues by using the microRNA-microarray assay and quantitative RT-PCR. Importantly, a decreased expression of miR-203 was significantly associated with a shorter survival time. Also, miR-203 and -205 were markedly down-regulated in canine and human MM cell lines tested. Furthermore, the ectopic expression of miR-205 had a significant inhibitory effect on the cell growth of canine and human melanoma cells tested by targeting erbb3. Our data suggest that miR-203 is a new prognostic factor in canine oral MMs and that miR-205 functions as a tumour suppressor by targeting erbb3 in both canine and human MM cells. © 2011 John Wiley & Sons Ltd.

  7. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders.

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-08-03

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.

  8. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    Science.gov (United States)

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells

    International Nuclear Information System (INIS)

    Soula-Rothhut, Mahdhia; Coissard, Cyrille; Sartelet, Herve; Boudot, Cedric; Bellon, Georges; Martiny, Laurent; Rothhut, Bernard

    2005-01-01

    Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF-but not TSP-1-stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development

  10. Mechanisms of cross-suppression of TNP-specific plaque forming cell responses by TMA-specific first-order T suppressor factor

    Energy Technology Data Exchange (ETDEWEB)

    Jendrisak, G.S.; Bellone, C.J.

    1986-03-05

    The addition of hybridoma-derived phenyltrimethylammonium (TMA)-specific first-order T suppressor factor (TsF/sub 1/) into cultures containing Brucella abortus coupled with the TMA and trinitrophenol haptens (TMA-BA-TNP) results in the cross-suppression of TNP-specific plaque forming cell (PFC) responses. The suppression mediated by TMA-TsF/sub 1/ is dependent on the presence of T cells and specific antigen (TMA). Subculturing of whole spleen cells with TMA-TsF/sub 1/ and specific soluble antigen (TMA-BSA) is able to induce suppressor T cells which cross-suppress the TNP-specific PFC of spleen cell cultures stimulated with TMA-BA-TNP in an antigen (TMA)-dependent manner at the effector phase of the response. The effector acting T suppressor cells (Tse) are nylon wool nonadherent and appears to require whole spleen cells in responding cultures for suppression, suggesting that the target of the Tse is not the TNP-specific B cell. The authors are presently characterizing the mechanisms of cross-suppression by TMA-TsF/sub 1/ and Tse utilizing the described primary in vitro antibody assay.

  11. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2016-10-01

    that Stat6-/- BM progenitors in sensitized wild type recipients that were competent in GFP- CD4+ST2+TH2 and ILC2s ( innate lymphoid cells ) generation, and...report demonstrated that type 2 innate lymphoid cells (ILC2s) lack cell lineage markers and have the potential to pro- duce IL-9 (Wilhelm et al., 2011...Fujii, H., and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells . Nature 463, 540–544

  12. T cell precursor migration towards beta 2-microglobulin is involved in thymus colonization of chicken embryos

    DEFF Research Database (Denmark)

    Dunon, D; Kaufman, J; Salomonsen, J

    1990-01-01

    beta 2-microglobulin (beta 2m) attracts hemopoietic precursors from chicken bone marrow cells in vitro. The cell population responding to beta 2m increases during the second period of thymus colonization, which takes place at days 12-14 of incubation. The precursors from 13.5 day old embryos were...... isolated after migration towards beta 2m in vitro and shown to be able to colonize a 13 day old thymus in ovo, where they subsequently acquire thymocyte markers. In contrast these beta 2m responsive precursors did not colonize embryonic bursa, i.e. differentiate into B lymphocytes. During chicken...... embryogenesis, peaks of beta 2m transcripts and of free beta 2m synthesis can only be detected in the thymus. The peak of free beta 2m synthesis in the thymus and the increase of beta 2m responding bone marrow cells both occur concomitantly with the second wave of thymus colonization in chicken embryo, facts...

  13. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis.

    Science.gov (United States)

    Li, Jun; Zhang, Meng; An, Gang; Ma, Qingfang

    2016-03-01

    Previous studies have revealed multiple functional roles of long non-coding RNA taurine upregulated gene 1 in different types of malignant tumors, except for human glioma. Here, it was designed to study the potential function of taurine upregulated gene 1 in glioma pathogenesis focusing on its regulation on cell apoptosis. The expression of taurine upregulated gene 1 in glioma tissues was detected by quantitative RT-PCR and compared with that in adjacent normal tissues. Further correlation analysis was conducted to show the relationship between taurine upregulated gene 1 expression and different clinicopathologic parameters. Functional studies were performed to investigate the influence of taurine upregulated gene 1 on apoptosis and cell proliferation by using Annexin V/PI staining and cell counting kit-8 assays, respectively. And, caspase activation and Bcl-2 expression were analyzed to explore taurine upregulated gene 1-induced mechanism. taurine upregulated gene 1 expression was significantly inhibited in glioma and showed significant correlation with WHO Grade, tumor size and overall survival. Further experiments revealed that the dysregulation of taurine upregulated gene 1 affected the apoptosis and cell proliferation of glioma cells. Moreover, taurine upregulated gene 1 could induce the activation of caspase-3 and-9, with inhibited expression of Bcl-2, implying the mechanism in taurine upregulated gene 1-induced apoptosis. taurine upregulated gene 1 promoted cell apoptosis of glioma cells by activating caspase-3 and -9-mediated intrinsic pathways and inhibiting Bcl-2-mediated anti-apoptotic pathways, acting as a tumor suppressor in human glioma. This study provided new insights for the function of taurine upregulated gene 1 in cancer biology, and suggested a potent application of taurine upregulated gene 1 overexpression for glioma therapy. © 2016 by the Society for Experimental Biology and Medicine.

  14. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    Science.gov (United States)

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. MicroRNA-30e Functions as a Tumor Suppressor in Cervical Carcinoma Cells through Targeting GALNT7

    Directory of Open Access Journals (Sweden)

    Huijuan Wu

    2017-12-01

    Full Text Available Cervical cancer is the third most common cancer in women worldwide. However, the underlying mechanism of occurrence and development of cervical cancer is obscure. In this study, we observed that miR-30e was downregulated in clinical cervical cancer tissues and cervical cancer cells. Next, overexpression of miR-30e reduced the cervical cancer cell growth through MTT, colony formation, EdU, and Transwell assay in SiHa and Caski cells. Subsequently, UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7 was identified as a potential miR-30e target by bioinformatics analysis. Moreover, we showed that miR-30e was able to bind to the 3′UTR of GALNT7 by luciferase reporter assay. In addition, the mRNA and protein levels of GALNT7 in cervical cancer cells were downregulated by miR-30e. And we validated that downregulation of GALNT7 repressed the proliferation of SiHa and Caski cells by MTT, colony formation, and Transwell assay. We identified that the restoration of GALNT7 expression was able to counteract the effect of miR-30e on cell proliferation of cervical cancer cells. Furthermore, we found that the expression levels of GALNT7 were frequently upregulated and negatively correlative to those of miR-30e in cervical cancer tissues. In addition, we validated that restoration of GALNT7 rescued the miR-30e–suppressed growth of cervical cancer xenografts in vivo. In conclusion, the current results suggest that miR-30e may function as tumor suppressors in cervical cancer through downregulation of GALNT7. Both miR-30e and its novel target, GALNT7, may play an important role in the process of cervical cancer.

  16. Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death

    Science.gov (United States)

    Marchong, Mellone N.; Yurkowski, Christine; Ma, Clement; Spencer, Clarellen; Pajovic, Sanja; Gallie, Brenda L.

    2010-01-01

    CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (p = 0.01) and had fewer multifocal tumors at PND28 (p = 0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (p = 0.121). Activated caspase-3 was significantly decreased and β-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death. PMID:20421947

  17. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Margot Zöller

    2018-02-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.

  18. Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death.

    Directory of Open Access Journals (Sweden)

    Mellone N Marchong

    2010-04-01

    Full Text Available CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01. Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8 (p = 0.01 and had fewer multifocal tumors at PND28 (p = 0.016, compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003. In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers, while proliferation in vivo remained unaffected (p = 0.121. Activated caspase-3 was significantly decreased and beta-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death.

  19. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft].

    Science.gov (United States)

    Wang, Rong; Li, Yalin; Wang, Wuzhou; Zhou, Meijuan; Cao, Zhaohui

    2015-05-01

    To investigate the effect of ginseng-derived compound K (C-K) on apoptosis, immunosuppressive activity, and pro-inflammatory cytokine production of myeloid-derived suppressor cells (MDSCs) from mice bearing colorectal cancer xenograft. Flow-sorted bone marrow MDSCs from Balb/c mice bearing CT26 tumor xenograft were treated with either C-K or PBS for 96 h and examined for apoptosis with Annexin V/7-AAD, Cox-2 and Arg-1 expressions using qRT-PCR, and supernatant IL-1β, IL-6, and IL-17 levels with ELISA. C-K- or PBS-treated MDSCs were subcutaneously implanted along with CT26 tumor cells in WT Balb/c mice, and the tumor size and morphology were evaluated 21 days later. C-K treatment significantly increased the percentages of early and late apoptotic MDSCs in vitro (Pimmunosuppresive effect of MDSCs to inhibit tumor cell proliferation in mice, which suggests a new strategy of tumor therapy by targeting MDSCs.

  20. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.

    Science.gov (United States)

    Zhao, Dong; Zheng, Han-Qiu; Zhou, Zhongmei; Chen, Ceshi

    2010-06-01

    Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF(Fbw7)) targets KLF5 for ubiquitin-mediated degradation in a GSK3beta-mediated KLF5 phosphorylation-dependent manner. Mutation of the critical S303 residue in the KLF5 Cdc4 phospho-degrons motif ((303)SPPSS) abolishes the protein interaction, ubiquitination, and degradation by Fbw7. Inactivation of endogenous Fbw7 remarkably increases the endogenous KLF5 protein abundances. Endogenous Fbw7 suppresses the FGF-BP gene expression and breast cell proliferation through targeting KLF5 for degradation. These findings suggest that Fbw7 inhibits breast cell proliferation at least partially through targeting KLF5 for proteolysis. This new regulatory mechanism of KLF5 degradation may result in useful diagnostic and therapeutic targets for breast cancer and other cancers. Copyright 2010 AACR.

  1. Post-irradiation regeneration of early B-lymphocyte precursor cells in mouse bone marrow

    International Nuclear Information System (INIS)

    Park, Y.-H.; Osmond, D.G.

    1989-01-01

    To examine the sequential development of early B-cell precursors in mouse bone marrow, B-lineage cells have been examined during a wave of post-irradiation regeneration. Cell phenotypes have been defined for (i) terminal deoxynucleotidyl transferase (TdT); (ii) B220 glycoprotein, (iii) μ heavy chains in the cytoplasm (cμ) and at the cell surface (sμ). Three populations of μ - cells (TdT + 14.8 - ; TdT + 14.8 + ; TdT - 14.8 + ) have been proposed to be early B-cell precursors which would give rise to cμ + sμ - pre-B cells and to sμ + B lymphocytes. The timing, cell-size shifts and progressive amplification of the waves of regeneration accord with a dynamic model in which the TdT + 14.8 - , TdT + 14.8 + and TdT - 14.8 + cells form three successive stages in B-cell differentiation before the expression of μ chains, presumptively including the stage of μ chain gene rearrangement. In addition, the results provide an experimental system for the enrichment of early B-cell precursors in mouse bone marrow. (author)

  2. Novel interactions of the von Hippel-Lindau (pVHL) tumor suppressor with the CDKN1 family of cell cycle inhibitors

    OpenAIRE

    Giovanni Minervini; Raffaele Lopreiato; Raissa Bortolotto; Antonella Falconieri; Geppo Sartori; Silvio C. E. Tosatto

    2017-01-01

    Germline inactivation of the von Hippel-Lindau (VHL) tumor suppressor predisposes patients to develop different highly vascularized cancers. pVHL targets the hypoxia-inducible transcription factor (HIF-1?) for degradation, modulating the activation of various genes involved in hypoxia response. Hypoxia plays a relevant role in regulating cell cycle progression, inducing growth arrest in cells exposed to prolonged oxygen deprivation. However, the exact molecular details driving this transition...

  3. Lymphoid Precursor Cells and their Differentiation; Kletki-predshestvenniki v limfoidnoj tkani i ikh differentsirovka

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, I. L. [Central' Nyj Institut Gematologii I Perelivanija Krovi, Moskva, SSSR (Russian Federation); Fridenshtejn, A. Ja. [Institut Epidemiologii, Mikrobiologii i Immunologii Im. N.F.Gamaleja, Moskva, SSSR (Russian Federation)

    1968-08-15

    The authors discuss present-day ideas concerning precursor cells in lymphoid tissues and suggest that the stem cells' decision in regard to proliferation and the path of further differentiation may be a multi-stage process, occurring at various successive phases in the histogenesis of lymphoid cells. They propose that only those elements which are capable of actively deciding (under the influence of suitable stimuli or factors inherent in the cell) in which direction the successor cells are to differentiate should be regarded as precursor cells. It is shown that there are in lymphoid tissue at least three stages with the properties of precursor cells: the stem haemopoietic cell, the antigen-sensitive cell and the immunological memory cell. The authors suggest that the working cells of immune response are transformed into immunological memory cells, and discuss the morphological characteristics of the precursor cells. (author) [Russian] V doklade rassmatrivajutsja sovremennye predstavlenija o kletkah-pred- shestvennjakah v limfoidnoj tkani. Predpolagaetsja, chto prinjatie stvolovymi kletkami reshenija o proliferacii i napravlenii dal'nejshej differencirovki mozhet predstavljat' soboj mnogostadijnyj process, proishodjashhij posledovatel'no na raznyh jetapah gistogenez a limfoidnyh kletok. Predlagaetsja rassmatrivat' v kach estv e kletok-predshestvennikov tol'ko te jelementy, kotorye sposobny aktivno (pod vlijaniem sootvetstvujushhih induktorov ili vnutrennih dlja kletki faktorov) prinimat' reshenie o napravlenii differencirovki kletok-potomkov. Dok azyvaet sja nalichie v limfoidnoj tkani, po men'shej mere, treh stadij so svojstvami kletok-predshestvennikov: stvolovaja krovetvornaja kletka, antigen-chuvstvitel'naja kletka i kletka immunologicheskoj pamjati. Vyskazyvaet sja gi poteza o transformacii rabochih kletok immunnogo otvet a v kletki immunologicheskoj pamjati. Obsuzhdaetsja morfologicheskaja harakteristika kletok-predshestvennikov. (author)

  4. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    Science.gov (United States)

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  5. Human xenospecific T suppressor cells inhibit T helper cell proliferation to porcine aortic endothelial cells, and NF-kappaB activity in porcine APC.

    Science.gov (United States)

    Ciubotariu, R; Li, J; Colovai, A I; Platt, J L; Cortesini, R; Suciu Foca Cortesini, N

    2001-05-01

    Human T suppressor cells (Ts), capable of preventing autologous T helper cells (Th) from reacting against xenogeneic pig endothelial cells and pig APC can be generated in vitro. Ts derive from a population of CD3(+)CD8(+)CD28(-) T lymphocytes and specifically recognize the MHC class I antigens of the APC used for in vitro immunization. To study the mechanism that underlies suppression, we investigated whether Ts inhibit the expression of costimulatory molecules in xenogeneic professional and semiprofessional APC. We found that Ts down-regulate Th-induced expression of CD86 in pig APC, and that this effect occurs at the level of transcription, as indicated by nuclear run-on and Northern blot assays. EMSA results revealed that inhibition of CD86 expression is mediated by inactivation of transcription factor NF-kappaB. Furthermore, transfection of pig APC with a vector expressing NF-kappaB p65 partially rescued Th-induced expression of the CD86 molecule. These results strongly support the concept that xenospecific Ts inhibit the APC function of xenogeneic cells by preventing activation of NF-kappaB.

  6. Isolation of Precursor Cells from Waste Solid Fat Tissue

    Science.gov (United States)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  7. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  8. Early postradition recovery of hematopoietic stromal precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Todriya, T.V.

    1985-04-01

    The aim of this investigation was an immunohistochemical study of alpha-endorphin-producing cells and also a study of rat mast cells (MC in the antral mucosa of the human stomach. Men aged 18 to 30 years undergoing in-patient treatment wre studied. According to the results of radioimmunoassay, antibodies against alpha-endorphin did not react with enkephalins, beta-endorphin, or the C-terminal fragment of beta-endorphin, but had cross reactivity of about 10% with gammaendorphin. Results were subjected to statistical analysis by Student's test at a 85% level of significance and they are shown. The facts presented here suggest that MC of human gastric mucosa include argyrophilic cells which contain alpha-endorphin.

  9. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  10. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  11. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen

    2002-01-01

    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway...... stable transfection of the beta-cell lines with plasmids expressing SOCS-3 under the control of an inducible promoter, a time- and dose-dependent expression of SOCS-3 in the cells was obtained. EMSA showed that SOCS-3 is able to inhibit GH-induced DNA binding of both STAT3 and STAT5 in RIN-5AH cells...

  12. Mast cell-deficient Kit(W-sh) "Sash" mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells.

    Science.gov (United States)

    Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael

    2013-06-01

    Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.

  13. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    Science.gov (United States)

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  14. Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Müller cells

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Petersen, Jørgen; Felthaus, Oliver

    2011-01-01

    Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we...... compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease...... or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes...

  15. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  16. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies

    NARCIS (Netherlands)

    van Dam, V.; Olrichs, N.K.; Breukink, E.J.

    2009-01-01

    Wall chart: The predominant component of the bacterial cell wall, peptidoglycan, consists of long alternating stretches of aminosugar subunits interlinked in a large three-dimensional network and is formed from precursors through several cytosolic and membrane-bound steps. The high tolerance of the

  17. Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.

    Science.gov (United States)

    Boice, Michael; Salloum, Darin; Mourcin, Frederic; Sanghvi, Viraj; Amin, Rada; Oricchio, Elisa; Jiang, Man; Mottok, Anja; Denis-Lagache, Nicolas; Ciriello, Giovanni; Tam, Wayne; Teruya-Feldstein, Julie; de Stanchina, Elisa; Chan, Wing C; Malek, Sami N; Ennishi, Daisuke; Brentjens, Renier J; Gascoyne, Randy D; Cogné, Michel; Tarte, Karin; Wendel, Hans-Guido

    2016-10-06

    The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (T FH ) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM (P37-V202) ) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment.

    Science.gov (United States)

    Bianchi, G; Vuerich, M; Pellegatti, P; Marimpietri, D; Emionite, L; Marigo, I; Bronte, V; Di Virgilio, F; Pistoia, V; Raffaghello, L

    2014-03-20

    Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b(+)/Gr-1(+) cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1(+) population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-β1 (TGF-β1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-β1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment.

  19. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence.

    Science.gov (United States)

    Heim, Cortney E; Vidlak, Debbie; Odvody, Jessica; Hartman, Curtis W; Garvin, Kevin L; Kielian, Tammy

    2017-11-15

    Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33 + HLA-DR - CD66b + CD14 -/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Analysis of a Novel 17q25 Cell Cycle Gene Homolog: Is it a Breast Tumor Suppressor Gene?

    National Research Council Canada - National Science Library

    Kalikin, Linda

    2000-01-01

    ... of these molecular reagents into successful tools for the medical management of breast cancer. We hypothesize that a 350 kb region on 17q25 detected by our allelic imbalance studies harbors a novel breast tumor suppressor gene...

  1. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  2. Primary orbital precursor T-cell lymphoblastic lymphoma

    DEFF Research Database (Denmark)

    Stenman, Lisa; Persson, Marta; Enlund, Fredrik

    2016-01-01

    Primary T-cell lymphoblastic lymphoma (T-LBL) in the eye region is very rare. The present study described a unique case of T-LBL involving the extraocular muscles. A 22-year-old male patient presented with a 3-week history of headache, reduced visual acuity and edema of the left eye. Clinical...... knowledge, this is the first report of a case of T-LBL involving the extraocular muscles. Although primary T-LBL in the eye region is very rare, our findings demonstrate that lymphoma should be considered in the differential diagnosis of patients with similar symptoms....

  3. Reduction of myeloid suppressor cell derived nitric oxide provides a mechanistic basis of lead enhancement of alloreactive CD4+ T cell proliferation

    International Nuclear Information System (INIS)

    Farrer, David G.; Hueber, Sara; Laiosa, Michael D.; Eckles, Kevin G.; McCabe, Michael J.

    2008-01-01

    The persistent environmental toxicant and immunomodulator, lead (Pb), has been proposed to directly target CD4 + T cells. However, our studies suggest that CD4 + T cells are an important functional, yet indirect target. In order to identify the direct target of Pb in the immune system and the potential mechanism of Pb-induced immunotoxicity, myeloid suppressor cells (MSCs) were evaluated for their ability to modulate CD4 + T cell proliferation after Pb exposure. Myeloid suppressor cells regulate the adaptive immune response, in part, by inhibiting the proliferation of CD4 + T cells. It is thought that the mechanism of MSC-dependent regulation involves the release of the bioactive gas, nitric oxide (NO), blocking cell signaling cascades downstream of the IL-2 receptor and thus preventing T cells from entering cell-cycle. In mixed lymphocyte culture (MLC), increasing numbers of MSCs suppressed T cell proliferation in a dose-dependent manner, and this suppression is strikingly abrogated with 5 μM lead (Pb) treatment. The Pb-sensitive MSC population is CD11b + , GR1 + and CD11c - and thus phenotypically consistent with MSCs described in other literature. Inhibition of NO-synthase (NOS), the enzyme responsible for the production of NO, enhanced alloreactive T cell proliferation in MLC. Moreover, Pb attenuated NO production in MLC, and exogenous replacement of NO restored suppression in the presence of Pb. Significantly, MSC from iNOS-/- mice were unable to suppress T cell proliferation. An MSC-derived cell line (MSC-1) also suppressed T cell proliferation in MLC, and Pb disrupted this suppression by attenuating NO production. Additionally, Pb disrupted NO production in MSC-1 cells in response to treatment with interferon-γ (IFN-γ) and LPS or in response to concanavalin A-stimulated splenocytes. However, neither the abundance of protein nor levels of mRNA for the inducible isoform of NOS (iNOS) were altered with Pb treatment. Taken together these data suggest that Pb

  4. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype

    Science.gov (United States)

    Prochetto, Estefanía; Roldán, Carolina; Bontempi, Iván A.; Bertona, Daiana; Peverengo, Luz; Vicco, Miguel H.; Rodeles, Luz M.; Pérez, Ana R.; Marcipar, Iván S.; Cabrera, Gabriel

    2017-01-01

    Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested. PMID:28938533

  5. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    Science.gov (United States)

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  6. Primary orbital precursor T-cell lymphoblastic lymphoma

    DEFF Research Database (Denmark)

    Stenman, Lisa; Persson, Marta; Enlund, Fredrik

    2016-01-01

    Primary T-cell lymphoblastic lymphoma (T-LBL) in the eye region is very rare. The present study described a unique case of T-LBL involving the extraocular muscles. A 22-year-old male patient presented with a 3-week history of headache, reduced visual acuity and edema of the left eye. Clinical...... examination revealed left-sided exophthalmus, periorbital edema, chemosis, and reduced motility of the left eye. A magnetic resonance imaging scan revealed thickening of the left orbital muscles and a positron emission tomography-computed tomography scan also demonstrated activity in a subclavicular lymph....... There was no involvement of the bone marrow. Based on the clinical and histopathological findings, a diagnosis of T-LBL was made. There was no evidence of NOTCH1 mutation or rearrangements of the ETV6 and MLL genes and high-resolution array-based comparative genomic hybridization (arrayCGH) analysis revealed a normal...

  7. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells

    Science.gov (United States)

    Xiao, Peng; Wan, Xiaopeng; Cui, Bijun; Liu, Yang; Qiu, Chenyang; Rong, Jiabing; Zheng, Mingzhu; Song, Yinjing; Chen, Luoquan; He, Jia; Tan, Qinchun; Wang, Xiaojia; Shao, Xiying; Liu, Yuhua; Cao, Xuetao; Wang, Qingqing

    2016-01-01

    ABSTRACT Tumor-induced, myeloid-derived suppressor cells (MDSCs)-mediated immune dysfunction is an important mechanism that leads to tumor immune escape and the inefficacy of cancer immunotherapy. Importantly, tumor-infiltrating MDSCs have much stronger ability compared to MDSCs in the periphery. However, the mechanisms that tumor microenvironment induces the accumulation and function of MDSCs are poorly understood. Here, we report that Interleukin-33 (IL-33) – a cytokine which can be abundantly released in tumor tissues both in 4T1-bearing mice and breast cancer patients, is crucial for facilitating the expansion of MDSCs. IL-33 in tumor microenvironment reduces the apoptosis and sustains the survival of MDSCs through induction of autocrine secretion of GM-CSF, which forms a positive amplifying loop for MDSC accumulation. This is in conjunction with IL-33-driven induction of arginase-1 expression and activation of NF-κB and MAPK signaling in MDSCs which augments their immunosuppressive ability, and histone modifications were involved in IL-33 signaling in MDSCs. In ST2−/− mice, the defect of IL-33 signaling in MDSCs attenuates the immunosuppressive and pro-tumoral capacity of MDSCs. Our results identify IL-33 as a critical mediator that contributes to the abnormal expansion and enhanced immunosuppressive function of MDSCs within tumor microenvironment, which can be potentially targeted to reverse MDSC-mediated tumor immune evasion. PMID:26942079

  8. Splenectomy suppresses growth and metastasis of hepatocellular carcinoma through decreasing myeloid-derived suppressor cells in vivo.

    Science.gov (United States)

    Long, Xin; Wang, Jian; Zhao, Jian-Ping; Liang, Hui-Fang; Zhu, Peng; Cheng, Qi; Chen, Qian; Wu, Yan-Hui; Zhang, Zhan-Guo; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-10-01

    The function of the spleen in tumor development has been investigated for years. The relationship of the spleen with hepatocellular carcinoma (HCC), a huge health burden worldwide, however, remains unknown. The present study aimed to examine the effect of splenectomy on the development of HCC and the possible mechanism. Mouse hepatic carcinoma lines H22 and Hepa1-6 as well as BALB/c and C57 mice were used to establish orthotopic and metastatic mouse models of liver cancer. Mice were divided into four groups, including control group, splenectomy control group (S group), tumor group (T group) and tumor plus splenectomy group (T+S group). Tumor growth, metastases and overall survival were assessed at determined time points. Meanwhile, myeloid-derived suppressor cells (MDSCs) were isolated from the peripheral blood (PB), the spleen and liver tumors, and then measured by flow cytometery. It was found that liver cancer led to splenomegaly, and increased the percentage of MDSCs in the PB and spleen in the mouse models. Splenectomy inhibited the growth and progression of liver cancer and prolonged the overall survival time of orthotopic and metastatic models, which was accompanied by decreased proportion of MDSCs in the PB and tumors of liver cancer-bearing mouse. It was suggested that splenectomy could be considered an adjuvant therapy to treat liver cancer.

  9. Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer.

    Science.gov (United States)

    Wesolowski, Robert; Duggan, Megan C; Stiff, Andrew; Markowitz, Joseph; Trikha, Prashant; Levine, Kala M; Schoenfield, Lynn; Abdel-Rasoul, Mahmoud; Layman, Rachel; Ramaswamy, Bhuvaneswari; Macrae, Erin R; Lustberg, Maryam B; Reinbolt, Raquel E; Mrozek, Ewa; Byrd, John C; Caligiuri, Michael A; Mace, Thomas A; Carson, William E

    2017-11-01

    This study sought to evaluate whether myeloid-derived suppressor cells (MDSC) could be affected by chemotherapy and correlate with pathologic complete response (pCR) in breast cancer patients receiving neo-adjuvant chemotherapy. Peripheral blood levels of granulocytic (G-MDSC) and monocytic (M-MDSC) MDSC were measured by flow cytometry prior to cycle 1 and 2 of doxorubicin and cyclophosphamide and 1st and last administration of paclitaxel or paclitaxel/anti-HER2 therapy. Of 24 patients, 11, 6 and 7 patients were triple negative, HER2+ and hormone receptor+, respectively. 45.8% had pCR. Mean M-MDSC% were types. G-MDSC levels at the last draw were numerically lower in patients with pCR (1.15; 95% CI 0.14-2.16) versus patients with no pCR (2.71; 95% CI 0-5.47). There was no significant rise in G-MDSC from draw 1 to 3 in African American patients, and at draw 3 G-MDSC levels were significantly lower in African Americans versus Caucasians (p < 0.05). It was concluded that G-MDSC% increased during doxorubicin and cyclophosphamide therapy, but did not significantly differ between patients based on pathologic complete response.

  10. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma [Retraction

    Directory of Open Access Journals (Sweden)

    Lin FO

    2016-10-01

    Full Text Available The Editor-in-Chief and Publisher of OncoTargets and Therapy have been alerted to unacceptable levels of duplication with another published paper: Zhang D, Ni Z, Xu X, and Xiao J. MiR-32 Functions as a Tumor Suppressor and Directly Targets EZH2 in Human Oral Squamous Cell Carcinoma. Medical Science Monitor. 20:2527–2535, 2014.Accordingly, we retract Lin FO, Yao LJ, Xiao J, Liu DF, and Ni ZY. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma. OncoTargets and Therapy. 2014;7:1583–1591.This Retraction relates to 

  11. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene

    Science.gov (United States)

    Hasegawa, Sumitaka; Sato, Tomoyuki; Akazawa, Hiroshi; Okada, Hitoshi; Maeno, Akiteru; Ito, Masaki; Sugitani, Yoshinobu; Shibata, Hiroyuki; Miyazaki, Jun-ichi; Katsuki, Motoya; Yamauchi, Yasutaka; Yamamura, Ken-ichi; Katamine, Shigeru; Noda, Tetsuo

    2002-01-01

    Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells. PMID:11756652

  12. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  13. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  14. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    Science.gov (United States)

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    OpenAIRE

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2013-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-spe...

  16. Proliferation and Differentiation of Murine Myeloid Precursor 32D/G-CSF-R Cells

    Czech Academy of Sciences Publication Activity Database

    Zjablovskaja, Polina; Daněk, Petr; Kardošová, Miroslava; Alberich-Jorda, Meritxell

    č. 132 (2018), č. článku e57033. ISSN 1940-087X R&D Projects: GA ČR GA15-03796S Institutional support: RVO:68378050 Keywords : 32D/G-CSF-R cells * murine myeloid precursor cells * liquid culture * differentiation * neutrophils * proliferation * cytokines * IL-3 * G-CSF Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.232, year: 2016

  17. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    Science.gov (United States)

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  18. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  19. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  20. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  1. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Flynn, J.C.; Kong, Y.C.

    1991-01-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT

  2. Renal Cell Regulation and Cancer: Tumor Suppressor Networks and the Primary Cilium

    NARCIS (Netherlands)

    Klasson, TD

    2017-01-01

    Cancer affects a large number of people the world over. Cancer is a class of extremely complex diseases that arise from malfunctions in otherwise vital cellular processes, especially those that govern aspects of cellular functions like proliferation, apoptosis or the cell cycle. These processes are

  3. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Directory of Open Access Journals (Sweden)

    Sivakumar Periasamy

    2016-03-01

    Full Text Available Inhalation of Francisella tularensis (Ft causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  4. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    Science.gov (United States)

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  5. The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1

    International Nuclear Information System (INIS)

    Yang, Min; Jiang, Nan; Cao, Qi-wei; Ma, Mao-qiang; Sun, Qing

    2016-01-01

    Gastric cancer is the most common digestive malignant tumor worldwide and the underlying mechanisms are not fully understood. The E3 ligase UBR5 (also known as EDD1) is essentially involved in diverse types of cancer. Here we aimed to study the functions of UBR5 in human gastric cancer. We first analyzed the mRNA and protein levels of UBR5 in human gastric cancer tissues and the results showed that UBR5 was markedly increased in gastric cancer tissues compared with normal gastric mucosa or matched non-cancer gastric tissues. The relationship between UBR5 and survival of gastric cancer patients was analyzed and we found that high UBR5 expression was associated with poor overall and disease-free survival. We further tried to investigate the effects of UBR5 on gastric cancer cell growth in vitro and in vivo. Therefore, we knocked down UBR5 with lentivirus-mediated shRNA and found that UBR5 knockdown repressed in vitro proliferation and colony formation of gastric cancer cells AGS, MG803 and MNK1. In vivo xenograft experiment also demonstrated that UBR5 knockdown inhibited AGS growth. Finally, we explored the mechanism by which UBR5 contributed to the growth of gastric cancer cells. We found that UBR5 bound the tumor suppressor gastrokine 1 (GKN1) and increased its ubiquitination to reduce the protein stability of GKN1. GKN1 knockdown with lentivirus-mediated shRNA increased the in vitro colony formation and in vivo growth of AGS cells, and UBR5 knockdown was unable to affect the colony formation and in vivo growth of AGS cells when GKN1 was knocked down, indicating that GKN1 contributed to the effects of UBR5 in human gastric cancer cells. Taken together, UBR5 plays an essential role in gastric cancer and may be a potential diagnosis and treatment target for gastric cancer. - Highlights: • UBR5 expression is up-regulated in human gastric cancer. • UBR5 overexpression predicts poor survival. • UBR5 regulates gastric cancer growth in vitro and in vivo.

  6. Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Widmer, Hans R; Zimmer, Jens

    2009-01-01

    There is a lot of excitement about the potential use of multipotent neural stem cells for the treatment of neurodegenerative diseases. However, the strategy is compromised by the general loss of multipotency and ability to generate neurons after long-term in vitro propagation. In the present study......, human embryonic (5 weeks post-conception) ventral mesencephalic (VM) precursor cells were propagated as neural tissue-spheres (NTS) in epidermal growth factor (EGF; 20 ng/ml) and fibroblast growth factor 2 (FGF2; 20 ng/ml). After more than 325 days, the NTS were transferred to media containing either...... EGF+FGF2, EGF+FGF2+heparin or leukemia inhibitory factor (LIF; 10 ng/ml)+FGF2+heparin. Cultures were subsequently propagated for more than 180 days with NTS analyzed at various time-points. Our data show for the first time that human VM neural precursor cells can be long-term propagated as NTS...

  7. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  8. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  9. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  10. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    Science.gov (United States)

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  11. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis.

    Science.gov (United States)

    Uhel, Fabrice; Azzaoui, Imane; Grégoire, Murielle; Pangault, Céline; Dulong, Joelle; Tadié, Jean-Marc; Gacouin, Arnaud; Camus, Christophe; Cynober, Luc; Fest, Thierry; Le Tulzo, Yves; Roussel, Mikael; Tarte, Karin

    2017-08-01

    Sepsis induces a sustained immune dysfunction responsible for poor outcome and nosocomial infections. Myeloid-derived suppressor cells (MDSCs) described in cancer and inflammatory processes may be involved in sepsis-induced immune suppression, but their clinical impact remains poorly defined. To clarify phenotype, suppressive activity, origin, and clinical impact of MDSCs in patients with sepsis. Peripheral blood transcriptomic analysis was performed on 29 patients with sepsis and 15 healthy donors. A second cohort of 94 consecutive patients with sepsis, 11 severity-matched intensive care patients, and 67 healthy donors was prospectively enrolled for flow cytometry and functional experiments. Genes involved in MDSC suppressive functions, including S100A12, S100A9, MMP8, and ARG1, were up-regulated in the peripheral blood of patients with sepsis. CD14 pos HLA-DR low/neg monocytic (M)-MDSCs were expanded in intensive care unit patients with and without sepsis and CD14 neg CD15 pos low-density granulocytes/granulocytic (G)-MDSCs were more specifically expanded in patients with sepsis (P sepsis. G-MDSCs, made of immature and mature granulocytes expressing high levels of degranulation markers, were specifically responsible for arginase 1 activity. High initial levels of G-MDSCs, arginase 1, and S100A12 but not M-MDSCs were associated with subsequent occurrence of nosocomial infections. M-MDSCs and G-MDSCs strongly contribute to T-cell dysfunction in patients with sepsis. More specifically, G-MDSCs producing arginase 1 are associated with a higher incidence of nosocomial infections and seem to be major actors of sepsis-induced immune suppression.

  12. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Madhurima Sarkar

    Full Text Available Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP, a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.

  13. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells

    Directory of Open Access Journals (Sweden)

    Tetsuro Yasui

    2017-06-01

    Full Text Available Human neural precursor cells (hNPCs derived from pluripotent stem cells display a high propensity for neuronal differentiation, but they require long-term culturing to differentiate efficiently into astrocytes. The mechanisms underlying this biased fate specification of hNPCs remain elusive. Here, we show that hypoxia confers astrocytic differentiation potential on hNPCs through epigenetic gene regulation, and that this was achieved by cooperation between hypoxia-inducible factor 1α and Notch signaling, accompanied by a reduction of DNA methylation level in the promoter region of a typical astrocyte-specific gene, Glial fibrillary acidic protein. Furthermore, we found that this hypoxic culture condition could be applied to rapid generation of astrocytes from Rett syndrome patient-derived hNPCs, and that these astrocytes impaired neuronal development. Thus, our findings shed further light on the molecular mechanisms regulating hNPC differentiation and provide attractive tools for the development of therapeutic strategies for treating astrocyte-mediated neurological disorders.

  14. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    Science.gov (United States)

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  15. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  16. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Gao [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yeh, P Y [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Lu, Y -S [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan, ROC (China); Chang, W C [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Kuo, M -L [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Cheng, A -L [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China)], E-mail: alcheng@ntu.edu.tw

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  17. NF-κB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-01-01

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-κB controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-κB activity in response to TNF-α, an abundance of basal and TNF-α-induced NF-κB-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a κB site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells

  18. Indomethacin sensitive suppressor cell activity in head and neck cancer patients pre- and postirradiation therapy

    International Nuclear Information System (INIS)

    Maca, R.D.; Panje, W.R.

    1982-01-01

    The effects of the addition of indomethacin to PHA or Con A stimulated lymphocytes from patients with untreated squamous cell carcinoma of the head and neck or from patients with the disease who have just finished irradiation therapy from the disease was quantitated and compared to those of the control group. Lymphocytes from eight of 26 patients with untreated carcinoma were significantly augmented by the addition of indomethacin. The remaining eighteen patients were equal to the controls. For all 17 patients who had just finished extensive field irradiation therapy, significant enhancement of PHA and Con A reactivity by indomethacin was found, which did not appear to be solely a function of low baseline mitogen reactivity. The results of this study support the hypothesis that perhaps patients receiving irradiation therapy may benefit by the oral administration of indomethacin, an approach that needs further consideration

  19. Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells.

    Science.gov (United States)

    Merson, Tobias D; Castelletto, Stefania; Aharonovich, Igor; Turbic, Alisa; Kilpatrick, Trevor J; Turnley, Ann M

    2013-10-15

    Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiV-containing NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.

  20. Immunomodulatory effect of captopril and local irradiation on myeloid-derived suppressor cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Kyung; Shin, Sung Won; Kim, Shin Yeong; Choi, Chang Hoon; Park, Won; Noh, Jae Myoung [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Hong, Chang Won [Dept. of Physiology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-09-15

    This study is to investigate the effect of captopril when combined with irradiation. 4T1 (mouse mammary carcinoma) cells were injected in the right hind leg of Balb/c mice. Mice were randomized to four groups; control (group 1), captopril-treated (group 2), irradiated (group 3), irradiated and captopril-treated concurrently (group 4). Captopril was administered by intraperitoneal injection (10 mg/kg) daily and irradiation was delivered on the tumor-bearing leg for 15 Gy in 3 fractions. Surface markers of splenic neutrophils (G-MDSCs) and intratumoral neutrophils (tumor-associated neutrophils [TANs]) were assessed using flow cytometry and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 alpha (HIF-1α) of tumor was evaluated by immunohistochemical (IHC) staining. The mean tumor volumes (±standard error) at the 15th day after randomization were 1,382.0 (±201.2) mm{sup 3} (group 1), 559.9 (±67.8) mm{sup 3} (group 3), and 370.5 (± 48.1) mm{sup 3} (group 4), respectively. For G-MDSCs, irradiation reversed decreased expression of CD{sub 101} from tumor-bearing mice, and additional increase of CD{sub 101} expression was induced by captopril administration. Similar tendency was observed in TANs. The expression of tumor-necrosis factor-associated molecules, CD{sub 120} and CD{sub 137}, are increased by irradiation in both G-MDSCs and TANs. Further increment was observed by captopril except CD{sub 120} in TANs. For IHC staining, VEGF and HIF-1α positivity in tumor cells were decreased when treated with captopril. Captopril is suggested to have additional effect when combined to irradiation in a murine tumor model by modulation of MDSCs and angiogenesis.

  1. Immunomodulatory effect of captopril and local irradiation on myeloid-derived suppressor cells

    International Nuclear Information System (INIS)

    Cho, Won Kyung; Shin, Sung Won; Kim, Shin Yeong; Choi, Chang Hoon; Park, Won; Noh, Jae Myoung; Hong, Chang Won

    2016-01-01

    This study is to investigate the effect of captopril when combined with irradiation. 4T1 (mouse mammary carcinoma) cells were injected in the right hind leg of Balb/c mice. Mice were randomized to four groups; control (group 1), captopril-treated (group 2), irradiated (group 3), irradiated and captopril-treated concurrently (group 4). Captopril was administered by intraperitoneal injection (10 mg/kg) daily and irradiation was delivered on the tumor-bearing leg for 15 Gy in 3 fractions. Surface markers of splenic neutrophils (G-MDSCs) and intratumoral neutrophils (tumor-associated neutrophils [TANs]) were assessed using flow cytometry and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 alpha (HIF-1α) of tumor was evaluated by immunohistochemical (IHC) staining. The mean tumor volumes (±standard error) at the 15th day after randomization were 1,382.0 (±201.2) mm 3 (group 1), 559.9 (±67.8) mm 3 (group 3), and 370.5 (± 48.1) mm 3 (group 4), respectively. For G-MDSCs, irradiation reversed decreased expression of CD 101 from tumor-bearing mice, and additional increase of CD 101 expression was induced by captopril administration. Similar tendency was observed in TANs. The expression of tumor-necrosis factor-associated molecules, CD 120 and CD 137 , are increased by irradiation in both G-MDSCs and TANs. Further increment was observed by captopril except CD 120 in TANs. For IHC staining, VEGF and HIF-1α positivity in tumor cells were decreased when treated with captopril. Captopril is suggested to have additional effect when combined to irradiation in a murine tumor model by modulation of MDSCs and angiogenesis

  2. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  3. Precursor B-cell lymphoblastic leukemia of the arm mimicking neurogenic tumor: case report

    Directory of Open Access Journals (Sweden)

    Sui Xiu-fang

    2012-07-01

    Full Text Available Abstract Precursor B-cell lymphoblastic lymphoma (PBLL is an infrequent subtype of lymphoblastic lymphoma (LBL that commonly affected site for the diagnosis is the skin, followed by the head and neck. In this report, we presented a special case of PBLL located at the left arm and detected with magnetic resonance imaging (MRI and ultrasonography (US. This kind of PBLL is similar to a peripheral nerve tumor in clinical and radiographic manifestation.

  4. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  5. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    Science.gov (United States)

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Human haemato-endothelial precursors: cord blood CD34+ cells produce haemogenic endothelium.

    Directory of Open Access Journals (Sweden)

    Elvira Pelosi

    Full Text Available Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144-, triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45- capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level.

  7. Rethinking the role of myeloid-derived suppressor cells in adoptive T-cell therapy for cancer

    Science.gov (United States)

    Arina, Ainhoa

    2014-01-01

    The expansion of cancer-induced myeloid cells is thought to be one of the main obstacles to successful immunotherapy. Nevertheless, in murine tumors undergoing immune-mediated destruction by adoptively transferred T cells, we have recently shown that such cells maintain their immunosuppressive properties. Therefore, adoptive T-cell therapy can, under certain conditions, overcome myeloid cell immunosuppression. PMID:25050213

  8. Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study.

    Directory of Open Access Journals (Sweden)

    Ishrat Mahjabeen

    Full Text Available Mitochondrial genes play important roles in cellular energy metabolism, free radical generation, and apoptosis. Dysregulation of these genes have long been suspected to contribute to the generation of reactive oxygen species (ROS, increased proliferation and progression of cancer. A family of orthologues of yeast silent information regulator 3 (SIRT3, 4 (SIRT4 and mitochondrial tumor suppressor 1 (MTUS1 are important mitochondrial tumor suppressor genes which play an important role in the progression of multiple cancers. However, their role in the development of oxidative stress, enhanced proliferation and progression of head and neck squamous cell carcinoma (HNSCC has not yet been studied. In this study we aimed to test the association between reduced mitochondrial tumor suppressor genes' activities and enhancement in tissue oxidative stress and cell proliferation in HNSCC cases. The expression of mitochondrial tumor suppressor genes (SIRT3, SIRT4 and MTUS1, mitochondrial DNA repair gene (OGG1-2a and a proliferation marker (Ki-67 was studied in a study cohort of 120 HNSCC patients and controls with reverse transcriptase polymerase chain reaction (RT-PCR and real-time PCR (qPCR in order to determine the potential prognostic significance of these genes. A statistically significant downregulation of SIRT3 (p<0.001, SIRT4 (p<0.0001, MTUS1 (p<0.002 and OGG1 (p<0.0001 was observed in HNSCC compared to control samples. Ki-67 was also overexpressed (p<0.0001 in HNSCC versus control samples. Additionally, to explore gene-gene relationship, we observed a positive spearmen correlation between SIRT3 versus SIRT4 (r = 0.523***, p<0.0001, SIRT3 versus MTUS1 (r = 0.273***, p<0.001, SIRT3 versus OGG1-2a (r = 0.213*, p<0.03, SIRT4 versus OGG1 (r = 0.338***, p<0.0001 and MTUS1 versus OGG1-2a (r = 0.215*, p<0.03 in HNSCC cases. A negative spearman correlation was observed between OGG1 versus Ki-67 (r = -0.224**, p<0.01 and OGG1-2a versus Ki-67 (r = -0.224**, p<0

  9. ß-cell specific overexpression of suppressor of cytokine signalling-3 does not protect against multiple low dose streptozotocin induced type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Börjesson, A; Rønn, S G; Karlsen, A E

    2011-01-01

    We investigated the impact of ß-cell specific overexpression of suppressor of cytokine signalling-3 (SOCS-3) on the development of multiple low dose streptozotocin (MLDSTZ) induced Type 1 diabetes and the possible mechanisms involved. MLDSTZ treatment was administered to RIP-SOCS-3 transgenic......RNA in islet cells and secretion of IL-1Ra into culture medium. MLDSTZ treatment caused gradual hyperglycemia both in the wt mice and in the transgenic mice with the latter tending to be more sensitive. In vitro experiments on wt and transgenic islets did not reveal any differences in sensitivity to damaging...

  10. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways

    DEFF Research Database (Denmark)

    Karlsen, Allan Ertman; Heding, P E; Frobøse, H

    2004-01-01

    The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback reg...... regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown....

  11. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    Science.gov (United States)

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  12. In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; König, Niclas; Abrahamsson, Ninnie

    2014-01-01

    nanoparticles could be effective for stem cell differentiation in vitro. Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells......Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous...... was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry. Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells...

  13. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    International Nuclear Information System (INIS)

    Zhuang, Ming; Gao, Wen; Xu, Jing; Wang, Ping; Shu, Yongqian

    2014-01-01

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy

  14. Suppressor T-cell factor(s) display an altered pattern of Igh (immunoglobulin heavy chain locus) genetic restriction when developed in an Igh-congeneic host

    International Nuclear Information System (INIS)

    HayGlass, K.T.; Naides, S.J.; Benacerraf, B.; Sy, M.S.

    1985-01-01

    Suppressor T cell factor(s) (TsF 1 ) inhibit the in vivo priming of azobenzenearsonate-specific cytotoxic T-cell responses. The activity of TsF 1 is restricted by genes linked to Igh-1 allotypic markers. TsF 1 obtained from B6.Igh-1/sup n/ mice was unable to suppress the immune response in B6.Igh-1/sup b/ mice and vice versa. However, TsF 1 prepared from B6.Igh-1/sup n/ T cells parked in an Igh-congeneic B6.Igh-1/sup b/ environment displays an additional restriction specificity of the host. Thus, TsF 1 prepared from these Igh-chimeric mice suppressed immune responses in both B6.Igh-1/sup n/ (donor) and B6.Igh-1/sup b/ (recipient) mice but not in mice of the unrelated strain BALB/c.Igh-1/sup a/. The results indicate that the establishment of the suppressor T-cell repertoire is dependent not only upon the genetic background of the individual T cell but also upon the influence of Igh-linked determinants present when T-cell clones are selected during the response

  15. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway

    Czech Academy of Sciences Publication Activity Database

    Ullmannová-Benson, Veronika; Guan, M.; Zhou, X. G.; Tripathi, V.; Yang, V.; Zimonjic, D. B.; Popescu, C.

    2009-01-01

    Roč. 23, č. 2 (2009), s. 383-390 ISSN 0887-6924 Institutional research plan: CEZ:AV0Z50200510 Keywords : multiple myeloma * tumor suppressor gene * promoter methylation Subject RIV: EC - Immunology Impact factor: 8.296, year: 2009

  16. Anti-HIV-1 B cell responses are dependent on B cell precursor frequency and antigen-binding affinity.

    Science.gov (United States)

    Dosenovic, Pia; Kara, Ervin E; Pettersson, Anna-Klara; McGuire, Andrew T; Gray, Matthew; Hartweger, Harald; Thientosapol, Eddy S; Stamatatos, Leonidas; Nussenzweig, Michel C

    2018-04-16

    The discovery that humans can produce potent broadly neutralizing antibodies (bNAbs) to several different epitopes on the HIV-1 spike has reinvigorated efforts to develop an antibody-based HIV-1 vaccine. Antibody cloning from single cells revealed that nearly all bNAbs show unusual features that could help explain why it has not been possible to elicit them by traditional vaccination and instead would require a sequence of different immunogens. This idea is supported by experiments with genetically modified immunoglobulin (Ig) knock-in mice. Sequential immunization with a series of specifically designed immunogens was required to shepherd the development of bNAbs. However, knock-in mice contain superphysiologic numbers of bNAb precursor-expressing B cells, and therefore how these results can be translated to a more physiologic setting remains to be determined. Here we make use of adoptive transfer experiments using knock-in B cells that carry a synthetic intermediate in the pathway to anti-HIV-1 bNAb development to examine how the relationship between B cell receptor affinity and precursor frequency affects germinal center (GC) B cell recruitment and clonal expansion. Immunization with soluble HIV-1 antigens can recruit bNAb precursor B cells to the GC when there are as few as 10 such cells per mouse. However, at low precursor frequencies, the extent of clonal expansion is directly proportional to the affinity of the antigen for the B cell receptor, and recruitment to GCs is variable and dependent on recirculation.

  17. Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells

    International Nuclear Information System (INIS)

    Limoli, C. L.; Giedzinski, E.; Baure, J.; Doctrow, S. R.; Rola, R.; Fike, J. R.

    2006-01-01

    Past work has shown that neural precursor cells are predisposed to redox sensitive changes, and that oxidative stress plays a critical role in the acute and persistent changes that occur within the irradiated CNS. Irradiation leads to a marked rise in reactive oxygen species (ROS) that correlates with oxidative endpoints in vivo and reductions in neuro-genesis. To better understand the impact of oxidative stress on neural precursor cells, and to determine if radiation-induced oxidative damage and precursor cell loss after irradiation could be reduced, a series of antioxidant compounds (EUK-134, EUK-163, EUK-172, EUK-189) were tested, three of which possess both superoxide dismutase (SOD) and catalase activities and one (EUK-163) whose only significant activity is SOD. Our results show that these SOD/catalase mimetics apparently increase the oxidation of a ROS-sensitive fluorescent indicator dye, particularly after short (12 h) treatments, but that longer treatments (24 h) decrease oxidation attributable to radiation-induced ROS. Similarly, other studies found that cells incubated with CuZnSOD showed some increase in intracellular ROS levels. Subsequent data suggested that the dye-oxidising capabilities of the EUK compounds were linked to differences in their catalase activity and, most likely, their ability to catalyse per-oxidative pathways. In unirradiated mice, the EUK-134 analogue induced some decrease of proliferating precursor cells and immature neurons 48 h after radiation, an effect that may be attributable to cytotoxicity and/or inhibition of precursor proliferation. In irradiated mice, a single injection of EUK-134 was not found to be an effective radioprotector at acute times (48 h). The present results support continued development of our in vitro model as a tool for predicting certain in vivo responses, and suggest that in some biological systems the capability to scavenge superoxide but produce excess H 2 O 2 , as is known for CuZnSOD, may be

  18. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    Science.gov (United States)

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  19. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    Science.gov (United States)

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  20. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M L B; Rønn, S G; Bruun, C

    2008-01-01

    AIMS/HYPOTHESIS: Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate...... the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine......-induced Fas and chemokine expression in beta cells. METHODS: Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  1. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  2. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Giallongo, Cesarina; Romano, Alessandra; Parrinello, Nunziatina Laura; La Cava, Piera; Brundo, Maria Violetta; Bramanti, Vincenzo; Stagno, Fabio; Vigneri, Paolo; Chiarenza, Annalisa; Palumbo, Giuseppe Alberto; Tibullo, Daniele; Di Raimondo, Francesco

    2016-01-01

    It is well known that mesenchymal stem cells (MSC) have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML). Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC) is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC) from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD) and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  3. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    Science.gov (United States)

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  4. A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis.

    Science.gov (United States)

    Rho, Seung Bae; Park, Young Gyo; Park, Kyoungsook; Lee, Seung-Hoon; Lee, Je-Ho

    2006-07-24

    Promyelocytic leukemia zinc finger protein (PLZF) is a sequence-specific, DNA binding, transcriptional repressor differentially expressed during embryogenesis and in adult tissues. PLZF is known to be a negative regulator of cell cycle progression. We used PLZF as bait in a yeast two-hybrid screen with a cDNA library from the human ovary tissue. A novel cervical cancer suppressor 3 (CCS-3) was identified as a PLZF interacting partner. Further characterization revealed the BTB domain as an interacting domain of PLZF. Interaction of CCS-3 with PLZF in mammalian cells was also confirmed by co-immunoprecipitation and in vitro binding assays. It was found that, although CCS-3 shares similar homology with eEF1A, the study determined CCS-3 to be an isoform. CCS-3 was observed to be downregulated in human cervical cell lines as well as in cervical tumors when compared to those from normal tissues. Overexpression of CCS-3 in human cervical cell lines inhibits cell growth by inducing apoptosis and suppressing human cyclin A2 promoter activity. These combined results suggest that the potential tumor suppressor activity of CCS-3 may be mediated by its interaction with PLZF.

  5. Enhanced suppressor cell activity as a mechanism of immunosuppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.A.; Gauldie, J.; Szewczuk, M.R.; Sweeney, G.

    1981-11-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a toxic halogenated aromatic hydrocarbon, acts in the body as a cumulative poison. The chronic immunotoxic effects of TCDD were studied in C57B1/6 male mice. Total doses of 100 ..mu..g/kg or greater produced cellular depletion in thymus, spleen, and lymph nodes, and the animals appeared sick. No cellular depletion was seen following 0.4 ..mu..g/kg, and only thymus was affected by 4 and 40 ..mu..g/kg. The antibody response to SRBC and TNP-Brucella abortus was impaired following ..mu..g/kg and the generation of alloantigen-specific cytotoxic T cells (CTL) was sensitive to as little as 0.004 ..mu..g/kg TCDD. In vitro analysis of the mechanism of suppression using limiting dilution techniques showed that TCDD did not deplete the precursors of CTL but generated cells capable of suppressing CTL generation in vitro.

  6. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    Science.gov (United States)

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  7. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    Science.gov (United States)

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  8. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  9. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC).

    Science.gov (United States)

    Giallongo, Cesarina; Tibullo, Daniele; Parrinello, Nunziatina L; La Cava, Piera; Di Rosa, Michelino; Bramanti, Vincenzo; Di Raimondo, Cosimo; Conticello, Concetta; Chiarenza, Annalisa; Palumbo, Giuseppe A; Avola, Roberto; Romano, Alessandra; Di Raimondo, Francesco

    2016-12-27

    Granulocytic-Myeloid-derived suppressor cells (G-MDSC) are increased in Multiple Myeloma (MM) patients but the mechanisms of G-MDSC generation are still unknown. There are many evidences of the role of mesenchymal stem cells (MSC) in promoting MM cell growth, survival and drug-resistance. We here used a specific experimental model in vitro to evaluate the ability of MSC to induce G-MDSC. We found that although MSC derived from healthy donors (HD), MGUS and MM were able to generate the same amount of MDSC, only MM-MSC-educated G-MDSC exhibited suppressive ability. In addition, in comparison with MSC derived from HD, MM-MSC produce higher amount of immune-modulatory factors that could be involved in MDSC induction. Compared to G-MDSC obtained from co-culture models with MSC from healthy subjects, both MGUS and MM-MSC-educated G-MDSC showed increase of immune-modulatory factors. However, only MM-MSC educated G-MDSC 1) up-regulated immune-suppressive factors as ARG1 and TNFα, 2) expressed higher levels of PROK2, important in angiogenesis and inflammatory process, and 3) showed ability to digest bone matrix.Our data demonstrate that MM-MSC are functionally different from healthy subjects and MGUS-MSC, supporting an evolving concept regarding the contribution of MM-MSC to tumor development and progression.

  10. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress

    Science.gov (United States)

    Gould, Elizabeth; Tanapat, Patima; McEwen, Bruce S.; Flügge, Gabriele; Fuchs, Eberhard

    1998-01-01

    Although granule cells continue to be added to the dentate gyrus of adult rats and tree shrews, this phenomenon has not been demonstrated in the dentate gyrus of adult primates. To determine whether neurons are produced in the dentate gyrus of adult primates, adult marmoset monkeys (Callithrix jacchus) were injected with BrdU and perfused 2 hr or 3 weeks later. BrdU is a thymidine analog that is incorporated into proliferating cells during S phase. A substantial number of cells in the dentate gyrus of adult monkeys incorporated BrdU and ≈80% of these cells had morphological characteristics of granule neurons and expressed a neuronal marker by the 3-week time point. Previous studies suggest that the proliferation of granule cell precursors in the adult dentate gyrus can be inhibited by stress in rats and tree shrews. To test whether an aversive experience has a similar effect on cell proliferation in the primate brain, adult marmoset monkeys were exposed to a resident-intruder model of stress. After 1 hr in this condition, the intruder monkeys were injected with BrdU and perfused 2 hr later. The number of proliferating cells in the dentate gyrus of the intruder monkeys was compared with that of unstressed control monkeys. We found that a single exposure to this stressful experience resulted in a significant reduction in the number of these proliferating cells. Our results suggest that neurons are produced in the dentate gyrus of adult monkeys and that the rate of precursor cell proliferation can be affected by a stressful experience. PMID:9501234

  11. The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    International Nuclear Information System (INIS)

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel

    2006-01-01

    The p75 neurotrophin receptor (p75 NTR ) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75 NTR retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (ΔDD) dominant-negative antagonist of p75 NTR showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75 NTR -dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75 NTR expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75 NTR rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75 NTR was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75 NTR -dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75 NTR expressing prostate cancer cells

  12. The p75{sup NTR} tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Khwaja, Fatima [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States); Tabassum, Arshia [Toronto Western Hospital, Toronto, ON, M5T258 (Canada); Allen, Jeff [National Center for Complementary and Alternative Medicine, N.I.H., Bethesda, MD 20892 (United States); Djakiew, Daniel [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States) and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1436 (United States)

    2006-03-24

    The p75 neurotrophin receptor (p75{sup NTR}) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75{sup NTR} retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted ({delta}DD) dominant-negative antagonist of p75{sup NTR} showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75{sup NTR}-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75{sup NTR} expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75{sup NTR} rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75{sup NTR} was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75{sup NTR}-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75{sup NTR} expressing prostate cancer cells.

  13. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair.

    Science.gov (United States)

    Skop, Nolan B; Calderon, Frances; Cho, Cheul H; Gandhi, Chirag D; Levison, Steven W

    2016-10-01

    Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film. Fetal rat neural precursors plated onto this multifunctional film proliferated and remained multipotent for at least 3 days without providing soluble FGF-2. Moreover, they remained less mature and more highly proliferative than cells maintained on fibronectin-coated substrates in culture medium supplemented with soluble FGF-2. To create a vehicle for cell transplantation, a 3% chitosan solution was electrosprayed into a coagulation bath to generate microspheres (range 30-100 µm, mean 64 µm) that were subsequently modified. Radial glial cells seeded onto these multifunctional microspheres proliferated for at least 7 days in culture and the microspheres containing cells were small enough to be injected, using 23 Gauge Hamilton syringes, into the brains of adult rats that had previously sustained cortical contusion injuries. When analysed 3 days later, the transplanted RGCs were positive for the stem cell/progenitor marker Nestin. These results demonstrate that this multifunctional scaffold can be used as a cellular and growth factor delivery vehicle for the use in developing cell transplantation therapies for traumatic brain injuries. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  14. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    Science.gov (United States)

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

  15. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  16. A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus.

    Directory of Open Access Journals (Sweden)

    Ichiro Yajima

    Full Text Available BACKGROUND: Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA, a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2 and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes.

  17. A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus

    Science.gov (United States)

    Puig, Isabel; Champeval, Delphine; Kumasaka, Mayuko; Belloir, Elodie; Bonaventure, Jacky; Mark, Manuel; Yamamoto, Hiroaki; Taketo, Mark M.; Choquet, Philippe; Etchevers, Heather C.; Beermann, Friedrich; Delmas, Véronique; Monassier, Laurent; Larue, Lionel

    2013-01-01

    Background Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes. PMID:23382837

  18. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  19. H-2-incompatible bone marrow chimeras produce donor-H-2-restricted Ly-2 suppressor T-cell factor(s)

    International Nuclear Information System (INIS)

    Noguchi, M.; Onoe, K.; Ogasawara, M.; Iwabuchi, K.; Geng, L.; Ogasawara, K.; Good, R.A.; Morikawa, K.

    1985-01-01

    To study adaptive-differentiation phenomena of T lymphocytes, suppressor T-cell factors (TsF) produced by Ly-2+ splenic T cells from fully allogeneic mouse bone marrow chimeras were analyzed. AKR mice irradiated and reconstituted with B10 marrow cells (B10----AKR chimeras) produced an Ly-2+ TsF after hyperimmunization with sheep erythrocytes. The TsF suppressed primary antibody responses (to sheep erythrocytes) generated with spleen cells of mice of H-2b haplotype but not those of H-2k haplotype. Thus, this suppressor factor was donor-H-2-restricted. The immunoglobulin heavy chain variable region gene (Igh-V)-restricting element was not involved in this form of suppression. Similar results were obtained when TsF from B6----BALB/c and BALB/c----B6 chimeras were analyzed. The TsF from B10----AKR chimeras suppressed responses of B10.A(3R) and B10.A(5R) mice but not those of B10.A(4R). This finding showed that identity between the factor-producing cells and target spleen cells is required on the left-hand side of the E beta locus of the H-2 region and that the putative I-Jb locus is not involved in this form of suppression. The present results support the postulate that post-thymic differentiation in the presence of continued or repeated stimulation with antigen and donor-derived antigen-presenting cells generates donor-H-2-restricted T-cell clones that may predominate within the repertoire of the specific antigen being presented

  20. Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect.

    Science.gov (United States)

    Fujita, H; Okada, F; Hamada , J; Hosokawa, M; Moriuchi, T; Koya, R C; Kuzumaki, N

    2001-09-01

    Gelsolin, an actin-binding protein, is implicated as a critical regulator in cell motility. In addition, we have reported that cellular levels of gelsolin are decreased in various tumor cells, and overexpression of gelsolin by gene transfer suppresses tumorigenicity. We sought to assess the effects of gelsolin overexpression on metastasis and to determine the importance of a carboxyl-terminus that confers Ca(2+) dependency on gelsolin for effects of its overexpression. Expression vectors with cDNA encoding either full-length wild-type or His321 mutant form, isolated from a flat revertant of Ras-transformed cells and a carboxyl-terminal truncate, C-del of gelsolin, were transfected into a highly metastatic murine melanoma cell line, B16-BL6. Expression of introduced cDNA in transfectants was confirmed using Western blotting, 2-dimensional gel electrophoresis and reverse transcription-polymerase chain reaction (RT-PCR). We characterized phenotypes of transfectants, such as growth rate, colony formation in soft agar, cell motility and metastasis formation in vivo. Transfectants expressing the wild-type, His321 mutant and C-del gelsolin exhibited reduced growth ability in soft agar. Although expression of integrin beta1 or alpha4 on the cell surface of transfectants was not changed, wild-type and His321 mutant gelsolin, except for C-del gelsolin, exhibited retardation of cell spreading, reduced chemotatic migration to fibronectin and suppressed lung colonization in spontaneous metastasis assay. Gelsolin may function as a metastasis suppressor as well as a tumor suppressor gene. The carboxyl-terminus of gelsolin is important for retardation of cell spreading, reduced chemotasis and metastasis suppression. Copyright 2001 Wiley-Liss, Inc.

  1. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Forester, Craig M.; Braunreiter, Chi L.; Yaish, Hasan; Afify, Zeinab; Hedlund, Gary L.

    2009-01-01

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  2. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Forester, Craig M. [University of Utah, Salt Lake City, UT (United States); Braunreiter, Chi L. [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Helen DeVos Children' s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI (United States); Yaish, Hasan; Afify, Zeinab [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Hedlund, Gary L. [Primary Children' s Medical Center, Department of Pediatric Radiology, Salt Lake City, UT (United States)

    2009-11-15

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  3. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  4. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    Science.gov (United States)

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    International Nuclear Information System (INIS)

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi; Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-01-01

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  6. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    Science.gov (United States)

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  7. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  8. Functional clonal deletion versus suppressor cell-induced transplantation tolerance in chimeras prepared with a short course of total-lymphoid irradiation

    International Nuclear Information System (INIS)

    Slavin, S.; Morecki, S.; Weigensberg, M.; Bar, S.; Weiss, L.

    1986-01-01

    Allogeneic bone marrow (BM) chimeras induced by infusion of BM cells into recipients conditioned with total lymphoid irradiation (TLI) were shown to develop humoral and cell-mediated tolerance to host and donor-type alloantigens by a number of in vitro and in vivo assays. Spleen cells of tolerant chimeras exhibited suppressive activity of mixed lymphocyte reaction (MLR). MLR suppression was not abrogated by depletion of Lyt-2 cells, and neither could Lyt-2-positive cells sorted from the spleens of tolerant chimeras suppress MLR or attenuate graft-versus-host reactivity in vivo. Likewise, specifically unresponsive spleen cells obtained from chimeras could not be induced to respond in MLR against tolerizing host-type cells following depletion of Lyt-2 or passage through a nylon-wool column. Tolerance of chimera spleen cells to host alloantigens, best documented by permanent survival of donor-type skin allografts, could be adoptively transferred into syngeneic recipients treated by heavy irradiation but not into untreated or mildly irradiated recipients. Adoptive transfer of tolerance seemed to be associated with experimental conditions favoring engraftment of tolerant cells rather than suppression of host reactivity. We speculate that although host and/or donor-derived suppressor cells may be operating in reducing the pool of specific alloreactive clones by blocking cell proliferation in response to allogeneic challenge, the final outcome in tolerant chimeras is actual or functional deletion of alloreactive clones

  9. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells.

    Science.gov (United States)

    Kulkarni, Upasana; Herrmenau, Christoph; Win, Stephanie J; Bauer, Michael; Kamradt, Thomas

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions.

  10. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  11. DNA precursor compartmentation in mammalian cells: distribution and rates of equilibration between nucleus and cytoplasm

    International Nuclear Information System (INIS)

    Leeds, J.M.

    1986-01-01

    A rapid nuclear isolation technique was adapted in order to examine the question of DNA precursor compartmentation in mammalian cells. By using this method a reproducible proportion of the cellular nucleotides remained associated with the isolated nuclei. Examination, at several different cell densities, of exponentially growing HeLa cells showed that the nuclei contained a constant but distinct proportion of each dNTP. The nuclear dATP and dTTP concentrations were equal at all densities examined even though the dTTP pool was 150% of the dATP whole-cell pool. The nuclear portion of the whole-cell pools was roughly equal to the volume occupied by the nucleus. The nuclear-cytoplasmic dNTP pool distribution did not change throughout the cell cycle of synchronized Chinese hamster ovary (CHO) cells. The rates at which either radiolabeled cytidine or deoxycytidine equilibrated with the nuclear and whole-cell dCTP pools of G1 and S phase CHO cells were compared. Experiments comparing the labeling kinetics of 3 H-thymidine in G1, S phase, and exponentially growing cells revealed that the S phase dTTP pool equilibrated with exogenously added thymidine faster than the G1 phase pool. The rate of equilibration in exponentially growing cells appeared to be a combination of that seen in G1 and S phases. A linear rate of 3 H-thymidine incorporation into DNA occurred at the same rate in S phase and exponentially growing cells

  12. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  13. Measuring telomere length for the early detection of precursor lesions of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Lin, Shih-Wen; Wang, Guo-Qing; Wei, Wen-Qiang; Lu, Ning; Taylor, Philip R; Qiao, You-Lin; Dawsey, Sanford M; Abnet, Christian C; Freedman, Neal D; Murphy, Gwen; Risques, Rosana; Prunkard, Donna; Rabinovitch, Peter; Pan, Qin-Jing; Roth, Mark J

    2013-01-01

    Esophageal cancer is the sixth leading cause of cancer death worldwide; current early detection screening tests are inadequate. Esophageal balloon cytology successfully retrieves exfoliated and scraped superficial esophageal epithelial cells, but cytologic reading of these cells has poor sensitivity and specificity for detecting esophageal squamous dysplasia (ESD), the precursor lesion of esophageal squamous cell carcinoma (ESCC). Measuring telomere length, a marker for chromosomal instability, may improve the utility of balloon cytology for detecting ESD and early ESCC. We examined balloon cytology specimens from 89 asymptomatic cases of ESD (37 low-grade and 52 high-grade) and 92 age- and sex-matched normal controls from an esophageal cancer early detection screening study. All subjects also underwent endoscopy and biopsy, and ESD was diagnosed histopathologically. DNA was extracted from the balloon cytology cells, and telomere length was measured by quantitative PCR. A receiver operating characteristic (ROC) curve was plotted for telomere length as a diagnostic marker for high-grade dysplasia. Telomere lengths were comparable among the low- and high-grade dysplasia cases and controls, with means of 0.96, 0.96, and 0.92, respectively. The area under the ROC curve was 0.55 for telomere length as a diagnostic marker for high-grade dysplasia. Further adjustment for subject characteristics, including sex, age, smoking, drinking, hypertension, and body mass index did not improve the use of telomere length as a marker for ESD. Telomere length of esophageal balloon cytology cells was not associated with ESCC precursor lesions. Therefore, telomere length shows little promise as an early detection marker for ESCC in esophageal balloon samples

  14. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    Science.gov (United States)

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.

    Science.gov (United States)

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Scionti, Domenico; Diomede, Francesca; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2017-06-01

    In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 118: 1531-1546, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering.

    Science.gov (United States)

    Wang, Yongjie; Lu, Kunyuan; Han, Lu; Liu, Zeke; Shi, Guozheng; Fang, Honghua; Chen, Si; Wu, Tian; Yang, Fan; Gu, Mengfan; Zhou, Sijie; Ling, Xufeng; Tang, Xun; Zheng, Jiawei; Loi, Maria Antonietta; Ma, Wanli

    2018-04-01

    Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc 2  · 3H 2 O as the lead sources. QD solar cells based on PbAc-PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO-PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    Directory of Open Access Journals (Sweden)

    Jessberger Sebastian

    2006-11-01

    Full Text Available Abstract Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2 the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3 positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  18. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  19. Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice.

    Science.gov (United States)

    Schmid, Maximilian; Zimara, Nicole; Wege, Anja Kathrin; Ritter, Uwe

    2014-11-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of CD11b+ cells. According to the surface molecules Ly6G and Ly6C (where Ly6G and Ly6C are lymphocyte antigen 6, locus G and C, respectively), MDSCs are further divided into monocytic (Mo-MDSCs, CD11b+ /Ly6C(high) /Ly6G-) and polymorphonucleated suppressor cells (PMN-MDSCs, CD11b+ /Ly6C(int) /Ly6G+). Most published manuscripts focus on the suppressive role of MDSCs in cancer, whereas their impact on adaptive immunity against obligatory intracellular parasites is not well understood. Furthermore, it is not clear how the genetic background of mice influences MDSC functionality. Therefore, we implemented an experimental model of leishmaniasis, and analyzed MDSC maturation and the impact of MDSCs on the parasite-specific T-cell responses in resistant C57BL/6 and susceptible BALB/c mice. This experimental setup demonstrated the impaired ability of BALB/c mice to produce Mo-MDSCs when compared with C57BL/6 mice. This phenotype is detectable after subcutaneous infection with parasites and is specifically represented by a reduced accumulation of Mo-MDSCs at the site of infection in BALB/c mice. Moreover, infected C57BL/6-derived MDSCs were able to suppress Leishmania-specific CD4+ -cell proliferation, whereas BALB/c-derived MDSCs harboring parasites lost this suppressive function. In conclusion, we demonstrate that (i) genetic background defines MDSC differentiation; and (ii) Leishmania major parasites are able to modulate the suppressive effect of MDSCs in a strain-dependent manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells.

    Science.gov (United States)

    Hepp, Matías I; Escobar, David; Farkas, Carlos; Hermosilla, Viviana; Álvarez, Claudia; Amigo, Roberto; Gutiérrez, José L; Castro, Ariel F; Pincheira, Roxana

    2018-05-17

    SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi. Copyright © 2018. Published by Elsevier B.V.

  1. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma.

    LENUS (Irish Health Repository)

    Laing, A J

    2012-02-03

    Postnatal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells (EPC) migrate, differentiate, and incorporate into the nacent endothelium contributing to physiological and pathological neovascularization, has stimulated much interest. Its contribution to tumor nonvascularization, wound healing, and revascularization associated with skeletal and cardiac muscles ischaemia is established. We evaluated the mobilization of EPCs in response to musculoskeletal trauma. Blood from patients (n = 15) following AO type 42a1 closed diaphyseal tibial fractures was analyzed for CD34 and AC133 cell surface marker expression. Immunomagnetically enriched CD34+ mononuclear cell (MNC(CD34+)) populations were cultured and examined for phenotypic and functional vascular endothelial differentiation. Circulating MNC(CD34+) levels increased sevenfold by day 3 postinjury. Circulating MNC(AC133+) increased 2.5-fold. Enriched MNC(CD34+) populations from day 3 samples in culture exhibited cell cluster formation with sprouting spindles. These cells bound UEA-1 and incorporated fluorescent DiI-Ac-LDL intracellularily. Our findings suggest a systemic provascular response is initiated in response to musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of fracture healing.

  2. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  3. The functional performance of microencapsulated human pancreatic islet-derived precursor cells.

    Science.gov (United States)

    Montanucci, Pia; Pennoni, Ilaria; Pescara, Teresa; Blasi, Paolo; Bistoni, Giovanni; Basta, Giuseppe; Calafiore, Riccardo

    2011-12-01

    We have examined long-term cultured, human islet-derived stem/precursor cells (hIPC). Whole human islets (HI) were obtained by multi-enzymatic digestion of cadaveric donor pancreases, plated on tissue flasks, and allowed to adhere and expand for several in vitro passages, in order to obtain hIPC. We detected specific stem cell markers (Oct-4, Sox-2, Nanog, ABCG2, Klf-4, CD117) in both intact HI and hIPC. Moreover, hIPC while retaining the expression of Glut-2, Pdx-1, CK-19, and ICA-512, started re-expressing Ngn3, thereby indicating acquisition of a specific pancreatic islet beta cell-oriented phenotype identity. The intrinsic plasticity of hIPC was documented by their ability to differentiate into various germ layer-derived cell phenotypes (ie, osteocytic, adipocytic and neural), including endocrine cells associated with insulin secretory capacity. To render hIPC suitable for transplantation we have enveloped them within our highly purified, alginate-based microcapsules. Upon intraperitoneal graft in NOD/SCID mice we have observed that the microcapsules acted as three-dimensional niches favouring post-transplant hIPC differentiation and acquisition of beta cell-like functional competence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    Holt, Ian; Gestmann, Ingo; Wright, Andrew C.

    2013-01-01

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  5. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  6. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    International Nuclear Information System (INIS)

    Kearns, M.; Lala, P.K.

    1982-01-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells

  7. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    Science.gov (United States)

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.

  8. Effect of heat absorbing powder addition on cell morphology of porous titanium composite manufactured by reactive precursor method

    International Nuclear Information System (INIS)

    Kobashi, Makoto; Kamiya, Yoshinori; Kanetake, Naoyuki

    2012-01-01

    Open-cell structured porous titanium/ceramics composite was synthesized by a reactive precursor method using titanium and boron carbide (B 4 C) as reactant powders. Pore morphology was controlled by adding heat absorbing powder (titanium diboride: TiB 2 ) in the Ti+B 4 C blended powder. The effects of molar blending ratio of titanium and B 4 C and the amount of heat absorbing powder addition on the cell morphology (either open or closed) were investigated. Fine and homogeneous open-cell structure was achieved by adding appropriate amount of heat absorbing agent powder (>15 vol%), and the relative density of the specimen after the reaction became closer to that of the precursor by increasing TiB 2 volume fraction. When the volume fraction of TiB 2 addition was 20%, the open-cell fraction was maintained as 1.0 regardless of the relative density of the precursor.

  9. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  10. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  11. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  12. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    International Nuclear Information System (INIS)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-01-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin -/- (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of

  13. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  14. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung; Nili, Michael A.

    2013-01-01

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD 50 ) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative stress by

  15. Reduced Osteogenesis of Human Osteogenic Precursors' Cells Cultured in the Random Positioning Machine

    Science.gov (United States)

    Gershovich, J. G.; Buravkova, L. B.

    2008-06-01

    Recent studies have shown that simulated microgravity (SMG) results in altered proliferation and differentiation not only osteoblasts but also affects on osteogenic capacity of mesenchymal stem cells (MSCs) from various sources. For present study we used system that simulates effects of microgravity produced by the Random Positioning Machine (RPM). Cultured MCSs from human bone marrow and human osteoblasts (OBs) were exposed to SMG at RPM for 10-40 days. Induced osteogenesis of these progenitor cells was compared with the appropriate static (1g) and dynamic (horizontal shaker) controls. Clinorotated OBs and MSCs showed proliferation rate lower than static and dynamic control groups of cells in the early terms of SMG. Significant reduction of ALP activity was detected after 10 days of clinorotation of MSCs. There was no such dramatic difference in ALP activity of MSCs derived cells between SMG and control groups after 20 days of clinorotation but the expression of ALP was still reduced. However, virtually no matrix mineralization was found in OBs cultured under SMG conditions in the presence of differentiation stimuli. The similar effect was observed when we assayed matrix calcification of MSCs derived cultures. Thus, our results confirm low gravity mediated reduction of osteogenesis of different osteogenic precursors' cells and can clarify the mechanisms of bone loss during spaceflight.

  16. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-06-01

    Full Text Available Using a viral model of the demyelinating disease multiple sclerosis (MS, we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments.

  17. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    International Nuclear Information System (INIS)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-01-01

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu 2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu 2+ reduction and 64 Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu 2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu 2+ ions. Moreover, wild-type cells exposed to both Cu 2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu 2+ reductase activity and increased 64 Cu uptake. We conclude that Cu 2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  18. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  19. Expression of feline immunodeficiency virus gag and env precursor proteins in Spodoptera frugiperda cells and their use in immunodiagnosis

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Vliet, A.L.W. van; Egberink, H.F.; Hesselink, W.; Ronde, A. de

    1993-01-01

    The gag and env genes of the feline immunodeficiency virus strain UT113 were cloned into a baculovirus transfer vector. The recombinant plasmids were used to create recombinant baculoviruses that expressed either the gag or the env precursor protein in insect cells (Sf9 cells). Leader sequence

  20. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  1. Trefoil factor 3 is required for differentiation of thyroid follicular cells and acts as a context-dependent tumor suppressor.

    Science.gov (United States)

    Abols, A; Ducena, K; Andrejeva, D; Sadovska, L; Zandberga, E; Vilmanis, J; Narbuts, Z; Tars, J; Eglitis, J; Pirags, V; Line, A

    2015-01-01

    Trefoil factor 3 (TFF3) is overexpressed in a variety of solid epithelial cancers, where it has been shown to promote migration, invasion, proliferation, survival and angiogenesis. On the contrary, in the majority of thyroid tumors, it is downregulated, yet its role in the development of thyroid cancer remains unknown. Here we show that TFF3 exhibits strong cytoplasmic staining of normal thyroid follicular cells and colloid and the staining is increased in hyperfunctioning thyroid nodules, while it is decreased in all thyroid cancers of follicular cell origin. By meta-analysis of gene expression datasets, we found that in the thyroid cancer, conversely to the breast cancer, the expression of TFF3 mRNA was downregulated by estrogen signaling and confirmed this by treating thyroid cancer cells with estradiol. Forced expression of TFF3 in anaplastic thyroid cancer cells resulted in decreased cell proliferation, clonal spheroid formation and entry into the S phase. Furthermore, it induced acquisition of epithelial-like cell morphology and expression of the differentiation markers of thyroid follicular cells and transcription factors implicated in the thyroid morphogenesis and function. Taken together, this study provides the first evidence that TFF3 may act as a tumor suppressor or an oncogene depending on the cellular context.

  2. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells.

    Science.gov (United States)

    Zagani, Rachid; El-Assaad, Wissal; Gamache, Isabelle; Teodoro, Jose G

    2015-09-29

    The G0/G1 switch gene 2 (G0S2) is methylated and silenced in a wide range of human cancers. The protein encoded by G0S2 is an endogenous inhibitor of lipid catabolism that directly binds adipose triglyceride lipase (ATGL). ATGL is the rate-limiting step in triglyceride metabolism. Although the G0S2 gene is silenced in cancer, the impact of ATGL in the growth and survival of cancer cells has never been addressed. Here we show that ectopic expression of G0S2 in non-small cell lung carcinomas (NSCL) inhibits triglyceride catabolism and results in lower cell growth. Similarly, knockdown of ATGL increased triglyceride levels, attenuated cell growth and promoted apoptosis. Conversely, knockdown of endogenous G0S2 enhanced the growth and invasiveness of cancer cells. G0S2 is strongly induced in acute promyelocytic leukemia (APL) cells in response to all trans retinoic acid (ATRA) and we show that inhibition of ATGL in these cells by G0S2 is required for efficacy of ATRA treatment. Our data uncover a novel tumor suppressor mechanism by which G0S2 directly inhibits activity of a key intracellular lipase. Our results suggest that elevated ATGL activity may be a general property of many cancer types and potentially represents a novel target for chemotherapy.

  3. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  4. Allogeneic mesenchymal precursor cells (MPCs): an innovative approach to treating advanced heart failure.

    Science.gov (United States)

    Westerdahl, Daniel E; Chang, David H; Hamilton, Michele A; Nakamura, Mamoo; Henry, Timothy D

    2016-09-01

    Over 37 million people worldwide are living with Heart Failure (HF). Advancements in medical therapy have improved mortality primarily by slowing the progression of left ventricular dysfunction and debilitating symptoms. Ultimately, heart transplantation, durable mechanical circulatory support (MCS), or palliative care are the only options for patients with end-stage HF. Regenerative therapies offer an innovative approach, focused on reversing myocardial dysfunction and restoring healthy myocardial tissue. Initial clinical trials using autologous (self-donated) bone marrow mononuclear cells (BMMCs) demonstrated excellent safety, but only modest efficacy. Challenges with autologous stem cells include reduced quality and efficacy with increased patient age. The use of allogeneic mesenchymal precursor cells (MPCs) offers an "off the shelf" therapy, with consistent potency and less variability than autologous cells. Preclinical and initial clinical trials with allogeneic MPCs have been encouraging, providing the support for a large ongoing Phase III trial-DREAM-HF. We provide a comprehensive review of preclinical and clinical data supporting MPCs as a therapeutic option for HF patients. The current data suggest allogeneic MPCs are a promising therapy for HF patients. The results of DREAM-HF will determine whether allogeneic MPCs can decrease major adverse clinical events (MACE) in advanced HF patients.

  5. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  6. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    Science.gov (United States)

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  7. JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Science.gov (United States)

    de Goffau-Nobel, Willemieke; Hoogkamer, Alex Q.; Boer, Judith M.; Boeree, Aurélie; van de Ven, Cesca; Koudijs, Marco J.; Besselink, Nicolle J.M.; de Groot-Kruseman, Hester A.; Zwaan, Christian Michel; Horstmann, Martin A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL. PMID:29163799

  8. NFIL3 Orchestrates the Emergence of Common Helper Innate Lymphoid Cell Precursors

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-03-01

    Full Text Available Innate lymphoid cells (ILCs are a family of effectors that originate from a common innate lymphoid cell progenitor. However, the transcriptional program that sets the identity of the ILC lineage remains elusive. Here, we show that NFIL3 is a critical regulator of the common helper-like innate lymphoid cell progenitor (CHILP. Cell-intrinsic Nfil3 ablation led to variably impaired development of fetal and adult ILC subsets. Conditional gene targeting demonstrated that NFIL3 exerted its function prior to ILC subset commitment. Accordingly, NFIL3 ablation resulted in loss of ID2+ CHILP and PLZF+ ILC progenitors. Nfil3 expression in lymphoid progenitors was under the control of the mesenchyme-derived hematopoietin IL-7, and NFIL3 exerted its function via direct Id2 regulation in the CHILP. Moreover, ectopic Id2 expression in Nfil3-null precursors rescued defective ILC lineage development in vivo. Our data establish NFIL3 as a key regulator of common helper-like ILC progenitors as they emerge during early lymphopoiesis.

  9. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    Science.gov (United States)

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Differential proliferation rhythm of neural progenitor and oligodendrocyte precursor cells in the young adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoko Matsumoto

    Full Text Available Oligodendrocyte precursor cells (OPCs are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ; the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus.

  11. Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity

    International Nuclear Information System (INIS)

    Clark, D.A.; Chaput, A.; Tutton, D.

    1986-01-01

    The mammalian fetus has been viewed as an unusually successful type of allograft and unexplained spontaneous abortion as a possible example of maternal rejection. Previous studies have shown the presence of small lymphocytic suppressor cells in the murine decidua which block the generation and reactivation of anti-paternal cytotoxic T lymphocytes (CTL) and lymphokine-activated killer cells (LAK) by elaborating a factor that inhibits the response to interleukin 2 (IL 2). A deficiency of these suppressor cells was associated with implants of xenogeneic Mus caroli embryos in the Mus musculus uterus which are infiltrated by maternal lymphoid cells and aborted. A deficiency of such suppressor cells in the lymph nodes draining the uterus of CBA/J females in the process of aborting their semi-allogeneic CBA x DBA/2 F 1 progeny has also been shown. CBA/J females possess significantly lower levels of decidua-associated non-T suppressor cells on day 8.5 to 10.5 of allopregnancy than do mothers that will produce large litters of live babies. The F 1 embryos are infiltrated by maternal lymphocytes prior to abortion, and the infiltration and abortion rate appears to be augmented by pre-immunization with paternal DBA/2 spleen cells. The CBA/J x DBA/2J mating combination provides a model of spontaneous abortion in which immunologic factors play an important role and demonstrates that the association between deficiency of decidua-associated suppressor cells and xenopregnancy failure also holds true for the failure of allopregnancies resulting from natural within-species mating

  12. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    Science.gov (United States)

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  13. Vitreous humor and albumin augment the proliferation of cultured retinal precursor cells

    DEFF Research Database (Denmark)

    Yang, Jing; Klassen, Henry; Pries, Mette

    2008-01-01

    concentrations of vitreous fluid supplementation was quantified by using a (3)H-thymidine incorporation assay. Active components of vitreous fluid were partially characterized by gel filtration chromatography (GFC) and UV spectral analysis. The effect of each vitreous fraction on proliferation was determined...... Da, consistent with ascorbic acid. Ascorbic acid was confirmed in vitreous fluid by UV spectral analysis. Growth-augmenting activity was present in higher molecular mass vitreous fractions, consistent with protein components. Albumin, the major protein in vitreous fluid, was found to augment...... proliferation. Because vitreous-associated augmentation of retinal precursor proliferation remains an epidermal growth factor-dependent phenomenon, the proliferative status of transplanted cells in the vitreous cavity is likely determined by a combination of factors. (c) 2008 Wiley-Liss, Inc....

  14. Intrinsic differences in adipocyte precursor cells from different white fat depots

    DEFF Research Database (Denmark)

    Macotela, Yazmín; Emanuelli, Brice; Mori, Marcelo A

    2012-01-01

    Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. In the current study, we demonstrate...... that adipocyte precursor cells (APCs) isolated from visceral and subcutaneous white adipose depots of mice have distinct patterns of gene expression, differentiation potential, and response to environmental and genetic influences. APCs derived from subcutaneous fat differentiate well in the presence of classical...... induction cocktail, whereas those from visceral fat differentiate poorly but can be induced to differentiate by addition of bone morphogenetic protein (BMP)-2 or BMP-4. This difference correlates with major differences in gene expression signature between subcutaneous and visceral APCs. The number of APCs...

  15. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.

    Science.gov (United States)

    Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex

    2010-06-01

    Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.

  16. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    Science.gov (United States)

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  17. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy

    Directory of Open Access Journals (Sweden)

    Leslie Chavez-Galan

    2017-08-01

    Full Text Available Pleural tuberculosis (TB is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2, but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.

  18. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  19. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-01-01

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  20. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer

    International Nuclear Information System (INIS)

    Senchenko, Vera N; Zabarovsky, Eugene R; Anedchenko, Ekaterina A; Kondratieva, Tatiana T; Krasnov, George S; Dmitriev, Alexei A; Zabarovska, Veronika I; Pavlova, Tatiana V; Kashuba, Vladimir I; Lerman, Michael I

    2010-01-01

    The short arm of human chromosome 3 is involved in the development of many cancers including lung cancer. Three bona fide lung cancer tumor suppressor genes namely RBSP3 (AP20 region),NPRL2 and RASSF1A (LUCA region) were identified in the 3p21.3 region. We have shown previously that homozygous deletions in AP20 and LUCA sub-regions often occurred in the same tumor (P < 10 -6 ). We estimated the quantity of RBSP3, NPRL2, RASSF1A, GAPDH, RPN1 mRNA and RBSP3 DNA copy number in 59 primary non-small cell lung cancers, including 41 squamous cell and 18 adenocarcinomas by real-time reverse transcription-polymerase chain reaction based on TaqMan technology and relative quantification. We evaluated the relationship between mRNA level and clinicopathologic characteristics in non-small cell lung cancer. A significant expression decrease (≥2) was found for all three genes early in tumor development: in 85% of cases for RBSP3; 73% for NPRL2 and 67% for RASSF1A (P < 0.001), more strongly pronounced in squamous cell than in adenocarcinomas. Strong suppression of both, NPRL2 and RBSP3 was seen in 100% of cases already at Stage I of squamous cell carcinomas. Deregulation of RASSF1A correlated with tumor progression of squamous cell (P = 0.196) and adenocarcinomas (P < 0.05). Most likely, genetic and epigenetic mechanisms might be responsible for transcriptional inactivation of RBSP3 in non-small cell lung cancers as promoter methylation of RBSP3 according to NotI microarrays data was detected in 80% of squamous cell and in 38% of adenocarcinomas. With NotI microarrays we tested how often LUCA (NPRL2, RASSF1A) and AP20 (RBSP3) regions were deleted or methylated in the same tumor sample and found that this occured in 39% of all studied samples (P < 0.05). Our data support the hypothesis that these TSG are involved in tumorigenesis of NSCLC. Both genetic and epigenetic mechanisms contribute to down-regulation of these three genes representing two tumor suppressor clusters in 3p21

  1. Bone impairment in phenylketonuria is characterized by circulating osteoclast precursors and activated T cell increase.

    Directory of Open Access Journals (Sweden)

    Ilaria Roato

    Full Text Available BACKGROUND: Phenylketonuria (PKU is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques. METHODOLOGY: Peripheral blood mononuclear cell (PBMC cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF and receptor activator of NFκB ligand (RANKL. Flow cytometry was utilized to analyze osteoclast precursors (OCPs and T cell phenotype. Tumour necrosis factor α (TNF-α, RANKL and osteoprotegerin (OPG were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated. PRINCIPAL FINDINGS: Several in vitro studies in PKU patients' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS. This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia. CONCLUSIONS: Our results indicate that PKU spontaneous osteoclastogenesis

  2. Effect of oxygen tension on bioenergetics and proteostasis in young and old myoblast precursor cells.

    Science.gov (United States)

    Konigsberg, M; Pérez, V I; Ríos, C; Liu, Y; Lee, S; Shi, Y; Van Remmen, H

    2013-01-01

    In the majority of studies using primary cultures of myoblasts, the cells are maintained at ambient oxygen tension (21% O2), despite the fact that physiological O2 at the tissue level in vivo is much lower (~1-5% O2). We hypothesized that the cellular response in presence of high oxygen concentration might be particularly important in studies comparing energetic function or oxidative stress in cells isolated from young versus old animals. To test this, we asked whether oxygen tension plays a role in mitochondrial bioenergetics (oxygen consumption, glycolysis and fatty acid oxidation) or oxidative damage to proteins (protein disulfides, carbonyls and aggregates) in myoblast precursor cells (MPCs) isolated from young (3-4 m) and old (29-30 m) C57BL/6 mice. MPCs were grown under physiological (3%) or ambient (21%) O2 for two weeks prior to exposure to an acute oxidative insult (H2O2). Our results show significantly higher basal mitochondrial respiration in young versus old MPCs, an increase in basal respiration in young MPCs maintained at 3% O2 compared to cells maintained at 21% O2, and a shift toward glycolytic metabolism in old MPCs grown at 21% O2. H2O2 treatment significantly reduced respiration in old MPCs grown at 3% O2 but did not further repress respiration at 21% O2 in old MPCs. Oxidative damage to protein was higher in cells maintained at 21% O2 and increased in response to H2O2 in old MPCs. These data underscore the importance of understanding the effect of ambient oxygen tension in cell culture studies, in particular studies measuring oxidative damage and mitochondrial function.

  3. Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells

    Directory of Open Access Journals (Sweden)

    Brill Monika S

    2011-04-01

    Full Text Available Abstract Background While the diversity and spatio-temporal origin of olfactory bulb (OB GABAergic interneurons has been studied in detail, much less is known about the subtypes of glutamatergic OB interneurons. Results We studied the temporal generation and diversity of Neurog2-positive precursor progeny using an inducible genetic fate mapping approach. We show that all subtypes of glutamatergic neurons derive from Neurog2 positive progenitors during development of the OB. Projection neurons, that is, mitral and tufted cells, are produced at early embryonic stages, while a heterogeneous population of glutamatergic juxtaglomerular neurons are generated at later embryonic as well as at perinatal stages. While most juxtaglomerular neurons express the T-Box protein Tbr2, those generated later also express Tbr1. Based on morphological features, these juxtaglomerular cells can be identified as tufted interneurons and short axon cells, respectively. Finally, targeted electroporation experiments provide evidence that while the majority of OB glutamatergic neurons are generated from intrabulbar progenitors, a small portion of them originate from extrabulbar regions at perinatal ages. Conclusions We provide the first comprehensive analysis of the temporal and spatial generation of OB glutamatergic neurons and identify distinct populations of juxtaglomerular interneurons that differ in their antigenic properties and time of origin.

  4. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    Science.gov (United States)

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  6. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2015-04-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.

  7. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  8. The Downregulation of the Expression of CD147 by Tumor Suppressor REIC/Dkk-3, and Its Implication in Human Prostate Cancer Cell Growth Inhibition.

    Science.gov (United States)

    Mori, Akihiro; Watanabe, Masami; Sadahira, Takuya; Kobayashi, Yasuyuki; Ariyoshi, Yuichi; Ueki, Hideo; Wada, Koichiro; Ochiai, Kazuhiko; Li, Shun-Ai; Nasu, Yasutomo

    2017-04-01

    The cluster of differentiation 147 (CD147), also known as EMMPRIN, is a key molecule that promotes cancer progression. We previously developed an adenoviral vector encoding a tumor suppressor REIC/Dkk-3 gene (Ad-REIC) for cancer gene therapy. The therapeutic effects are based on suppressing the growth of cancer cells, but, the underlying molecular mechanism has not been fully clarified. To elucidate this mechanism, we investigated the effects of Ad-REIC on the expression of CD147 in LNCaP prostate cancer cells. Western blotting revealed that the expression of CD147 was significantly suppressed by Ad-REIC. Ad-REIC also suppressed the cell growth of LNCaP cells. Since other researchers have demonstrated that phosphorylated mitogen-activated protein kinases (MAPKs) and c-Myc protein positively regulate the expression of CD147, we investigated the correlation between the CD147 level and the activation of MAPK and c-Myc expression. Unexpectedly, no positive correlation was observed between CD147 and its possible regulators, suggesting that another signaling pathway was involved in the downregulation of CD147. This is the first study to show the downregulation of CD147 by Ad-REIC in prostate cancer cells. At least some of the therapeutic effects of Ad-REIC may be due to the downregulation of the cancer-progression factor, CD147.

  9. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation.

    Directory of Open Access Journals (Sweden)

    Erine H Budi

    2011-05-01

    Full Text Available The pigment cells of vertebrates serve a variety of functions and generate a stunning variety of patterns. These cells are also implicated in human pathologies including melanoma. Whereas the events of pigment cell development have been studied extensively in the embryo, much less is known about morphogenesis and differentiation of these cells during post-embryonic stages. Previous studies of zebrafish revealed genetically distinct populations of embryonic and adult melanophores, the ectotherm homologue of amniote melanocytes. Here, we use molecular markers, vital labeling, time-lapse imaging, mutational analyses, and transgenesis to identify peripheral nerves as a niche for precursors to adult melanophores that subsequently migrate to the skin to form the adult pigment pattern. We further identify genetic requirements for establishing, maintaining, and recruiting precursors to the adult melanophore lineage and demonstrate novel compensatory behaviors during pattern regulation in mutant backgrounds. Finally, we show that distinct populations of latent precursors having differential regenerative capabilities persist into the adult. These findings provide a foundation for future studies of post-embryonic pigment cell precursors in development, evolution, and neoplasia.

  10. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    Science.gov (United States)

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Sequence conservation and combinatorial complexity of Drosophila neural precursor cell enhancers

    Directory of Open Access Journals (Sweden)

    Kuzin Alexander

    2008-08-01

    Full Text Available Abstract Background The presence of highly conserved sequences within cis-regulatory regions can serve as a valuable starting point for elucidating the basis of enhancer function. This study focuses on regulation of gene expression during the early events of Drosophila neural development. We describe the use of EvoPrinter and cis-Decoder, a suite of interrelated phylogenetic footprinting and alignment programs, to characterize highly conserved sequences that are shared among co-regulating enhancers. Results Analysis of in vivo characterized enhancers that drive neural precursor gene expression has revealed that they contain clusters of highly conserved sequence blocks (CSBs made up of shorter shared sequence elements which are present in different combinations and orientations within the different co-regulating enhancers; these elements contain either known consensus transcription factor binding sites or consist of novel sequences that have not been functionally characterized. The CSBs of co-regulated enhancers share a large number of sequence elements, suggesting that a diverse repertoire of transcription factors may interact in a highly combinatorial fashion to coordinately regulate gene expression. We have used information gained from our comparative analysis to discover an enhancer that directs expression of the nervy gene in neural precursor cells of the CNS and PNS. Conclusion The combined use EvoPrinter and cis-Decoder has yielded important insights into the combinatorial appearance of fundamental sequence elements required for neural enhancer function. Each of the 30 enhancers examined conformed to a pattern of highly conserved blocks of sequences containing shared constituent elements. These data establish a basis for further analysis and understanding of neural enhancer function.

  12. Emerging differential roles of the pRb tumor suppressor in trichodysplasia spinulosa-associated polyomavirus and Merkel cell polyomavirus pathogeneses.

    Science.gov (United States)

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Doan, Hung Q; Rady, Peter L; Tyring, Stephen K

    2016-03-01

    Merkel cell carcinoma (MCC) and trichodysplasia spinulosa (TS) are two proliferative cutaneous diseases caused by the Merkel cell polyomavirus (MCPyV) and trichodysplasia spinulosa-associated polyomavirus (TSPyV) respectively. Recently, studies have elucidated a key role of the small tumor (sT) antigen in the proliferative pathogenic mechanisms of MCPyV and likely TSPyV. While both sT antigens have demonstrated a capacity in regulating cellular pathways, it remains unknown whether MCPyV and TSPyV sT antigens contribute similarly or differentially to cell proliferation. The present study aims to explore the proliferative potential of MCPyV and TSPyV sT antigens by investigating their regulatory effects on the retinoblastoma protein (pRb) tumor suppressor. Inducible cell lines expressing MCPyV sT or TSPyV sT were created using a lentiviral packaging system. Cellular proteins were extracted and subjected to SDS-PAGE followed by Western blot detection and densitometric analysis. Expression of TSPyV sT markedly enhanced the phosphorylation of pRb in Western blot experiments. In contrast, expression of MCPyV sT did not alter pRb phosphorylation under the same experimental conditions. Densitometric analysis revealed that TSPyV sT antigen expression nearly doubled the ratio of phosphorylated to total pRb (P<0.001, Student's T-test), while MCPyV sT antigen expression did not cause significant change in pRb phosphorylation status. Given that hyperphosphorylation of pRb is associated with dysregulation of the cell cycle, S-phase induction, and increased cell proliferation, our findings support an important role of TSPyV-mediated pRb deactivation in the development of TS. The observation that the pRb tumor suppressor is inactivated by TSPyV sT but not MCPyV sT provides further insights into the distinct pathobiological mechanisms of MCC and TS. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  14. The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium

    OpenAIRE

    Marshall, Thomas W.; Lloyd, Isaac E.; Delalande, Jean Marie; N?thke, Inke; Rosenblatt, Jody

    2011-01-01

    Despite high rates of cell death, epithelia maintain intact barriers by squeezing dying cells out using a process termed cell extrusion. Cells can extrude apically into the lumen or basally into the tissue the epithelium encases, depending on whether actin and myosin contract at the cell base or apex, respectively. We previously found that microtubules in cells surrounding a dying cell target p115 RhoGEF to the actin cortex to control where contraction occurs. However, what controls microtubu...

  15. Neural precursor cells in the ischemic brain - integration, cellular crosstalk and consequences for stroke recovery

    Directory of Open Access Journals (Sweden)

    Dirk M. Hermann

    2014-09-01

    Full Text Available After an ischemic stroke, neural precursor cells (NPCs proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate towards the ischemic lesion where they promote tissue remodelling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to support a full recovery of lost neurological functions. Supported by solid experimental and preclinical data, the transplantation of exogenous NPCs has emerged as a potential tool for stroke treatment. Transplanted NPCs are thought to act mainly via trophic and immune modulatory effects, thereby complementing the restorative responses initially executed by the endogenous NPC population. Recent studies have attempted to elucidate how the therapeutic properties of transplanted NPCs vary depending on the route of transplantation. Systemic NPC delivery leads to potent immune modulatory actions, which prevent secondary neuronal degeneration, reduces glial scar formation, diminishes oxidative stress and stabilizes blood-brain barrier integrity. On the contrary, local stem cell delivery, allows for the accumulation of large numbers of transplanted NPCs in the brain, thus achieving high levels of locally available tissue trophic factors, which may better induce a strong endogenous NPC proliferative response.Herein we describe the diverse capabilities of exogenous (systemically vs locally transplanted NPCs in enhancing the endogenous neurogenic response after stroke, and how the route of transplantation may affect migration, survival, bystander effects and integration of the cellular graft. It is the authors’ claim that understanding these aspects will be of pivotal importance in discerning how transplanted NPCs exert their therapeutic effects in stroke.

  16. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  17. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Munawwar Ali Khan

    2015-01-01

    Full Text Available Sulforaphane (SFN may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs and histone deacetylases (HDACs were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  18. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  19. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton.

    Science.gov (United States)

    Platet, Nadine; Hinkel, Isabelle; Richert, Ludovic; Murdamoothoo, Devadarssen; Moufok-Sadoun, Ahlam; Vanier, Marie; Lavalle, Philippe; Gaiddon, Christian; Vautier, Dominique; Freund, Jean-Noel; Gross, Isabelle

    2017-02-01

    The vast majority of cancer deaths are caused by the formation of metastases rather than the primary tumor itself. Despite this clinical importance, the molecular and cellular events that support the dissemination of cancer cells are not yet fully unraveled. We have previously shown that CDX2, a homeotic transcription factor essential for gut development, acts as a colon-specific tumor suppressor and opposes metastasis. Here, using a combination of biochemical, biophysical, and immunofluorescence techniques, we further investigated the mechanisms promoted by CDX2 that might antagonize tumor cell dissemination. We found that CDX2 expression regulates the transcription of RHO GEFs, thereby activating RHO signaling cascades that lead to reorganization of the actin cytoskeleton and enhanced adherent junctions. Accordingly, we observed by atomic force microscopy (AFM) that colon cancer cells expressing CDX2 are less deformable, a feature that has been shown to correlate with poor metastatic potential. Thus, this study illustrates how the loss of expression of a transcription factor during colon cancer progression modifies the biomechanical characteristics of tumor cells and hence facilitates invasion and metastasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Herpes simplex virus dances with amyloid precursor protein while exiting the cell.

    Directory of Open Access Journals (Sweden)

    Shi-Bin Cheng

    2011-03-01

    Full Text Available Herpes simplex type 1 (HSV1 replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP, a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/-6.7% and travel together with APP inside living cells (81.1+/-28.9%. This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/-0.2 to 0.3+/-0.1 µm/s and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile and velocity (from 0.3+/-0.1 to 0.4+/-0.1 µm/s of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic

  1. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are involved in cancer development and progression, acting as tumor suppressors or oncogenes. Our previous studies have revealed that miR-148a and miR-152 are significantly down-regulated in gastrointestinal cancers. Interestingly, miR-148b has the same "seed sequences" as miR-148a and miR-152. Although aberrant expression of miR-148b has been observed in several types of cancer, its pathophysiologic role and relevance to tumorigenesis are still largely unknown. The purpose of this study was to elucidate the molecular mechanisms by which miR-148b acts as a tumor suppressor in gastric cancer. Results We showed significant down-regulation of miR-148b in 106 gastric cancer tissues and four gastric cancer cell lines, compared with their non-tumor counterparts by real-time RT-PCR. In situ hybridization of ten cases confirmed an overt decrease in the level of miR-148b in gastric cancer tissues. Moreover, the expression of miR-148b was demonstrated to be associated with tumor size (P = 0.027 by a Mann-Whitney U test. We also found that miR-148b could inhibit cell proliferation in vitro by MTT assay, growth curves and an anchorage-independent growth assay in MGC-803, SGC-7901, BGC-823 and AGS cells. An experiment in nude mice revealed that miR-148b could suppress tumorigenicity in vivo. Using a luciferase activity assay and western blot, CCKBR was identified as a target of miR-148b in cells. Moreover, an obvious inverse correlation was observed between the expression of CCKBR protein and miR-148b in 49 pairs of tissues (P = 0.002, Spearman's correlation. Conclusions These findings provide important evidence that miR-148b targets CCKBR and is significant in suppressing gastric cancer cell growth. Maybe miR-148b would become a potential biomarker and therapeutic target against gastric cancer.

  2. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment

    Science.gov (United States)

    Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A.; Byrd, John C.; Carson, William E.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells that expand in tumor bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wildtype mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo. Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. PMID:26880800

  3. Myeloid-Derived Suppressor Cells Express Bruton's Tyrosine Kinase and Can Be Depleted in Tumor-Bearing Hosts by Ibrutinib Treatment.

    Science.gov (United States)

    Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A; Byrd, John C; Carson, William E

    2016-04-15

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that expand in tumor-bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B-cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wild-type mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. Cancer Res; 76(8); 2125-36. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    International Nuclear Information System (INIS)

    Veltman, Joris D; Lambers, Margaretha EH; Nimwegen, Menno van; Hendriks, Rudi W; Hoogsteden, Henk C; Aerts, Joachim GJV; Hegmans, Joost PJJ

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies. MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy. We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy. We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity

  5. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  6. Chasing the precursor of functional hematopoietic stem cells at the single cell levels in mouse embryos.

    Science.gov (United States)

    Wang, Xiaochen; Gong, Yuemin; Ema, Hideo

    2016-07-22

    Adult hematopoietic stem cells (HSCs), the ideal system for regenerative research, were isolated at single cell levels decades ago, whereas studies on embryonic HSCs are much more difficult. Zhou et al identified a new pre-HSC cell surface marker, CD201, by which they isolated pre-HSCs at single cell levels for further analyses. The novel expression pattern of HSC development is revealed, including the fundamental role of mammalian targets of rapamycin (mTOR) signaling pathway in HSCs emergence, and the repopulation potential of S/G2/M phase pre-HSCs. Deeper understandings of the cellular origin and developmental regulatory network of HSCs are essential to develop new strategies of generating HSCs in vitro for clinical application.

  7. Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB signaling by decreasing p65 stability within the cell nucleus.

    Science.gov (United States)

    Strebovsky, Julia; Walker, Patrick; Lang, Roland; Dalpke, Alexander H

    2011-03-01

    Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytoplasmic Janus kinases (Jak) and signal transducer and activator of transcription (STAT) signaling pathways. Previously the authors surprisingly observed that SOCS1 translocated into the nucleus, which was because of the presence of a nuclear localization sequence. This report now hypothesizes that SOCS1 mediates specific functions within the nuclear compartment because it is instantly transported into the nucleus, as shown by photoactivation and live cell imaging in human HEK293 cells. The NFκB component p65 is identified as an interaction partner for SOCS1 but not for other members of the SOCS family. SOCS1 bound to p65 only within the nucleus. By means of its SOCS box domain, SOCS1 operated as a ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of nuclear p65. Thus, SOCS1 limited prolonged p65 signaling and terminated expression of NFκB inducible genes. Using mutants that lack either nuclear translocation or a functional SOCS box, this report identifies genes that are regulated in a manner dependent on the nuclear availability of SOCS1. Data show that beyond its receptor-proximal function in Jak/STAT signaling, SOCS1 also regulates the duration of NFκB signaling within the cell nucleus, thus exerting a heretofore unrecognized function.

  8. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  9. Human fetuses do not register chromosome damage inflicted by radiation exposure in lymphoid precursor cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Ohtaki, K.; Kodama, Y.; Nakano, M.; Itoh, M.; Awa, A.A.; Cologne, J.B.

    2003-01-01

    Human fetuses are generally thought to be highly sensitive to radiation exposure since diagnostic, low-dose X rays (5-50 mSv) have been suggested to increase the risk of childhood leukemia by about 50%. In contrast, animal studies generally did not demonstrate a high radiosensitivity of fetuses and the underlying causes for the discrepancy are not understood. Here, we examined atomic-bomb survivors exposed in utero for translocation frequency in blood lymphocytes at 40 years of age. Contrary to our expectation of higher radiosensitivity in fetuses than in adults, the frequency did not increase with dose except for a small, but statistically significant increase (<1%) at doses below 0.1 Sv. Although an upward convex, humped dose response has been observed in other instances, the peak usually lies at doses above a few Gy, and few examples are known showing the peak response at such low doses. We interpret the results as indicating that fetal lymphoid and/or their precursor cells are sensitive to elimination through apoptosis when damaged. Our results provide a biological basis to resolve the long-standing controversy that substantial risk of childhood leukemia is implicated in human fetuses exposed to low-dose diagnostic X rays whereas animal studies composed mainly of exposures to higher doses consistently fail to confirm it

  10. PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation.

    Science.gov (United States)

    Baldassarro, Vito A; Marchesini, Alessandra; Giardino, Luciana; Calzà, Laura

    2017-07-01

    Poly (ADP-ribose) polymerase (PARP) family members are ubiquitously expressed and play a key role in cellular processes, including DNA repair and cell death/survival balance. Accordingly, PARP inhibition is an emerging pharmacological strategy for cancer and neurodegenerative diseases. Consistent evidences support the critical involvement of PARP family members in cell differentiation and phenotype maturation. In this study we used an oligodendrocyte precursor cells (OPCs) enriched system derived from fetal and adult brain to investigate the role of PARP in OPCs proliferation, survival, and differentiation. The PARP inhibitors PJ34, TIQ-A and Olaparib were used as pharmacological tools. The main results of the study are: (i) PARP mRNA expression and PARP activity are much higher in fetal than in adult-derived OPCs; (ii) the culture treatment with PARP inhibitors is cytotoxic for OPCs derived from fetal, but not from adult, brain; (iii) PARP inhibition reduces cell number, according to the inhibitory potency of the compounds; (iv) PARP inhibition effect on fetal OPCs is a slow process; (v) PARP inhibition impairs OPCs maturation into myelinating OL in fetal, but not in adult cultures, according to the inhibitory potency of the compounds. These results have implications for PARP-inhibition therapies for diseases and lesions of the central nervous system, in particular for neonatal hypoxic/ischemic encephalopathy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    Science.gov (United States)

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling.

    Science.gov (United States)

    Su, Meng; Qin, Baoli; Liu, Fang; Chen, Yuze; Zhang, Rui

    2018-07-01

    The aim of the present study was to investigate the role of microRNA (miR)-885-5p in colorectal cancer cell proliferation and migration, and to determine the possible underlying molecular mechanisms. The expression of miR-885-5p in colorectal cancer tissue and cells was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of three suppressor of cytokine signaling (SOCS) factors were detected by RT-qPCR and western blotting. The effects of miR-885-5p on tumor cell proliferation and migration were studied using MTT and Transwell assays, respectively. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, E-cadherin, vimentin and Snail) were detected by RT-qPCR and western blot analysis. Furthermore, the target of miR-885-5p was predicted and confirmed using a luciferase reporter assay. miR-885-5p was demonstrated to be upregulated and SOCS was downregulated in colorectal cancer tissue, and cells. miR-885-5p suppression significantly inhibited tumor cell proliferation and migration, promoted E-cadherin expression, and inhibited the expression levels of N-cadherin, vimentin and Snail. Further studies showed that SOCS5, SOCS6 and SOCS7 were direct targets of miR-885-5p. The results suggest that miR-885-5p suppression inhibited cell proliferation and migration, and the EMT process by targeting SOCS5, SOCS6 and SOCS7 genes in colorectal cancer. miR-885-5p and SOCS may be used for the diagnosis and treatment of colorectal cancer.

  13. Loss of a putative tumor suppressor locus after gamma-ray-induced neoplastic transformation of HeLa x Skin fibroblast human cell hybrids

    International Nuclear Information System (INIS)

    Mendonca, M.S.; Redpath, J.L.; Fasching, C.L.

    1995-01-01

    The nontumorigenic HeLa x skin fibroblast hybrid cell line, CGL1, can be induced to re-express HeLa tumor-associated cell surface antigen, p75-IAP (intestinal alkaline phosphatase), with resulting neoplastic transformation, by exposure to γ radiation. This has allowed the human hybrid system to be developed into a quantitative in vitro model for radiation-induced neoplastic transformation of human cells. Recently, several γ-ray-induced IAP-expression mutants (GIMs) of the nontumorigenic HeLa x skin fibroblast hybrid CGL1 were isolated and all were tumorigenic when injected subcutaneously into nude mice. Control cell lines which were negative for p75-IAP (CONs) were also isolated from irradiated populations, and none were found to be tumorigenic. We have now begun to investigate the molecular basis of radiation-induced neoplastic transformation in this system by studying the potential genetic linkage between p75/IAP expression, tumorigenicity and damage to a putative tumor suppressor locus on fibroblast chromosome 11. Previous analysis of rare spontaneous segregants has indicated that this locus is involved in the regulation of tumorigenicity and in the expression of the HeLa tumor-associated cell surface marker intestinal alkaline phosphatase (p75-IAP) in this system. Therefore, analysis by restriction fragment length polymorphism and chromosome painting have been performed for chromosome 11, and for chromosome 13 as a control, for the p75/IAP-positive GIM and p75/IAP-negative CON cell lines. We report that in five of eight of the GIMs large-scale damage to the fibroblast chromosome 11's is evident (four GIMs have lost one complete copy of a fibroblast chromosome 11 heavily damaged). None of the CONs, however (0/5), have lost a complete copy of either fibroblast chromosome 11. No large-scale damage to the control chromosome 13's was detected in the GIMs or CONs. 49 refs., 3 figs., 2 tabs

  14. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Isart Roca

    2015-01-01

    Full Text Available The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP made from induced pluripotent stem cells (iPSCs are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

  15. Leukemia in AKR mice. III. Size distribution of suppressor T-cells in AKR leukemia and neonatal mice

    International Nuclear Information System (INIS)

    Mulder, A.M.; Durdik, J.M.; Toth, P.; Golub, E.S.

    1978-01-01

    Suppression of in vitro antibody forming potential of normal cells by leukemic cells of AKR and normal neonatal mice have many similarities. In both cases the suppression is by cell contact rather than by the elaboration of soluble suppressive factors and the suppression is sensitive to both x-irradiation and mitomycin C treatment. When the size distribution of suppressing cells in thymus and spleen were compared by velocity sedimentation, both leukemic and neonatal suppressing cells had similar size distribution in each organ. Both large and small cells in the thymus suppress but only large cells (sedimentation velocity > 3.5 mm/hr) in the spleen are able to suppress. Leukemic cells in lymph node have a splenic size distribution, viz., only large cells suppress. Both large and small cells of a subcutaneously growing long passage AKR lymphoma are able to suppress. While large cells contain the bulk of cells actively incorporating tritiated thymidine and thus probably in cycle, small but significant amounts of incorporation in small suppressing cells is also seen

  16. Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxycyclophosphamide

    International Nuclear Information System (INIS)

    Winton, E.F.; Colenda, K.W.

    1987-01-01

    The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using a two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor cells in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors

  17. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic

  18. EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors

    Science.gov (United States)

    Perrotta, Silverio; Cucciolla, Valeria; Ferraro, Marcella; Ronzoni, Luisa; Tramontano, Annunziata; Rossi, Francesca; Scudieri, Anna Chiara; Borriello, Adriana; Roberti, Domenico; Nobili, Bruno; Cappellini, Maria Domenica; Oliva, Adriana; Amendola, Giovanni; Migliaccio, Anna Rita; Mancuso, Patrizia; Martin-Padura, Ines; Bertolini, Francesco; Yoon, Donghoon; Prchal, Josef T.; Della Ragione, Fulvio

    2010-01-01

    Background Gain-of-function of erythropoietin receptor (EPOR) mutations represent the major cause of primary hereditary polycythemia. EPOR is also found in non-erythroid tissues, although its physiological role is still undefined. Methodology/Principal Findings We describe a family with polycythemia due to a heterozygous mutation of the EPOR gene that causes a G→T change at nucleotide 1251 of exon 8. The novel EPOR G1251T mutation results in the replacement of a glutamate residue by a stop codon at amino acid 393. Differently from polycythemia vera, EPOR G1251T CD34+ cells proliferate and differentiate towards the erythroid phenotype in the presence of minimal amounts of EPO. Moreover, the affected individuals show a 20-fold increase of circulating endothelial precursors. The analysis of erythroid precursor membranes demonstrates a heretofore undescribed accumulation of the truncated EPOR, probably due to the absence of residues involved in the EPO-dependent receptor internalization and degradation. Mutated receptor expression in EPOR-negative cells results in EPOR and Stat5 phosphorylation. Moreover, patient erythroid precursors present an increased activation of EPOR and its effectors, including Stat5 and Erk1/2 pathway. Conclusions/Significance Our data provide an unanticipated mechanism for autosomal dominant inherited polycythemia due to a heterozygous EPOR mutation and suggest a regulatory role of EPO/EPOR pathway in human circulating endothelial precursors homeostasis. PMID:20700488

  19. An approach to the unification of suppressor T cell circuits: a simplified assay for the induction of suppression by T cell-derived, antigen-binding molecules (T-ABM).

    Science.gov (United States)

    Chue, B; Ferguson, T A; Beaman, K D; Rosenman, S J; Cone, R E; Flood, P M; Green, D R

    1989-01-01

    A system is presented in which the in vitro response to sheep red blood cells (SRBC) can be regulated using antigenic determinants coupled to SRBC and T cell-derived antigen-binding molecules (T-ABM) directed against the coupled determinants. T suppressor-inducer factors (TsiF's) are composed of two molecules, one of which is a T-ABM and one which bears I-J determinants (I-J+ molecule). Using two purified T-ABM which have not previously been shown to have in vitro activity, we produced antigen-specific TsiF's which were capable of inducing the suppression of the anti-SRBC response. Suppression was found to require both the T-ABM and the I-J+ molecule, SRBC conjugated with the antigen for which the T-ABM was specific, and a population of Ly-2+ T cells in the culture. Two monoclonal TsiF (or TsF1) were demonstrated to induce suppression of the anti-SRBC response in this system, provided the relevant antigen was coupled to the SRBC in culture. The results are discussed in terms of the general functions of T-ABM in the immune system. This model will be useful in direct, experimental comparisons of the function of T-ABM and suppressor T cell factors under study in different systems and laboratories.

  20. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.

    Science.gov (United States)

    Alonso, Michelle; Tamasdan, Cristina; Miller, Douglas C; Newcomb, Elizabeth W

    2003-02-01

    Flavopiridol is a synthetic flavone, which inhibits growth in vitro and in vivo of several solid malignancies such as renal, prostate, and colon cancers. It is a potent cyclin-dependent kinase inhibitor presently in clinical trials. In this study, we examined the effect of flavopiridol on a panel of glioma cell lines having different genetic profiles: five of six have codeletion of p16(INK4a) and p14(ARF); three of six have p53 mutations; and one of six shows overexpression of mouse double minute-2 (MDM2) protein. Independent of retinoblastoma and p53 tumor suppressor pathway alterations, flavopiridol induced apoptosis in all cell lines but through a caspase-independent mechanism. No cleavage products for caspase 3 or its substrate poly(ADP-ribose) polymerase or caspase 8 were detected. The pan-caspase inhibitor Z-VAD-fmk did not inhibit flavopiridol-induced apoptosis. Mitochondrial damage measured by cytochrome c release and transmission electron microscopy was not observed in drug-treated glioma cells. In contrast, flavopiridol treatment induced translocation of apoptosis-inducing factor from the mitochondria to the nucleus. The proteins cyclin D(1) and MDM2 involved in the regulation of retinoblastoma and p53 activity, respectively, were down-regulated early after flavopiridol treatment. Given that MDM2 protein can confer oncogenic properties under certain circumstances, loss of MDM2 expression in tumor cells could promote increased chemosensitivity. After drug treatment, a low Bcl-2/Bax ratio was observed, a condition that may favor apoptosis. Taken together, the data indicate that flavopiridol has activity against glioma cell lines in vitro and should be considered for clinical development in the treatment of glioblastoma multiforme.

  1. Dexamethasone-Induced Myeloid-Derived Suppressor Cells Prolong Allo Cardiac Graft Survival through iNOS- and Glucocorticoid Receptor-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-02-01

    Full Text Available How to induce immune tolerance without long-term need for immunosuppressive drugs has always been a central problem in solid organ transplantation. Modulating immunoregulatory cells represents a potential target to resolve this problem. Myeloid-derived suppressor cells (MDSCs are novel key immunoregulatory cells in the context of tumor development or transplantation, and can be generated in vitro. However, none of current systems for in vitro differentiation of MDSCs have successfully achieved long-term immune tolerance. Herein, we combined dexamethasone (Dex, which is a classic immune regulatory drug in the clinic, with common MDSCs inducing cytokine granulocyte macrophage colony stimulating factor (GM-CSF to generate MDSCs in vitro. Addition of Dex into GM-CSF system specifically increased the number of CD11b+ Gr-1int/low MDSCs with an enhanced immunosuppressive function in vitro. Adoptive transfer of these MDSCs significantly prolonged heart allograft survival and also favored the expansion of regulatory T cells in vivo. Mechanistic studies showed that inducible nitric oxide sythase (iNOS signaling was required for MDSCs in the control of T-cell response and glucocorticoid receptor (GR signaling played a critical role in the recruitment of transferred MDSCs into allograft through upregulating CXCR2 expression on MDSCs. Blockade of GR signaling with its specific inhibitor or genetic deletion of iNOS reversed the protective effect of Dex-induced MDSCs on allograft rejection. Together, our results indicated that co-application of Dex and GM-CSF may be a new and important strategy for the induction of potent MDSCs to achieve immune tolerance in organ transplantation.

  2. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Precursor T-cell acute lymphoblastic leukemia presenting with bone marrow necrosis: a case report

    Directory of Open Access Journals (Sweden)

    Khoshnaw Najmaddin SH

    2012-10-01

    Full Text Available Abstract Introduction Bone marrow necrosis is a clinicopathological condition diagnosed most often at postmortem examination, but it is also seen during the course of malignancy and is not always associated with a poor prognosis. The morphological features of bone marrow necrosis are disruption of the normal marrow architecture and necrosis of myeloid tissue and medullary stroma. Non-malignant conditions associated with bone marrow necrosis are sickle cell anemia, infections, drugs (sulfasalazine, interferon α, all-trans retinoic acid, granulocyte colony-stimulating factor and fludarabine, disseminated intravascular coagulation, antiphospholipid antibody syndrome and acute graft versus host diseases. The malignant causes are leukemia, lymphoma and metastatic carcinomas. Herein we report the case of a patient with precursor T-cell acute lymphoblastic leukemia and bone marrow necrosis at initial presentation. Case presentation A 10-year-old Kurdish boy was presented with generalized bone pain and fever of 1 month’s duration which was associated with sweating, easy fatigability, nose bleeding, breathlessness and severe weight loss. On examination, we observed pallor, tachypnea, tachycardia, low blood pressure, fever, petechial hemorrhage, ecchymoses, tortuous dilated veins over the chest and upper part of abdomen, multiple small cervical lymph node enlargements, mildly enlarged spleen, palpable liver and gross abdominal distention. Blood analysis revealed pancytopenia and elevated lactate dehydrogenase and erythrocyte sedimentation rate. Imaging results showed mediastinal widening on a planar chest X-ray and diffuse focal infiltration of the axial bone marrow on magnetic resonance imaging of the lumbosacral vertebrae. Bone marrow aspiration and biopsy examination showed extensive bone marrow necrosis. Immunophenotyping analysis of the bone marrow biopsy confirmed T-cell acute lymphoblastic leukemia, as CD3 and terminal deoxynucleotidyl

  4. T cell dysfunction in the diabetes-prone BB rat. A role for thymic migrants that are not T cell precursors

    International Nuclear Information System (INIS)

    Georgiou, H.M.; Lagarde, A.C.; Bellgrau, D.

    1988-01-01

    Diabetes-prone BB (BB-DP) rats express several T cell dysfunctions which include poor proliferative and cytotoxic responses to alloantigen. The goal of this study was to determine the origin of these T cell dysfunctions. When BB-DP rats were thymectomized, T cell depleted, and transplanted with neonatal thymus tissue from diabetes-resistant and otherwise normal DA/BB F1 rats, the early restoration of T cell function proceeded normally on a cell-for-cell basis; i.e., peripheral T cells functioned like those from the thymus donor. Because the thymus in these experiments was subjected to gamma irradiation before transplantation and there was no evidence of F1 chimerism in the transplanted BB-DP rats, it appeared that the BB-DP T cell precursors could mature into normally functioning T cells if the maturation process occurred in a normal thymus. If the F1 thymus tissue was treated with dGua before transplantation, the T cells of these animals functioned poorly like those from untreated BB-DP rats. dGua poisons bone marrow-derived cells, including gamma radiation-resistant cells of the macrophage/dendritic cell lineages, while sparing the thymic epithelium. Therefore, the reversal of the T cell dysfunction depends on the presence in the F1 thymus of gamma radiation-resistant, dGua-sensitive F1 cells. Conversely, thymectomized and T cell-depleted F1 rats expressed T cell dysfunction when transplanted with gamma-irradiated BB thymus grafts. T cell responses were normal in animals transplanted with dGua-treated BB thymus grafts. With increasing time after thymus transplantation, T cells from all animals gradually expressed the functional phenotype of the bone marrow donor. Taken together these results suggest that BB-DP bone marrow-derived cells that are not T cell precursors influence the maturation environment in the thymus of otherwise normal BB-DP T cell precursors

  5. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, William N. [Univ. of Delaware, Newark, DE (United States)

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  6. Scaffold-cell bone engineering in a validated preclinical animal model: precursors vs differentiated cell source.

    Science.gov (United States)

    Berner, A; Henkel, J; Woodruff, M A; Saifzadeh, S; Kirby, G; Zaiss, S; Gohlke, J; Reichert, J C; Nerlich, M; Schuetz, M A; Hutmacher, D W

    2017-07-01

    The properties of osteoblasts (OBs) isolated from the axial skeleton (tOBs) differ from OBs of the orofacial skeleton (mOBs) due to the different embryological origins of the bones. The aim of the study was to assess and compare the regenerative potential of allogenic bone marrow-derived mesenchymal progenitor cells with allogenic tOBs and allogenic mOBs in combination with a mPCL-TCP scaffold in critical-sized segmental bone defects in sheep tibiae. After 6 months, the tibiae were explanted and underwent biomechanical testing, micro-computed tomography (microCT) and histological and immunohistochemical analyses. Allogenic MPCs demonstrated a trend towards a better outcome in biomechanical testing and the mean values of newly formed bone. Biomechanical, microCT and histological analysis showed no significant differences in the bone regeneration potential of tOBs and mOBs in our in vitro study, as well as in the bone regeneration potential of different cell types in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells

    Directory of Open Access Journals (Sweden)

    Sebastian Werneburg

    2015-05-01

    Full Text Available Oligodendrocyte precursor cells (OPCs are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  8. Case report of precursor B-cell lymphoblastic lymphoma presenting as syncope and cardiac mass in a nonimmunocompromised child.

    Science.gov (United States)

    Hahn, Barry; Rao, Sudha; Shah, Binita

    2007-08-01

    We report the case of a previously healthy, 10-year-old boy who presented to the emergency department with a syncopal episode. In the emergency department, the patient was diagnosed with a right atrial mass, later identified as a precursor B-cell lymphoblastic lymphoma (LL). Most causes of syncope in children are not life threatening. In most cases, it indicates a predisposition to vasovagal episodes. Lymphomas account for approximately 7% of malignancies among children younger than 20 years, are more common in white males and immunocompromised patients, and are predominantly tumors of T-cell origin. Children with non-Hodgkin lymphoma usually present with extranodal disease, most frequently involving the abdomen (31%), mediastinum (26%), or head and neck (29%). Our patient was unique in that he was a nonimmunocompromised, black boy, presenting with syncope in the setting of a large atrial mass identified as a precursor B-cell LL. To our knowledge, there are no reported cases of precursor B-cell LL presenting as syncope and a cardiac mass.

  9. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients

    Science.gov (United States)

    Napolitano, Maria; D'Alterio, Crescenzo; Cardone, Eleonora; Trotta, Anna Maria; Pecori, Biagio; Rega, Daniela; Pace, Ugo; Scala, Dario; Scognamiglio, Giosuè; Tatangelo, Fabiana; Cacciapuoti, Carmela; Pacelli, Roberto; Delrio, Paolo; Scala, Stefania

    2015-01-01

    Short-course preoperative radiotherapy (SC-RT) followed by total mesorectal excision (TME) is one therapeutic option for locally advanced rectal cancer (LARC) patients. Since radio-induced DNA damage may affect tumor immunogenicity, Myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs) were evaluated in 13 patients undergoing SC-RT and TME for LARC. Peripheral Granulocytic-MDSCs (G-MDSC) [LIN−/HLA-DR−/CD11b+/CD14−/CD15+/CD33+], Monocytic (M-MDSC) [CD14+/HLA-DR−/lowCD11b+/CD33+] and Tregs [CD4+/CD25hi+/FOXP3+- CTLA-4/PD1] basal value was significantly higher in LARC patients compared to healthy donors (HD). Peripheral MDSC and Tregs were evaluated at time 0 (T0), after 2 and 5 weeks (T2-T5) from radiotherapy; before surgery (T8) and 6–12 months after surgery (T9, T10). G-MDSC decreased at T5 and further at T8 while M-MDSC cells decreased at T5; Tregs reached the lowest value at T5. LARC poor responder patients displayed a major decrease in M-MDSC after SC-RT and an increase of Treg-PD-1. In this pilot study MDSCs and Tregs decrease during the SC-RT treatment could represent a biomarker of response in LARC patients. Further studies are needed to confirm that the deepest M-MDSC reduction and increase in Treg-PD1 cells within 5–8 weeks from the beginning of treatment could discriminate LARC patients poor responding to SC-RT. PMID:25823653

  10. Transplantation of Neural Precursor Cells Attenuates Chronic Immune Environment in Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Lennart Riemann

    2018-06-01

    Full Text Available Inflammation after traumatic spinal cord injury (SCI is non-resolving and thus still present in chronic injury stages. It plays a key role in the pathophysiology of SCI and has been associated with further neurodegeneration and development of neuropathic pain. Neural precursor cells (NPCs have been shown to reduce the acute and sub-acute inflammatory response after SCI. In the present study, we examined effects of NPC transplantation on the immune environment in chronic stages of SCI. SCI was induced in rats by clip-compression of the cervical spinal cord at the level C6-C7. NPCs were transplanted 10 days post-injury. The functional outcome was assessed weekly for 8 weeks using the Basso, Beattie, and Bresnahan scale, the CatWalk system, and the grid walk test. Afterwards, the rats were sacrificed, and spinal cord sections were examined for M1/M2 macrophages, T lymphocytes, astrogliosis, and apoptosis using immunofluorescence staining. Rats treated with NPCs had compared to the control group significantly fewer pro-inflammatory M1 macrophages and reduced immunodensity for inducible nitric oxide synthase (iNOS, their marker enzyme. Anti-inflammatory M2 macrophages were rarely present 8 weeks after the SCI. In this model, the sub-acute transplantation of NPCs did not support survival and proliferation of M2 macrophages. Post-traumatic apoptosis, however, was significantly reduced in the NPC group, which might be explained by the altered microenvironment following NPC transplantation. Corresponding to these findings, reactive astrogliosis was significantly reduced in NPC-transplanted animals. Furthermore, we could observe a trend toward smaller cavity sizes and functional improvement following NPC transplantation. Our data suggest that transplantation of NPCs following SCI might attenuate inflammation even in chronic injury stages. This might prevent further neurodegeneration and could also set a stage for improved neuroregeneration after SCI.

  11. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    International Nuclear Information System (INIS)

    Zhang, Jing; Shen, Chengwu; Wang, Lin; Ma, Quanping; Xia, Pingtian; Qi, Mei; Yang, Muyi; Han, Bo

    2014-01-01

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4

  12. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging.

    Science.gov (United States)

    Renkema, Kristin R; Li, Gang; Wu, Angela; Smithey, Megan J; Nikolich-Žugich, Janko

    2014-01-01

    Naive T cell responses are eroded with aging. We and others have recently shown that unimmunized old mice lose ≥ 70% of Ag-specific CD8 T cell precursors and that many of the remaining precursors acquire a virtual (central) memory (VM; CD44(hi)CD62L(hi)) phenotype. In this study, we demonstrate that unimmunized TCR transgenic (TCRTg) mice also undergo massive VM conversion with age, exhibiting rapid effector function upon both TCR and cytokine triggering. Age-related VM conversion in TCRTg mice directly depended on replacement of the original TCRTg specificity by endogenous TCRα rearrangements, indicating that TCR signals must be critical in VM conversion. Importantly, we found that VM conversion had adverse functional effects in both old wild-type and old TCRTg mice; that is, old VM, but not old true naive, T cells exhibited blunted TCR-mediated, but not IL-15-mediated, proliferation. This selective proliferative senescence correlated with increased apoptosis in old VM cells in response to peptide, but decreased apoptosis in response to homeostatic cytokines IL-7 and IL-15. Our results identify TCR as the key factor in differential maintenance and function of Ag-specific precursors in unimmunized mice with aging, and they demonstrate that two separate age-related defects--drastic reduction in true naive T cell precursors and impaired proliferative capacity of their VM cousins--combine to reduce naive T cell responses with aging.

  13. Measurand transient signal suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  14. CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells*

    Science.gov (United States)

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-01-01

    NAD+ is mainly synthesized in human cells via the “salvage” pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the “salvage” pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD+ or NAD+ precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD+ precursors for NAD+ biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD+ biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors. PMID:23880765

  15. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features

    Science.gov (United States)

    Schwab, Claire J.; Chilton, Lucy; Morrison, Heather; Jones, Lisa; Al-Shehhi, Halima; Erhorn, Amy; Russell, Lisa J.; Moorman, Anthony V.; Harrison, Christine J.

    2013-01-01

    In childhood B-cell precursor acute lymphoblastic leukemia, cytogenetics is important in diagnosis and as an indicator of response to therapy, thus playing a key role in risk stratification of patients for treatment. Little is known of the relationship between different cytogenetic subtypes in B-cell precursor acute lymphoblastic leukemia and the recently reported copy number abnormalities affecting significant leukemia associated genes. In a consecutive series of 1427 childhood B-cell precursor acute lymphoblastic leukemia patients, we have determined the incidence and type of copy number abnormalities using multiplex ligation-dependent probe amplification. We have shown strong links between certain deletions and cytogenetic subtypes, including the novel association between RB1 deletions and intrachromosomal amplification of chromosome 21. In this study, we characterized the different copy number abnormalities and show heterogeneity of PAX5 and IKZF1 deletions and the recurrent nature of RB1 deletions. Whole gene losses are often indicative of larger deletions, visible by conventional cytogenetics. An increased number of copy number abnormalities is associated with NCI high risk, specifically deletions of IKZF1 and CDKN2A/B, which occur more frequently among these patients. IKZF1 deletions and rearrangements of CRLF2 among patients with undefined karyotypes may point to the poor risk BCR-ABL1-like group. In conclusion, this study has demonstrated in a large representative cohort of children with B-cell precursor acute lymphoblastic leukemia that the pattern of copy number abnormalities is highly variable according to the primary genetic abnormality. PMID:23508010

  16. Morphological and immunological criteria of minimal residual disease detection in children with B-cell precursors acute lymphoblastic leukemia

    Science.gov (United States)

    Beznos, O. A.; Grivtsova, L. Yu; Popa, A. V.; Shervashidze, M. A.; Serebtyakova, I. N.; Tupitsyn, N. N.; Selchuk, V. U.; Grebennikova, O. P.; Titova, G. V.

    2018-01-01

    One of the key factors of prognosis and risk stratification in patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is minimal residual disease (MRD). Identification of MRD on the day 15th is one of the most significant in prognosis of the disease. We compared data of a morphological and flow cytometry results of assessment of a bone marrow (BM) at the day 15th of induction chemotherapy in children with BCP-ALL.

  17. Loss of heterozygosity of CDKN2A (p16INK4a) and RB1 tumor suppressor genes in testicular germ cell tumors

    International Nuclear Information System (INIS)

    Vladusic, Tomislav; Hrascan, Reno; Pecina-Slaus, Nives; Vrhovac, Ivana; Gamulin, Marija; Franekic, Jasna; Kruslin, Bozo

    2010-01-01

    Testicular germ cell tumors (TGCTs) are the most frequent malignances in young adult men. The two main histological forms, seminomas and nonseminomas, differ biologically and clinically. pRB protein and its immediate upstream regulator p16INK4a are involved in the RB pathway which is deregulated in most TGCTs. The objective of this study was to evaluate the occurrence of loss of heterozygosity (LOH) of the CDKN2A (p16INK4a) and RB1 tumor suppressor genes in TGCTs. Forty TGCTs (18 seminomas and 22 nonseminomas) were analyzed by polymerase chain reaction using the restriction fragment length polymorphism or the nucleotide repeat polymorphism method. LOH of the CDKN2A was found in two (6%) out of 34 (85%) informative cases of our total TGCT sample. The observed changes were assigned to two (11%) nonseminomas out of 18 (82%) informative samples. Furthermore, LOH of the RB1 was detected in two (6%) out of 34 (85%) informative cases of our total TGCT sample. Once again, the observed changes were assigned to two (10.5%) nonseminomas out of 19 (86%) informative samples. Both LOHs of the CDKN2A were found in nonseminomas with a yolk sac tumor component, and both LOHs of the RB1 were found in nonseminomas with an embryonal carcinoma component. The higher incidence of observed LOH in nonseminomas may provide a clue to their invasive behavior

  18. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  19. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liquan; Wang, Dan [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); Fisher, Alfred L., E-mail: fishera2@uthscsa.edu [Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229 (United States); Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States); Wang, Zhou, E-mail: wangz2@upmc.edu [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States)

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  20. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T

    Science.gov (United States)

    Burga, Rachel A.; Thorn, Mitchell; Point, Gary R.; Guha, Prajna; Nguyen, Cang T.; Licata, Lauren A.; DeMatteo, Ronald P.; Ayala, Alfred; Espat, N. Joseph; Junghans, Richard P.; Katz, Steven C.

    2015-01-01

    Chimeric antigen receptor modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded three-fold in response to LM and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials. PMID:25850344

  1. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Science.gov (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  2. USP7 Is a Suppressor of PCNA Ubiquitination and Oxidative-Stress-Induced Mutagenesis in Human Cells.

    Science.gov (United States)

    Kashiwaba, Shu-ichiro; Kanao, Rie; Masuda, Yuji; Kusumoto-Matsuo, Rika; Hanaoka, Fumio; Masutani, Chikahide

    2015-12-15

    Mono-ubiquitinated PCNA activates error-prone DNA polymerases; therefore, strict regulation of PCNA mono-ubiquitination is crucial in avoiding undesired mutagenesis. In this study, we used an in vitro assay system to identify USP7 as a deubiquitinating enzyme of mono-ubiquitinated PCNA. Suppression of USP1, a previously identified PCNA deubiquitinase, or USP7 increased UV- and H2O2-induced PCNA mono-ubiquitination in a distinct and additive manner, suggesting that USP1 and USP7 make different contributions to PCNA deubiquitination in human cells. Cell-cycle-synchronization analyses revealed that USP7 suppression increased H2O2-induced PCNA ubiquitination throughout interphase, whereas USP1 suppression specifically increased ubiquitination in S-phase cells. UV-induced mutagenesis was elevated in USP1-suppressed cells, whereas H2O2-induced mutagenesis was elevated in USP7-suppressed cells. These results suggest that USP1 suppresses UV-induced mutations produced in a manner involving DNA replication, whereas USP7 suppresses H2O2-induced mutagenesis involving cell-cycle-independent processes such as DNA repair. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. IKZF1 DELETIONS ARE INDEPENDENT PROGNOSTIC FACTOR IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    G. A. Tsaur

    2016-01-01

    Full Text Available We assessed the prognostic significance of IKZF1 gene deletions in 141 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL  on Russian multicenter trial in pediatric clinics of Ekaterinburg and Orenburg. IKZF1 deletions were estimated by multiplex ligation-dependent probe amplification. IKZF1 deletions were revealed in 15 (10.6 % patients. IKZF1 deletions were associated with age older than 10 years (p = 0.007, initial white blood cell count higher than 30 × 109/l (p = 0.003, t(9;22(q34.q11 (p = 0.003 and delayed blast clearance: М3 status of bone marrow at day 15 of remission induction (p = 0.003, lack of hematological remission at day 36 (p < 0.001 and high levels of minimal residual disease at days 15, 36 and 85 (p = 0.014; p < 0.001; p = 0.001 correspondingly. Patients with IKZF1 deletions had significantly lower event-free survival (EFS (0.30 ± 0.15 vs 0.89 ± 0.03; p < 0.001 and overall survival (OS (0.44 ± 0.19 vs 0.93 ± 0.02; p < 0.001, while cumulative incidence of relapse was higher (0.67 ± 0.18 vs 0.07 ± 0.02; p < 0.001. In the multivariate analysis IKZF1 deletions were associated with decreased EFS (hazard ratio (HR 4.755; 95 % confidence interval (CI 1.856–12.185; p = 0.001, and OS (HR 4.208; 95 % CI 1.322–13.393; p = 0.015, but increased relapse risk (HR 9,083; 95 % CI 3.119–26.451; p < 0.001. IKZF1 deletions retained their prognostic significance in the intermediate risk group patients (p < 0.001, but not in standard or high-risk groups. Majority of IKZF1 deletions – 12 (80 % of 15 – were revealed in the “B-other” group (n = 83. In this cohort of patients IKZF1 deletions led to inferior EFS (HR 6.172; 95 % CI 1.834–20.767; p = 0.003 and higher relapse rate (HR 16.303; 95 % CI 3.324–79.965; p = 0.015. Thus, our results showed that IKZF1 deletions are independent risk factor in BCP-ALL patients.

  4. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  5. * Tissue-Specific Extracellular Matrix Enhances Skeletal Muscle Precursor Cell Expansion and Differentiation for Potential Application in Cell Therapy.

    Science.gov (United States)

    Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony

    2017-08-01

    Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle

  6. Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol.

    Directory of Open Access Journals (Sweden)

    Venkatesh L Hegde

    2011-04-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis.Polyclonal activation of T cells, following injection of concanavalin A (ConA, in C57BL/6 mice caused acute hepatitis, characterized by significant increase in aspartate transaminase (AST, induction of inflammatory cytokines, and infiltration of mononuclear cells in the liver, leading to severe liver injury. Administration of cannabidiol (CBD, a natural non-psychoactive cannabinoid, after ConA challenge, inhibited hepatitis in a dose-dependent manner, along with all of the associated inflammation markers. Phenotypic analysis of liver infiltrating cells showed that CBD-mediated suppression of hepatitis was associated with increased induction of arginase-expressing CD11b(+Gr-1(+ MDSCs. Purified CBD-induced MDSCs could effectively suppress T cell proliferation in vitro in arginase-dependent manner. Furthermore, adoptive transfer of purified MDSCs into naïve mice conferred significant protection from ConA-induced hepatitis. CBD failed to induce MDSCs and suppress hepatitis in the livers of vanilloid receptor-deficient mice (TRPV1(-/- thereby suggesting that CBD primarily acted via this receptor to induce MDSCs and suppress hepatitis. While MDSCs induced by CBD in liver consisted of granulocytic and monocytic subsets at a ratio of ∼2∶1, the monocytic MDSCs were more immunosuppressive compared to granulocytic MDSCs. The ability of CBD to induce MDSCs and suppress hepatitis was also demonstrable in Staphylococcal enterotoxin B-induced liver injury.This study demonstrates for the first time that MDSCs play a critical role in attenuating acute inflammation in the liver, and that agents

  7. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Coskun, Mehmet; Bzorek, Michael

    2013-01-01

    was associated with endogenous downregulation of APC and AXIN2 expression in Caco-2 cells but did not affect GSK3β expression. Furthermore, elevated levels of nuclear β-catenin and reduced levels of cytoplasmic APC were correlated to a low CDX2 expression in migrating colon cancer cells in vivo. These results......Wnt signaling is often constitutively active in colorectal cancer cells. The expression of the intestinal specific transcription factor CDX2 is found to be transiently decreased in invasive cells at the tumor/stroma interface. A recent ChIP-Seq study has indicated that several Wnt signaling......-related genes are regulated by CDX2. The aim was to investigate the role of decreased CDX2 level on the expression of APC, AXIN2 and GSK3β in migrating colon cancer cells at the invasive front. CDX2-bound promoter and enhancer regions from APC, AXIN2 and GSK3β were analyzed for gene regulatory activity...

  8. Isolation of skin-derived precursors from human foreskin and their differentiation into neurons and glial cells

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Skin-derived precursors (SKPs are a type of progenitor cells extracted from mammalian dermal tissue and can be differentiate to neural and mesodermal lineage in vitro. These cells can introduce an accessible autologos source of neural precursor cells for treatment of different neurodegenerative diseases. This research was done in order to set up isolation, culture, proliferation and differentiation of human skin derived precursors (hSKPs."n"nMethods: Human foreskin samples were cut into smaller pieces and cultured in proliferation medium after enzymatic digestion. To induce neural differentiation, cells were cultured in neural differentiation medium after fifth passage. We used immunocytochemistry and RT-PCR for characterization of the cells. Neuron and glial cell differentiation potential was assessed by immunofloresence using specific antibodies. The experiments were carried out in triplicate."n"nResults: After differentiation, βΙΙΙ- tubulin and neurofilament-M positive cells were observed that are specific markers for neurons. Moreover, glial fibrillary acid protein (GFAP and S100 positive cells were identified that are markers specifically express in glial cells. Detected neurons and glials were

  9. Modulation of allogeneic stimulation in man. I. Characterization of an in vitro induced suppressor macrophage population

    International Nuclear Information System (INIS)

    Stux, S.V.; Dubey, D.P.; Yunis, E.J.

    1981-01-01

    Cultured human peripheral blood mononuclear cells suppressed the allogeneic response of fresh autologous lymphocytes. This suppressor activity developed gradually over a period of one week. The cells primarily responsible for this effect were enriched by Ficoll density gradient centrifugation. It was found that the suppressor cell is a large, low density nylon wool adherent, radioresistant, phagocytic, and nonspecific esterase positive mononuclear cell. Moreover, these cells did not form E rosettes and were Fc positive. Electron microscopy confirmed that suppressor cells were macrophage like. Suppressor activity was not due to cytotoxicity, crowding, or steric hinderance by the cultured cells. The suppressor macrophage population did not appear to inhibit the allogeneic response via prostaglandin or arginase release, or interfere with the tritiated thymidine uptake by release of endogenous thymidine. The above system is viewed as an in vitro model of immune regulation by suppressor macrophages, in the context of allogeneic response

  10. Influence of radiation field and fractionation schedule of total lymphoid irradiation (TLI) on the induction of suppressor cells and stable chimerism after bone marrow transplantation in mice

    International Nuclear Information System (INIS)

    Waer, M.; Ang, K.K.; van der Schueren, E.; Vandeputte, M.

    1984-01-01

    When BALB/c mice received 17 daily fractions of 2 Gy each of total lymphoid irradiation (TLI, total dose 34 Gy) and 30 x 10 6 C 57 B1 bone marrow cells (BM) on the day after the last fraction, stable bone marrow chimerism without signs of graft-vs-host disease (GVHD) was obtained in 84% of the animals. On the contrary, in BALB/c mice receiving only seven fractions of TLI (total dose 14 Gy), all bone marrow grafts were rejected. When the last two fractions of a 14-Gy TLI course were given without shielding the extra lymphatic tissues (combined total lymphoid + total body irradiation, TLBI), chimerism could be induced in 53% of the animals. When this 14-Gy TLBI schedule was used, it was even possible to administer four fractions per day (multiple fractions per day schedule, MFD), thus reducing the overall treatment time to 2 consecutive days. After this concentrated form of TLBI, chimerism was detected in 35% of the animals. As in the 34-Gy TLI schedule, graft-vs-host reaction could not be prevented in the 14-Gy TLBI schedule when spleen lymphocytes (10 x 10 6 ) were added to the BM inocolum. Leucopenia or suppression of the phytohaemagglutinin (PHA)-induced blastogenesis could not predict which schedule would result in a successful allogeneic bone marrow take. Suppressor cells of the mixed lymphocyte reaction, on the other hand, were only found in the spleen of BALB/c mice treated with the TLI or TLBI schedules, which also resulted in stable bone marrow chimerism

  11. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry.

    Directory of Open Access Journals (Sweden)

    Giovanna Clavarino

    Full Text Available A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45 and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations.

  12. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off

    International Nuclear Information System (INIS)

    Sharma, Rakhi; Raychaudhuri, Santanu; Dasgupta, Asim

    2004-01-01

    Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus (PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other transcription factors at glutamine-glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS, KKKRD, spanning amino acids 125-129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells. Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with the nuclear fraction by 3-4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host cell transcription shut-off

  13. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis.

    Science.gov (United States)

    Weinger, Jason G; Plaisted, Warren C; Maciejewski, Sonia M; Lanier, Lewis L; Walsh, Craig M; Lane, Thomas E

    2014-10-01

    Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK