WorldWideScience

Sample records for suppression rf pulses

  1. New fat suppression RF pulse with shorter duration

    International Nuclear Information System (INIS)

    Yamaguchi, Kojiro; Ukai, Hiroyuki

    2010-01-01

    The fat suppression radio frequency pulse currently employed for MRI, which selectively saturates the frequency of the fat, has the narrow-band frequency characteristics. Therefore, the application duration for the pulse employed tends to be prolonged. In the present study, we designed a new fat suppression radiofrequency (RF) pulse using the Laguerre function in order to shorten the duration for fat suppression RF pulse and conducted an evaluation with the clinical equipment. The length of the RF pulse that we created allowed to reduce the duration by 47.3% compared with that employed for the clinical equipment. In addition, in the MR imaging evaluation, the new pulse was confirmed to have the fat suppression effect equivalent to that employed for the clinical equipment. (author)

  2. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  3. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  4. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  5. Pulsed rf superconductivity program at SLAC

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM 010 caavities using short rf pulses (less than or equal to 2.5 μs) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible

  6. Experimental study of rf pulsed heating

    Directory of Open Access Journals (Sweden)

    Lisa Laurent

    2011-04-01

    Full Text Available Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×10^{6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  7. Pulsed rf systems for large storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1979-03-01

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  8. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  9. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  10. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  11. Pulsed RF Sources for Linear Colliders

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-01-01

    These proceedings represent papers presented at the workshop on pulsed RF sources for linear colliders. The workshop examined the performance of RF sources for possible future linear colliders. Important sources were presented on new type of klystrons, gyrotrons and gyroklystrons. A number of auxiliary topics were covered, including modulators, pulse compression, power extraction, windows, electron guns and gun codes. The workshop was sponsored by the International Committee for Future Accelerators(ICFA), the U.S. Department of Energy and the Center for Accelerator Physics at Brookhaven National Laboratory. There were forty one papers presented at the workshop and all forty one have been abstracted for the Energy Science and Technology database

  12. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Dai Hui; Hajima, Ryoichi

    2008-11-01

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  13. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  14. 1 ms pulse beam generation and acceleration by photo-cathode RF gun

    International Nuclear Information System (INIS)

    Watanabe, Ken; Hayano, Hitoshi; Urakawa, Jyunji

    2012-01-01

    We report successful generation of 1 ms long pulse and multi-bunch electron beam by a normal conducting photo-cathode RF gun at KEK-STF (Superconducting accelerator Test Facility). The 1 ms long Pulse beam generated by the RF gun is delivered to the injection line to examine stable acceleration and precise RF control. The 1 ms pulse beam is also used to demonstrate high brightness X-ray generation by inverse laser Compton scattering which will be also carried out at STF, supported by MEXT Quantum Beam project. The RF gun cavity has been fabricated by DESY-FNAL-KEK collaboration. Performing high power RF process and ethanol rinse to the cavity, a stable operation of the cavity up to 4.0 MW RF input power with ∼1 ms pulse length was achieved by keeping even low dark current. The beam generation test has been started since February 2012, 1 ms pulse was generated in March 2012. We explain about the STF injector and report the basic property of this 1 ms beam generation. (author)

  15. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  16. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  17. Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal.

    Science.gov (United States)

    Pell, Gaby S; Lewis, David P; Branch, Craig A

    2003-02-01

    Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference. Copyright 2003 Wiley-Liss, Inc.

  18. Suppression of magnetic islands by rf-driven currents

    International Nuclear Information System (INIS)

    Reiman, A.H.

    1982-06-01

    The quasilinear theory for the saturation of nonlinear tearing modes is modified to include rf driven currents. It is shown that the presence of lower hybrid driven currents can strongly suppress the growth of magnetic islands

  19. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  20. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    Science.gov (United States)

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  1. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  2. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  3. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    Science.gov (United States)

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Lasertron, a pulsed RF-source using laser triggered photocathode

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu.

    1988-12-01

    A new pulsed RF-source, 'Lasertron', are being developed as a possible RF-power source for future electron-positron linear colliders. In a series of systematic study, a prototype lasertron has been fabricated and tested. A peak power of 80 kW is attained at 2.856 GHz RF-frequency in 1-μs time duration. This paper describes the experimental results of the lasertron including the developments of the photocathode and the laser system. Test results are compared with the analysis of beam dynamics in the lasertron. (author)

  5. ASL: Comparison of presaturation and RF pulse optimization

    DEFF Research Database (Denmark)

    Holm, David; Sidaros, Karam

    2005-01-01

    In arterial spin labelling, the difference between the tag and control image is on the order of 1% of the equilibrium magnetization. A small offset between the images not related to perfusion, can therefore lead to large errors in the measured perfusion. One source of error is non-ideal RF pulses...... resulting in the inversion pulse affecting the acquired signal from the imaging area. This systematic error can be reduced by increasing the gap between the inversion and imaging regions, by using optimized inversion pulses e.g. FOCI1 or by saturating the signal from static tissue in the imaging area prior...

  6. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel

  7. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  8. High-power rf pulse compression with SLED-II at SLAC

    International Nuclear Information System (INIS)

    Nantista, C.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE 01 mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator)

  9. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  10. RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides

    International Nuclear Information System (INIS)

    Stowell, Michael; Mueller, Joachim; Ruske, Manfred; Lutz, Mark; Linz, Thomas

    2007-01-01

    Transparent conductive oxide films are widely used materials for electronic applications such as flat panel displays and solar cells. The superposition of DC and pulsed DC power by a certain fraction of RF power was applied to deposit indium tin oxide films. This technique allows an additional tuning of different parameters relevant to film growth, and yields high quality films even under kinetically limited conditions. A long-term stable RF/DC process could be realized by using different combinations of standard power supply components, which includes a fully reliable arc handling system for both the RF and DC generators. The effectiveness of the arc handling system is illustrated by the current and voltage behavior recorded for actual arcing events. The resistivity of indium tin oxide films is strongly influenced by the respective sputtering mode. The best resistivity values of 145-148 μΩ cm were obtained by RF-superimposed pulsed DC sputtering at a pulse frequency between 100 and 200 kHz and a substrate temperature as low as 140 deg. C. In addition, the films were extremely smooth with a surface roughness of 1-2.5 nm

  11. High-quality electron pulse generation from a laser photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, Jinfeng; Sakai, Fumio; Aoki, Yasushi

    1999-01-01

    A laser photocathode RF gun system was developed for ultra short X-ray pulse generation via the inverse Compton scattering. The gun is a BNL-type S-band RF gun and the performance test of the gun was performed at the Linear Accelerator Facility in the Institute of Scientific and Industries Research, Osaka University. The gun system produced 115 pC electron bunches with the energy of 1.6 MeV under the condition of RF peak power of 1.5 MW and laser pulse energy of 65 μJ. The quantum efficiency and dark current were obtained to be 10 -5 and 0.6 nA at the repetition rate of 10 Hz, respectively. The energy and charge of the electron bunch were measured as a function of laser injection phase. Furthermore, the electron bunches were accelerated up to 117 MeV by three s-band TW linacs and the energy monochromaticity (ΔE/E) of the beam was 1.2%. The transverse emittance was also experimentally investigated at the end of the linacs. (author)

  12. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    Science.gov (United States)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  13. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  14. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  15. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  16. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    Science.gov (United States)

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  17. Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector

    International Nuclear Information System (INIS)

    Musumeci, P.; Gutierrez, M. S.; Moody, J. T.; Moore, N.; Rosenzweig, J. B.; Scoby, C. M.; Travish, G.; Cultrera, L.; Ferrario, M.; Filippetto, D.; Gatti, G.; Vicario, C.

    2010-01-01

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 μJ, 800 nm pulse focused to a 140 μm rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  18. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  19. Generation of femtosecond electron single pulse using laser photocathode RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M.; Kinoshita, K.; Watanabe, T. [Nuclear Engineering Research Laboratory, University of Tokyo, Tokai, Ibaraki (JP)] [and others

    1998-11-01

    A new laser photocathode RF electron gun was installed in the second linac of the S-band twin linac system of Nuclear Engineering Research Laboratory(NERL) of University of Tokyo in August in 1997. Since then, the behavior of the new gun has been tested and the characteristic parameters have been evaluated. At the exit of the gun, the energy is 4.7 MeV, the charge per bunch 1 nC, the pulse width is 10 ps(FWHM), respectively, for 6 MW RF power supply from a klystron. The electron bunch is accelerated up to 17 MeV. The horizontal normalized emittance is 1 {pi} mm.mrad. Then, the bunch is compressed to be 440 fs(FWHM) with 0.35 nC by the chicane-type magnetic pulse compressor. The gun is planned to be used for femtosecond X-ray generation via the head-on Thomson scattering and laser wakefield acceleration in 1998. (author)

  20. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  1. RF system developments for CW and/or long pulse linacs

    International Nuclear Information System (INIS)

    Lynch, M.

    1998-01-01

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued

  2. Electron pulse shaping in the FELIX RF accelerator

    International Nuclear Information System (INIS)

    Weits, H.H.; Geer, C.A.J. van der; Oepts, D.; Meer, A.F.G. van der

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel through an undulator. It was demonstrated that the power level of the CSE critically depends on the settings of the accelerator. In this article we seek to explain these observations by studying the length and shape of the electron bunches as a function of the settings of the accelerator. A particle-tracking model was used to simulate the acceleration and transport processes. These include bunch compression in a 14-cell travelling wave buncher cavity, acceleration in a travelling wave linear accelerator, and passage through a (dispersive) chicane structure. The effect of the phase setting of the RF accelerating field with respect to the arrival time of the electron bunch in each accelerator structure was studied. The parameter range of the simulations is related to that of an actual free-electron laser experiment using these bunches. We find that, for specific settings of the accelerating system, electron pulses with a length of 350 μm FWHM (1 ps) are produced. The charge in the bunch rises steeply within a distance of 25 μm. This bunch shape explains the high level of coherently enhanced spontaneous emission observed in the FELIX laser. (author)

  3. A method to reduce the suppression of relevant pulses in pulse weight discriminators

    International Nuclear Information System (INIS)

    Schwartz, P.

    1975-01-01

    The pulse height analyzer is used, for instance, with proportional counters. Pulses are broken down into amplitude ranges in accordance with their maximum amplitudes. In pulse height analyzers with real time analog-digital conversion only one deadtime is needed for the respective range selected. For this purpose, all discriminator thresholds of the amplitude stores connected parallel are actuated as an input pulse arrives. The leading edges of the discriminator signals set the amplitude range flip-flop. Only the flip-flop circuit of the maximum amplitude range reached remains set whilst all the others are erased. The trailing edge of the discriminator signals actuates the evaluation of the information stored by the flip-flop circuit selected. It triggers a pulse extender and resets the flip-flop selected. Therefore, only the amplitude range selected needs a deadtime. The pulse extender in addition reduces the processing time of the analyzer by the output pulse length. The characteristic used for the trailing edge is the backward count of the real time analog-digital converter. (DG/RF) [de

  4. Status of SPring-8 Photocathode Rf Gun for Future Light Sources

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2005-01-01

    We have been studying photocathode single-cell pillbox rf gun for future light sources since 1996. We achieved a rmaximum field gradient of 187 MV/m with chemical-etching processed cavity. We have been developed stable and highly qualified UV-laser source for the rf gun intensively last 3 years. The UV-laser pulse (10 Hz) energy is up to 850 uJ/pulse. The energy stability (rms) of laser has been improved down to 0.2~0.3 % at the fundamental and 0.7~1.3% at the third harmonic generation. This stability is held for two months continuously. In this improvement, we just passively stabilized the system in a humidity-controlled clean room. On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from the rf gun. We prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. With a deformable mirror, we obtained an emittance of1.6

  5. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  6. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement

    Science.gov (United States)

    Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru

    2018-03-01

    L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.

  7. Suppression and utilization of spurious pulse occurence in organic GM-counters

    International Nuclear Information System (INIS)

    Narita, Y.; Igarashi, R.; Akagami, H.; Ozawa, Y.

    1979-01-01

    The authors have made a study of suppression and utilization of spurious pulse occurrence in organic GM-counters. Almost all spurious pulses in the organic GM-counter are the delayed pulses which occur being dependent upon the radiation intensity. The occurrence rate of the delayed pulses against the radiation intensity is affected by the intensity of the electric field in the vicinity of the cathode of the GM-counter. The occurrence of the delayed pulses can be suppressed when the electric field in the vicinity of the cathode is kept at high value. On the contrary, the occurrence of the delayed pulses can be utilized for the dosimetry of the pulsed radiation by means of increasing the space of the weak electric field in the GM-counter. (Auth.)

  8. Improved background suppression in 1H MAS NMR using composite pulses

    Science.gov (United States)

    Odedra, Smita; Wimperis, Stephen

    2012-08-01

    A well known feature of 1H MAS NMR spectroscopy, particularly of solids where the concentration of 1H nuclei is low, is the presence in the spectrum of a significant broad "background" signal arising from 1H nuclei that are outside the MAS rotor and radiofrequency coil, probably located on the surfaces of the static components of the probehead. A popular method of suppressing this unwanted signal is the "depth pulse" method, consisting of a 90° pulse followed by one or two 180° pulses that are phase cycled according to the "Exorcycle" scheme, which removes signal associated with imperfect 180° pulses. Consequently, only spins in the centre of the radiofrequency coil contribute to the 1H MAS spectrum, while those experiencing a low B1 field outside the coil are suppressed. Although very effective at removing background signal from the spectrum, one drawback with this approach is that significant loss of the desired signal from the sample also occurs. Here we investigate the 1H background suppression problem and, in particular, the use of novel antisymmetric passband composite pulses to replace the simple pulses in a depth pulse experiment. We show that it is possible to improve the intensity of the 1H signals of interest while still maintaining effective background suppression. We expect that these results will be relevant to 1H MAS NMR studies of, for example, nominally perdeuterated biological samples or nominally anhydrous inorganic materials.

  9. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  10. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  11. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  12. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  13. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    Science.gov (United States)

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  14. Improved background suppression in ¹H MAS NMR using composite pulses.

    Science.gov (United States)

    Odedra, Smita; Wimperis, Stephen

    2012-08-01

    A well known feature of ¹H MAS NMR spectroscopy, particularly of solids where the concentration of ¹H nuclei is low, is the presence in the spectrum of a significant broad "background" signal arising from ¹H nuclei that are outside the MAS rotor and radiofrequency coil, probably located on the surfaces of the static components of the probehead. A popular method of suppressing this unwanted signal is the "depth pulse" method, consisting of a 90° pulse followed by one or two 180° pulses that are phase cycled according to the "Exorcycle" scheme, which removes signal associated with imperfect 180° pulses. Consequently, only spins in the centre of the radiofrequency coil contribute to the ¹H MAS spectrum, while those experiencing a low B₁ field outside the coil are suppressed. Although very effective at removing background signal from the spectrum, one drawback with this approach is that significant loss of the desired signal from the sample also occurs. Here we investigate the ¹H background suppression problem and, in particular, the use of novel antisymmetric passband composite pulses to replace the simple pulses in a depth pulse experiment. We show that it is possible to improve the intensity of the ¹H signals of interest while still maintaining effective background suppression. We expect that these results will be relevant to ¹H MAS NMR studies of, for example, nominally perdeuterated biological samples or nominally anhydrous inorganic materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Contrast Enhancement in TOF cerebral angiography at 7 T using Saturation and MT pulses under SAR constraints: impact of VERSE and sparse pulses

    Science.gov (United States)

    Schmitter, Sebastian; Bock, Michael; Johst, Sören; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2011-01-01

    Cerebral 3D time of flight (TOF) angiography significantly benefits from ultra high fields, mainly due to higher SNR and to longer T1 relaxation time of static brain tissues, however, SAR significantly increases with B0. Thus, additional RF pulses commonly used at lower field strengths to improve TOF contrast such as saturation of venous signal and improved background suppression by magnetization transfer typically cannot be used at higher fields. In this work we aimed at reducing SAR for each RF pulse category in a TOF sequence. We use the VERSE principle for the slab selective TOF excitation as well as the venous saturation RF pulses. Additionally, MT pulses are implemented by sparsely applying the pulses only during acquisition of the central k-space lines to limit their SAR contribution. Image quality, angiographic contrast and SAR reduction were investigated as a function of VERSE parameters and of the total number of MT pulses applied. Based on these results, a TOF protocol was generated that increases the angiographic contrast by more than 50% and reduces subcutaneous fat signal while keeping the resulting SAR within regulatory limits. PMID:22139829

  16. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  17. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  18. Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes

    International Nuclear Information System (INIS)

    Kirschstein, Anika; Herbst, Christian; Riedel, Kerstin; Carella, Michela; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2008-01-01

    We have explored the design of broadband scalar coupling mediated 13 C- 13 C and cross-relaxation suppressed 1 H- 1 H TOCSY sequences employing phase/amplitude modulated inversion pulses. Considering a variety of supercycles, pulsewidths and a RF field strength of 10 kHz, the Fourier coefficients defining the amplitude and phase modulation profiles of the 180 deg. pulses were optimised numerically so as to obtain efficient magnetisation transfer within the desired range of resonance offsets. The coherence transfer characteristics of the mixing schemes were assessed via numerical simulations and experimental measurements and were compared with commonly used sequences based on rectangular RF pulses. The efficacies of the clean 1 H- 1 H TOCSY sequences were also examined via numerical simulations for application to weakly oriented systems and sequences with efficient, broadband and clean dipolar transfer characteristics were identified. In general, the amplitude and phase modulated TOCSY sequences presented here have moderately better performance characteristics than the sequences currently employed in biomolecular NMR spectroscopy

  19. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  20. Short range RF communication for jet engine control

    Science.gov (United States)

    Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)

    2007-01-01

    A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  1. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  2. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient.

    Science.gov (United States)

    Feng, Shuo; Ji, Jim

    2014-04-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.

  3. Prepulse suppression using a self-induced, ultrashort pulse plasma mirror

    International Nuclear Information System (INIS)

    Gold, D.M.; Nathel, H.; Bolton, P.R.; White, W.E.; Van Woerkom, L.D.

    1991-01-01

    The plasma mirror is a self-induced, plasm-based optical element which can be inserted into existing experiments to reduce repulse energy without significant degradation of ultrashort pulse laser light. The authors have characteristics of the reflected pulse. The initial measurements indicate that the incident pulse reflects specularly from a high density, highly reflective plasma. The reflected pulse has a smoothed spatial profile and reduced pulsewidth. This paper outlines future work to characterize both the plasm mirror technique of repulse suppression and its reflected pulse

  4. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  5. New MR pulse sequence

    International Nuclear Information System (INIS)

    Harms, S.E.; Flamig, D.P.; Griffey, R.H.

    1990-01-01

    This paper describes a method for fat suppression for three-dimensional MR imaging. The FATS (fat-suppressed acquisition with echo time shortened) sequence employs a pair of opposing adiabatic half-passage RF pulses tuned on fat resonance. The imaging parameters are as follows: TR, 20 msec; TE, 21.7-3.2 msec; 1,024 x 128 x 128 acquired matrix; imaging time, approximately 11 minutes. A series of 54 examinations were performed. Excellent fat suppression with water excitation is achieved in all cases. The orbital images demonstrate superior resolution of small orbital lesions. The high signal-to-noise ratio (SNR) in cranial studies demonstrates excellent petrous bone and internal auditory canal anatomy

  6. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  7. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  8. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  9. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission

    Science.gov (United States)

    Garwood, Michael; Uğurbil, Kamil

    2018-06-01

    The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

  10. Nonlinear Suppression of Range Ambiguity in Pulse Doppler Radar

    National Research Council Canada - National Science Library

    Anderson, Jon

    2001-01-01

    ... ambiguities in Doppler and range. First introduced by Palermo in 1962 using two conjugate LFM pulses, the primary nonlinear suppression objective involves reducing range ambiguity, given the waveform is nominally unambiguous...

  11. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    Science.gov (United States)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated

  12. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  13. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    Directory of Open Access Journals (Sweden)

    Jenna eJarvis

    2013-06-01

    Full Text Available How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat’s echoes, but additional mechanisms are needed to explain the bat sonar system’s exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other’s pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat’s emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  14. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  15. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  16. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals

    International Nuclear Information System (INIS)

    Power, J.G.; Jing, C.

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  17. Relativistic acceleration and retardation effects on photoemission of intense electron short pulses, in RF-FEL photoinjectors

    International Nuclear Information System (INIS)

    Dolique, J.M.; Coacolo, M.

    1991-01-01

    In high-power free electron lasers, self-field effects in the electron beam are often the most important phenomenon on which the beam quality depends. These effects are generally conceived as space-charge effects, and described by a Poisson equation in a beam frame. In RF-FEL photoinjectors, the electrons of the intense short pulse produced by laser irradiation are submitted, just after their photoemission, to such a strong acceleration that relativistic acceleration and retardation effects are discussed, from the rigorous calculation of the Lienard-Wiechert velocity- and acceleration electric and magnetic fields, as a function of RF-electric field and beam parameters. The beam pulse is assumed to be axisymmetric, with a constant photoemitted current density. Consequences for the maximum current density that can be extracted are considered (the 'self-field limit,' a name more appropriate than 'space-charge limit' for the present conditions where electro-dynamic phenomena play an important role)

  18. Long-pulse applications of pulse-forming lines for high-power linac application

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Tallerico, P.J.

    1981-01-01

    The ever present demands for high efficiency in the RF power stations for particle accelerators have caused increased interest in longer RF pulses (ten's of microseconds) for linacs such as the Pion Generator for Medical Irradiation (PIGMI) and Free Electron Laser (FEL). For either RF power station, a fundamental decision is whether to use a modulating anode/hard-tube driver or pulsed cathode/line-type pulser configuration. The choices in the extremes of low power for very long pulses or for very-high-power, short pulses are, respectively, a modulated anode/hard tube modulator and pulsed cathode/pulse forming line. However, the demarcation between these two extremes is not clearcut. The criteria (cost, flexibility performance, reliability, efficiency) that resulted in the RF station definition of these two specific systems will be described

  19. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  20. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  1. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  2. Fat suppression in MR imaging with binomial pulse sequences

    International Nuclear Information System (INIS)

    Baudovin, C.J.; Bryant, D.J.; Bydder, G.M.; Young, I.R.

    1989-01-01

    This paper reports on a study to develop pulse sequences allowing suppression of fat signal on MR images without eliminating signal from other tissues with short T1. They have developed such a technique involving selective excitation of protons in water, based on a binomial pulse sequence. Imaging is performed at 0.15 T. Careful shimming is performed to maximize separation of fat and water peaks. A spin-echo 1,500/80 sequence is used, employing 90 degrees pulse with transit frequency optimized for water with null excitation of 20 H offset, followed by a section-selective 180 degrees pulse. With use of the binomial sequence for imagining, reduction in fat signal is seen on images of the pelvis and legs of volunteers. Patient studies show dramatic improvement in visualization of prostatic carcinoma compared with standard sequences

  3. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Muertz, Petra, E-mail: petra.muertz@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kaschner, Marius, E-mail: marius.kaschner@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Traeber, Frank, E-mail: frank.traeber@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kukuk, Guido M., E-mail: guido.kukuk@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Buedenbender, Sarah M., E-mail: sarah_m_buedenbender@yahoo.de [Department of Radiology, University of Bonn (Germany); Skowasch, Dirk, E-mail: dirk.skowasch@ukb.uni-bonn.de [Department of Medicine, University of Bonn (Germany); Gieseke, Juergen, E-mail: juergen.gieseke@philips.com [Philips Healthcare, Best (Netherlands); Department of Radiology, University of Bonn (Germany); Schild, Hans H., E-mail: hans.schild@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Willinek, Winfried A., E-mail: winfried.willinek@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany)

    2012-11-15

    Purpose: To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Materials and methods: Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n = 5), thorax (n = 8), abdomen (n = 6) and pelvis (n = 21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as 'improved', 'equal', 'worse' or 'ambiguous'. Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. Results: By the use of TX, signal homogeneity was 'improved' in 25/40 and 'equal' in 15/40 cases. Fat suppression was 'improved' in 17/40 and 'equal' in 23/40 cases. These improvements were statistically significant (p < 0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p = 0.630 over all data, pairwise Student's t-test). Conclusion: Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values.

  4. A phase stabilized and pulse shaped Ti:Sapphire oscillator-amplifier laser system for the LCLS rf photoinjector

    International Nuclear Information System (INIS)

    Kotseroglou, T.; Alley, R.; Clendenin, J.; Fisher, A.; Frisch, J.

    1998-04-01

    The authors have designed a laser system for the Linac Coherent Light Source rf photoinjector consisting of a Ti:Sapphire oscillator and 2 amplifiers using Chirped Pulse Amplification. The output after tripling will be 0.5 mJ tunable UV pulses at 120 Hz, with wavelength around 260 nm, pulsewidth of 10 ps FWHM and 200 fs rise and fall times. Amplitude stability is expected to be 1% rms in the UV and timing jitter better than 500 fs rms

  5. Preliminary tests of a second harmonic rf system for the intense pulsed neutron source synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx. 3 x 10 12 ppp, depending somewhat on the available aperture. Accelerator improvements are being directed at (1) increasing beam intensities for neutron science, (2) lowering acceleration losses to minimize activation, and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. We are now proposing a third cavity for the RF system which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses by providing more RF voltage at maximum acceleration. This paper presents an outline of the expected benefits together with recent results obtained during low energy operation with one of the two existing cavities operating at the second harmonic

  6. RF and microwave noise suppression in a transmission line using Fe-Si-Al/Ni-Zn magnetic composite films

    International Nuclear Information System (INIS)

    Lee, J. W.; Hong, Y. K.; Kim, K.; Joo, J.; Yoon, Y. W.; Kim, S. W.; Kim, Y. B.; Kim, K. Y.

    2006-01-01

    Radio-frequency (RF) and microwave noise suppression by using magnetic composite films on a microstrip line (MSL) was studied in the frequency range from 50 MHz to 13.5 GHz. The MSL was composed of a Cu transmission line, dielectric materials, and a Cu substrate. The Fe-Si-Al/Ni-Zn magnetic composite films were placed on the MSL, and the reflection and the transmission characteristics were investigated. We observed that RF and microwave noise suppression caused by the Fe-Si-Al/Ni-Zn magnetic composite films varied with the concentration ratio of the sendust (Fe-Si-Al) and the Ni-Zn ferrite. The frequency dependence of the power loss due to the composite films on the MSL was measured and the power loss increased at higher frequencies with increasing concentration of the sendust in the composites. The electromagnetic interference shielding efficiencies of the magnetic composite films in the far-field region are also discussed.

  7. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  8. Suppression of in vitro cell-mediated lympholysis generation by alloactivated lymphocytes. Examination of radioresistant suppressive activity

    International Nuclear Information System (INIS)

    Orosz, C.G.; Ferguson, R.M.

    1986-01-01

    We investigated the radioresistant (1000 rads) suppression of CML generation mediated by alloactivated murine splenocytes. Suppressive cells were generated in MLCs by stimulation of (A X 6R)F1 splenocytes with irradiated C57BL/10 splenocytes. Suppressive cells could lyse targets bearing H-2b alloantigens, but would not lyse parental B10.T(6R) or B10.A targets. Suppressive activity was detected by including the alloactivated (A X 6R)F1 cells in B10.T(6R) anti-B10.A(1R) MLCs. Relative to the suppressive (A X 6R)F1 cells, the B10.A(1R) lymphocytes display both parental and suppressor-inducing alloantigens. In the absence of a suppressive population, B10.A(1R) stimulators cause B10.T(6R) splenocytes to generate cytolytic activity specific for both H-2Db (suppressor-inducing) and H-2Kk (suppressor-borne) target determinants. The irradiated, alloactivated (A X 6R)F1 cells decrease the H-2Db-specific CML generated in this system, thus mediating apparent antigen-specific suppression. However, cytolytic activity concomitantly generated in the same culture against the unrelated H-2Kk target determinants is similarly reduced by the (A X 6R)F1 cells. Thus, radioresistant suppression by alloactivated splenocytes is not necessarily antigen-specific. The irradiated (A X 6R)F1 cells would not suppress the generation of H-2Kk-specific CTL in B10.T(6R) anti-B10.A MLCs. Hence, the irradiated (A X 6R)F1 cells can impede CML generation against third-party alloantigens if, and only if, those alloantigens are coexpressed with suppressor-inducing alloantigens on the stimulator cells in suppressed MLCs. Similar results were also obtained using a different histoincompatible lymphocyte combination

  9. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  10. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  11. Control Instabilities in a Pulsed Multi-Cavity RF System with Vector Sum Feedback (A Mathematical Analysis)

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    Upcoming projects relying on pulsed linear accelerators intend to use superconducting RF systems. Cost reasons suggest driving several cavities by a common transmitter, controlled over a vector sum feedback system, possibly supported by a feed forward system. Numerical simulations hint that such a system may become uncontrollable under certain conditions. In the present paper, for a model very close to reality, we will present a mathematical proof that in fact spontaneous symmetry braking is possible for these configurations, defining also the precise conditions under which it will take place. These can be used as an estimate for the real RF system stability limits. The listing of a small program demonstrating the mechanism numerically for two cavities is attached.

  12. Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves

    International Nuclear Information System (INIS)

    Craddock, G.G.; Diamond, P.H.

    1991-01-01

    Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs

  13. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  14. Suppression of Repeat-Intensive False Targets Based on Temporal Pulse Diversity

    Directory of Open Access Journals (Sweden)

    Gang Lu

    2013-01-01

    Full Text Available This paper considers the problem of suppressing the repeat-intensive false targets produced by a deception electronic attack (EA system equipped with a Digital Radio Frequency Memory (DRFM device. Different from a conventional repeat jammer, this type of jamming intensively retransmits the intercepted signal stored in a DRFM to the victim radar in a very short time-delay interval relative to a radar pulse wide. A multipeak matched-filtering output is then produced other than the merely expected true target. An electronic protection (EP algorithm based on the space time block code (STBC is proposed to suppress the adverse effects of this jammer. By transmitting a pulse sequence generated from the STBC in succession and the following cancellation process applied upon the received signal, this algorithm performs successfully in a single antenna system provided that the target models are nonfluctuating or slow fluctuating and the pulse repetition frequency (PRF is comparatively high. The performance in white and correlated Gaussian disturbance is evaluated by means of Monte Carlo simulations.

  15. SU-F-J-112: Clinical Feasibility Test of An RF Pulse-Based MRI Method for the Quantitative Fat-Water Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S; Wloch, J; Pirkola, M [William Beaumont Hospital, Royal Oak, MI (United States)

    2016-06-15

    Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations have been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.

  16. SNS Superconducting RF cavity modeling-iterative learning control

    CERN Document Server

    Kwon, S I; Wang, Y M

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller.

  17. SNS Superconducting RF cavity modeling-iterative learning control

    International Nuclear Information System (INIS)

    Kwon, S.-I.; Regan, Amy; Wang, Y.-M.

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller

  18. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    International Nuclear Information System (INIS)

    Mulkern, Robert V.; Voss, Stephan; Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S.

    2008-01-01

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14±2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  19. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mulkern, Robert V.; Voss, Stephan [Harvard Medical School, Department of Radiology, Children' s Hospital Boston, Boston, MA (United States); Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S. [Harvard Medical School, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States)

    2008-10-15

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14{+-}2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  20. RF pulse compression development

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Weaver, J.N.

    1987-10-01

    The body of this paper discusses the theory and some rules for designing a multistage Binary Energy Compressor (BEC) including its response to nonstandard phase coding, describes some proof-of-principle experiments with a couple of low power BECs, presents the design parameters for some sample linear collider rf systems that could possibly use a BEC to advantage and outlines in the conclusion some planned R and D efforts. 8 refs., 26 figs., 4 tabs

  1. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    Science.gov (United States)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  2. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    Science.gov (United States)

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The RF power system for the SNS linac

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two

  4. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  5. Control Instabilities in a Pulsed Multi-Cavity RF System with Vector Sum Feedback (A Mathematical Analysis) 052

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    Upcoming projects relying on pulsed linear accelerators intend to use superconducting RF systems. Cost reasons suggest driving several cavities by a common transmitter, controlled over a vector sum feedback system, possibly supported by a feed forward system. Numerical simulations hint that such a system may become uncontrollable under certain conditions. In the present paper, for a model very close to reality, we will present a mathematical proof that in fact spontaneous symmetry braking is possible for these configurations, defining also the precise conditions under which it will take place. These can be used as an estimate for the real RF system stability limits. The listing of a small program demonstrating the mechanism numerically for two cavities is attached.

  6. RF extraction issues in the relativistic klystron amplifiers

    Science.gov (United States)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  7. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  8. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  9. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  10. An RF cavity for barrier bucket experiment in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, M.; Iwashita, Y. [Kyoto Univ. (Japan); Mori, Y. [and others

    1998-11-01

    A barrier bucket experiment in the AGS is planed in 1998. An accumulation of the beam, which intensity of 1.0 x 10{sup 14}ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40 kV per cavity is necessary for the experiment. The RF frequency is 2 MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357 kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse. (author)

  11. Suppression of Protonated Organic Solvents in NMR Spectroscopy Using a Perfect Echo Low-Pass Filtration Pulse Sequence.

    Science.gov (United States)

    Howe, Peter W A

    2018-04-03

    Proton NMR spectra are usually acquired using deuterated solvents, but in many cases it is necessary to obtain spectra on samples in protonated solvents. In these cases, the intense resonances of the protonated solvents need to be suppressed to maximize sensitivity and spectral quality. A wide range of highly effective solvent suppression methods have been developed, but additional measures are needed to suppress the 13 C satellites of the solvent. Because the satellites represent 1.1% of the original solvent signal, they remain problematic if unsuppressed. The recently proposed DISPEL pulse sequences suppress 13 C satellites extremely effectively, and this Technical Note demonstrates that combining DISPEL and presaturation results in exceptionally effective solvent suppression. An important element in the effectiveness is volume selection, which is inherent within the DISPEL sequence. Spectra acquired in protonated dimethlysulfoxide and tetrahydrofuran show that optimum results are obtained by modifying the phase cycle, cycling the pulse-field gradients, and using broadband 13 C inversion pulses to reduce the effects of radiofrequency offset and inhomogeneity.

  12. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  13. RF system modeling and controller design for the European XFEL

    International Nuclear Information System (INIS)

    Schmidt, Christian

    2011-06-01

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration. They are not sufficiently suppressed

  14. Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields

    International Nuclear Information System (INIS)

    Maslovsky, D.; Levitt, B.; Mauel, M. E.

    2003-01-01

    Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)

  15. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  16. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  17. Digital Low-Level RF Controls for Future Superconducting Linear Colliders

    CERN Document Server

    Simrock, Stefan

    2005-01-01

    The requirements for RF Control Systems of Superconducting Linear Colliders are not only defined in terms of the quality of field control but also with respect to operability, availability, and maintainability of the RF System, and the interfaces to other subsystems. The field control of the vector-sum of many cavities driven by one klystron in pulsed mode at high gradients is a challenging task since severe Lorentz force detuning, microphonics and beam induced field errors must be suppressed by several orders of magnitude. This is accomplished by a combination of local and global feedback and feedforward control. Sensors monitor individual cavity probe signals, and forward and reflected wave as well as the beam properties including beam energy and phase while actuators control the incident wave of the klystron and individual cavity resonance frequencies. The operability of a large llrf system requires a high degree of automation while the high availability requires robust algorithms, redundancy, and extremel...

  18. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla

    NARCIS (Netherlands)

    van Kalleveen, Irene M. L.; Boer, VO; Luijten, Peter R.; Klomp, DWJ

    Purpose: Going to ultrahigh field MRI (e. g., 7 Tesla [ T]), the nonuniformity of the B_1 field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B_1, its field remains nonuniform. In this work, an RF pulse was designed

  19. A 12 kV, 1 kHz, Pulse Generator for Breakdown Studies of Samples for CLIC RF Accelerating Structures

    CERN Document Server

    Soares, R H; Kovermann, J; Calatroni, S; Wuensch, W

    2012-01-01

    Compact Linear Collider (CLIC) RF structures must be capable of sustaining high surface electric fields, in excess of 200 MV/m, with a breakdown (BD) rate below 3×10-7 breakdowns/pulse/m. Achieving such a low rate requires a detailed understanding of all the steps involved in the mechanism of breakdown. One of the fundamental studies is to investigate the statistical characteristics of the BD rate phenomenon at very low values to understand the origin of an observed dependency of the surface electric field raised to the power of 30. To acquire sufficient BD data, in a reasonable period of time, a high repetition rate pulse generator is required for an existing d.c. spark system at CERN. Following BD of the material sample the pulse generator must deliver a current pulse of several 10’s of Amperes for ~2 μs. A high repetition rate pulse generator has been designed, built and tested; this utilizes pulse forming line technology and employs MOSFET switches. This paper describes the design of the pulse generat...

  20. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T.

    Science.gov (United States)

    Mürtz, Petra; Kaschner, Marius; Träber, Frank; Kukuk, Guido M; Büdenbender, Sarah M; Skowasch, Dirk; Gieseke, Jürgen; Schild, Hans H; Willinek, Winfried A

    2012-11-01

    To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n=5), thorax (n=8), abdomen (n=6) and pelvis (n=21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as "improved", "equal", "worse" or "ambiguous". Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. By the use of TX, signal homogeneity was "improved" in 25/40 and "equal" in 15/40 cases. Fat suppression was "improved" in 17/40 and "equal" in 23/40 cases. These improvements were statistically significant (p3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Suppression secondary electrons from target surface under pulsed ion beams bombardment

    International Nuclear Information System (INIS)

    Yang Zhen; Peng Yufei; Long Jidong; Lan Chaohui; Dong Pan; Shi Jinshui

    2012-01-01

    The producing mechanism of secondary electrons from target surface under ion beams bombardment is discussed. Several methods to suppress the secondary electrons in special vacuum devices and their advantages and disadvantages are introduced. The ways of using self-bias and curved surface target are proposed and verified in the experiment. The results show that the secondary electrons can be effectively suppressed when the self-bias is larger than 80 V. The secondary electron yield decreases by using curved surface target instead of flat target. The secondary electron yield calculated from the experimental data is about 0.67, which is slightly larger than the value (0.58) from the literature due to the impurities of the ion beam and target surface. The effect of suppressing the electron countercurrent by the self-bias method is analyzed. The result shows that the self-bias method can not only suppress the secondary electrons from target surface under ion beams bombardment, but also suppress the electron countercurrent resulting from the instability of the pulsed power source. (authors)

  2. Effect of RF Parameters on Breakdown Limits in High-Vacuum X-Band Structures

    International Nuclear Information System (INIS)

    Dolgashev, Valery A.

    2003-01-01

    RF breakdown is one of the major factors determining performance of high power rf components and rf sources. RF breakdown limits working power and produces irreversible surface damage. The breakdown limit depends on the rf circuit, structure geometry, and rf frequency. It is also a function of the input power, pulse width, and surface electric and magnetic fields. In this paper we discuss multi-megawatt operation of X-band rf structures at pulse width on the order of one microsecond. These structures are used in rf systems of high gradient accelerators. Recent experiments at Stanford Linear Accelerator Center (SLAC) have explored the functional dependence of breakdown limit on input power and pulse width. The experimental data covered accelerating structures and waveguides. Another breakdown limit of accelerating structures was associated with high magnetic fields found in waveguide-to-structure couplers. To understand and quantify these limits we simulated 3D structures with the electrodynamics code Ansoft HFSS and the Particle-In-Cell code MAGIC3D. Results of these simulations together with experimental data will be discussed in this paper

  3. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  4. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  5. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  6. RF windows used at s-band pulsed klystrons in KEK linac

    Energy Technology Data Exchange (ETDEWEB)

    Michizono, S.; Saito, Y. [KEK, National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    The breakdown of the alumina RF-windows used in high-power klystrons is one of the most serious problems in the development of klystrons. This breakdown results from excess heating of alumina due to multipactor bombardments and/or localized RF dissipations. A statistical research of window materials was carried out, and high-power tests were performed in order to develop RF windows having high durability for the KEKB klystrons. The breakdown mechanism of RF windows is being considered. An improved RF window installed in a KEKB klystron is also being tested. (J.P.N)

  7. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  8. RF system modeling and controller design for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Christian

    2011-06-15

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H{sub {infinity}} loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration

  9. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  10. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  11. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  12. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  13. Performance of an rf beam monitor on the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Cutler, R.I.

    1985-01-01

    A prototype rf beam-position, current, and phase monitor has been used on the 100-keV injector beamline of the racetrack microtron (RTM) where performance was measured with the chopped and bunched beam. This monitor works with both a pulsed beam and a cw beam. The pulsed beam consists of beam pulses with a FWHM of 40 ns. The rf beam monitor was tested with beam currents from approx. 50 to 600 μA. The rf beam monitor will be described and its performance will be reported. 6 refs., 5 figs

  14. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  15. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    Science.gov (United States)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH-3 and SiH-2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  16. Storage of RF photons in minimal conditions

    Science.gov (United States)

    Cromières, J.-P.; Chanelière, T.

    2018-02-01

    We investigate the minimal conditions to store coherently a RF pulse in a material medium. We choose a commercial quartz as a memory support because it is a widely available component with a high Q-factor. Pulse storage is obtained by varying dynamically the light-matter coupling with an analog switch. This parametric driving of the quartz dynamics can be alternatively interpreted as a stopped-light experiment. We obtain an efficiency of 26%, a storage time of 209 μs and a time-to-bandwidth product of 98 by optimizing the pulse temporal shape. The coherent character of the storage is demonstrated. Our goal is to connect different types of memories in the RF and optical domain for quantum information processing. Our motivation is essentially fundamental.

  17. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-01-01

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times

  18. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  19. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  20. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  1. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  2. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-01-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO 2 ) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9 to 3 keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse

  3. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    Science.gov (United States)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-10-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.

  4. The RF system of FELI

    International Nuclear Information System (INIS)

    Morii, Y.; Miyauchi, Y.; Koga, A.; Abe, H.; Keishi, T.; Bessho, I.; Tomimasu, T.

    1994-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20 μm (infra red region) to 0.35 μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and installation of the linac will start in December 1993. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714 MHz SHB (subharmonic buncher), a 2856 MHz standing wave type buncher, and 7 ETL (Electrotechnical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power); 24 μs - 24 MW, 12.5 μs - 34 MW, 0.5 μs - 70 MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of an optical thyristor stack. These equipments are manufactured now, and an S-band klystron and modulator will be combined to test their performance at the works of NISSIN ELECTRIC Co. in October 1993. (author)

  5. Deposition of PZT thin film onto copper-coated polymer films by mean of pulsed-DC and RF-reactive sputtering

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Labitzke, R.; Adolphi, B.; Jastrabík, Lubomír; Adámek, Petr; Drahokoupil, Jan; Hubička, Zdeněk; Kiselev, D.A.; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 205, č. 2 (2011), S241-S244 ISSN 0257-8972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed DC reactive sputtering * RF reactive sputtering * complex oxide film deposition * polymer substrate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  6. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  7. Saturation Recovery Myocardial T1 Mapping with a Composite Radiofrequency Pulse on a 3T MR Imaging System.

    Science.gov (United States)

    Morita, Kosuke; Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Matsubara, Takatoshi; Goto, Makoto; Okuaki, Tomoyuki; Yuki, Hideaki; Nagayama, Yasunori; Kidoh, Masafumi; Hirata, Kenichiro; Iyama, Yuij; Taguchi, Narumi; Hatemura, Masahiro; Hashida, Masahiro; Yamashita, Yasuyuki

    2018-01-10

    To evaluate the effect of a composite radiofrequency (RF) pulse on saturation recovery (SR) myocardial T 1 mapping using a 3T MR system. Phantom and in vivo studies were performed with a clinical 3T MR scanner. Accuracy and reproducibility of the SR T 1 mapping using conventional and composite RF pulses were first compared in phantom experiments. An in vivo study was performed of 10 healthy volunteers who were imaged with conventional and composite RF pulse methods twice each. In vivo reproducibility of myocardial T 1 value and the inter-segment variability were assessed. The phantom study revealed significant differences in the mean T 1 values between the two methods, and the reproducibility for the composite RF pulse was significantly smaller than that for the conventional RF pulse. For both methods, the correlations of the reference and measured T 1 values were excellent (r 2 = 0.97 and 0.98 for conventional and composite RF pulses, respectively). The in vivo study showed that the mean T 1 value for composite RF pulse was slightly lower than that for conventional RF pulse, but this difference was not significant (P = 0.06). The inter-segment variability for the composite RF pulse was significantly smaller than that for conventional RF pulse (P composite RF pulses (r = 0.83 and 0.29, respectively). SR T 1 mapping using composite RF pulse provides accurate quantification of T 1 values and can lessen measurement variability and enable reproducible T 1 measurements.

  8. Dynamical suppression of nuclear-spin decoherence time in Si and GaAs using inversion pulses

    International Nuclear Information System (INIS)

    Watanabe, S.; Harada, J.; Sasaki, S.; Hirayama, Y.

    2007-01-01

    We found that nuclear-spin decoherence is suppressed by applying inversion pulses such as alternating phase Carr-Purcell (APCP) and Carr-Purcell-Meiboom-Gill (CPMG) sequences in silicon and GaAs. The decoherence time reaches ∼1.3s by applying inversion pulses, which is ∼200 times as long as the characteristic decay time obtained from the Hahn echo sequence (∼6ms) in silicon

  9. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  10. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  11. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  12. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  13. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  14. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  15. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  16. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  17. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  18. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  19. Plasma Turbulence Suppression and Transport Barrier Formation by Externally Driven RF Waves in Spherical Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.C.; Komoshvili, K.

    2002-01-01

    Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated

  20. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Andrew M Huettner

    Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.

  1. Breast MRI at 7 Tesla with a bilateral coil and robust fat suppression.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2014-03-01

    To develop a bilateral coil and fat suppressed T1-weighted sequence for 7 Tesla (T) breast MRI. A dual-solenoid coil and three-dimensional (3D) T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed. T1w FS image quality was characterized through image uniformity and fat-water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7T SNR advantage. Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat-water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. 7T T1w FS bilateral breast imaging is feasible with a custom radiofrequency (RF) coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. Copyright © 2013 Wiley Periodicals, Inc.

  2. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  3. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  4. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  5. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  6. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  7. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  8. Four-way rf beam separator

    International Nuclear Information System (INIS)

    Neil, V.K.

    1982-01-01

    A method for separating a continuous beam of relativistic particles into four pulsed beams is investigated theoretically. The separation is periodic with period 2π/#betta# so that each of the four beams consists of current pulses of duration π/#betta#. The separation is accomplished by a series of rf cavities in the beam line. The cavities operate in the TM 110 and have frequencies, #betta#, 3#betta#, 5#betta#, 7#betta#, etc. The transverse momentum imparted to the beam particles results in a time-dependent displacement of the beam centroid at a position downstream of the cavity array. The mathematical limitations imposed by truncating a Fourier series are discussed, and an expression derived for the necessary phase and amplitude of each cavity. The rf induced by the beam in the cavities is treated in detail, and does not appear to be a serious problem

  9. L-band pulsed klystron for the JHP

    International Nuclear Information System (INIS)

    Fukuda, S.; Takeuchi, Y.; Hisamatsu, H.; Anami, S.; Kihara, M.; Takahashi, A.

    1994-01-01

    An L-band high-power klystron for the JHP (6 MW output power and 600 μsec pulse width) was designed at KEK. High-power tests of the test diodes were performed up to a beam voltage of 140 kV, a pulse width of 600 μsec and a repetition rate of 50 pps. The capability to meet the specifications of the gun and the collector was confirmed. High-power tests of the rf window were also performed up to rf powers of 4 MW (600 μsec pulse width) and 5 MW (375 μsec pulse width). We obtained good results for an rf window using high-purity alumina (99.7%). The design considerations and manufacturing process are also described. Manufacturing a prototype tube has been completed and the tube is undergoing the high-power tests. (author)

  10. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  11. Synchronization circuit for shaping picosecond accelerated-electron pulses

    International Nuclear Information System (INIS)

    Pavlov, Y.S.; Solov'ev, N.G.; Tomnikov, A.P.

    1986-01-01

    The authors discuss a high-speed circuit for synchronization of trigger pulses of the deflector modulator of an accelerator with a given phase of rf voltage of 200 MHz. The measured time instability between the output trigger pulses of the circuit and the input rf voltage is ≤ + or - 0.05 nsec. The circuit is implemented by ECL integrated circuits of series K100 and K500, and operates in both the pulse (pulse duration 3 μsec and repetition frequency 400 Hz) and continuous modes

  12. Improving the beam quality of rf guns by correction of rf and space-charge effects

    International Nuclear Information System (INIS)

    Serafini, L.

    1992-01-01

    In this paper we describe two possible strategies to attain ultra-low emittance electron beam generation by laser-driven RF guns. The first one is based on the exploitation of multi-mode resonant cavities to neutralize the emittance degradation induced by RF effects. Accelerating cigar-like (long and thin) electron bunches in multi-mode operated RF guns the space charge induced emittance is strongly decreased at the same time: high charged bunches, as typically requested by future TeV e - e + colliders, can be delivered by the gun at a quite low transverse emittance and good behaviour in the longitudinal phase space, so that they can be magnetically compressed to reach higher peak currents. The second strategy consists in using disk-like electron bunches, produced by very short laser pulses illuminating the photocathode. By means of an analytical study a new regime has been found, where the normalized transverse emittance scales like the inverse of the peak current, provided that the laser pulse intensity distribution is properly shaped in the transverse direction. Preliminary numerical simulations confirm the analytical predictions and show that the minimum emittance achievable is set up, in this new regime, by the wake-field interaction between the bunch and the cathode metallic wall

  13. RF Beam Position Monitor for the SNS Ring

    International Nuclear Information System (INIS)

    Vetter, Kurt; Cameron, Peter; Dawson, Craig; Degen, Chris; Kesselman, Martin; Mead, Joseph

    2004-01-01

    The Spallation Neutron Source Ring accumulates 1060 pulses of 38-mA peak current 1-GeV H-minus particles from the Linac through the HEBT line, then delivers this accumulated beam in a single pulse to a mercury target via the RTBT line. The dynamic range over the course of the accumulation cycle is 60 dB. As a result of particle energy distribution the 402.5-MHz RF bunching frequency quickly de-coheres during the first few turns. In order to measure first-turn position a dual-mode BPM has been designed to process 402.5-MHz signal energy during the first few turns then switch to a Baseband mode to process de-cohered energy in the low MHz region. The design has been implemented as a dual mother/daughter board PCI architecture. Both Baseband and RF calibration are included on the RF BPM board. A prototype system has been installed in the SNS Linac

  14. Absorption efficiency and heating kinetics of nanoparticles in the RF range for selective nanotherapy of cancer.

    Science.gov (United States)

    Letfullin, Renat R; Letfullin, Alla R; George, Thomas F

    2015-02-01

    Radio-frequency (RF) waves have an excellent ability to penetrate into the human body, giving a great opportunity to activate/heat nanoparticles delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of nanoparticles in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of nanoparticles in the RF range. This study uses a phenomenological approach to estimate the absorption efficiency of metal and dielectric nanoparticles in the RF range through a study of heating kinetics of those particles in radio wave field. We also discuss the specific features of heating kinetics of nanoparticles, such as a short time scale for heating and cooling of nanoparticles in a liquid biological environment, and the effect of the radiation field structure on the heating kinetics by single-pulse and multipulse RF radiation. In this study a phenomenological approach was applied to estimate the absorption efficiency of radiofrequency radiation (RF) by metal and dielectric nanoparticles. Such nanoparticles can be designed and used for therapeutic purposes, like for localized heating and to activate nanoparticles by RF. The authors also discuss the differences in heating kinetics using single-pulse and multi-pulse RF radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. RF control at transient beamloading for high-duty-factor linacs

    Energy Technology Data Exchange (ETDEWEB)

    Chernogubovsky, M.A.; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    An effective RF control with the transient beamloading is the major issue in the operation of the high-duty-factor linacs to suppress the undesirable beam loss. The RF control method is considered to obtain the control principle and the state equation, under the analysis of electrodynamical properties of the excitation in the resonator of the linac due to the transient beamloading. The concept of the directional selective coupling is applied for the RF system to define the main characteristics and to optimize the RF control parameters. (author)

  16. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    International Nuclear Information System (INIS)

    Joshi, Ramesh; Singh, Manoj; Jadav, H M; Misra, Kishor; Kulkarni, S V

    2010-01-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twice, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  17. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    Science.gov (United States)

    Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  18. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ramesh; Singh, Manoj; Jadav, H M; Misra, Kishor; Kulkarni, S V, E-mail: rjoshi@ipr.res.i [Institute for plasma research, Bhat, Gandhinagar- 382428 (India)

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twice, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  19. RF Processing Experience with the GTF Prototype RF Gun

    International Nuclear Information System (INIS)

    Schmerge, J.F.

    2010-01-01

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a π mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note (1).

  20. Long Pulse EBW Start-up Experiments in MAST

    Directory of Open Access Journals (Sweden)

    Shevchenko V.F.

    2015-01-01

    Full Text Available Start-up technique reported here relies on a double mode conversion (MC for electron Bernstein wave (EBW excitation. It consists of MC of the ordinary (O mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR. Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  1. Recent development on RF-driven multicusp H- ion sources

    International Nuclear Information System (INIS)

    Leung, K.N.; De Vries, G.J.; Kunkel, W.B.; Perkins, L.T.; Pickard, D.S.; Saadatmand, K.; Wengrow, A.B.; Williams, M.D.

    1996-06-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. The source routinely provided 35 keV, 30 mA of beam at 0.1% duty factor. By using a new cesium dispensing system, beam current in excess of 100 mA and e/H - ∼1 have been observed. For pulse mode operation, the rf discharge can be started by means of a xenon flash lamp. Extracted electrons in the beam can be efficiently removed by employing a permanent magnet insert structure. Chopping of the H - beam can be accomplished by applying a pulsed positive voltage on the plasma electrode

  2. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  3. Pulse sequences for suppressing leakage in single-qubit gate operations

    Science.gov (United States)

    Ghosh, Joydip; Coppersmith, S. N.; Friesen, Mark

    2017-06-01

    Many realizations of solid-state qubits involve couplings to leakage states lying outside the computational subspace, posing a threat to high-fidelity quantum gate operations. Mitigating leakage errors is especially challenging when the coupling strength is unknown, e.g., when it is caused by noise. Here we show that simple pulse sequences can be used to strongly suppress leakage errors for a qubit embedded in a three-level system. As an example, we apply our scheme to the recently proposed charge quadrupole (CQ) qubit for quantum dots. These results provide a solution to a key challenge for fault-tolerant quantum computing with solid-state elements.

  4. RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps

    Science.gov (United States)

    Minayeva, Olga; Doughty, Douglas

    2007-10-01

    Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.

  5. Design of a high charge (10 - 100 nC) and short pulse (2 - 5 ps) rf photocathode gun for wakefield acceleration

    International Nuclear Information System (INIS)

    Gai, W.

    1998-01-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed

  6. Material studies for CLIC RF cavities

    CERN Document Server

    Taborelli, M

    2004-01-01

    Following the EST/SM suggestion of replacing copper by molybdenum or tungsten for the construction of the RF cavity irises, different CLIC main beam accelerating structures were produced, extensively operated and disassembled for iris surface inspection. The observed surface modifications were found to be very similar to those obtained by sparking in a dedicated laboratory set-up, showing the superior behaviour of both Mo and W with respect to Cu, in terms of surface erosion and conditioning. The iris thermomechanical fatigue due to RF heating was simulated by high power pulsed laser irradiation. A CuZr alloy was found to be much more resistant than pure Cu. Measurements at higher pulse number will be performed on CuZr in order to extrapolate its fatigue behaviour up to the nominal CLIC duration. Finally a possible future development of a hybrid probe beam acceleration structure will be presented.

  7. A compact rf driven H- ion source for linac injection

    International Nuclear Information System (INIS)

    Rymer, J.P.; Engeman, G.A.; Hamm, R.W.; Potter, J.M.

    1991-01-01

    A compact rf driven H - ion source has been developed for use as an injector for the AccSys radio frequency quadrupole (RFQ) linacs. A multicusp magnetic bucket geometry developed at Lawrence Berkeley Laboratory confines the plasma created by an antenna driven by 35 kW (peak) of pulsed rf power at 1.8 MHz. A three electrode system is used to extract and accelerate the H - beam, which is then focused into the RFQ by an einzel lens. Permanent magnets in the extraction region sweep electrons onto the second electrode at energies up to half of the full acceleration voltage. A fast pulsed valve allows the hydrogen gas supply to be pulsed, thus minimizing the average gas flow rate into the system. The design features and performance data from the prototype are discussed

  8. Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2004-01-01

    The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...

  9. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    Science.gov (United States)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  10. Adaptive compensation of Lorentz force detuning in superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Yuriy [Fermilab; Schappert, Warren [Fermilab

    2011-11-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities and considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate. Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  11. Directions for rf-controlled intelligent microvalve

    Science.gov (United States)

    Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek

    2001-03-01

    In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.

  12. Ultra-fast pulse radiolysis: A review of the recent system progress and its application to study on initial yields and solvation processes of solvated electrons in various kinds of alcohols

    International Nuclear Information System (INIS)

    Muroya, Yusa; Lin Mingzhang; Han Zhenhui; Kumagai, Yuta; Sakumi, Akira; Ueda, Toru; Katsumura, Yosuke

    2008-01-01

    In order to study radiation-induced fast phenomena, a new pulse radiolysis system with higher time resolution based on pulse-and-probe method was developed and utilized for practical work. A few picosecond electron beam generated from a linear accelerator, in which a laser photocathode RF-gun is introduced, was synchronized with a femtosecond laser pulse which is employed as the analyzing light. The synchronization precision between them was suppressed within 1.6 ps (rms). Converting the fundamental laser into white light continuum or optical parametric amplification allows to measure in the wide wavelength from visible to infrared region

  13. Gyromagnetic nonlinear transmission line generator of high voltage pulses modulated at 4 GHz frequency with 1000 Hz pulse repetition rate

    International Nuclear Information System (INIS)

    Ulmasculov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N

    2017-01-01

    Results of testing of a generator based on a solid-state drive and the parallel gyromagnetic nonlinear transmission lines with external bias are presented. Stable rf-modulated high-voltage nanosecond pulses were shaped in each of the four channels in 1 s packets with 1000 Hz repetition frequencies. Pulse amplitude reaches -175 kV, at a modulation depth of rf-oscillations to 50 % and the effective frequency ∼4 GHz. (paper)

  14. Feedback system of the RF phase in KEK-ATF linac

    Energy Technology Data Exchange (ETDEWEB)

    Okugi, T.; Hayano, H.; Kuriki, M.; Naito, T. [Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-07-01

    KEK-ATF linac is built in the Assembly Hall for TRISTAN project in 1991. The thermal condition of the hall is not good enough for a stable linac operation, because the temperature of the klystron gallery is drifted by 1degC within one day. RF phase is also drifted by 3-5deg of the S-band frequency in day and night. In order to control the RF phase, we installed RF phase detectors, which have S/H circuit in order to use for pulsed RF. By using the phase detector, an RF phase feedback system was tested. It was found that a stable klystron operation could be performed within the phase drift of {+-}0.5deg in a day. (author)

  15. The gyroklystron as a possible RF source for future TeV colliders

    International Nuclear Information System (INIS)

    Cheng, J.; Lawson, W.; Calame, J.P.; Latham, P.E.; Granatstein, V.L.; Reiser, M.

    1995-01-01

    At the University of Maryland we have been investigating the feasibility of using gyroklystrons as a possible RF source for the next generation of linear colliders. The preliminary sets of fundamental and second harmonic gyroklystron tube experiments have achieved a combination of pulse length, frequency and peak powers beyond the previous state of the art in RF capabilities. Production of 1 μsec pulse lengths at X and K band frequencies have shown that gyroklystrons can be a promising RF source but the achieved power levels of 30 MW still fall short of predicted requirements for future TeV colliders. An upgrade of the gyroklystron experimental facility to achieve 100 MW peak power levels will move us closer to realizing the goals for RF sources. This paper will detail the past achievements of the 30 MW system as well as modifications for the future 100 MW system. copyright 1995 American Institute of Physics

  16. rf driven multicusp H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DeVries, G.J.; DiVergilio, W.F.; Hamm, R.W.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.; Williams, M.D.

    1991-01-01

    An rf driven multicusp source capable of generating 1-ms H - beam pulses with a repetition rate as high as 150 Hz has been developed. This source can be operated with a filament or other types of starter. There is almost no lifetime limitation and a clean plasma can be maintained for a long period of operation. It is demonstrated that rf power as high as 25 kW could be coupled inductively to the plasma via a glass-coated copper-coil antenna. The extracted H - current density achieved is about 200 mA/cm 2

  17. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  18. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    International Nuclear Information System (INIS)

    Lamb, Thorsten

    2017-05-01

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  19. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  20. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    International Nuclear Information System (INIS)

    Kim, J.-H.; Nishihara, M.; Adamovich, I.V.; Samimy, M.; Gorbatov, S.V.; Pliavaka, F.V.

    2010-01-01

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2-1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow

  1. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  2. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  3. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  4. Optimum Choice of RF Frequency for Two Beam Linear Colliders

    CERN Document Server

    Braun, Hans Heinrich

    2003-01-01

    Recent experimental results on normal conducting RF structures indicate that the scaling of the gradient limit with frequency is less favourable than what was believed. We therefore reconsider the optimum choice of RF frequency and iris aperture for a normal conducting, two-beam linear collider with E_CMS=3 TeV, a loaded accelerating gradient of 150 MV/m and a luminosity of 8 10^34 cm-^2 s^-1. The optimisation criterion is minimizing overall RF costs for investment and operation with constraints put on peak surface electric fields and pulsed heating of accelerating structures. Analytical models are employed where applicable, while interpolation on simulation program results is used for the calculation of luminosity and RF structure properties.

  5. RF power sources for 5--15 TeV linear colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1996-09-01

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed

  6. Development of highly qualified UV-laser light source for rf gun

    International Nuclear Information System (INIS)

    Tomizawa, H.; Dewa, H.; Taniuchi, T.

    2004-01-01

    We have been developing stable and highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. Our gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. In present status, the short pulse energy stability of laser has been improved down to 1.3∼1.5% (rms; 10pps; 10000 shots) at the third harmonic generation. The long stability depends on the stability of modelocking at oscillator. In this improvement we just passively stabilized the system. We considered environmental controls in clean room to reduce optical damage accidents and constructed a new humidity-controlled clean room in 2003. And we re-installed the total laser system in this room in 2004. The relative humidity of this new clean room at room temperature is in a region of 50∼60 % with a stability of less than 2% (p-p). On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. This laser-shaping project has been started in two steps since 2002. As the first successful test run in 2002, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2π mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run in 2004, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We are applying the both adaptive optics to automatically shape the both spatial and temporal UV-laser profiles with a feedback routine at the same time. We report herein the principle and developing process of our laser beam quality control system. (author)

  7. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  8. Radiation induced currents in MRI RF coils: application to linac/MRI integration

    Science.gov (United States)

    Burke, B.; Fallone, B. G.; Rathee, S.

    2010-02-01

    The integration of medical linear accelerators (linac) with magnetic resonance imaging (MRI) systems is advancing the current state of image-guided radiotherapy. The MRI in these integrated units will provide real-time, accurate tumor locations for radiotherapy treatment, thus decreasing geometric margins around tumors and reducing normal tissue damage. In the real-time operation of these integrated systems, the radiofrequency (RF) coils of MRI will be irradiated with radiation pulses from the linac. The effect of pulsed radiation on MRI radio frequency (RF) coils is not known and must be studied. The instantaneous radiation induced current (RIC) in two different MRI RF coils were measured and presented. The frequency spectra of the induced currents were calculated. Some basic characterization of the RIC was also done: isolation of the RF coil component responsible for RIC, dependence of RIC on dose rate, and effect of wax buildup placed on coil on RIC. Both the time and frequency characteristics of the RIC were seen to vary with the MRI RF coil used. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence on dose rate was seen. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. This study shows a measurable RIC present in MRI RF coils. This unwanted current could be possibly detrimental to the signal to noise ratio in MRI and produce image artifacts.

  9. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  10. One nanosecond pulsed electron gun systems

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1979-02-01

    At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun

  11. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    International Nuclear Information System (INIS)

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described

  12. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Simon; Heiler, Patrick M.; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Scharf, Johann [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2011-07-01

    Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm{sup 3} are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm{sup 3} is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography. (orig.)

  13. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses

    International Nuclear Information System (INIS)

    Konstandin, Simon; Heiler, Patrick M.; Schad, Lothar R.; Scharf, Johann

    2011-01-01

    Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm 3 are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm 3 is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography. (orig.)

  14. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  15. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    Science.gov (United States)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  16. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source

  17. High RF power test of a CFC antenna module for lower hybrid current drive

    International Nuclear Information System (INIS)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T.; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G.

    1998-01-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10 -2 Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  18. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  19. Low Level RF Including a Sophisticated Phase Control System for CTF3

    CERN Document Server

    Mourier, J; Nonglaton, J M; Syratchev, I V; Tanner, L

    2004-01-01

    CTF3 (CLIC Test Facility 3), currently under construction at CERN, is a test facility designed to demonstrate the key feasibility issues of the CLIC (Compact LInear Collider) two-beam scheme. When completed, this facility will consist of a 150 MeV linac followed by two rings for bunch-interleaving, and a test stand where 30 GHz power will be generated. In this paper, the work that has been carried out on the linac's low power RF system is described. This includes, in particular, a sophisticated phase control system for the RF pulse compressor to produce a flat-top rectangular pulse over 1.4 µs.

  20. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  1. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  2. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  3. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  4. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  5. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  6. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Huo, W. G.; Li, R. M.; Shi, J. J. [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Ding, Z. F., E-mail: huowg.wg@tom.com [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2016-08-15

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a high RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).

  7. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset.

    Science.gov (United States)

    Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S

    2014-01-01

    Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.

  8. Low Level RF System for Jefferson Lab Cryomodule Test Facility

    International Nuclear Information System (INIS)

    Tomasz Plawski; Trent Allison; Jean Delayen; J. Hovater; Thomas Powers

    2003-01-01

    The Jefferson Lab Cryomodule Test Facility (CMTF) has been upgraded to test and commission SNS and CEBAF Energy Upgrade cryomodules. Part of the upgrade was to modernize the superconducting cavity instrumentation and control. We have designed a VXI based RF control system exclusively for the production testing of superconducting cavities. The RF system can be configured to work either in Phase Locked Loop (PLL) or Self Excited Loop (SEL) mode. It can be used to drive either SNS 805 MHz or CEBAF Energy Upgrade 1497 MHz superconducting cavities and can be operated in pulsed or continuous wave (CW) mode. The base design consists of RF-analog and digital sections. The RF-analog section includes a Voltage Control Oscillator (VCO), phase detector, IandQ modulator and ''low phase shift'' limiter. The digital section controls the analog section and includes ADC, FPGA, and DAC . We will discuss the design of the RF system and how it relates to the support of cavity testing

  9. Optimization of an RF driven H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DiVergilio, W.F.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.

    1991-04-01

    A radio-frequency driven multicusp source has recently been developed to generate volume-produced H - ion beams with extracted current density higher than 200 mA/cm 2 . We have improved the output power of the rf generator and the insulation coating of the antenna coil. We have also optimized the antenna positions and geometry and the filter magnetic field for high power pulsed operation. A total H - current of 30 mA can be obtained with a 5.4-mm-diam extraction aperture and with an rf input power of 50 kW. 4 refs., 5 figs

  10. High-quality laser-produced proton beam realized by the application of a synchronous RF electric field

    International Nuclear Information System (INIS)

    Nakamura, Shu; Ikegami, Masahiro; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Souda, Hikaru; Noda, Akira; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Takeuchi, Takeshi; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    A short-pulse (∼210fs) high-power (∼1 TW) laser was focused on a tape target 3 and 5 μm in thickness to a size of 11 x 15 μm 2 with an intensity of 3 x 10 17 W/cm 2 . Protons produced by this laser with an energy spread of 100% were found to be improved to create peaks in the energy distribution with a spread of ∼7% by the application of the RF electric field with an amplitude of ±40kV synchronous to the pulsed laser. This scheme combines the conventional RF acceleration technique with laser-produced protons for the first time. It is possible to be operated up to 10 Hz, and is found to have good reproducibility for every laser shot with the capability of adjusting the peak positions by control of the relative phase between the pulsed laser and the RF electric field. (author)

  11. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    2011-01-01

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE 01 -TE 10 mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ((ge) 1 μs) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 μs pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated that two of

  12. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  13. Operational performance and improvements to the rf power sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5 GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  14. Investigation and Prediction of RF Window Performance in APT Accelerators

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1997-01-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate β superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak-RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak-RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak-RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics

  15. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  16. Effect on antenna structure of high power rf during plasma operation

    International Nuclear Information System (INIS)

    Haste, G.R.; Thomas, C.E.; Fadnek, A.; Carter, M.D.; Beaumont, B.; Becoulet, A.; Kuus, H.; Saoutic, B.

    1993-01-01

    High-power, long-pulse operation on the Tore Supra tokamak results in considerable stress on the plasma-facing components. The ICH antennas must deliver high-power rf(up to 4 MW per antenna) in this environment. The antenna structure is therefore subjected to the power flux resulting from the interaction between rf and the edge plasma. The structure's response during operation is described, as is the condition of the antenna after prolonged use

  17. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  18. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  19. RF sources for recent linear accelerator projects

    International Nuclear Information System (INIS)

    Terrien, J.C.; Faillon, G.; Guidee, P.

    1992-01-01

    We present the state of the art of high power klystrons at Thomson Tubes Electroniques, along with the main technological limitations for peak power and pulse width. Then we describe the work that is under way to upgrade performance and some of the alternative RF sources that have been developed. (Author) 3 refs., 4 figs., 2 tabs

  20. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    OpenAIRE

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  1. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources

    International Nuclear Information System (INIS)

    Wang Qi; Sun Jizhong; Zhang Jianhong; Ding Zhenfeng; Wang Dezhen

    2010-01-01

    Atmospheric-pressure capacitive discharges driven by combined radio frequency (rf) and trapezoidal pulse sources are investigated using a one-dimensional self-consistent fluid model. The results show that the plasma intensity in the rf discharge can be enhanced drastically when a low duty ratio short pulse source is additionally applied. The mechanism for the increase in the plasma density can be attributed to a strong localized electric field induced by the applied short pulse; the strong electric field generates a great number of high energy electrons and chemically active particles, which subsequently generate more electrons and ions. The rf capacitive discharges with the aid of externally applied short pulses can achieve a high plasma density with better power efficiency.

  2. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  3. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  4. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  5. RF Negative Ion Source Development at IPP Garching

    International Nuclear Information System (INIS)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wuenderlich, D.

    2007-01-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid

  6. Development of a Solid State RF Amplifier in the kW Regime for Application with Low Beta Superconducting RF Cavities

    CERN Document Server

    Piel, Christian; Borisov, A; Kolesov, Sergej; Piel, Helmut

    2005-01-01

    Projects based on the use of low beta superconducting cavities for ions are under operation or development at several labs worldwide. Often these cavities are individually driven by RF power sources in the kW regime. For an ongoing project a modular 2 kW, 176 MHz unconditionally stable RF amplifier for CW and pulsed operation was designed, built, and tested. Extended thermal analysis was used to develop a water cooling system in order to optimize the performance of the power transistors and other thermally loaded components. The paper will outline the design concept of the amplifier and present first results on the test of the amplifier with a superconducting cavity.

  7. Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems

    Science.gov (United States)

    Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko

    2018-05-01

    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.

  8. Femtosecond electron bunches from an RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, Sakhorn; Farias, Ruy; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wiedemann, Helmut

    2004-01-01

    Sub-picosecond electron pulses become a tool of increasing importance to study dynamics at an atomic level. Such electron pulses can be used directly or be converted into intense coherent far infrared radiation or equally short X-ray pulses. In principle, sub-picosecond electron pulses can be obtained in large, high-energy electron linear accelerator systems by repeatedly applying an energy slew and magnetic compression. Another process is the production of short electron pulses at low energies from an RF-gun with a thermionic cathode together with a bunch compressing α-magnet. In this paper, we present a systematic analysis of capabilities and limits of sub-picosecond electron pulses from such a source. We discuss particular parameter choices as well as the impact of geometric and electric specifications on the 6-dimensional phase space electron distribution. Numerical beam simulations with the computer code PARMELA are performed including effects and limitations due to space charge forces. While the production of femtosecond electron bunches is of primary concern, we also consider the preservation of such short bunches along a beam transport line

  9. Design of universal parallel-transmit refocusing kT -point pulses and application to 3D T2 -weighted imaging at 7T.

    Science.gov (United States)

    Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas

    2018-07-01

    T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. X., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu; Zu, X. T., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu; Xiang, X. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, W. G.; Yuan, X. D. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, K., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu [Department of Materials Engineering and Sciences, University of Michigan, 413B Space Research Building, Ann Arbor, Michigan 48109-2143 (United States); Gao, F. [Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352 (United States)

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  11. A long pulse modulator for reduced size and cost

    International Nuclear Information System (INIS)

    Pfeffer, H.; Bartelson, L.; Bourkland, K.; Jensen, C.; Kerns, Q.; Prieto, P.; Saewert, G.; Wolff, D.

    1994-07-01

    A novel modulator has been designed, built and tested for the TESLA test facility. This e + e - accelerator concept uses superconducting RF cavities and requires 2ms of RF power at 10 pps. As the final accelerator will require several hundred modulators, a cost effective, space saving and high efficiency design is desired. This modulator used a modest size switched capacitor bank that droops approximately 20% during the pulse. This large droop is compensated for by the use of a resonant LC circuit. The capacitor bank is connected to the high side of a pulse transformer primary using a series GTO switch. The resonant circuit is connected to the low side of the pulse transformer primary. The output pulse is flat to within 1% for 1.9 ms during a 2.3 ms base pulse width. Measured efficiency, from breaker to klystron and including energy lost in the rise time, is approximately 85%

  12. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  13. Trends in RF-structure research

    International Nuclear Information System (INIS)

    Henke, H.

    1995-01-01

    New trends in RF structure research are presented. The choice is limited to developments as they are required by the next generation of light sources, particle factories and linear colliders. Therefore, emphasis is put on the suppression of higher order modes either in standing or travelling wave resonators and on the development of superconducting cavities. Finally, a brand new development of very high frequency structures with planar geometry suited for fabrication by lithography is mentioned. copyright 1995 American Institute of Physics

  14. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2014-12-01

    Full Text Available Mariana G Figueiro, Barbara Plitnick, Mark S Rea Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study and on delaying circadian phase (field study. Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour. The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting. Keywords: circadian phase, dim light melatonin onset, light through closed eyelids, blue light, sleep

  15. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  16. Sensing RF signals with the optical wideband converter

    Science.gov (United States)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  17. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  18. Formation of a high quality electron beam using photo cathode RF electron gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    Formation of a high quality electron beam using photo cathode RF electron gun is expected for formation of a next generation high brilliant X-ray beam and a source for electron and positron collider. And, on a field of material science, as is possible to carry out an experiment under ultra short pulse and extremely high precision in time, it collects large expectation. Recently, formation of high quality beam possible to develop for multi directions and to use by everyone in future has been able to realize. Here were explained on electron beam source, principle and component on RF electron gun, working features on RF gun, features and simulation of RF gun under operation, and some views in near future. (G.K.)

  19. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  20. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  1. Rf breakdown studies in room temperature electron linac structures

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.W.

    1988-05-01

    This paper is an overall review of studies carried out by the authors and some of their colleagues on RF breakdown, Field Emission and RF processing in room temperature electron linac structure. The motivation behind this work is twofold: in a fundamental way, to contribute to the understanding of the RF breakdown phenomenon, and as an application, to determine the maximum electric field gradient that can be obtained and used safely in future e/sup +-/ linear colliders. Indeed, the next generation of these machines will have to reach into the TeV (10 12 eV) energy range, and the accelerating gradient will be to be of the crucial parameters affecting their design, construction and cost. For a specified total energy, the gradient sets the accelerator length, and once the RF structure, frequency and pulse repetition rate are selected, it also determines the peak and average power consumption. These three quantities are at the heart of the ultimate realizability and cost of these accelerators. 24 refs., 19 figs., 4 tabs

  2. Growth of Sr1-xNdxCuOy thin films by rf-magnetron sputtering and pulsed-laser deposition

    International Nuclear Information System (INIS)

    Sugii, N.; Ichikawa, M.; Kuba, K.; Sakurai, T.; Iamamoto, K.; Yamauchi, H.

    1992-01-01

    This paper reports on Sr 1- x Nd x CuO y thin films grown on SrTiO 3 substrates by rf-magnetron sputtering and pulsed-laser deposition. The sputter-deposited film with x=0 has an infinite-layer structure whose lattice constants are: a=0.390 nm and c=0.347 nm. When x is larger than 0.1, the films contain a phase of the Sr 14 Cu 24 O 41 structure. The laser-deposited films of Sr 1- x Nd x CuO y with x ≥ 0.075 were single phase of the infinite-layer structure. The lattice parameter c decreased and the lattice parameter a increased, as the Nd content, x, increased. The films with x=0.10 and 0.125 exhibited superconducting onset temperatures around 26 K. Weak Meissner signals were observed for these films at temperatures below 30 K

  3. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  4. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    CERN Document Server

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  5. RF Breakdown Studies Using a 1.3 GHZ Test Cell

    International Nuclear Information System (INIS)

    Sah, R.; Johnson, R.P.; Neubauer, M.; Conde, M.; Gai, W.; Moretti, A.; Popovic, M.; Yonehara, K.; Byrd, J.; Li, D.; BastaniNejad, M.

    2009-01-01

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) and pressure barrier capable of operating both at high pressure and in vacuum has been designed and built, and preliminary testing has been completed. A series of detailed experiments is planned at the Argonne Wakefield Accelerator. At the same time, computer simulations of the RF Breakdown process will be carried out to help develop a consistent physics model of RF Breakdown. In order to study the effect of the radiofrequency on RF Breakdown, a second test cell will be designed, fabricated, and tested at a lower frequency, most likely 402.5 MHz.

  6. rf traveling-wave electron gun for photoinjectors

    Science.gov (United States)

    Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo

    2016-07-01

    The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  7. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    International Nuclear Information System (INIS)

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  8. New Control Structure of the 10 MHz RF System in the CERN PS

    CERN Document Server

    Damerau, H

    2013-01-01

    The 10MHz cavities comprise the main RF system in the CERN PS and the only one that allows acceleration. In total 11 tunable cavities (10 operational and a hot spare, grouped into 3+1 tuning groups and up to presently 6 voltage program groups) are distributed all around the circumference of the PS ring. Next to the RF drive signal each of the cavities is controlled by a voltage program and timing pulses to open and close the relays to short-circuit the cavity gaps. These control signals are presently generated by a dedicated hardware matrix. It translates voltage functions and relay timing pulses per cavity group into functions and timings per cavity. However, due to its central position in the RF beam control system, the dedicated hardware matrix can cause significant downtime in case of a major hardware failure. Instead of upgrading the existing obsolete hardware, this note suggests a replacement by standard controls hardware and dedicated application software. Thanks to advanced software concepts like “M...

  9. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

  10. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses,NMR,EPR...

  11. High power testing of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-01-01

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell (π mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design

  12. High power tests of dressed supconducting 1.3 GHz RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  13. Dispersion - does it degrade a pulse envelope

    International Nuclear Information System (INIS)

    Deighton, M.O.

    1985-01-01

    In hostile environments, transmitting information as ultrasonic Lamb wave pulses has advantages, since the stainless steel strip serving as a waveguide is very durable. Besides attenuation, velocity dispersion (inherent in Lamb waves) can be important even in fairly short guides. Theory shows that unlimited propagation of a pulsed r.f. envelope is possible, even with dispersion present. The constant group velocity needed would favour asub(o)-mode pulses over other modes, provided ordinary attenuation is small. An approximate formula indicates the useful range of a pulse, when group velocity does vary. (author)

  14. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  15. RF assisted switching in magnetic Josephson junctions

    Science.gov (United States)

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  16. Background suppression by pulse shape discrimination in the CALIFA calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Benjamin; Gernhaeuser, Roman; Klenze, Philipp; Remmels, Patrick; Winkel, Max [Technische Universtaet Muenchen (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    The 4π-calorimeter CALIFA is one of the major detectors of the R{sup 3}B-experiment at the upcoming Facility for Antiproton and Ion Research (FAIR) in Darmstadt. This calorimeter with 2464 CsI(Tl) crystals and 96 Phoswich detectors (LaBr{sub 3}(Ce) and LaCl{sub 3}(Ce)) plays a major role in the realization of kinematically complete measurements. General demands on CALIFA are a high efficiency, good energy resolution of about 5 % at 1 MeV γ energies and a large dynamic range, allowing a simultaneous measurement of γ-rays at E > 100 keV and scattered protons up to E < 700 MeV. Due to the very high energies of the light charged particles at the relativistic beam energies, especially in the forward direction of CALIFA, a significant fraction triggers nuclear reactions in the detector material. This talk presents the methods of the background suppression by pulse shape discrimination based on an experiment with protons at kinetic energies up to E = 480 MeV at the TRIUMF Laboratory in Vancouver, Canada.

  17. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power

    Directory of Open Access Journals (Sweden)

    Benjamin Woolley

    2017-10-01

    Full Text Available New developments relating to compact X-band, SLED-I type pulse compressors being developed at CERN for testing high gradient structures are described. Pulse compressors of interest take rf pulses from one or more high power klystrons with duration typically >1.5  μs and deliver up to 5 times the input power for a shorter duration <250  ns. Time domain models for pulse compressor operation with low level rf (LLRF control have been developed. Input drive amplitude and phase for each pulse is evolved with a control algorithm from the pulse compressor output for previous pulses. The goal is to deliver precise amplitude for pulses to test stands and precise amplitude and phase for pulses to accelerator systems. Control algorithms have been developed and validated experimentally.

  18. Note: Self-biased voltage to suppress secondary electrons by a ZnO varistor in a compact pulsed neutron generator

    Science.gov (United States)

    Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.

    2017-03-01

    A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.

  19. Overview of long pulse H-mode operation on EAST

    Science.gov (United States)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  20. High RF power test of a lower hybrid module mock-up in Carbon Fiber Composite

    International Nuclear Information System (INIS)

    Maebara, Sunao; Kiyono, Kimihiro; Seki, Masami

    1997-11-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200degC to 400-500degC. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8 % to 1.3 %. It is concluded that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300degC. No significant increase of the global outgassing of the CFC module was measured after hydrogen prefilling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  1. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    International Nuclear Information System (INIS)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G.; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T.

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  2. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  3. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  4. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  5. Pulsed lower-hybrid wave penetration in reactor plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.

    1989-01-01

    Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired

  6. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  7. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  8. The design of a 3 GHz thermionic RF-gun and energy filter for MAX-lab

    CERN Document Server

    Anderberg, B; Demirkan, M; Eriksson, M; Malmgren, L; Werin, S

    2002-01-01

    A new pre-injector has been designed for the MAX-laboratory. It consists of an RF-gun and a magnetic energy filter. The newly designed RF-gun geometry will be operated at 3 GHz in the thermionic mode using a BaO cathode. The pre-injector will provide a 2.3 MeV electron beam in 3 ps micro pulses to a new injector system currently under construction.

  9. Conceptual design of independently tunable cells RF gun with external injecting structure

    International Nuclear Information System (INIS)

    Liang Junjun; Feng Guangyao; Pei Yuanji; Pang Jian

    2012-01-01

    To obtain the micro-pulse bunch with the order of hundred femtoseconds length and high repetition rate, the pa- per proposes the independently tunable cells (ITC) RF gun, which has a double-cell structure with the cells being power fed independently. By choosing appropriate feeding power and phase of the two cells, this ITC-RF gun can achieve bunches of excellent characteristics. Additionally, the application of a-magnet and laser system can be avoided, which leads to more compact layout. An external injecting ITC-RF gun (DC-ITC-RF gun) structure is designed accordingly. The external injecting structure can increase beam current, decrease energy spread, and cancel the back-bombardment effect almost completely. By means of 1-D and 3- D beam dynamics calculation with different structure parameters, a group of RF parameters are obtained for better beam characteristics. Then the paper designs a pre-injector so that particles can be accelerated to 10 MeV. By choosing appropriate feeding power and incident particle phase for the pre-injector, the bunch length can be further compressed. (authors)

  10. High-power test of S-band klystron for long-pulse operation

    International Nuclear Information System (INIS)

    Morii, Y.; Oshita, E.; Abe, S.; Keishi, T.; Tomimasu, T.; Ohkubo, Y.; Yoshinao, M.; Yonezawa, H.

    1994-01-01

    FELI(Free Electron Laser Research Institute, Inc.) is constructing a free electron laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using an S-band linac. The linac is commissioning now. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) of the FELI linac are operated in three pulse operation modes (pulse width and peak RF power; 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW). The S-band klystron and its modulator were combined to test their performance. The high power test results of the S-band klystron are summarized in this paper. (author)

  11. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2010-01-01

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5-9 MW level of incident power. The compressed pulses observed had powers of 50-70 MW and durations of 40-70 ns. Peak power gains were measured to be in the range of 7:1-11:1 with efficiency in the range of 50-63%.

  12. Application of chaotic pulse width modulation control for suppressing electromagnetic interference in a half-bridge converter

    Directory of Open Access Journals (Sweden)

    Yuhong Song

    2014-08-01

    Full Text Available It was proposed in the former research that chaos control can be used to suppress electromagnetic interference (EMI in DC–DC converters. Analysis on a half-bridge converter is detailed in this study. Here, the practical example of the power supply of personal computers is given to show that, with an external chaotic signal to a pulse width modulation control circuit, the proposed approach can reduce EMI by reducing the amplitudes of power signals such as transformer current and output inductor currents at multiples of fundamental frequency.

  13. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  14. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    Science.gov (United States)

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. rf traveling-wave electron gun for photoinjectors

    Directory of Open Access Journals (Sweden)

    Mattia Schaer

    2016-07-01

    Full Text Available The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  16. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  17. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  18. Suppression of beam-excited electron waves by an externally applied RF signal

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Itatani, Ryohei

    1980-11-01

    Suppression of the beam-excited electron wave in a bounded system is investigated in connection with the beam distribution function. Wave suppression has two different processes depending on whether injected beams are reflected at the other end or not. In the absence of reflected beam electrons, deformation of the beam distribution function is observed in relation to the suppression of the electron wave. However, when beam electrons are reflected, the external wave suppresses the electron wave but distribution function shows no appreciable change. These experimental results show that nonlinear behaviors of beam electrons, namely behaviors of reflected beams, are quite important for wave suppression. By using the method of partial simulation, interaction between two waves in the bounded system including nonlinear motions of beam electrons is studied numerically. Qualitative agreement between experimental and numerical results is obtained. (author)

  19. Electron beam characterization of a combined diode rf electron gun

    Directory of Open Access Journals (Sweden)

    R. Ganter

    2010-09-01

    Full Text Available Experimental and simulation results of an electron gun test facility, based on pulsed diode acceleration followed by a two-cell rf cavity at 1.5 GHz, are presented here. The main features of this diode-rf combination are: a high peak gradient in the diode (up to 100  MV/m obtained without breakdown conditioning, a cathode shape providing an electrostatic focusing, and an in-vacuum pulsed solenoid to focus the electron beam between the diode and the rf cavity. Although the test stand was initially developed for testing field emitter arrays cathodes, it became also interesting to explore the limits of this electron gun with metallic photocathodes illuminated by laser pulses. The ultimate goal of this test facility is to fulfill the requirements of the SwissFEL project of Paul Scherrer Institute [B. D. Patterson et al., New J. Phys. 12, 035012 (2010NJOPFM1367-263010.1088/1367-2630/12/3/035012]; a projected normalized emittance below 0.4  μm for a charge of 200 pC and a bunch length of less than 10 ps (rms. A normalized projected emittance of 0.23  μm with 13 pC has been measured at 5 MeV using a Gaussian laser longitudinal intensity distribution on the photocathode. Good agreements with simulations have been obtained for different electron bunch charge and diode geometries. Emittance measurements at a bunch charge below 1 pC were performed for different laser spot sizes in agreement with intrinsic emittance theory [e.g. 0.54  μm/mm of laser spot size (rms for Cu at 274 nm]. Finally, a projected emittance of 1.25+/-0.2  μm was measured with 200 pC and 100  MV/m diode gradient.

  20. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    Science.gov (United States)

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  1. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  2. Status of the IPP RF Negative Ion Source Development for the ITER NBI System

    International Nuclear Information System (INIS)

    Peter Franzen, P.; Falter, H.-D.; Fantz, U.

    2006-01-01

    For heating and current drive the ITER neutral beam system requires negative hydrogen ion sources capable of delivering above 40 A of D - ions from a 1.5 x 0.6 m 2 source for up to one hour pulses with an accelerated current density of 200 A/m 2 . In order to reduce the losses by electron stripping in the acceleration system and the power loading of the grids, the source pressure is required to be 0.3 Pa at an electron/ion ratio 2 H - / 230 A/m 2 D - ) in excess of the ITER requirements have been already achieved on the small test facility '' BATMAN '' (Bavarian Test Machine for Negative Ions) at the required source pressure (0.3 Pa) and electron/ion ratio ( 2 ) and limited pulse length ( 2 and the pulse length up to 3600 s, using the same source as it is used at BATMAN. In order to demonstrate the required homogeneity of a large RF plasma source as well as the operation of an ITER relevant RF circuit, a so called '' half-size source '' - with roughly the width and half the height of the ITER source - was designed and went into operation on a dedicated plasma source test bed ('' RADI ''). An extensive diagnostic and modelling programme is accompanying those activities. The paper will present as an overview a summary of the latest results of the RF source development, with an emphasis on the first results of the operation of the half size ITER source and on the status of the long pulse operation. The details will be presented in several other papers. (author)

  3. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  4. EAST ICRF system for long pulse operation

    International Nuclear Information System (INIS)

    Zhao, Y.P.; Zhang, X.J.; Mao, Y.Z.

    2013-01-01

    Radio frequency (RF) power in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating techniques for Experimental Advanced Superconducting Tokamak (EAST). A 6.0 MW ICRF systems in the range of 25-70 MHz has been put into operation during the EAST 2012 spring campaign. The ICRF systems consist of two port-mounted antennas and each antenna is driven by two independent 1.5 MW RF power source. Another four 1.5 MW ICRF system is under way of construction.The system will deliver more than 10 MW of RF power to the plasma for 1000 sec pulse length. This paper gives brief introduction of the ICRF systems capability on EAST. (author)

  5. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.

  6. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  7. Stroboscopic topographies on iron borate crystal in 9.6 MHz rf magnetic field

    International Nuclear Information System (INIS)

    Mitsui, Takaya; Imai, Yasuhiko; Kikuta, Seishi

    2003-01-01

    The influence of magnetoacoustic wave on the crystal deformation was studied by stroboscopic double crystal X-ray topography. The acoustic wave was excited by the rf magnetic field, which was synchronized with synchrotron radiation X-ray pulse. In measured rocking curves of FeBO 3 (4 4 4) reflection, we observed, for the first time, that the application of rf magnetic field (|H rf | max >8.4 Oe) brought about the extreme narrowing of full width at half maximum (FWHM). Recorded topographs showed that the narrowing of FWHM was due to the magnetoacoustic standing wave which is excited in FeBO 3 crystal. In our experiments, the influence of additional static magnetic field on the magnetoacoustic standing wave of FeBO 3 crystal was investigated too

  8. Development of a yearlong maintenance-free terawatt Ti:Sapphire laser system with a 3D UV-pulse shaping system for THG

    International Nuclear Information System (INIS)

    Tomizawa, H; Dewa, H; Hanaki, H; Matsui, F

    2007-01-01

    Laser sources that feature a controlled pulse shape and long-term stability are required in a wide range of scientific fields. We developed a maintenance-free 3D-shaped UV-laser system for the photoinjector (RF gun photocathode) of an X-ray SASE free electron laser (FEL). The laser pulse-energy stability was improved to 0.2%-0.3% (rms, 10 pps, 0.4 TW in femtosecond operation) at the fundamental wavelength and to 0.7%-1.4% at the third-harmonic wavelength. This stability was continuously maintained for five months, 24 hours a day. Such improvement reflects an ability to stabilise the laser system in a humidity-controlled clean room. The pulse-energy stability of a mode-locked femtosecond oscillator was continuously held at 0.3% (p-p) for five months, 24 hours a day. In addition, the ideal spatial and temporal profiles of a shot-by-shot single UV-laser pulse are essential to suppress the emittance of the electron-beam pulse generated by the photocathode of the RF gun. We apply a deformable mirror that automatically shapes the spatial UV-laser profile with a feedback routine, based on a genetic algorithm, and a pulse stacker for temporal shaping at the same time. The 3D shape of the laser pulse is spatially top-hat (flattop) and temporally - a square stacked pulse. We apply the Q-scan method to evaluate the emittance of the electron beam generated by a 3D-shaped laser pulse. By using a 3D-shaped laser pulse of diameter 0.8 mm on the cathode and duration 10 ps (FWHM), we obtain a minimum horizontal normalised emittance of 1.4π mm mrad with beam energy of 26 MeV, holding its net charge to a 0.4 nC pulse -1 . At a higher net charge of 1.0 nC pulse -1 , the minimum beam emittance is 2.3π mm mrad with equivalent diameter and a longer pulse duration of 20 ps (FWHM). In this study, we demonstrate 3D shaping [both temporal (1D) and spatial (2D)] short pulse (5-20ps) laser beam as an ideal light source for yearlong stable generation of a low emittance electron beam with a

  9. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  10. A high-gradient high-duty-factor Rf photo-cathode electron gun

    International Nuclear Information System (INIS)

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-01-01

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure

  11. A high-gradient high-duty-factor RF photo-cathode electron gun

    International Nuclear Information System (INIS)

    Rimmer, Robert; Hartman, N.; Lidia, S.; Wang, S.H.

    2002-01-01

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure

  12. A new phase modulated binomial-like selective-inversion sequence for solvent signal suppression in NMR.

    Science.gov (United States)

    Chen, Johnny; Zheng, Gang; Price, William S

    2017-02-01

    A new 8-pulse Phase Modulated binomial-like selective inversion pulse sequence, dubbed '8PM', was developed by optimizing the nutation and phase angles of the constituent radio-frequency pulses so that the inversion profile resembled a target profile. Suppression profiles were obtained for both the 8PM and W5 based excitation sculpting sequences with equal inter-pulse delays. Significant distortions were observed in both profiles because of the offset effect of the radio frequency pulses. These distortions were successfully reduced by adjusting the inter-pulse delays. With adjusted inter-pulse delays, the 8PM and W5 based excitation sculpting sequences were tested on an aqueous lysozyme solution. The 8 PM based sequence provided higher suppression selectivity than the W5 based sequence. Two-dimensional nuclear Overhauser effect spectroscopy experiments were also performed on the lysozyme sample with 8PM and W5 based water signal suppression. The 8PM based suppression provided a spectrum with significantly increased (~ doubled) cross-peak intensity around the suppressed water resonance compared to the W5 based suppression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Distributing coil elements in three dimensions enhances parallel transmission multiband RF performance: A simulation study in the human brain at 7 Tesla.

    Science.gov (United States)

    Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2016-06-01

    We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Progress towards RF heated steady-state plasma operations on LHD by employing ICRF heating methods and improved divertor plates

    International Nuclear Information System (INIS)

    Kumazawa, R.; Mutoh, T.; Saito, K.

    2008-10-01

    A long pulse plasma discharge experiment was carried out using RF heating power in the Large Helical Device (LHD), a currentless magnetic confining system. Progress in long pulse operation is summarized since the 10th experimental campaign (2006). A scaling relation of the plasma duration time to the applied RF power has been derived from the experimental data so far collected. It indicates that there exists a critical divertor temperature and consequently a critical RF heating power P RFcrit =0.65 MW. The area on the graph of the duration time versus the RF heating power was extended over the scaling relation by replacing divertor plates with new ones with better heat conductivity. The cause of the plasma collapse at the end of the long pulse operation was found to be the penetration of metal impurities. Many thin flakes consisting of heavy metals and graphite in stratified layers were found on the divertor plates and it was thought that they were the cause of impurity metals penetrating into the plasma. In a simulation involving injecting a graphite-coated Fe pellet to the plasma it was found that 230 Eμm in the diameter of the Fe pellet sphere was the critical size which led the plasma to collapse. A mode-conversion heating method was examined in place of the minority ICRF heating which has been employed in almost all the long-pulse plasma discharges. It was found that this method was much better from the viewpoint of achieving uniformity of the plasma heat load to the divertors. It is expected that P RFcrit will be increased by using the mode-conversion heating method. (author)

  15. Pulsed glow discharge mass spectrometry for molecular depth profiling of polymers

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Pisonero, J.; Licciardello, A.; Tuccitto, N.; Tempez, A.; Chapon, P.

    2009-01-01

    Full text: Nowadays thin films of polymeric materials involve a wide range of industrial applications, so techniques capable of providing in-depth profile information are required. Most of the techniques available for this purpose are based on the use of energetic particle beams which interact with polymers producing undesirable physicochemical modifications. Radiofrequency pulsed glow discharge (rf-pulsed-GD) coupled to time-of-flight mass spectrometry (TOFMS) could afford the possibility of acquiring both elemental and molecular information creating minimal damage to surfaces and thereby obtaining depth profiles. This work will evaluate rf-GDs coupled to an orthogonal TOFMS for direct analysis of polymers. (author)

  16. Improvement of the long pulse operation of the s-band klystron

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T. [Graduate School of Sceince and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, I.; Hayakawa, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst

    2000-07-01

    The long pulse operation of the PV3030 klystron for FEL linac at LEBRA in Nihon University has been improved considerably by the additional vacuum system placed immediately downstream the klystron output rf window. With the new vacuum system, the large conductance has enabled a high vacuum in normal operation and a quick recovery when the dielectric breakdown occurred. A high vacuum near the rf window may be essentially important for a stable operation of the high power klystron with long pulse duration. Now the PV3030 klystron can be operated at the condition of 20 MW x 20 {mu}s x 12.5 Hz. (author)

  17. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  18. Induction Acceleration of a Single RF Bunch in the KEK PS

    CERN Document Server

    Takayama, Ken; Arakida, Yoshio; Horioka, Kazuhiko; Igarashi, Susumu; Iwashita, Taiki; Kawasaki, Atsushi; Kishiro, Junichi; Kono, Tadaaki; Koseki, Kunio; Nakamura, Eiji; Sakuda, Makoto; Sato, Hikaru; Shiho, Makoto; Shimosaki, Yoshito; Shirakata, Masashi; Sueno, Tsuyoshi; Tokuchi, Akira; Torikai, Kota; Toyama, Takeshi; Wake, Masayoshi; Watanabe, Masao; Yamane, Isao

    2005-01-01

    A single bunch trapped in an RF bucket was accelerated by induction devices from 500 MeV to 8GeV beyond transition energy in the KEK-PS. This is the first demonstration of induction acceleration in a high energy circular ring. The acceleration was confirmed by measuring a temporal evolution of the RF phase through an entire acceleration.* Key devices in an induction acceleration system are an induction accelerating cavity capable of generating an induced voltage of 2kV/cell, a pulse modulator to drive the cavity (switching driver), and a DSP system to control gate signals for switching. Their remarkable characteristics are its repetition ratio of about 1MHz and duty factor of 50%. All devices have been newly developed at KEK so as to meet this requirement. The pulse modulator employing MOSFETs as switching elements is connected with the accelerating cavity through a long transmission cable in order to avoid a high-dose irradiation in the accelerator tunnel. The induction system has been running beyond more th...

  19. FY 1998 annual summary report on research and development of hybrid pulse plasma coating (HPPC) system (first year); 1998 nendo hybrid gata pulse plasma coating (HPPC) system no kenkyu kaihatsu seika hokokusho. Daiichinendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D program was implemented for a hybrid pulse plasma coating system, where organometallic gases as the feed gases were selected, and methods for feeding them and treating the exhaust gases to remove organic metals were studied, as the preliminary steps for the pulse introduction tests. The tests of combining an rf plasma with microwaves and pulse plasma generation have been started. The power source characteristics, e.g., pulse width, voltage and current, were analyzed, and high-voltage pulse voltage application tests were conducted, in order to grasp the power source characteristics related to the pulse voltage application. Generation of high-density plasma has been confirmed by the tests with microwaves absorbed by an rf plasma, and the plasma density measurement has been started using the single probe and double probe methods. It is also confirmed that a pulse voltage can be applied to a high-density plasma. A plasma source type ion injector (PSII) has been made on a trial basis, to collect the data for the injector. (NEDO).

  20. Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system

    International Nuclear Information System (INIS)

    Fantz, U.; Franzen, P.; Kraus, W.; Berger, M.; Christ-Koch, S.; Falter, H.; Froeschle, M.; Gutser, R.; Heinemann, B.; Martens, C.; McNeely, P.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.

    2009-01-01

    For heating and current drive the neutral beam injection (NBI) system for ITER requires a 1 MeV deuterium beam for up to 1 h pulse length. In order to inject the required 17 MW the large area source (1.9 m x 0.9 m) has to deliver 40 A of negative ion current at the specified source pressure of 0.3 Pa. In 2007, the IPP RF driven negative hydrogen ion source was chosen by the ITER board as the new reference source for the ITER NBI system due to, in principle, its maintenance free operation and the progress in the RF source development. The performance analysis of the IPP RF sources is strongly supported by an extensive diagnostic program and modelling of the source and beam extraction. The control of the plasma chemistry and the processes in the plasma region near the extraction system are the most critical topics for source optimization both for long pulse operation as well as for the source homogeneity. The long pulse stability has been demonstrated at the test facility MANITU which is now operating routinely at stable pulses of up to 10 min with parameters near the ITER requirements. A quite uniform plasma illumination of a large area source (0.8 m x 0.8 m) has been demonstrated at the ion source test facility RADI. The new test facility ELISE presently planned at IPP is being designed for long pulse plasma operation and short pulse, but large-scale extraction from a half-size ITER source which is an important intermediate step towards ITER NBI.

  1. Interleaved wide and narrow pulses for the KAON factory 1 MHz chopper

    International Nuclear Information System (INIS)

    Wait, G.D.; Barnes, M.J.; Bishop, D.; Waters, G.

    1993-01-01

    A beam chopper is required in the transfer line between the 1 GeV/c TRIUMF cyclotron and the Accumulator ring of the proposed 30 GeV/c KAON Factory synchrotron. The beam chopper must generate pulses with a magnitude of at least 9.5 kV with rise and fall times of less than 38 ns (corresponds to kick rise/fall time of less than 39 ns) at a repetition rate of 10 6 pulses per second at a 100% duty cycle. The pulse pattern must be synchronized to the 23 MHz RF system for the TRIUMF cyclotron. Two different pulse widths are required to deflect a total of 5 beam bursts out of every 45 beam bursts that are extracted from the cyclotron. The inter-leaved pulses will have flattop durations of more than 48 ns and 92 ns. Results of measurements on a prototype chopper are presented where pulses of two different widths are synchronized to an RF synthesizer and stored in a low loss delay cable. Rise and fall times of 20 ns to 40 ns have been achieved with 12 kV to 15 kV wide and narrow pulses at 1.9 x 10 6 pulses per second continuous operation

  2. Transition of RF internal antenna plasma by gas control

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori [Advanced Institute of Industrial Technology, 1-10-40 HigashiOhi, Shinagawa-ku, Tokyo, 140-0011 (Japan); Japan Atomic Energy Agency, 2-4 Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  3. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  4. Split-face comparison of radiofrequency versus long-pulse Nd-YAG treatment of facial laxity.

    Science.gov (United States)

    Taylor, Mark B; Prokopenko, Inna

    2006-04-01

    To improve photoaging skin with laser treatment, multiple sessions have been considered necessary to achieve results comparable with one radiofrequency (RF) treatment. We compared single-treatment improvements obtained by the long-pulse 1064 nm Nd:YAG laser and RF device. In a split-face study, patients with sagging skin were treated once with laser (left side) and once with RF (right side) energy. Improvement judged by six blinded observers was greater for wrinkles and laxity (30% median) on the laser-treated side and essentially the same with both modalities (15% median) for texture, pores, and pigmentation. Improvement was maintained for at least 2-6 months on both facial sides without adverse effects. With a single treatment, both the long-pulse 1064 nm Nd:YAG laser and ThermaCool RF device provide a modest degree of improvement in both wrinkles and laxity of facial skin and similar improvement in texture, pores, and pigmentation.

  5. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  6. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla.

    Science.gov (United States)

    Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T

    2016-03-01

    The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  7. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  8. Azimuth Phase Coding for Range Ambiguity Suppression in SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders

    2004-01-01

    A novel ambiguity suppression technique is proposed. Range ambiguities in synthetic aperture radar (SAR) images are eliminated with an azimuth filter after having applied an azimuth phase modulation to the transmitted pulses and a corresponding demodulation to the received pulses. The technique...... excels by actually eliminating the ambiguities rather than just defocusing them as most other techniques do. This makes the proposed technique applicable to distributed targets. The range ambiguity suppression permits the pulse repetition frequency (PRF) to exceed the upper limit otherwise defined...... by the antenna elevation dimension. The fundamental antenna area constraint still applies, but the PRF can be chosen with more freedom. In addition to ambiguity suppression, potential applications include nadir return elimination and signal-to-noise ratio improvement....

  9. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart.

    Science.gov (United States)

    Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J

    2017-06-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  10. A precision master trigger system for SLC based on the accelerator RF drive system

    International Nuclear Information System (INIS)

    Koontz, R.F.; Leger, G.; Paffrath, L.; Wilmunder, A.

    1984-01-01

    A new trigger system consisting of a single 476 MHz rf doublet pulse superimposed on the main 476 MHz rf Drive Line signal that transits the 3 km accelerator has been implemented and is working well. This paper describes the general concept of this system, outlines the operation of the main master trigger generator, the fiducial (476 MHz doublet) generator, and the fiducial pickoff system. A companion paper by Paffrath et al describes the counter electronics that produces precision timed triggers for all SLC operations along the accelerator. (orig.)

  11. Decoherence suppression of excitons by bang-bang control

    International Nuclear Information System (INIS)

    Kishimoto, T.; Hasegawa, A.; Mitsumori, Y.; Ishi-Hayase, J.; Sasaki, M.; Minami, F.

    2007-01-01

    We report the demonstration of decoherence control of excitons on a layered compound semiconductor GaSe by using successive three femtosecond pulses, i.e., the six-wave mixing configuration. The second pulse acts as a π pulse which reverses the time evolution of non-Markovian dynamics. By changing the pulse interval conditions, we confirmed for the first time the suppression of exciton decoherence by π pulse irradiation

  12. “Virtual IED sensor” at an rf-biased electrode in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, M. A.; Zyryanov, S. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation); Faculty of Physics, Moscow State University, MSU, Moscow (Russian Federation); Lopaev, D. V.; Rakhimov, A. T. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation)

    2016-07-15

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low

  13. High power test of RF window and coaxial line in vacuum

    International Nuclear Information System (INIS)

    Sun, D.; Champion, M.; Gormley, M.; Kerns, Q.; Koepke, K.; Moretti, A.

    1993-01-01

    Primary rf input couplers for the superconducting accelerating cavities of the TESLA electron linear accelerator test to be performed at DESY, Hamburg, Germany are under development at both DESY and Fermilab. The input couplers consist of a WR650 waveguide to coaxial line transition with an integral ceramic window, a coaxial connection to the superconducting accelerating cavity with a second ceramic window located at the liquid nitrogen heat intercept location, and bellows on both sides of the cold window to allow for cavity motion during cooldown, coupling adjustments and easier assembly. To permit in situ high peak power processing of the TESLA superconducting accelerating cavities, the input couplers are designed to transmit nominally 1 ms long, 2 MW peak, 1.3 GHz rf pulses from the WR650 waveguide at room temperature to the cavities at 1.8 K. The coaxial part of the Fermilab TESLA input coupler design has been tested up to 1.7 MW using the prototype 805 MHz rf source located at the A0 service building of the Tevatron. The rf source, the testing system and the test results are described

  14. Characterization of Radiation Induced Current in RF coils of Linac-MR Systems

    Science.gov (United States)

    Burke, Benjamin Lester

    Real-time MR imaging of the cancer patients undergoing external beam radiation treatment represents the next generation in image guided radiotherapy. However, the radio frequency (RF) coil of the MRI is exposed to the pulsed radiation of the linear accelerator in the systems where a medical linear accelerator is integrated with the MRI. This thesis is primarily concerned with the instantaneous effect of pulsed radiation on the RF coils, in particular the Radiation Induced Current (RIC). The RIC results from the charge imbalance created by the ejection of Compton electrons from the thin conductors of the RF coils during the pulsed irradiation. This work spans the initial observations of the RIC in real coils, a detailed characterization of the RIC and finally its impact on the MR image. The first part presented the measurements of the instantaneous RIC in two different MRI RF coils. Some basic characterization of the RIC included the isolation of the RF coil component responsible for RIC, the dependence of RIC on linear accelerator dose rate, and the effect of placing wax buildup on the coil to reduce RIC. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence of the RIC amplitude on dose rate was observed. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. In the second part, a buildup method of RIC removal in planar conductors is tested, a Monte Carlo method of RIC calculation in metal conductors is presented and validated, and the Monte Carlo method is used to examine the effects of magnetic fields on both planar conductor and practical cylindrical coil geometries. The buildup method of RIC removal is effective in planar geometries and in cylindrical coil geometries when the coil conductor is in direct contact with the patient. The presence of air gap between the coil and patient makes this method of RIC removal less effective although placing buildup still reduces the RIC

  15. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  16. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  17. Photoemission using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed

  18. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  19. Results of the SLAC LCLS Gun High-Power RF Tests

    International Nuclear Information System (INIS)

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.

    2007-01-01

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed

  20. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared.

    Science.gov (United States)

    Key, Douglas J

    2007-02-01

    To compare single-treatment facial skin tightening achieved with the current radiofrequency (RF) protocol with single-treatment tightening achieved with the long-pulsed, 1064-nm Nd:YAG laser. A total of 12 patients were treated with RF energy on one side of the face and laser energy on the other. Results were evaluated on a numerical scale (0-12 with 12 = greatest enhancement) from pre- and posttreatment photographs by a blinded panel. Upper face improvement (posttreatment score minus pretreatment score) was essentially the same on both sides (30.2 and 31.3% improvement for laser and RF, respectively, P=0.89). Lower face improvement was greater in the laser-treated side (35.7 and 23.8% improvement for laser and RF, respectively), but the difference was not significant (P=0.074). Overall face improvement was significantly greater on the laser-treated side (47.5 and 29.8% improvement for laser and RF, respectively, P=0.028). A single high-fluence treatment with the long-pulse 1064-nm Nd:YAG laser may improve skin laxity more than a single treatment with the RF device. Further controlled split-face or very large non-self controlled studies are needed to conclusively determine the relative efficacies of the two technologies. (c) 2007 Wiley-Liss, Inc.

  1. Modeling and design of an X-band rf photoinjector

    Directory of Open Access Journals (Sweden)

    R. A. Marsh

    2012-10-01

    Full Text Available A design for an X-band rf photoinjector that was developed jointly by SLAC National Accelerator Laboratory (SLAC and Lawrence Livermore National Laboratory (LLNL is presented. The photoinjector is based around a 5.59 cell rf gun that has state-of-the-art features including: elliptical contoured irises; improved mode separation; an optimized initial half cell length; a racetrack input coupler; and coupling that balances pulsed heating with cavity fill time. Radio-frequency and beam dynamics modeling have been done using a combination of codes including PARMELA, HFSS, IMPACT-T, ASTRA, and the ACE3P suite of codes developed at SLAC. The impact of lower gradient operation, magnet misalignment, solenoid multipole errors, beam offset, mode beating, wakefields, and beam line symmetry have been analyzed and are described. Fabrication and testing plans at both LLNL and SLAC are discussed.

  2. Beam dynamics and rf evolution in a multistage klystron-like free- electron laser

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1991-01-01

    Current understandings of beam dynamics and RF evolution in a klystron-like free-electron laser are present. Phase sensitiveness to injection jitters estimated by existing two theories is discussed. BBU suppression due to linear detuning is proposed as an alternative of ever proposed techniques. 13 refs., 2 figs., 1 tab

  3. New Control Structure of the 200 MHz RF System in the CERN PS

    CERN Document Server

    Damerau, H; CERN. Geneva. AB Department

    2008-01-01

    The 200 MHz RF system is an essential tool for the preparation of high-intensity beams in the CERN PS. Presently, six RF cavities are operated to control the longitudinal bunch emittance and rebunching of the beam before the transfer to the SPS. Cavities are selected for the various processes with a dedicated hardware matrix, switching the individual timing pulses and voltage programs per cavity. However, the electronics used for the matrix hardware is obsolete and its reliability cannot be guaranteed due to a lack of spare modules and components. Instead of replacing the old hardware matrix by modern hardware, this note describes a new control structure for the 200MHz RF system so that no dedicated hardware will be required anymore. The implementation of the new control structure is based on two main concepts. Firstly, linked timing trees per blow-up or rebunching are used to handle all related timing and to store one row of the matrix. Secondly, as a reflection of the RF signal generation for the 200 MHz sy...

  4. Pile-up and defective pulse rejection by pulse shape discrimination in surface barrier detectors

    International Nuclear Information System (INIS)

    Sjoeland, K.A.; Kristiansson, P.

    1994-01-01

    A technique to reject pile-up pulses and defective tail pulses from surface barrier detectors by the use of pulse shape discrimination is demonstrated. The electronic implementation of the pulse shape discrimination is based upon the zero crossing technique and for data reduction multiparameter techniques are used. The characteristic τ value for pile-up rejection is shown to be less than 56 ns. Its effect on detection limits from tail reduction in Particle Elastic Scattering Analysis (PESA) and pile-up peak suppression is discussed. ((orig.))

  5. Multimoded rf delay line distribution system for the Next Linear Collider

    Directory of Open Access Journals (Sweden)

    S. G. Tantawi

    2002-03-01

    Full Text Available The delay line distribution system is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multimode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the Next Linear Collider design while maintaining high efficiency.

  6. Photoemission starting of induction rf-driven multicusp ion sources

    International Nuclear Information System (INIS)

    Pickard, D.S.; Leung, K.N.; Perkins, L.T.; Ponce, D.M.; Young, A.T.

    1996-01-01

    It has been demonstrated that pulsed and continuous wave, rf-driven hydrogen discharges can be started with photoemission. The extracted H - current from a photoemission-started plasma has been investigated and does not differ significantly from that of a filament-started plasma. The minimum pressure for photoemissive starting was found to be higher than that of filament starting, 17 mTorr compared to 7 mTorr, respectively, in this particular configuration. copyright 1996 American Institute of Physics

  7. Beam dynamics simulations in the photo-cathode RF gun for the CLIC test facility

    International Nuclear Information System (INIS)

    Marchand, P.; Rinolfi, L.

    1992-01-01

    The CERN CLIC Test Facility (CTF) uses an RF gun with a laser driven photo-cathode in order to generate electron pulses of high charge (≥10 nC) and short duration (≤20 ps). The RF gun consists of a 3 GHz 1 + 1/2 cell cavity based on the design originally proposed at BNL which minimizes the non-linearities in the transverse field. The beam dynamics in the cavity is simulated by means of the multiparticle tracking code PARMELA. The results are compared to previous simulations as well as to the first experimental data. (author). 4 refs., 4 tabs., 4 figs

  8. Study of {sup 14}N NQR response to SORC pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Konnai, A., E-mail: konnai@nmri.go.jp; Odano, N. [National Maritime Research Institute, Department of Navigation and System Engineering (Japan); Asaji, T. [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)

    2008-01-15

    The behavior of nuclear quadrupole resonance (NQR) signals between RF pulses of the strong off-resonance comb (SORC) as well as the spin-locking spin-echo (SLSE) pulse sequences was studied as for {sup 14}N NQR line {nu}{sub +} of dimethylnitramine (CH{sub 3}){sub 2}NNO{sub 2} at 77 K. The periodic variation of the signal amplitude observed by using SORC pulse sequence could be reasonably explained by the theoretical expression reported in the literature.

  9. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  10. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  11. ASTOR, concept of a combined acceleration and storage ring for the production of intense pulsed or continuous beams of neutrinos, pions, muons, kaons and neutrons

    International Nuclear Information System (INIS)

    Joho, W.

    1983-01-01

    A new concept for a high intensity accelerator for 2 GeV protons using the continuous 590 MeV beam from the present ring cyclotron has been worked out at SIN. To suppress the cosmic background in neutrino experiments a pulsed beam with high peak current and low duty cycle is required. Using the so called phase expansion effect 1,2 one can combine the acceleration and storage effect in a single isochronous cyclotron ASTOR. With the help of several RF cavities, positioned at different radii, it is possible to operate ASTOR either in a pulsed mode at 1500 Hz or in a continuous mode. The anticipated beam powers are .8 MW and 4 MW respectively. The ASTOR concept is also applicable in a possible kaon factory design, acting as an interface between the SIN ring cyclotron and a 50 Hz synchrotron for 15 to 20 GeV protons

  12. Steady state plasma operation in RF dominated regimes on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  13. Suppression of skeletal muscle signal using a crusher coil: A human cardiac 31p‐MR spectroscopy study at 7 tesla

    Science.gov (United States)

    Clarke, William T.; Neubauer, Stefan; Robson, Matthew D.; Rodgers, Christopher T.

    2015-01-01

    Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:25924813

  14. High gradient RF breakdown study

    International Nuclear Information System (INIS)

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  15. Aspects of operation of the Fermilab Booster RF System at very high intensity

    International Nuclear Information System (INIS)

    Griffin, J.E.

    1996-04-01

    The purpose of this note is to examine the likelihood and problems associated with operation of the Fermilab Booster rf systems as it presently exists, or with only minor modifications, at beam intensity approaching 5x10 13 protons per pulse. Beam loading of the rf system at such an intensity will be one order of magnitude larger than at the present operation level. It is assumed that the injection energy will be raised to 1 GeV with no major increase in the injected energy spread (longitudinal emittance). The beam will be bunched by adiabatic capture as is presently done although it may be necessary to remove one or two bunches prior to acceleration to allow clean extraction at 8 GeV. At very high intensity the charge in each bunch will interact with the vacuum chamber impedance (and with itself) in such a way as to reduce in some cases the bucket area generated by the rf voltage. Because this decrement must be made up by changes in the rf ring voltage if the required bucket area is to be maintained, these effects must be taken into consideration in any analysis of the capability of the rf system to accelerate very large intensity

  16. A 70 MHz pulsing beam system for protons

    International Nuclear Information System (INIS)

    An Shizhong; Zhang Tianjue; Wu Longcheng; Lv Yinlong; Song Guofang; Guan Fengping; Jia Xianlu

    2008-01-01

    A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction as China Institute of Atomic Energy (CIAE). A 70 MHz continuous H - beam with the energy of dozens of keV or a hundred keV will be pulsed to pulse length of less than 10 ns with the repetition rate of 1-8 MHz. A 70.487 MHz buncher will be used to compress the DC beam into the RF phase acceptance of ±30° of the CRM cyclotron. The 2.2 MHz sine waveform will be used for the chopper. A pulse with the repetition rate to 4.4 MHz and pulse length less than 10 ns is expected after CRM cyclotron. (authors)

  17. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  18. Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Nasu, Katsuhiro; Kuroki, Yoshifumi; Nawano, Shigeru; Ito, Hisao

    2009-01-01

    Fat suppression is essential for diffusion-weighted imaging (DWI) in the body. However, the chemical shift selective (CHESS) pulse often fails to suppress fat signals in the breast. The purpose of this study was to compare DWI using CHESS and DWI using short inversion time inversion recovery (STIR) in terms of fat suppression and the apparent diffusion coefficient (ADC) value. DWI using STIR, DWI using CHESS, and contrast-enhanced T1-weighted images were obtained in 32 patients with breast carcinoma. Uniformity of fat suppression, ADC, signal intensity, and visualization of the breast tumors were evaluated. In 44% (14/32) of patients there was insufficient fat suppression in the breasts on DWI using CHESS, whereas 0% was observed on DWI using STIR (P<0.0001). The ADCs obtained for DWI using STIR were 4.3% lower than those obtained for DWI using CHESS (P<0.02); there was a strong correlation of the ADC measurement (r=0.93, P<0.001). DWI using STIR may be excellent for fat suppression; and the ADC obtained in this sequence was well correlated with that obtained with DWI using CHESS. DWI using STIR may be useful when the fat suppression technique in DWI using CHESS does not work well. (author)

  19. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  20. Criteria for vacuum breakdown in rf cavities

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Kadish, A.; Thode, L.E.

    1983-01-01

    A new high-voltage scaling based on Kilpatrick's criterion is presented that suggests that voltages more than twice the Kilpatrick limit can be obtained with identical initial conditions of vacuum and surface cleanliness. The calculations are based on the experimentally observed decrease in secondary electron emission with increasing ion-impact energy above 100 keV. A generalized secondary-emission package has been developed to simulate actual cavity dynamics in conjunction with our 2 1/2-dimensional fully electromagnetic particle-in-cell code CEMIT. The results are discussed with application to the suppression of vacuum breakdown in rf accelerator devices

  1. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    International Nuclear Information System (INIS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki; Park, Hyung Dal; Lee, Seung Hyun

    2015-01-01

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation

  2. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-10-15

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation.

  3. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    Science.gov (United States)

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  5. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  6. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    , Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...... inhomogeneously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom...... samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution...

  7. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  8. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  9. Development of Phase Change Materials for RF Switch Applications

    Science.gov (United States)

    King, Matthew Russell

    changes in ON-state resistance with increasing pulse number, where initially porous and granular GeTe was converted to large crystalline domains comprising the majority of the RF gap. A phenomenological model for this morphology was presented in which the OFF pulse melts a given width of GeTe and upon cooling the crystalline template outside the melt region acts as a template for an inward-propagating crystalline growth front. This model was further extended to explain observed morphology for ON pulses. The voids observed along the device centerline were connected to increasing OFF state resistance and a relatively stable ON state with increasing pulse number via a series resistance model. As a result of this analysis, OFF state resistance was suggested as an early indicator of device reliability. Finally, microstructural and electrical property observations were used as a basis for implementing improvements to the GeTe deposition process in the form of a heated substrate platform. It was shown that this provides a viable method for attaining stable as-deposited GeTe morphology and a substantially improved crystalline resistivity (2 ohm-mum). This body of work ultimately provides a blueprint which connects fundamental GeTe properties with deposition processes and device performance.

  10. Research and development of an ultra clean surface for RF cavities

    International Nuclear Information System (INIS)

    Miwa, Hajime; Ikeda, Tokumi; Suzuki, Takafusa; Kurosawa, Kiyosi; Kako, Eiji; Noguchi, Shuichi; Saito, Kenji; Kneisel, P.

    1993-01-01

    Suppression of field emission is essentially important in order to attain higher accelerating gradients. Therefore, elimination of residual dust particles on the inner surface of RF cavities is necessary. Surface of a niobium cavity was simulated in silicon wafers, and analysis of dust particles was performed by a particle counter used for semiconductor industries. Experimental results in various surface treatments and applications to niobium cavities are described in this paper. (author)

  11. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  12. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    International Nuclear Information System (INIS)

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick (/similar to/1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target (/similar to/1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs

  13. Estimation of in-vivo pulses in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1994-01-01

    and the three-dimensional, attenuated ultrasound field for a concave transducer. Pulses are estimated from in-vivo liver data showing good resemblance to a pulse measured as the response from a planar reflector and then properly attenuated. The main application for the algorithm is to function......An algorithm for the estimation of one-dimensional in-vivo ultrasound pulses is derived. The routine estimates a set of ARMA parameters describing the pulse and uses data from a number of adjacent rf lines. Using multiple lines results in a decrease in variance on the estimated parameters...... and significantly reduces the risk of terminating the algorithm at a local minimum. Examples from use on synthetic data confirms the reduction in variance and increased chance of successful minimization termination. Simulations are also reported indicating the relation between the one-dimensional pulse...

  14. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  15. The drive laser for the APS LEUTL FEL Rf photoinjector

    International Nuclear Information System (INIS)

    Arnold, N.; Koldenhoven, R.; Travish, G.

    1999-01-01

    The APS LEUTL free-electron laser (FEL) is a high-gain, short-wavelength device requiring a high-current, low-emittance beam. An rf photoinjector driven by a laser is used to provide the requisite beam. The drive laser consists of a diode-pumped Nd:Glass oscillator and a chirped pulse amplification (CPA) system consisting of a grating stretcher, a flashlamp-pumped Nd:Glass regenerative amplifier, and a grating compressor. The system generates 4-mj pulses in the R with a pulse length as short as 2 ps FWHM and a repetition rate of 6 Hz. Nonlinear doubling crystals are used to generate fourth-harmonic output of ∼500 microJ in the UV (263 nm), which is required to exceed the work function of the copper cathode in the gun. This paper describes the drive laser as well as the extensive controls implemented to allow for remote operation and monitoring. Performance measurements as well as the operating experience are presented

  16. Comparison of photobiomodulation therapy and suprascapular nerve-pulsed radiofrequency in chronic shoulder pain: a randomized controlled, single-blind, clinical trial.

    Science.gov (United States)

    Ökmen, Burcu Metin; Ökmen, Korgün

    2017-11-01

    Shoulder pain can be difficult to treat due to its complex anatomic structure, and different treatment methods can be used. We aimed to examine the efficacy of photobiomodulation therapy (PBMT) and suprascapular nerve (SSN)-pulsed radiofrequency (RF) therapy. In this prospective, randomized, controlled, single-blind study, 59 patients with chronic shoulder pain due to impingement syndrome received PBMT (group H) or SSN-pulsed RF therapy (group P) in addition to exercise therapy for 14 sessions over 2 weeks. Records were taken using visual analog scale (VAS), Shoulder Pain and Disability Index (SPADI), and Nottingham Health Profile (NHP) scoring systems for pretreatment (PRT), posttreatment (PST), and PST follow-up at months 1, 3, and 6. There was no statistically significant difference in initial VAS score, SPADI, and NHP values between group H and group P (p > 0.05). Compared to the values of PRT, PST, and PST at months 1, 3, and 6, VAS, SPADI, and NHP values were statistically significantly lower in both groups (p measurement times in VAS, SPADI, and NHP between the two groups. We established that PBMT and SSN-pulsed RF therapy are effective methods, in addition to exercise therapy, in patients with chronic shoulder pain. PBMT seems to be advantageous compared to SSN-pulsed RF therapy, as it is a noninvasive method.

  17. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  18. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    Science.gov (United States)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  19. Possible role of rf melted microparticles on the operation of high-gradient accelerating structures

    Directory of Open Access Journals (Sweden)

    G. S. Nusinovich

    2009-10-01

    Full Text Available High-gradient accelerating structures should operate reliably for a long time. Therefore studies of various processes which may lead to disruption of such an operation are so important. In the present paper, the dissipation of rf electromagnetic energy in metallic microparticles is analyzed accounting for the temperature dependence of the skin depth. Such particles may appear in structures, for example, due to mechanical fracture of irises in strong rf electric fields. It is shown that such microparticles with dimensions on the order of the skin depth, being immersed in the region of strong rf magnetic field, can absorb enough energy in long-pulse operation to be melted. Then, the melted clumps can impinge on the surface of a structure and create nonuniformities leading to field enhancement and corresponding emission of dark current. Results are given for several geometries and materials of microparticles.

  20. HOM Dampers or not in Superconducting RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  1. HOM Dampers or not in SUPERCONDUCTING RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  2. Linear accelerator accelerating module to suppress back-acceleration of field-emitted particles

    Science.gov (United States)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.; Ament, Lucas J. P.

    2017-12-05

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.

  3. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  4. Testing of super conducting low-beta 704 Mhz cavities at 50 Hz pulse repetition rate in view of SPL- first results

    CERN Document Server

    Höfle, W; Lollierou, J; Valuch, D; Chel, S; Devanz, G; Desmons, M; Piquet, O; Paparella, R; Pierini, P

    2010-01-01

    In the framework of the preparatory phase for the luminosity upgrade of the LHC (SLHC-PP ) it is foreseen to characterize two superconducting RF cavities and demonstrate compliance of the required SPL field stability in amplitude and phase using a prototype LLRF system. We report on the preparation for testing of two superconducting low-beta cavities at 50 Hz pulse repetition rate including the setting-up of the low level RF control system to evaluate the performance of the piezo-tuning system and cavity field stability in amplitude and phase. Results from tests with 50 Hz pulse repetition rate are presented. Simulations of the RF system will be used to predict the necessary specifications for power and bandwidth to control the cavity field and derive specifications for the RF system and its control. Exemplary results of the simulation are presented.

  5. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  6. A kilohertz picosecond x-ray pulse generation scheme

    International Nuclear Information System (INIS)

    Guo, W.; Borland, M.; Harkay, K. C.; Wang, C.-X.; Yang, B.

    2007-01-01

    The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1 utilde2 kHz, which can be used for pump-probe experiments

  7. Interaction of UV laser pulses with reactive dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Beckers, J.; Nijdam, S.; Oosterbeek, W.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75

  8. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  9. Fast, fat-suppressed diagnostic imaging of the breast

    International Nuclear Information System (INIS)

    Metzger, G.J.; Weatherall, P.

    1999-01-01

    Maximum sensitivity and diagnostic precision of MR imaging of the breast can be achieved only with fat-suppressed diagnostic scans with high resolution. Optimal results were obtained with a 3D-FFE sequence and excitation by a binomial pulse and an amplitude-modulated binomial pulse. (orig./CB) [de

  10. Compton suppression through rise-time analysis

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2007-01-01

    We studied Compton suppression for 60 Co and 137 Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer

  11. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

    Science.gov (United States)

    Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián

    2017-12-01

    LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

  12. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  13. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  14. Pulse amplifier with high 'common mode rejection'

    International Nuclear Information System (INIS)

    Ijlst, P.

    1987-01-01

    The input signal of a pulse amplifier contains large 'common-mode' signals which have to be suppressed. A transformer, especially constructed for this purpose, is described. It has been tried to optimize the signal to noise ratio of the pulse amplifier by means of noise analysis. (Auth.)

  15. A low-frequency high-voltage rf-barrier-bunching system for high-intensity neutron source compressor rings

    International Nuclear Information System (INIS)

    Hardek, T.W.; Ziomek, C.; Rees, D.

    1995-01-01

    A Los Alamos design for a 1-MW pulsed neutron source incorporates a ring utilizing an rf-barrier bunching system. This bunching concept allows uniform longitudinal beam distributions with low momentum spread. Bunching cavities are operated at the revolution frequency (1.5 MHz in this case) and each of the 2nd, 3rd, 4th, and 5th revolution frequency harmonics. Their effects combine to maintain a beam free gap in the longitudinal distribution of the accumulated beam. The cavities are driven by low-plate-resistance common-cathode configured retrode amplifiers incorporating local rf feedback. Additional adaptive feed-forward hardware is included to reduce the beam-induced bunching-gap voltages well below that achievable solely with rf feedback. Details of this system are presented along with a discussion of the various feed-back and feed-forward techniques incorporated

  16. Comparison of the heat shock response induced by conventional heating and two methods of delivery of pulsed radiofrequency energy

    International Nuclear Information System (INIS)

    Laurence, J.A.; University of Sydney, NSW; McKenzie, D.R.; Veas, L.; French, P.W.

    2002-01-01

    Full text: In 2001, we published a (hypothetical) mechanism by which radiofrequency (RF) radiation from mobile phones could induce cancer, via the chronic induction of the heat shock response (HSR). This hypothesis provides the focus for our research. Other groups have reported induction of the HSR by RF at apparently non thermal levels. The aim of this study was to determine whether the HSR induced by RF is (a) truly non thermal and (b) quantitatively or qualitatively different from that induced by conventional heating of cells. A rat mast cell line, RBL-2H3, was chosen as the target RBL-2H3 cells were exposed in an air incubator at 41.1 deg C for 45 minutes and 75 minutes, and then returned to a 37 deg C incubator. Sham exposures were performed in the same air incubator at 37 deg C. Cells were exposed for 1 hour in the two pulsed RF exposure systems. The first was a converted 750W microwave oven that emits a short burst of 2.45GHz pulses at the start of each contiguous six minute period. This exposes cells to an average specific energy absorption rate (SAR) of 20W/kg. The second system was a TEM cell, which simulates. GSM pulses - the earner frequency is 0.9GHz pulse modulated at 217Hz. The SAR was approx 0.1W/kg. Both of these exposure systems are housed in incubators maintained at 37 deg C. Sham exposures were performed in the two systems with the same conditions but with no RF radiation present. Cell samples for the conventional heating and microwave exposures were taken 0, 2. 5, 5 and 20 hours after exposure, and expression of heat shock proteins hsp 110, 90, 70, 60 and 56 were determined by Western Blotting and compared between exposures

  17. Developments and directions in 200 MHz very high power RF at LAMPF

    International Nuclear Information System (INIS)

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum''pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation

  18. SLAC pulsed X-ray facility

    Science.gov (United States)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  19. SLAC pulsed x-ray facility

    International Nuclear Information System (INIS)

    Ipe, N.E.; McCall, R.C.; Baker, E.D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the rf power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminium 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 μs. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the x-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility. 3 refs., 5 figs

  20. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  1. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  2. Exposure Metrics for RF Epidemiology: Cellular Phone Handsets (invited paper)

    International Nuclear Information System (INIS)

    Balzano, Q.

    1999-01-01

    The parameters are described that characterise the exposure of the users of cellular phones. The parameters are distinguished in two classes: the human and the cell phone parameters. Among the human parameters the following are discussed: size and shape of head and neck, manner of holding the phone (left vs. right, finger tips vs. palm contact) and phone position on the face of the user. The cell phone parameters causing the largest exposure variations are: antenna geometry (size, shape, extended or retracted) and matching conditions; operating RF power level; proximity of tissue to RF currents on metal parts, channel access method (analogue, pulsed, CDMA). The large variability of the RF exposure is further expanded by the variety (ever increasing) of phone models available to users who may change service frequently or sporadically. After a brief discussion of possible dose definitions and the uncertainty of the 'user' of a cell phone for a specific call, the paper analyses the critical exposure parameters that should be investigated to characterise statistically the RF exposure of the subjects of an epidemiological study. The improved exposure assessment of the users of cellular phones requires the cooperation of network operators and equipment manufacturers. The statistics of the most critical parameters, those with variability greater than 10:1, can be collected by modifying the software and hardware of the cell phone equipment. The paper suggests base station software modifications and the introduction of cell phone 'dosemeter' devices that record some of the critical exposure parameters. A certain number of these 'dosemeters' should be distributed among subscribers to determine the statistical variations of the RF exposure from cell phones. The paper concludes by recommending a pilot dosimetric study independent from any epidemiological study. (author)

  3. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    Science.gov (United States)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  4. New high power 200 MHz RF system for the LANSCE drift tube linac

    International Nuclear Information System (INIS)

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-01-01

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H + proton beam, and injects H - to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode reg-sign is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed

  5. Investigation of rf plasma light sources for dye laser excitation

    International Nuclear Information System (INIS)

    Kendall, J.S.; Jaminet, J.F.

    1975-06-01

    Analytical and experimental studies were performed to assess the applicability of radio frequency (rf) induction heated plasma light sources for potential excitation of continuous dye lasers. Experimental efforts were directed toward development of a continuous light source having spectral flux and emission characteristics approaching that required for pumping organic dye lasers. Analytical studies were performed to investigate (1) methods of pulsing the light source to obtain higher radiant intensity and (2) methods of integrating the source with a reflective cavity for pumping a dye cell. (TFD)

  6. Performance of photocathode rf gun electron accelerators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area

  7. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  8. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  9. MgB2 for Application to RF Cavities for Accelerators

    International Nuclear Information System (INIS)

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.

    2007-01-01

    Magnesium diboride (MgB 2 ) has a transition temperature (T c ) of ∼40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB 2 as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to ∼12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans

  10. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  11. Design of high-power, broadband 180o pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the design of high-power, broadband 180 o pulses and mixing sequences for generating dipolar and scalar coupling mediated 13 C- 13 C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1 H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here

  12. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  13. Multiband carbon monoxide laser (2.5 -- 4.0 and 5.0 -- 6.5 micron) pumped by capacitive slab RF discharge

    Science.gov (United States)

    Ionin, Andrey; Kozlov, Andrey; Seleznev, Leonid; Sinitsyn, Dmitry

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a carbon monoxide laser excited by repetitively pulsed capacitive slab RF discharge (81.36 MHz). RF discharge pulse repetition rate was 100--500 Hz. The active volume was 3x30x250 cubic mm. Laser electrodes were cooled down to 120 K. Gas mixture CO:air:He at gas pressure 15 Torr was used. The optical scheme ``frequency selective master oscillator - laser amplifier'' was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on about 100 rotational-vibrational transitions of CO molecule within the spectral range 5.0--6.5 micron. Multiline overtone lasing was observed on about 80 spectral lines within the spectral range 2.5-4.0 micron, with maximum single line average output power 12 mW. The total output power of the slab overtone CO laser came up to 0.35 W, with laser efficiency 0.5 percent. The results of parametric studies of capacitive slab RF discharge in carbon monoxide mixtures, and overtone and fundamental band CO laser characteristics are discussed.

  14. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To data the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modeling are presented

  15. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To date the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modelling are presented. 5 refs., 5 figs

  16. Role of PTHrP(1-34) Pulse Frequency Versus Pulse Duration to Enhance Mesenchymal Stromal Cell Chondrogenesis.

    Science.gov (United States)

    Fischer, Jennifer; Ortel, Marlen; Hagmann, Sebastien; Hoeflich, Andreas; Richter, Wiltrud

    2016-12-01

    Generation of phenotypically stable, articular chondrocytes from mesenchymal stromal cells (MSCs) is still an unaccomplished task, with formation of abundant, hyaline extracellular matrix, and avoidance of hypertrophy being prime challenges. We recently demonstrated that parathyroid hormone-related protein (PTHrP) is a promising factor to direct chondrogenesis of MSCs towards an articular phenotype, since intermittent PTHrP application stimulated cartilage matrix production and reduced undesired hypertrophy. We here investigated the role of frequency, pulse duration, total exposure time, and underlying mechanisms in order to unlock the full potential of PTHrP actions. Human MSC subjected to in vitro chondrogenesis for six weeks were exposed to 2.5 nM PTHrP(1-34) pulses from days 7 to 42. Application frequency was increased from three times weekly (3 × 6 h/week) to daily maintaining either the duration of individual pulses (6 h/day) or total exposure time (18 h/week; 2.6 h/day). Daily PTHrP treatment significantly increased extracellular matrix deposition regardless of pulse duration and suppressed alkaline-phosphatase activity by 87%. High total exposure time significantly reduced cell proliferation at day 14. Pulse duration was critically important to significantly reduce IHH expression, but irrelevant for PTHrP-induced suppression of the hypertrophic markers MEF2C and IBSP. COL10A1, RUNX2, and MMP13 expression remained unaltered. Decreased IGFBP-2, -3, and -6 expression suggested modulated IGF-I availability in PTHrP groups, while drop of SOX9 protein levels during the PTHrP-pulse may delay chondroblast formation and hypertrophy. Overall, the significantly optimized timing of PTHrP-pulses demonstrated a vast potential to enhance chondrogenesis of MSC and suppress hypertrophy possibly via superior balancing of IGF- and SOX9-related mechanisms. J. Cell. Physiol. 231: 2673-2681, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Photocathode operation of a thermionic RF gun

    International Nuclear Information System (INIS)

    Thorin, S.; Cutic, N.; Lindau, F.; Werin, S.; Curbis, F.

    2009-01-01

    The thermionic RF gun using a BaO cathode at the MAX-lab linac injector has been successfully commissioned for additional operation as a photocathode gun. By retaining the BaO cathode, lowering the temperature below thermal emission and illuminating it with a UV (263 nm) 9 ps laser pulse a reduced emittance and enhanced emission control has been achieved. Measurements show a normalised emittance of 5.5 mm mrad at 200 pC charge and a maximum quantum efficiency of 1.1x10 -4 . The gun is now routinely switched between storage ring injections in thermionic mode and providing a beam for the MAX-lab test FEL in photocathode mode.

  18. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reinsberg, K.-G.; Schumacher, C.; Tempez, A.; Nielsch, K.; Broekaert, J.A.C.

    2012-01-01

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS™)) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s −1 and 3 nm s −1 , respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi 2 Te 3 the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb 2 Te 3 the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: ► Depth resolution in sub micrometer size by glow discharge mass spectrometry. ► Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. ► Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  19. RF-Breakdown kicks at the CTF3 two-beam test stand

    CERN Document Server

    Palaia, Andrea; Muranaka, Tomoko; Ruber, Roger; Ziemann, V; Farabolini, W

    2012-01-01

    The measurement of the effects of RF-breakdown on the beam in CLIC prototype accelerator structures is one of the key aspects of the CLIC two-beam acceleration scheme being addressed at the Two-beam Test Stand (TBTS) at CTF3. RF-breakdown can randomly cause energy loss and transverse kicks to the beam. Transverse kicks have been measured by means of a screen intercepting the beam after the accelerator structure. In correspondence of a RFbreakdown we detect a double beam spot which we interpret as a sudden change of the beam trajectory within a single beam pulse. To time-resolve such effect, the TBTS has been equipped with five inductive Beam Position Monitors (BPMs) and a spectrometer line to measure both relative changes of the beam trajectory and energy losses. Here we discuss the methodology used and we present the latest results of such measurements

  20. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  1. Accurate modeling of complete functional RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.

    2007-01-01

    Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype

  2. Method for integrating a train of fast, nanosecond wide pulses

    International Nuclear Information System (INIS)

    Rose, C.R.

    1987-01-01

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  3. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  4. Flat-beam Rf photocathode sources for linear collider applications

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.

    1991-01-01

    Laser driven rf photocathodes represent a recent advance in high-brightness electron beam sources. The authors investigate here a variation on these devices, that obtained by using a ribbon laser pulse to illuminate the cathode, yielding a flat beam (σ x much-gt σ y ) which has asymmetric emittances at the cathode proportional to the beam size each transverse dimension. The flat-beam geometry mitigates space charge forces which lead to intensity dependent transverse and longitudinal emittance growth, thus limiting the beam brightness. The fundamental limit on achievable emittance and brightness is set by the transverse momentum distribution and peak current density of the photoelectrons (photon energy and cathode material dependent effects) and appears to allow, taking into account space charge and rf effects, normalized emittances ε x -5 m-rad and ε -6 m-rad, with Q = 5 nC and σ z = 1 mm. These source emittances are adequate for superconducting linear collider applications, and could preclude the use of a damping ring for the electrons in these schemes

  5. Repetitive Bunches from RF-Photo Gun Radiate Coherently

    CERN Document Server

    Van der Geer, C A J; Van der Geer, S B

    2004-01-01

    We consider to feed the laser wake field accelerator of the alpha-X project by a train of low charge pancake electron bunches to reduce undesired expansion due to space-charge forces. To this purpose the photo excitation laser of the rf-injector is split into a train of sub-pulses, such that each of the produced electron bunches falls into a successive ponderomotive well of the plasma accelerator. This way the total accelerated charge is not reduced. The repetitive photo gun can be tested, at low energy, by connecting it directly to the undulator and monitoring the radiation. The assertions are based on the results of new GPT simulations.

  6. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer

    Science.gov (United States)

    Coffey, Aaron M.; Shchepin, Roman V.; Feng, Bibo; Colon, Raul D.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2017-11-01

    Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C = 20 ± 2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.

  7. Non-water-suppressed 1 H FID-MRSI at 3T and 9.4T.

    Science.gov (United States)

    Chang, Paul; Nassirpour, Sahar; Avdievitch, Nikolai; Henning, Anke

    2018-08-01

    This study investigates metabolite concentrations using metabolite-cycled 1 H free induction decay (FID) magnetic resonance spectroscopic imaging (MRSI) at ultra-high fields. A non-lipid-suppressed and slice-selective ultra-short echo time (TE) 1 H FID MRSI sequence was combined with a low-specific absorption rate (SAR) asymmetric inversion adiabatic pulse to enable non-water-suppressed metabolite mapping using metabolite-cycling at 9.4T. The results were compared to a water-suppressed FID MRSI sequence, and the same study was performed at 3T for comparison. The scan times for performing single-slice metabolite mapping with a nominal voxel size of 0.4 mL were 14 and 17.5 min on 3T and 9.4T, respectively. The low-SAR asymmetric inversion adiabatic pulse enabled reliable non-water-suppressed metabolite mapping using metabolite cycling at both 3T and 9.4T. The spectra and maps showed good agreement with the water-suppressed FID MRSI ones at both field strengths. A quantitative analysis of metabolite ratios with respect to N-acetyl aspartate (NAA) was performed. The difference in Cre/NAA was statistically significant, ∼0.1 higher for the non-water-suppressed case than for water suppression (from 0.73 to 0.64 at 3T and from 0.69 to 0.59 at 9.4T). The difference is likely because of chemical exchange effects of the water suppression pulses. Small differences in mI/NAA were also statistically significant, however, are they are less reliable because the metabolite peaks are close to the water peak that may be affected by the water suppression pulses or metabolite-cycling inversion pulse. We showed the first implementation of non-water-suppressed metabolite-cycled 1 H FID MRSI at ultra-high fields. An increase in Cre/NAA was seen for the metabolite-cycled case. The same methodology was further applied at 3T and similar results were observed. Magn Reson Med 80:442-451, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society

  8. A new method for compensation of the effect of charging transformer's leakage inductance on PFN voltage regulation in Klystron pulse modulators

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Akhil, E-mail: akhilpatel@rrcat.gov.in; Kale, Umesh; Shrivastava, Purushottam

    2017-04-21

    The Line type modulators have been widely used to generate high voltage rectangular pulses to power the klystron for high power RF generation. In Line type modulator, the Pulse Forming Network (PFN) which is a cascade combination of lumped capacitors and inductors is used to store the electrical energy. The charged PFN is then discharged into a klystron by firing a high voltage Thyratron switch. This discharge generates a high voltage rectangular pulse across the klystron electrodes. The amplitude and phase of Klystron's RF output is governed by the high voltage pulse amplitude. The undesired RF amplitude and phase stability issues arises at the klystron's output due to inter-pulse and during the pulse amplitude variations. To reduce inter-pulse voltage variations, the PFN is required to be charged at the same voltage after every discharge cycle. At present, the combination of widely used resonant charging and deQing method is used to regulate the pulse to pulse PFN voltage variations but the charging transformer's leakage inductance puts an upper bound on the regulation achievable by this method. Here we have developed few insights of the deQing process and devised a new compensation method to compensate this undesired effect of charging transformer's leakage inductance on the pulse to pulse PFN voltage stability. This compensation is accomplished by the controlled partial discharging of the split PFN capacitor using a low voltage MOSFET switch. Theoretically, very high values of pulse to pulse voltage stability may be achieved using this method. This method may be used in deQing based existing modulators or in new modulators, to increase the pulse to pulse voltage stability, without having a very tight bound on charging transformer's leakage inductance. Given a stable charging power supply, this method may be used to further enhance the inter-pulse voltage stability of modulators which employ the direct charging, after replacing the

  9. Investigation of the saturation pulse artifact in non-enhanced MR angiography of the lower extremity arteries at 7 Tesla.

    Directory of Open Access Journals (Sweden)

    Sören Johst

    Full Text Available When performing non-enhanced time-of-flight MR angiography of the lower extremity arteries at 7 T with cardiac triggering, the acquisition time is a crucial consideration. Therefore, in previous studies, saturation RF pulses were applied only every second TR. In the axial source images a slight artifact with an appearance similar to aliasing could be observed. The purpose of this study was to investigate the origin of this artifact. The reason for the artifact is supposed to be related to the two effective TRs during acquisition caused by the sparsely applied saturation RF pulse. Several sequence variants were simulated and implemented within the sequence source code to examine this hypothesis. An adaptation of the excitation flip angles for each TR as well as a correction factor for the k-space data was calculated. Additionally, a different ordering of the k-space data during acquisition was implemented as well as the combination of the latter with the k-space correction factor. The observations from the simulations were verified using both a static and a flow phantom and, finally, in a healthy volunteer using the same measurement setup as in previous volunteer and patient studies. Of all implemented techniques, only the reordering of the k-space was capable of suppressing the artifact almost completely at the cost of creating a ringing artifact. The phantom measurements showed the same results as the simulations and could thus confirm the hypothesis regarding the origin of the artifact. This was additionally verified in the healthy volunteer. The origin of the artifact could be confirmed to be the periodic signal variation caused by two effective TRs during acquisition.

  10. Investigation of the saturation pulse artifact in non-enhanced MR angiography of the lower extremity arteries at 7 Tesla.

    Science.gov (United States)

    Johst, Sören; Maderwald, Stefan; Fischer, Anja; Quick, Harald H; Ladd, Mark E; Orzada, Stephan

    2015-01-01

    When performing non-enhanced time-of-flight MR angiography of the lower extremity arteries at 7 T with cardiac triggering, the acquisition time is a crucial consideration. Therefore, in previous studies, saturation RF pulses were applied only every second TR. In the axial source images a slight artifact with an appearance similar to aliasing could be observed. The purpose of this study was to investigate the origin of this artifact. The reason for the artifact is supposed to be related to the two effective TRs during acquisition caused by the sparsely applied saturation RF pulse. Several sequence variants were simulated and implemented within the sequence source code to examine this hypothesis. An adaptation of the excitation flip angles for each TR as well as a correction factor for the k-space data was calculated. Additionally, a different ordering of the k-space data during acquisition was implemented as well as the combination of the latter with the k-space correction factor. The observations from the simulations were verified using both a static and a flow phantom and, finally, in a healthy volunteer using the same measurement setup as in previous volunteer and patient studies. Of all implemented techniques, only the reordering of the k-space was capable of suppressing the artifact almost completely at the cost of creating a ringing artifact. The phantom measurements showed the same results as the simulations and could thus confirm the hypothesis regarding the origin of the artifact. This was additionally verified in the healthy volunteer. The origin of the artifact could be confirmed to be the periodic signal variation caused by two effective TRs during acquisition.

  11. Development of bouncer-type pulse modulator for the ILC

    International Nuclear Information System (INIS)

    Akemoto, Mitsuo; Honma, Hiroyuki; Nakajima, Hiromitsu; Shidara, Tetsuo; Fukuda, Shigeki

    2009-01-01

    This paper describes a long-pulse 1.3 GHz klystron modulator that was recently developed for the Superconducting RF Test Facility (STF) at High Energy Accelerator Research Organization (KEK). The modulator has a direct-switched-type design with a 1:15 step-up transformer and a bouncer circuit to compensate the output phase droop within ±0.5%; it can drive a klystron up to 10 MW peak power, 1.5 ms rf pulse width, and 5 pps repetition rate. The main features of this modulator are four 50 kW switching power supplies in parallel to charge storage capacitors to 10 kV, self-healing-type storage capacitors to realize a compact capacitor bank, and a highly reliable IGBT switch which enables elimination of a crowbar circuit. Design considerations and its performance are presented. An IEGT (Injection Enhanced Gate Transistor) switch, composed of six series devices with a rating of 4.5 kV and 2100 A-DC, has been also developed and tested for R and D to realize a compact modulator. (author)

  12. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    International Nuclear Information System (INIS)

    Redi, M.H.; Fiore, C.; Bonoli, P.; Bourdelle, C.; Budny, R.; Dorland, W.D.; Ernst, D.; Hammett, G.; Mikkelsen, D.; Rice, J.; Wukitch, S.

    2002-01-01

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic

  13. Timing and low-level rf system for an x-ray laser

    Directory of Open Access Journals (Sweden)

    Yuji Otake

    2016-02-01

    Full Text Available An x-ray free-electron laser (XFEL, SACLA, designed to open up new science, was constructed for generating coherent x rays with a peak power of more than 10 GW and a very short pulse of below 30 fs. This feature demands a very highly short-term temporal stability of less than 50 fs to the acceleration rf field of SACLA. For this reason, we developed a timing and low-level rf (LLRF system for SACLA based on that of the SPring8 compact SASE source (SCSS test accelerator for verifying the feasibility of an XFEL. The performance of the system using the in-phase and quadrature rf manipulation method was improved from SCSS’s system. Since the facility length of SACLA is 700 m, which is 10 times longer than that of the SCSS test accelerator, a phase-stabilized optical-fiber system designed to transmit time standard rf signals with low loss was also developed and deployed. This optical-fiber system equips fiber optical-length feedback control in order to mitigate environmental effects, such as temperature and humidity changes. On the other hand, the demanded maximum rf temporal stability is less than 50 fs, which is almost 10 times smaller than that of the SCSS test accelerator. Hence, reducing electric noise and increasing the temperature stability around timing and LLRF instruments were necessary and realized with a very low-noise power supply and a hemathermal 19-inch enclosure. The short-term temporal performance of the timing LLRF system finally attained a temporal stability of less than 13.6 fs in rms measured by a beam arrival-time measurement. This stability greatly helps to achieve the stable x-ray lasing of SACLA for routine operation during user experiments.

  14. The detectability of hepatic metastases in candidates of radiofrequency ablation: comparison for helical CT scanning and late-phase pulse-inversion harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Won; Yoon, Kwon Ha; Kim, Eun A; Park, Ki Han; Juhng, Seon Kwan; Won, Jong Jin [School of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    2002-02-01

    To compare dual-phase helical CT and pulse inversion harmonic US using microbubble contrast agents in the detection of hepatic metastases prior to radiofrequency (RF) ablation. Twenty-one patients in whom hepatic metastases from colorectal cancer had been diagnosed by dual-phase CT scanning and who were considered to be candidates for RF ablation underwent pulse-inversion barmonic US examination. Images were obtained 5 minutes after the bolus injection of microbubble contrast agent SH U 508 A (4.0 g, 300 mg/mL). The number of metastatic tumors revealed by CT and US was determined, and the findings were statistically analysed. The influence of the results of US examination on treatment planning was also evaluated. In 21 patients, 48 metastaic lesions were detected by helical CT, and 56 lesions by US. These eight additional lesions revealed by US occurred in six patients (29%), and their diameter was 3-13 (mean, 7.2) mm. In three of these patients, RF ablation could not be performed ,while in the other three, the additional lesions were ablated. Pulse-inversion harmonic US imaging using microbubble contrast agents may depict small hepatic metastatic tumors that were not apparent at CT. US-therefore appears to be useful in the planning of treatment prior to the RF ablation of hepatic metastases.

  15. High-quality beam generation using an RF gun and a 150 MeV microtron

    Science.gov (United States)

    Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.

    2000-11-01

    Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.

  16. RF heating systems evolution for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Magne, R.; Achard, J.; Armitano, A.; Argouarch, A.; Berger-By, G.; Bernard, J. M.; Bouquey, F.; Charabot, N.; Colas, L.; Corbel, E.; Delpech, L.; Ekedahl, A.; Goniche, M.; Guilhem, D.; Hillairet, J.; Jacquot, J.; Joffrin, E.; Litaudon, X.; Lombard, G.; Mollard, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2014-02-12

    Tore Supra is dedicated to long pulse operation at high power, with a record in injected energy of 1 GJ (2.8 MW × 380 s) and an achieved capability of 12 MW injected power delivered by 3 RF systems: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH). The new WEST project (W [tungsten] Environment in Steady-state Tokamak) aims at fitting Tore Supra with an actively cooled tungsten coated wall and a bulk tungsten divertor. This new device will offer to ITER a test bed for validating the relevant technologies for actively cooled metallic components, with D-shaped H-mode plasmas. For WEST operation, different scenarii able to reproduce ITER relevant conditions in terms of steady state heat loads have been identified, ranging from a high RF power scenario (15 MW, 30 s) to a high fluence scenario (10 MW, 1000 s). This paper will focus on the evolution of the RF systems required for WEST. For the ICRH system, the main issues are its ELM resilience and its CW compatibility, three new actively cooled antennas are being designed, with the aim of reducing their sensitivity to the load variations induced by ELMs. The LH system has been recently upgraded with new klystrons and the PAM antenna, the possible reshaping of the antenna mouths is presently studied for matching with the magnetic field line in the WEST configuration. For the ECRH system, the device for the poloidal movement of the mirrors of the antenna is being changed for higher accuracy and speed.

  17. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  18. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  19. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  20. rf impedance of the accelerating beam gap and its significance to the TRIUMF rf system

    International Nuclear Information System (INIS)

    Poirier, R.

    1979-03-01

    The rf system at TRIUMF is now operating with the highest Q, the lowest rf leakage into the beam gap, the best voltage stability, and the lowest resonator strongback temperatures ever measured since it was first put into operation. This paper describes the calculation of the rf impedance of the beam gap and its correlation to the rf problems encountered, which eventually led to modifications to the flux guides and resonator tips to accomplish the improved operation of the rf system

  1. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  2. An Advantage of the Equivalent Velocity Spectroscopy for Femtsecond Pulse Radiolysis

    CERN Document Server

    Kondoh, Takafumi; Tagawa, Seiichi; Tomosada, Hiroshi; Yang Jin Feng; Yoshida, Yoichi

    2005-01-01

    For studies of electron beam induced ultra-fast reaction process, femtosecond(fs) pulse radiolysis is under construction. To realize fs time resolution, fs electron and analyzing light pulses and their jitter compensation system are needed. About a 100fs electron pulse was generated by a photocathode RF gun linac and a magnetic pulse compressor. Synchronized Ti: Sapphire laser have a puleswidth about 160fs. And, it is significant to avoid degradation of time resolution caused by velocity difference between electron and analyzing light in a sample. In the 'Equivalent velocity spectroscopy' method, incident analyzing light is slant toward electron beam with an angle associated with refractive index of sample. Then, to overlap light wave front and electron pulse shape, electron pulse shape is slanted toward the direction of travel. As a result of the equivalent velocity spectroscopy for hydrated electrons, using slanted electron pulse shape, optical absorption rise time was about 1.4ps faster than normal electro...

  3. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    Science.gov (United States)

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a

  4. Mechanical design of a RF electron gun

    International Nuclear Information System (INIS)

    Woodle, M.H.; Batchelor, K.; Sheehan, J.

    1989-01-01

    Brookhaven National Laboratory is building an Accelerator Test Facility at which we plan to study laser acceleration of electrons, inverse free electron lasers and the production of X-rays by non-linear Compton scattering. The facility contains an electron gun, linac, lasers and ancillary systems which will enable the production of 6 ps duration pulses of 50-100 MeV electrons. The electron source is an one and one half cell RF Electron gun which utilizes either a thermionic or photoemissive cathode to produce 5 MeV electrons. This paper discusses how gun mechanical design considerations such as material, vacuum maintenance, surface finish, fabrication methods, cavity tuning, and cathode replacement were reconciled to arrive at the final design. 9 refs., 2 figs., 2 tabs

  5. Mechanical design of a rf electron gun

    International Nuclear Information System (INIS)

    Woodle, M.H.; Batchelor, K.; Sheehan, J.

    1988-01-01

    Brookhaven National Laboratory is building an Accelerator Test Facility at which we plan to study laser acceleration of electrons inverse free electron lasers and the production of X-rays by non- linear Compton scattering. The facility contains an electron gun, linac, lasers and ancillary systems which will enable the production of 6 ps duration pulses of 50--100 MeV electrons. The electron source is an one and one half cell RF Electron gun which utilizes either a thermionic or photoemissive cathode to produce 5 MeV electrons. This paper discusses how gun mechanical design considerations such as material, vacuum maintenance, surface finish, fabrication methods, cavity tuning, and cathode replacement were reconciled to arrive at the final design. 9 refs., 2 figs., 2 tabs

  6. Fast thermometry for superconducting rf cavity testing

    International Nuclear Information System (INIS)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; Fermilab

    2007-01-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity

  7. Fast thermometry for superconducting rf cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  8. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  9. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  10. Correction of the calculation of beam loading based in the RF power diffusion equation

    International Nuclear Information System (INIS)

    Silva, R. da.

    1980-01-01

    It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt

  11. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  12. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  14. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  15. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  16. Suppression of leukocyte inhibitory factor (LIF) production and [3H]thymidine incorporation by concanavalin A-activated mononuclear cells

    International Nuclear Information System (INIS)

    Lomnitzer, R.; Rabson, A.R.

    1979-01-01

    The capacity of human mononuclear (MN) cells pretreated with concanavalin A (Con A) to suppress the activity of fresh phytohemagglutinin (PHA)-pulsed mononuclear cells was assessed. Con A-pretreated MN cells suppressed leukocyte inhibitory factor (LIF) activity in supernatants of PHA-pulsed cell cultures and [ 3 H]thymidine incorporation by these cells. Suppression was obtained in both allogeneic and autologous systems with mitomycin-treated, irradiated, or untreated Con A-induced cells. Lymphocytes from two patients that, following treatment with Con A, did not suppress mitogen-induced proliferative response of normal cells also did not suppress LIF production

  17. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  18. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  19. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2014-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  20. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  1. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  2. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  3. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.; Salama, Khaled N.

    2012-01-01

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  4. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  5. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Science.gov (United States)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  6. An all metal array of antennae for RF heating of TOKAMAKS in the ion cyclotron range of frequency

    International Nuclear Information System (INIS)

    Jacquinot, J.; Lebot, H.; Adam, J.; Kuus, H.

    1980-09-01

    500 KW, the maximum available RF power, at a frequency of 60 MHz and in 50 to 100 ms pulses, has been launched in TFR plasmas using an array of 4 half turn antennae. The array has a potential power capability of 1 MW through a single port. The electrical coupling efficiency is about 90%

  7. Dry etch challenges for CD shrinkage in memory process

    Science.gov (United States)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  8. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  9. Density measurements in the boundary layer of the ASDEX RF heated plasma

    International Nuclear Information System (INIS)

    El Shaer, M.

    1986-11-01

    The boundary layer in the main chamber of ASDEX is diagnosed using a movable 2.2 mm microwave interferometer. The measured radial density profile decreases exponentially outside of the separatrix with three different e-folding lengths, the middle part of the profile is flatter with a larger e-folding length. The boundary density increases proportionally to the increase of the main plasmy density near the separatrix, far from the separatrix this increase is weaker. The boundary density increases with the increase of the main magnetic field in the discharge. With the application of the RF heating at the lower hybrid frequency the boundary density is submitted to a large modification. The behavior of this modification in the density profile depends on the rate of injection of the cold feeding gas. In the discharge with a constant or decreasing gas feeding rate the density profile flattens, and with an increasing rate it steepens when the RF pulse is applied. (orig.)

  10. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  11. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reinsberg, K.-G. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Schumacher, C. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Tempez, A. [HORIBA Jobin Yvon, 16-18 rue du Canal, F-91160 Longjumeau (France); Nielsch, K. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2012-10-15

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS Trade-Mark-Sign )) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s{sup -1} and 3 nm s{sup -1}, respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi{sub 2}Te{sub 3} the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb{sub 2}Te{sub 3} the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: Black-Right-Pointing-Pointer Depth resolution in sub micrometer size by glow discharge mass spectrometry. Black-Right-Pointing-Pointer Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. Black-Right-Pointing-Pointer Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  12. Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    International Nuclear Information System (INIS)

    Hodgson, Thomas E.; D'Amico, Irene; Viola, Lorenza

    2010-01-01

    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform versus nonuniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a different representation of the controlled qubit evolution, where the decoherence behavior after an arbitrary number of pulses is directly expressed in terms of the uncontrolled decoherence function. In particular, analytical expressions are obtained for approximation of the long- and short-term coherence behavior for both Ohmic and supra-Ohmic environments. By focusing on the realistic case of pure dephasing in an excitonic qubit, we quantitatively assess the impact of physical constraints on achievable pulse separations, and show that little advantage of high-level decoupling schemes based on concatenated or optimal design may be expected if pulses cannot be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic-echo protocols can offer significantly improved coherence preservation in realistic parameter regimes. We expect similar conclusions to be relevant to other constrained qubit devices exposed to quantum or classical phase noise.

  13. Generation of quasiequally spaced ultrashort microbunches in a photocathode rf gun

    International Nuclear Information System (INIS)

    He, Zhigang; Xu, Yuanfang; Li, Weiwei; Jia, Qika

    2015-01-01

    A photocathode rf gun can generate trains of THz subpicosecond electron bunches by illuminating the cathode with trains of laser pulses, but it suffers from the increasing charge in the beam. The THz structure blurs and tends to disappear when the longitudinal space charge forces begin to play a significant role in the beam evolution. In this paper, we propose a scheme to restrain the space charge forces by expanding the transverse size of the laser pulses to reduce the charge density and adopting a multicell gun to increase the beam energy. Thus, quasiequally spaced ultrashort microbunches with relatively high charges can be generated according to our studies. Postacceleration can be used to freeze the longitudinal phase space dynamics. The proposed scheme is in principle able to generate intense multi-color narrow-band THz radiation and offers a promising way towards the tunable intense narrow-band THz sources

  14. Study of HV Dielectrics for High Frequency Operation in Linear & Nonlinear Transmission Lines & Simulation & Development of Hybrid Nonlinear Lines for RF Generation

    Science.gov (United States)

    2015-08-27

    As shown in [4], [5], the capacitors based on PZT (lead-zirconate- titanate) and BT dielectrics have dielectric BD strength of the order of 50 kV/cm...results. Depending on the nonlinearity properties of the capacitor dielectric , input pulse rise time, output pulse sharpening and or RF soliton... capacitors in a frequency range up to 2 MHz, below the resonant frequency of the both dielectrics . As seen in Fig. 1, PZTs have better performance than

  15. Pulse modulator for X-band klystron at GLCTA

    International Nuclear Information System (INIS)

    Akemoto, M.; Honma, H.; Nakajima, H.; Shidara, T.; Fukuda, S.

    2004-01-01

    This paper presents an X-band klystron modulator recently constructed for the Global Linear Collider Test Accelerator (GLCTA) at KEK. The modulator is a thyratron-switched line-type design, and operates two klystrons up to 75 MW peak power, 1.6 μs rf pulse width and up to 150 Hz repetition rate. The major goals of the modulator are reasonably compact size and high reliability. One notable feature is the use of eight 30kJ/s switching power supplies in parallel to charge the pulse forming network. These supplies are a major contributor to compact size of the modulator. The design, specifications and results of performance tests of the modulator are described. (author)

  16. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  17. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-01-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method

  18. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    Science.gov (United States)

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  19. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  20. 34 GHz, 45 MW pulsed magnicon

    International Nuclear Information System (INIS)

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  1. Travelling Wave Structure of an SPS RF Cavity

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The RF cavities for acceleration of particles in the SPS have a travelling-wave structure. They operate at a fixed frequency of 200 MHz (h = 4620). With a quality factor of Q = 100, the bandwidth covers the small frequency swing for the acceleration of protons from as low as 10 GeV to the top energy of 450 GeV. Later on, for the acceleration of ions, with a larger frequency swing, turn-to-turn phase jumps did the trick. Two cavities, each consisting of 5 tank sections, were installed in long straight section 3. Each cavity is driven by a power amplifier of 750 kW CW (1 MW pulsed). Another 2 cavities were added later on. See also 7411033 and 7802190.

  2. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  3. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  4. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  5. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  6. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety?

    Directory of Open Access Journals (Sweden)

    Yolande Bertin

    Full Text Available The bovine gastrointestinal tract (GIT is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC responsible for food-borne infections. Therefore, it is crucial to develop strategies, such as EHEC suppression by antagonistic microorganisms, to reduce EHEC survival in the GIT of cattle and to limit shedding and food contamination. Most human-derived Lactobacillus reuteri strains produce hydroxypropionaldehyde (HPA, an antimicrobial compound, during anaerobic reduction of glycerol. The capacity of L. reuteri LB1-7, a strain isolated from raw bovine milk, to produce HPA and its antimicrobial activity against an O157:H7 EHEC strain (FCH6 were evaluated in bovine rumen fluid (RF under strict anaerobiosis. EHEC was totally suppressed when incubated in RF inoculated with L. reuteri LB1-7 and supplemented with 80 mM glycerol (RF-Glyc80. The addition of LB1-7 or glycerol alone did not modify EHEC survival in RF. Glycerol was converted to HPA (up to 14 mM by LB1-7 during incubation in RF-Glyc80, and HPA production appeared to be responsible for EHEC suppression. The bactericidal activity of L. reuteri LB1-7, the concentration of glycerol required and the level of HPA produced depended on physiological and ecological environments. In vitro experiments also showed that EHEC inoculated in rumen fluid and exposed to L. reuteri and glycerol had a very limited growth in rectal contents. However, L. reuteri exerted an antimicrobial activity against the rumen endogenous microbiota and perturbed feedstuff degradation in the presence of glycerol. The potential administration of L. reuteri and glycerol in view of application to finishing beef cattle at the time of slaughter is discussed. Further in vivo studies will be important to confirm the efficiency of L. reuteri and glycerol supplementation against EHEC shedding in ruminants.

  7. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety?

    Science.gov (United States)

    Bertin, Yolande; Habouzit, Chloé; Dunière, Lysiane; Laurier, Marie; Durand, Alexandra; Duchez, David; Segura, Audrey; Thévenot-Sergentet, Delphine; Baruzzi, Federico; Chaucheyras-Durand, Frédérique; Forano, Evelyne

    2017-01-01

    The bovine gastrointestinal tract (GIT) is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Therefore, it is crucial to develop strategies, such as EHEC suppression by antagonistic microorganisms, to reduce EHEC survival in the GIT of cattle and to limit shedding and food contamination. Most human-derived Lactobacillus reuteri strains produce hydroxypropionaldehyde (HPA), an antimicrobial compound, during anaerobic reduction of glycerol. The capacity of L. reuteri LB1-7, a strain isolated from raw bovine milk, to produce HPA and its antimicrobial activity against an O157:H7 EHEC strain (FCH6) were evaluated in bovine rumen fluid (RF) under strict anaerobiosis. EHEC was totally suppressed when incubated in RF inoculated with L. reuteri LB1-7 and supplemented with 80 mM glycerol (RF-Glyc80). The addition of LB1-7 or glycerol alone did not modify EHEC survival in RF. Glycerol was converted to HPA (up to 14 mM) by LB1-7 during incubation in RF-Glyc80, and HPA production appeared to be responsible for EHEC suppression. The bactericidal activity of L. reuteri LB1-7, the concentration of glycerol required and the level of HPA produced depended on physiological and ecological environments. In vitro experiments also showed that EHEC inoculated in rumen fluid and exposed to L. reuteri and glycerol had a very limited growth in rectal contents. However, L. reuteri exerted an antimicrobial activity against the rumen endogenous microbiota and perturbed feedstuff degradation in the presence of glycerol. The potential administration of L. reuteri and glycerol in view of application to finishing beef cattle at the time of slaughter is discussed. Further in vivo studies will be important to confirm the efficiency of L. reuteri and glycerol supplementation against EHEC shedding in ruminants.

  8. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  9. Phase measurement and control of pulsed charged beams

    International Nuclear Information System (INIS)

    Lewis, R.N.

    1978-01-01

    A method and system is described that measures and controls the arrival phase of a pulsed ion beam. The repetitive beam pulse passes through and resonantly excites a high-Q structure, tuned to the beam repetition frequency or to a higher harmonic thereof. A reference signal of the same frequency is phase-flipped from -90 0 to +90 0 at a high audio rate and also coupled to the resonator. The low-level output signal, comprised of the vector sum of the beam-induced signal and the phase-flipped reference, is amplified and processed to obtain phase information. The system is usable for beams with average currents as low as a few picoamperes and can be used in the measurement and control of pulsed beam experiments involving timing, the control of beam phase for rf particle accelerators and the nondestructive measurement of beam energy. (Auth.)

  10. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  11. RF applications in digital signal processing

    CERN Document Server

    Schilcher, T

    2008-01-01

    Ever higher demands for stability, accuracy, reproducibility, and monitoring capability are being placed on Low-Level Radio Frequency (LLRF) systems of particle accelerators. Meanwhile, continuing rapid advances in digital signal processing technology are being exploited to meet these demands, thus leading to development of digital LLRF systems. The rst part of this course will begin by focusing on some of the important building-blocks of RF signal processing including mixer theory and down-conversion, I/Q (amplitude and phase) detection, digital down-conversion (DDC) and decimation, concluding with a survey of I/Q modulators. The second part of the course will introduce basic concepts of feedback systems, including examples of digital cavity eld and phase control, followed by radial loop architectures. Adaptive feed-forward systems used for the suppression of repetitive beam disturbances will be examined. Finally, applications and principles of system identi cation approaches will be summarized.

  12. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  13. Serum LH-RF and LH levels after synthetic LH-RF administration in man as measured by radioimmunoassays

    International Nuclear Information System (INIS)

    Shiina, Masaki; Makino, Tsunehisa; Nakamura, Yukio; Iizuka, Rihachi

    1975-01-01

    Using a radioimmunoassay (RIA) which is sensitive and highly specific to lutenizing hormone releasing factors (LRF, LH-RF), diminution of an exogeously administered synthetic LH-RF in the blood and the movement of LH released into the blood from the anterior lobe of hypopysis were examined on healthy adult males. The blood LH-RF level after an intravenous administration of 200 μg of synthetic LH-RF reached a maximum (mean, 35.0 ng/ml serum) 2.5 minutes after administration, followed by a rapid decrease, and was as low as 1.0 ng/ml serum 30 minutes after administration. The diminution of the exogenous LH-RF from the blood was rapidest 2.5-15 minutes after administration (t1/2=3.9 minutes) and slowest (t1/2=7.9 minutes) 15-30 minutes after administration. On the other hand, when 200 μg of the synthetic LH-RF was administered intramuscularly, LH-RF appeared only slightly in the blood 2.5 minutes after administration, and the maximum level (10 minutes after administration) was only 1.6 ng/ml serum. It diminished from the blood drawing lenient curve. The blood LH level continued to rise significantly starting 5 minutes after administration of 200 μg of the synthetic LH-RF both in intravenous and intramuscular cases, showing hardly any differences between them. The blood endogenous LH-RF level prior to the synthetic LH-RF administration was below the measurable sensitivity (10 pg/tupe). (Mukohata, S.)

  14. Start-Up of a Pulsed Beam Free Electron Laser (FEL) Oscillator

    Science.gov (United States)

    1983-04-01

    By slightly increasing the frequency of the R.F. accelerating field, Wacc during the start-up period, i.e., decreasing the beam pulse separation, the...levels. The required fractional increase in Wacc is 16L 1- 6L2 1/Lbow 10 - 6 for the parameters of ref. (3,4). The same 6 effect may also be realized

  15. Dynamic modelling of tearing mode stabilization by RF current drive

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.

    1998-01-01

    The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)

  16. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  17. Ferroelectric switch for a high-power Ka-band active pulse compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  18. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    International Nuclear Information System (INIS)

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence

  19. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  20. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)