WorldWideScience

Sample records for suppression cost forecasts

  1. Forecasting Canadian nuclear power station construction costs

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequences of the decision as possible. This understanding must be provided by the evaluation of future situations. A key consideration in an evaluation is the financial component. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A brief review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A database is built and indexes are prepared. Based on these indexes, an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of 40 years are generated and applications (such as alternative scenario forecasts and range forecasts) to uncertainty assessment and/or decision-making are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the first for Canadian NGS constructions. (author)

  2. FORECAST: Regulatory effects cost analysis software annual

    International Nuclear Information System (INIS)

    Lopez, B.; Sciacca, F.W.

    1991-11-01

    Over the past several years the NRC has developed a generic cost methodology for the quantification of cost/economic impacts associated with a wide range of new or revised regulatory requirements. This methodology has been developed to aid the NRC in preparing Regulatory Impact Analyses (RIAs). These generic costing methods can be useful in quantifying impacts both to industry and to the NRC. The FORECAST program was developed to facilitate the use of the generic costing methodology. This PC program integrates the major cost considerations that may be required because of a regulatory change. FORECAST automates much of the calculations typically needed in an RIA and thus reduces the time and labor required to perform these analysis. More importantly, its integrated and consistent treatment of the different cost elements should help assure comprehensiveness, uniformity, and accuracy in the preparation of needed cost estimates

  3. The mathematics of cost trend forecasting; Der Lernkurve folgen

    Energy Technology Data Exchange (ETDEWEB)

    Haslinger, Rupert

    2010-05-07

    The relation of the number of products produced to the production cost can be described by mathematical models. Learning curves enable forecasting of cost trends. But is this just theory, or do these forecasts really predict cost trends of photovoltaic systems in Germany. (orig.)

  4. Transit forecasting accuracy : ridership forecasts and capital cost estimates, final research report.

    Science.gov (United States)

    2009-01-01

    In 1992, Pickrell published a seminal piece examining the accuracy of ridership forecasts and capital cost estimates for fixed-guideway transit systems in the US. His research created heated discussions in the transit industry regarding the ability o...

  5. Canadian nuclear power plant construction cost forecast and analysis

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequence of the decision as possible. This understanding must be provided by the evaluation of the situation to take place in the future. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A data base is built and indexes are prepared. Based on these indexes an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of forty years are generated and applications of alternative scenario forecasts and range forecasts to uncertainty assessment are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the very first ever done for Canadian NGS constructions

  6. Weight and cost forecasting for advanced manned space vehicles

    Science.gov (United States)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  7. Quantification of Forecast Error Costs of Photovoltaic Prosumers in Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Brusco

    2017-11-01

    Full Text Available In recent years, the diffusion of electric plants based on renewable non-dispatchable sources has caused large imbalances between the power generation schedule and the actual generation in real time operations, resulting in increased costs for dispatching electric power systems. Although this type of source cannot be programmed, their production can be predicted using soft computing techniques that consider weather forecasts, reducing the imbalance costs paid to the transmission system operator (TSO. The problem is mainly that the forecasting procedures used by the TSO, distribution system operator (DSO or large producers and they are too expensive, as they use complex algorithms and detailed meteorological data that have to be bought, this can represent an excessive charge for small-scale producers, such as prosumers. In this paper, a cheap photovoltaic (PV production forecasting method, in terms of reduced computational effort, free-available meteorological data and implementation is discussed, and the economic results regarding the imbalance costs due to the utilization of this method are analyzed. The economic analysis is carried out considering several factors, such as the month, the day type, and the accuracy of the forecasting method. The user can utilize the implemented method to know and reduce the imbalance costs, by adopting particular load management strategies.

  8. Tapping Transaction Costs to Forecast Acquisition Cost Breaches

    Science.gov (United States)

    2016-01-01

    experience a cost breach. In our medical example, we could use survival analysis to identify risk fac- tors, such as obesity , that might indicate a greater... exogenous variables on the probability of a dichotomous outcome, such as whether or not a cost breach occurs in any given program year. Logit is

  9. Suppression sours sacrifice: emotional and relational costs of suppressing emotions in romantic relationships.

    Science.gov (United States)

    Impett, Emily A; Kogan, Aleksandr; English, Tammy; John, Oliver; Oveis, Christopher; Gordon, Amie M; Keltner, Dacher

    2012-06-01

    What happens when people suppress their emotions when they sacrifice for a romantic partner? This multimethod study investigates how suppressing emotions during sacrifice shapes affective and relationship outcomes. In Part 1, dating couples came into the laboratory to discuss important romantic relationship sacrifices. Suppressing emotions was associated with emotional costs for the partner discussing his or her sacrifice. In Part 2, couples participated in a 14-day daily experience study. Within-person increases in emotional suppression during daily sacrifice were associated with decreases in emotional well-being and relationship quality as reported by both members of romantic dyads. In Part 3, suppression predicted decreases in relationship satisfaction and increases in thoughts about breaking up with a romantic partner 3 months later. In the first two parts of the study, authenticity mediated the costly effects of suppression. Implications for research on close relationships and emotion regulation are discussed.

  10. LHC Civil Engineering Construction Contracts Cost Monitoring and Budget Forecasting

    CERN Document Server

    Skelton, K

    2000-01-01

    The Civil Engineering project for the LHC is estimated at 350 MCHF, of which about 316 MCHF is for the construction contracts. These contracts are based on a system of remeasurement whereby the consultant estimates the quantities required for the construction of each structure and the contractor commits himself to the unit price, which define the initial tender price. There are many factors that affect the final price for these contracts, from increases or decreases in quantities of the estimated amounts in the original bill of quantities to variations to the contract. This paper will look at how these factors change costs at the individual level of a structure to the overall costs of the contract. It will look at how the Civil Engineering Group monitors these changes to calculate cash flows and final costs and how this information is used as a basis for budget forecasts.

  11. Crop Insurance Inaccurate FCIC Price Forecasts Increase Program Costs

    National Research Council Canada - National Science Library

    1991-01-01

    ...) how FCIC can improve its forecast accuracy. We found that FCIC's corn, wheat, and soybeans price forecasts exhibit large bias errors that exceed those of other available alternative forecasts and that FCIC would have spent...

  12. Contribution of suppression difficulty and lessons learned in forecasting fire suppression operations productivity: A methodological approach

    Science.gov (United States)

    Francisco Rodríguez y Silva; Armando González-Cabán

    2016-01-01

    We propose an economic analysis using utility and productivity, and efficiency theories to provide fire managers a decision support tool to determine the most efficient fire management programs levels. By incorporating managers’ accumulated fire suppression experiences (capitalized experience) in the analysis we help fire managers...

  13. How accurate are forecasts of costs of energy? A methodological contribution

    International Nuclear Information System (INIS)

    Siddons, Craig; Allan, Grant; McIntyre, Stuart

    2015-01-01

    Forecasts of the cost of energy are typically presented as point estimates; however forecasts are seldom accurate, which makes it important to understand the uncertainty around these point estimates. The scale of the differences between forecasts and outturns (i.e. contemporary estimates) of costs may have important implications for government decisions on the appropriate form (and level) of support, modelling energy scenarios or industry investment appraisal. This paper proposes a methodology to assess the accuracy of cost forecasts. We apply this to levelised costs of energy for different generation technologies due to the availability of comparable forecasts and contemporary estimates, however the same methodology could be applied to the components of levelised costs, such as capital costs. The estimated “forecast errors” capture the accuracy of previous forecasts and can provide objective bounds to the range around current forecasts for such costs. The results from applying this method are illustrated using publicly available data for on- and off-shore wind, Nuclear and CCGT technologies, revealing the possible scale of “forecast errors” for these technologies. - Highlights: • A methodology to assess the accuracy of forecasts of costs of energy is outlined. • Method applied to illustrative data for four electricity generation technologies. • Results give an objective basis for sensitivity analysis around point estimates.

  14. Hazardous fuel treatments, suppression cost impacts, and risk mitigation

    Science.gov (United States)

    Matthew P. Thompson; Michael S. Hand; Julie W. Gilbertson-Day; Nicole M. Vaillant; Darek J. Nalle

    2013-01-01

    Land management agencies face uncertain tradeoffs regarding investments in preparedness and fuels management versus future suppression costs and impacts to valued resources and assets. Prospective evaluation of fuel treatments allows for comparison of alternative treatment strategies in terms of socioeconomic and ecological impacts, and can facilitate tradeoff analysis...

  15. A model to forecast data centre infrastructure costs.

    Science.gov (United States)

    Vernet, R.

    2015-12-01

    The computing needs in the HEP community are increasing steadily, but the current funding situation in many countries is tight. As a consequence experiments, data centres, and funding agencies have to rationalize resource usage and expenditures. CC-IN2P3 (Lyon, France) provides computing resources to many experiments including LHC, and is a major partner for astroparticle projects like LSST, CTA or Euclid. The financial cost to accommodate all these experiments is substantial and has to be planned well in advance for funding and strategic reasons. In that perspective, leveraging infrastructure expenses, electric power cost and hardware performance observed in our site over the last years, we have built a model that integrates these data and provides estimates of the investments that would be required to cater to the experiments for the mid-term future. We present how our model is built and the expenditure forecast it produces, taking into account the experiment roadmaps. We also examine the resource growth predicted by our model over the next years assuming a flat-budget scenario.

  16. Costs of fire suppression forces based on cost-aggregation approach

    Science.gov (United States)

    Gonz& aacute; lez-Cab& aacute; Armando n; Charles W. McKetta; Thomas J. Mills

    1984-01-01

    A cost-aggregation approach has been developed for determining the cost of Fire Management Inputs (FMls)-the direct fireline production units (personnel and equipment) used in initial attack and large-fire suppression activities. All components contributing to an FMI are identified, computed, and summed to estimate hourly costs. This approach can be applied to any FMI...

  17. Wildfire Suppression Costs for Canada under a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Emily S Hope

    Full Text Available Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009 fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC climate projections. Area burned was modelled as a function of a climate moisture index (CMI, and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs; these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years are projected to become commonplace (i.e., occur once every two years or more often as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses.

  18. Forecasting resource-allocation decisions under climate uncertainty: fire suppression with assessment of net benefits of research

    Science.gov (United States)

    Jeffrey P. Prestemon; Geoffrey H. Donovan

    2008-01-01

    Making input decisions under climate uncertainty often involves two-stage methods that use expensive and opaque transfer functions. This article describes an alternative, single-stage approach to such decisions using forecasting methods. The example shown is for preseason fire suppression resource contracting decisions faced by the United States Forest Service. Two-...

  19. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Grunsrud, G.P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1998-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  20. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Grunsrud, G P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1999-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  1. Power plant asset market evaluations: Forecasting the costs of power production

    International Nuclear Information System (INIS)

    Lefton, S.A.; Grunsrud, G.P.

    1998-01-01

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs

  2. Forecasting the quality of water-suppressed 1 H MR spectra based on a single-shot water scan.

    Science.gov (United States)

    Kyathanahally, Sreenath P; Kreis, Roland

    2017-08-01

    To investigate whether an initial non-water-suppressed acquisition that provides information about the signal-to-noise ratio (SNR) and linewidth is enough to forecast the maximally achievable final spectral quality and thus inform the operator whether the foreseen number of averages and achieved field homogeneity is adequate. A large range of spectra with varying SNR and linewidth was simulated and fitted with popular fitting programs to determine the dependence of fitting errors on linewidth and SNR. A tool to forecast variance based on a single acquisition was developed and its performance evaluated on simulated and in vivo data obtained at 3 Tesla from various brain regions and acquisition settings. A strong correlation to real uncertainties in estimated metabolite contents was found for the forecast values and the Cramer-Rao lower bounds obtained from the water-suppressed spectra. It appears to be possible to forecast the best-case errors associated with specific metabolites to be found in model fits of water-suppressed spectra based on a single water scan. Thus, nonspecialist operators will be able to judge ahead of time whether the planned acquisition can possibly be of sufficient quality to answer the targeted clinical question or whether it needs more averages or improved shimming. Magn Reson Med 78:441-451, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. FORECAST: Regulatory effects cost analysis software manual -- Version 4.1. Revision 1

    International Nuclear Information System (INIS)

    Lopez, B.; Sciacca, F.W.

    1996-07-01

    The FORECAST program was developed to facilitate the preparation of the value-impact portion of NRC regulatory analyses. This PC program integrates the major cost and benefit considerations that may result from a proposed regulatory change. FORECAST automates much of the calculations typically needed in a regulatory analysis and thus reduces the time and labor required to perform these analyses. More importantly, its integrated and consistent treatment of the different value-impact considerations should help assure comprehensiveness, uniformity, and accuracy in the preparation of NRC regulatory analyses. The Current FORECAST Version 4.1 has been upgraded from the previous version and now includes an uncertainty package, an automatic cost escalation package, and other improvements. In addition, it now explicitly addresses public health impacts, occupational health impacts, onsite property damage, and government costs. Thus, FORECAST Version 4.1 can treat all attributes normally quantified in a regulatory analysis

  4. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon [Nuclear Fuel Cycle Analysis, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-08-15

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

  5. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon; Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig

    2017-01-01

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation

  6. Construction cost forecast model : model documentation and technical notes.

    Science.gov (United States)

    2013-05-01

    Construction cost indices are generally estimated with Laspeyres, Paasche, or Fisher indices that allow changes : in the quantities of construction bid items, as well as changes in price to change the cost indices of those items. : These cost indices...

  7. Forecasting market impact costs and identifying expensive trades

    NARCIS (Netherlands)

    Bikker, Jacob A.; Spierdijk, L.; Hoevenaars, Roy P.M.M.; van der Sluis, Pieter Jelle

    Often, a relatively small group of trades causes the major part of the trading costs on an investment portfolio. Consequently, reducing the trading costs of comparatively few expensive trades would already result in substantial savings on total trading costs. Since trading costs depend to some

  8. Managing the Cost Overrun Risks of Hydroelectric Dams: An Application of Reference Class Forecasting Techniques

    OpenAIRE

    Omotola Awojobi; Glenn P. Jenkins

    2015-01-01

    Hydropower investments have been subject to intense criticism over environmental issues and the common experience with cost uncertainty. In this study we address the issue of uncertainty in cost projections by applying reference class forecasting (RCF) in order to improve the reliability of costs used for making decisions under uncertainty. This technique makes it possible to closely link contingency estimates to the likely incidence of uncertainty of construction costs for hydroelectric dams...

  9. Cost-Loss Analysis of Ensemble Solar Wind Forecasting: Space Weather Use of Terrestrial Weather Tools

    Science.gov (United States)

    Henley, E. M.; Pope, E. C. D.

    2017-12-01

    This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.

  10. Allowing a wildfire to burn: estimating the effect on future fire suppression costs

    Science.gov (United States)

    Rachel M. Houtman; Claire A. Montgomery; Aaron R. Gagnon; David E. Calkin; Thomas G. Dietterich; Sean McGregor; Mark Crowley

    2013-01-01

    Where a legacy of aggressive wildland fire suppression has left forests in need of fuel reduction, allowing wildland fire to burn may provide fuel treatment benefits, thereby reducing suppression costs from subsequent fires. The least-cost-plus-net-value-change model of wildland fire economics includes benefits of wildfire in a framework for evaluating suppression...

  11. Participation costs can suppress the evolution of upstream reciprocity.

    Science.gov (United States)

    Peña, Jorge; Pestelacci, Enea; Berchtold, André; Tomassini, Marco

    2011-03-21

    Indirect reciprocity, one of the many mechanisms proposed to explain the evolution of cooperation, is the idea that altruistic actions can be rewarded by third parties. Upstream or generalized reciprocity is one type of indirect reciprocity in which individuals help someone if they have been helped by somebody else in the past. Although empirically found to be at work in humans, the evolution of upstream reciprocity is difficult to explain from a theoretical point of view. A recent model of upstream reciprocity, first proposed by Nowak and Roch (2007) and further analyzed by Iwagami and Masuda (2010), shows that while upstream reciprocity alone does not lead to the evolution of cooperation, it can act in tandem with mechanisms such as network reciprocity and increase the total level of cooperativity in the population. We argue, however, that Nowak and Roch's model systematically leads to non-uniform interaction rates, where more cooperative individuals take part in more games than less cooperative ones. As a result, the critical benefit-to-cost ratios derived under this model in previous studies are not invariant with respect to the addition of participation costs. We show that accounting for these costs can hinder and even suppress the evolution of upstream reciprocity, both for populations with non-random encounters and graph-structured populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Assessing and forecasting groundwater development costs in Sub ...

    African Journals Online (AJOL)

    2013-07-10

    Jul 10, 2013 ... technically, economically and socially suitable is the foundation to enable such ... The absence of up-to-date data is a major barrier in map- ping the relevant cost factors, ... PPopm = pump purchasing costs; the mean optional costs of ..... submission of drilling records to responsible government authorities ...

  13. Forecasting Construction Cost Index based on visibility graph: A network approach

    Science.gov (United States)

    Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong

    2018-03-01

    Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.

  14. Which cost of debt should be used in forecasting cash flows?

    Directory of Open Access Journals (Sweden)

    Ignacio Vélez–Pareja

    2009-04-01

    Full Text Available Frequently, analysts and teachers use the capitalized rate of interest for the cost of debt when forecasting and discounting cash flows. Others estimate the interest payments when forecasting annual financial statements or cash flows based on the average of debt calculated with the beginning and ending balance. Others use the end of year convention that calculates the yearly interest multiplying the beginning balance times its contractual cost. The use of one or other methods is critical for the definition of the tax savings. These approaches are illustrated with examples and the differences in using them. A simple proposal to solve the problem is presented.

  15. Assessing and forecasting groundwater development costs in Sub ...

    African Journals Online (AJOL)

    Greater use of groundwater in Sub-Saharan Africa is a pre-requisite for improved human welfare; however, the costs associated with groundwater development are prohibitively high and poorly defined. This study identifies and disaggregates the costs of groundwater development in 11 Sub-Saharan African countries, while ...

  16. Forecasting market impact costs and identifying expensive trades

    NARCIS (Netherlands)

    Bikker, J.A.; Spierdijk, L.; Hoevenaars, R.P.M.M.; van der Sluis, P.J.

    Often, a relatively small group of trades causes the major part of the trading costs on an investment portfolio. For the equity trades studied in this paper, executed by the world's second largest pension fund, we find that only 10% of all trades determines 75% of total market impact costs.

  17. Basic factors to forecast maintenance cost and failure processes for nuclear power plants

    International Nuclear Information System (INIS)

    Popova, Elmira; Yu, Wei; Kee, Ernie; Sun, Alice; Richards, Drew; Grantom, Rick

    2006-01-01

    Two types of maintenance interventions are usually administered at nuclear power plants: planned and corrective. The cost incurred includes the labor (manpower) cost, cost for new parts, or emergency order of expensive items. At the plant management level there is a budgeted amount of money to be spent every year for such operations. It is very important to have a good forecast for this cost since unexpected events can trigger it to a very high level. In this research we present a statistical factor model to forecast the maintenance cost for the incoming month. One of the factors is the expected number of unplanned (due to failure) maintenance interventions. We introduce a Bayesian model for the failure rate of the equipment, which is input to the cost forecasting model. The importance of equipment reliability and prediction in the commercial nuclear power plant is presented along with applicable governmental and industry organization requirements. A detailed statistical analysis is performed on a set of maintenance cost and failure data gathered at the South Texas Project Nuclear Operating Company (STPNOC) in Bay City, Texas, USA

  18. COST ES0602: towards a European network on chemical weather forecasting and information systems

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2009-04-01

    Full Text Available The COST ES0602 action provides a forum for benchmarking approaches and practices in data exchange and multi-model capabilities for chemical weather forecasting and near real-time information services in Europe. The action includes approximately 30 participants from 19 countries, and its duration is from 2007 to 2011 (http://www.chemicalweather.eu/. Major efforts have been dedicated in other actions and projects to the development of infrastructures for data flow. We have therefore aimed for collaboration with ongoing actions towards developing near real-time exchange of input data for air quality forecasting. We have collected information on the operational air quality forecasting models on a regional and continental scale in a structured form, and inter-compared and evaluated the physical and chemical structure of these models. We have also constructed a European chemical weather forecasting portal that includes links to most of the available chemical weather forecasting systems in Europe. The collaboration also includes the examination of the case studies that have been organized within COST-728, in order to inter-compare and evaluate the models against experimental data. We have also constructed an operational model forecasting ensemble. Data from a representative set of regional background stations have been selected, and the operational forecasts for this set of sites will be inter-compared and evaluated. The Action has investigated, analysed and reviewed existing chemical weather information systems and services, and will provide recommendations on best practices concerning the presentation and dissemination of chemical weather information towards the public and decision makers.

  19. Forecasting the Number of Soil Samples Required to Reduce Remediation Cost Uncertainty

    OpenAIRE

    Demougeot-Renard, Hélène; de Fouquet, Chantal; Renard, Philippe

    2008-01-01

    Sampling scheme design is an important step in the management of polluted sites. It largely controls the accuracy of remediation cost estimates. In practice, however, sampling is seldom designed to comply with a given level of remediation cost uncertainty. In this paper, we present a new technique that allows one to estimate of the number of samples that should be taken at a given stage of investigation to reach a forecasted level of accuracy. The uncertainty is expressed both in terms of vol...

  20. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    Science.gov (United States)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed

  1. Future wind power forecast errors, need for regulating power, and costs in the Swedish system

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik [Vattenfall Research and Development AB, Stockholm (Sweden). Power Technology

    2011-07-01

    Wind power is one of the renewable energy sources in the electricity system that grows most rapid in Sweden. There are however two market challenges that need to be addressed with a higher proportion of wind power - that is variability and predictability. Predictability is important since the spot market Nord Pool Spot requires forecasts of production 12 - 36 hours ahead. The forecast errors must be regulated with regulating power, which is expensive for the actors causing the forecast errors. This paper has investigated a number of scenarios with 10 - 55 TWh of wind power installed in the Swedish system. The focus has been on a base scenario with 10 TWh new wind power consisting of 3,5 GW new wind power and 1,5 GW already installed power, which gives 5 GW. The results show that the costs for the forecast errors will increase as more intermittent production is installed. However, the increase can be limited by for instance trading on intraday market or increase quality of forecasts. (orig.)

  2. Methodology to Forecast Volume and Cost of Cancer Drugs in Low- and Middle-Income Countries

    Directory of Open Access Journals (Sweden)

    Yehoda M. Martei

    2018-02-01

    Full Text Available Purpose: In low- and middle-income countries (LMICs, frequent outages of the stock of cancer drugs undermine cancer care delivery and are potentially fatal for patients with cancer. The aim of this study is to describe a methodologic approach to forecast chemotherapy volume and estimate cost that can be readily updated and applied in most LMICs. Methods: Prerequisite data for forecasting are population-based incidence data and cost estimates per unit of drug to be ordered. We used the supplementary guidelines from the WHO list of essential medicines for cancer to predict treatment plans and ordering patterns. We used de-identified aggregate data from the Botswana National Cancer Registry to estimate incident cases. The WHO Management Sciences for Health International Price Indicator was used to estimate unit costs per drug. Results: Chemotherapy volume required for incident cancer cases was estimated as the product of the standardized dose required to complete a full treatment regimen per patient, with a given cancer diagnosis and stage, multiplied by the total number of incident cancer cases with the respective diagnosis. The estimated chemotherapy costs to treat the 10 most common cancers in the public health care sector of Botswana is approximately 2.3 million US dollars. An estimated 66% of the budget is allocated to costs of rituximab and trastuzumab alone, which are used by approximately 10% of the cancer population. Conclusion: This method provides a reproducible approach to forecast chemotherapy volume and cost in LMICs. The chemotherapy volume and cost outputs of this methodology provide key stakeholders with valuable information that can guide budget estimation, resource allocation, and drug-price negotiations for cancer treatment. Ultimately, this will minimize drug shortages or outages and reduce potential loss of lives that result from an erratic drug supply.

  3. Accounting for the inaccuracies in demand forecasts and construction cost estimations in transport project evaluation

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2014-01-01

    For decades researchers have claimedthat particularly demand forecasts and construction cost estimations are assigned with/affected by a large degree of uncertainty. Massively, articles,research documents and reports agree that there exists a tendencytowards underestimating the costs...... in demand and cost estimations and hence the evaluation of transport infrastructure projects. Currently, research within this area is scarce and scattered with no commonagreement on how to embed and operationalise the huge amount of empiricaldata that exist within the frame of Optimism Bias. Therefore...... convertingdeterministic benefit-cost ratios (BCRs) into stochasticinterval results. A new data collection (2009–2013) forms the empirical basis for any risk simulation embeddedwithin the so-calledUP database (UNITE project database),revealing the inaccuracy of both construction costs and demandforecasts. Accordingly...

  4. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2015-04-01

    Full Text Available Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  5. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Science.gov (United States)

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-01-01

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698

  6. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.

    Science.gov (United States)

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-04-21

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  7. Development and application of a probabilistic method for wildfire suppression cost modeling

    Science.gov (United States)

    Matthew P. Thompson; Jessica R. Haas; Mark A. Finney; David E. Calkin; Michael S. Hand; Mark J. Browne; Martin Halek; Karen C. Short; Isaac C. Grenfell

    2015-01-01

    Wildfire activity and escalating suppression costs continue to threaten the financial health of federal land management agencies. In order to minimize and effectively manage the cost of financial risk, agencies need the ability to quantify that risk. A fundamental aim of this research effort, therefore, is to develop a process for generating risk-based metrics for...

  8. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    Science.gov (United States)

    Woznicki, S. A.; Wickham, J.

    2017-12-01

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  9. Shipping emission forecasts and cost-benefit analysis of China ports and key regions' control.

    Science.gov (United States)

    Liu, Huan; Meng, Zhi-Hang; Shang, Yi; Lv, Zhao-Feng; Jin, Xin-Xin; Fu, Ming-Liang; He, Ke-Bin

    2018-05-01

    China established Domestic Emission Control Area (DECA) for sulphur since 2015 to constrain the increasing shipping emissions. However, future DECA policy-makings are not supported due to a lack of quantitive evaluations. To investigate the effects of current and possible Chinese DECAs policies, a model is presented for the forecast of shipping emissions and evaluation of potential costs and benefits of an DECA policy package set in 2020. It includes a port-level and regional-level projection accounting for shipping trade volume growth, share of ship types, and fuel consumption. The results show that without control measures, both SO 2 and particulate matter (PM) emissions are expected to increase by 15.3-61.2% in Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta from 2013 to 2020. However, most emissions can be reduced annually by the establishment of a DECA that depends on the size of the control area and the fuel sulphur content limit. Costs range from 0.667 to 1.561 billion dollars (control regional shipping emissions) based on current fuel price. A social cost method shows the regional control scenarios benefit-cost ratios vary from 4.3 to 5.1 with large uncertainty. Chemical transportation model combined with health model method is used to get the monetary health benefits and then compared with the results from social cost method. This study suggests that Chinese DECAs will reduce the projected emissions at a favorable benefit-cost ratio, and furthermore proposes policy combinations that provide high cost-effective benefits as a reference for future policy-making. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  10. Modeling Fuel Treatment Leverage: Encounter Rates, Risk Reduction, and Suppression Cost Impacts

    Directory of Open Access Journals (Sweden)

    Matthew P. Thompson

    2017-11-01

    Full Text Available The primary theme of this study is the cost-effectiveness of fuel treatments at multiple scales of investment. We focused on the nexus of fuel management and suppression response planning, designing spatial fuel treatment strategies to incorporate landscape features that provide control opportunities that are relevant to fire operations. Our analysis explored the frequency and magnitude of fire-treatment encounters, which are critical determinants of treatment efficacy. Additionally, we examined avoided area burned, avoided suppression costs, and avoided damages, and combined all three under the umbrella of leverage to explore multiple dimensions with which to characterize return on investment. We chose the Sierra National Forest, California, USA, as our study site, due to previous work providing relevant data and analytical products, and because it has the potential for large, long-duration fires and corresponding potential for high suppression expenditures. Modeling results generally confirmed that fire-treatment encounters are rare, such that median suppression cost savings are zero, but in extreme years, savings can more than offset upfront investments. Further, reductions in risk can expand areas where moderated suppression response would be appropriate, and these areas can be mapped in relation to fire control opportunities.

  11. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts

    Science.gov (United States)

    Matthew P. Thompson; Karin L. Riley; Dan Loeffler; Jessica R. Haas

    2017-01-01

    The primary theme of this study is the cost-effectiveness of fuel treatments at multiple scales of investment. We focused on the nexus of fuel management and suppression response planning, designing spatial fuel treatment strategies to incorporate landscape features that provide control opportunities that are relevant to fire operations. Our analysis explored the...

  12. Factors affecting fire suppression costs as identified by incident management teams

    Science.gov (United States)

    Janie Canton-Thompson; Brooke Thompson; Krista Gebert; David Calkin; Geoff Donovan; Greg Jones

    2006-01-01

    This study uses qualitative sociological methodology to discover information and insights about the role of Incident Management Teams in wildland fire suppression costs. We interviewed 48 command and general staff members of Incident Management Teams throughout the United States. Interviewees were asked about team structure, functioning, and decision making as a...

  13. Why expressive suppression does not pay? Cognitive costs of negative emotion suppression: The mediating role of subjective tense-arousal

    Directory of Open Access Journals (Sweden)

    Szczygieł Dorota

    2015-09-01

    Full Text Available The aim of this paper was to contribute to a broader understanding of the cognitive consequences of expressive suppression. Specifically, we examined whether the deteriorating effect of expressive suppression on cognitive functioning is caused by tense arousal enhanced by suppression. Two experiments were performed in order to test this prediction. In both studies we tested the effect of expressive suppression on working memory, as measured with a backwards digit-span task (Study 1, N = 43 and anagram problem-solving task (Study 2, N = 60. In addition, in Study 2 we tested whether expressive suppression degrades memory of the events that emerged during the period of expressive suppression. Both studies were conducted in a similar design: Participants watched a film clip which evoked negative emotions (i.e. disgust in Study 1 and a combination of sadness and anxiety in Study 2 under the instruction to suppress those negative emotions or (in the control condition to simply watch the film. The results of these experiments lead to three conclusions. First, the results reveal that expressive suppression degrades memory of the events that emerged during the period of expressive suppression and leads to poorer performance on working memory tasks, as measured with a backwards digit-span task and anagram problem-solving task. Second, the results indicate that expressive suppression leads to a significant increase in subjective tense arousal. Third, the results support our prediction that expressive suppression decreases cognitive performance through its effects on subjective tense arousal. The results of the Study 1 show that tense arousal activated during expressive suppression of disgust fully mediates the negative effect of suppression on working memory as measured with a backwards digit-span task. The results of Study 2 reveal that subjective tense arousal elicited while suppressing sadness and anxiety mediates both the effect of suppression on

  14. Cost Optimization of Water Resources in Pernambuco, Brazil: Valuing Future Infrastructure and Climate Forecasts

    Science.gov (United States)

    Kumar, Ipsita; Josset, Laureline; Lall, Upmanu; Cavalcanti e Silva, Erik; Cordeiro Possas, José Marcelo; Cauás Asfora, Marcelo

    2017-04-01

    Optimal management of water resources is paramount in semi-arid regions to limit strains on the society and economy due to limited water availability. This problem is likely to become even more recurrent as droughts are projected to intensify in the coming years, causing increasing stresses to the water supply in the concerned areas. The state of Pernambuco, in the Northeast Brazil is one such case, where one of the largest reservoir, Jucazinho, has been at approximately 1% capacity throughout 2016, making infrastructural challenges in the region very real. To ease some of the infrastructural stresses and reduce vulnerabilities of the water system, a new source of water from Rio São Francisco is currently under development. Till its development, water trucks have been regularly mandated to cover water deficits, but at a much higher cost, thus endangering the financial sustainability of the region. In this paper, we propose to evaluate the sustainability of the considered water system by formulating an optimization problem and determine the optimal operations to be conducted. We start with a comparative study of the current and future infrastructures capabilities to face various climate. We show that while the Rio Sao Francisco project mitigates the problems, both implementations do not prevent failure and require the reliance on water trucks during prolonged droughts. We also study the cost associated with the provision of water to the municipalities for several streamflow forecasts. In particular, we investigate the value of climate predictions to adapt operational decisions by comparing the results with a fixed policy derived from historical data. We show that the use of climate information permits the reduction of the water deficit and reduces overall operational costs. We conclude with a discussion on the potential of the approach to evaluate future infrastructure developments. This study is funded by the Inter-American Development Bank (IADB), and in

  15. Suppression of Noise to Obtain a High-Performance Low-Cost Optical Encoder

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez-Rodríguez

    2018-01-01

    Full Text Available Currently, commercial encoders endowed with high precision are expensive sensors, and optical low-cost designs to measure the positioning angle have undesirable levels of system noise which reduce the good performance of devices. This research is devoted to the designing of mathematical filters to suppress noise in polarized transducers, in order to obtain high accuracy, precision, and resolution, along with an adaptive maximum response speed for low-cost optical encoders. This design was proved through a prototype inside a research platform, and experimental results show an accuracy of 3.9, a precision of 26, and a resolution of 17 [arc seconds], at least for the specified working conditions, for the sensing of the angular position of a rotary polarizer. From this work has been obtained a high-performance low-cost polyphase optical encoder, which uses filtering mathematical principles potentially generalizable to other inventions.

  16. Extrinsic value orientation and affective forecasting: overestimating the rewards, underestimating the costs.

    Science.gov (United States)

    Sheldon, Kennon M; Gunz, Alexander; Nichols, Charles P; Ferguson, Yuna

    2010-02-01

    We examined affective forecasting errors as a possible explanation of the perennial appeal of extrinsic values and goals. Study 1 found that although people relatively higher in extrinsic (money, fame, image) compared to intrinsic (growth, intimacy, community) value orientation (REVO) are less happy, they nevertheless believe that attaining extrinsic goals offers a strong potential route to happiness. Study 2's longitudinal experimental design randomly assigned participants to pursue either 3 extrinsic or 3 intrinsic goals over 4 weeks, and REVO again predicted stronger forecasts regarding extrinsic goals. However, not even extrinsically oriented participants gained well-being benefits from attaining extrinsic goals, whereas all participants tended to gain in happiness from attaining intrinsic goals. Study 3 showed that the effect of REVO on forecasts is mediated by extrinsic individuals' belief that extrinsic goals will satisfy autonomy and competence needs. It appears that some people overestimate the emotional benefits of achieving extrinsic goals, to their potential detriment.

  17. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  18. Forecasting how residential urban form affects the regional carbon savings and costs of retrofitting and decentralized energy supply

    International Nuclear Information System (INIS)

    Hargreaves, Anthony; Cheng, Vicky; Deshmukh, Sandip; Leach, Matthew; Steemers, Koen

    2017-01-01

    Highlights: • An innovative model for testing combinations of spatial planning and decentralised energy supply. • An improved method of modelling the spatial variability of energy consumption per dwelling type. • Shows how spatial planning would affect the future carbon reduction of decentralised supply. • Forecasts the future carbon reduction and costs of retrofitting and decentralised supply. • A method of forecasting how residential space would affect the suitability of decentralised supply. - Abstract: Low carbon energy supply technologies are increasingly used at the building and community scale and are an important part of the government decarbonisation strategy. However, with their present state of development and costs, many of these decentralised technologies rely on public subsidies to be financially viable. It is questionable whether they are cost effective compared to other ways of reducing carbon emissions, such as decarbonisation of conventional supply and improving the energy efficiency of dwellings. Previous studies have found it difficult to reliably estimate the future potential of decentralised supply because this depends on the available residential space which varies greatly within a city region. To address this problem, we used an integrated modelling framework that converted the residential density forecasts of a regional model into a representation of the building dimensions and land of the future housing stock. This included a method of estimating the variability of the dwellings and residential land. We present the findings of a case study of the wider south east regions of England that forecasted the impacts of energy efficiency and decentralised supply scenarios to year 2031. Our novel and innovative method substantially improves the spatial estimates of energy consumption compared to building energy models that only use standard dwelling typologies. We tested the impact of an alternative spatial planning policy on the future

  19. Cost estimation: An expert-opinion approach. [cost analysis of research projects using the Delphi method (forecasting)

    Science.gov (United States)

    Buffalano, C.; Fogleman, S.; Gielecki, M.

    1976-01-01

    A methodology is outlined which can be used to estimate the costs of research and development projects. The approach uses the Delphi technique a method developed by the Rand Corporation for systematically eliciting and evaluating group judgments in an objective manner. The use of the Delphi allows for the integration of expert opinion into the cost-estimating process in a consistent and rigorous fashion. This approach can also signal potential cost-problem areas. This result can be a useful tool in planning additional cost analysis or in estimating contingency funds. A Monte Carlo approach is also examined.

  20. Logical design of a decision support system to forecast technology, prices and costs for the national communications system

    Science.gov (United States)

    Williams, K. A.; Partridge, E. C., III

    1984-09-01

    Originally envisioned as a means to integrate the many systems found throughout the government, the general mission of the NCS continues to be to ensure the survivability of communications during and subsequent to any national emergency. In order to accomplish this mission the NCS is an arrangement of heterogeneous telecommunications systems which are provided by their sponsor Federal agencies. The physical components of Federal telecommunications systems and networks include telephone and digital data switching facilities and primary common user communications centers; Special purpose local delivery message switching and exchange facilities; Government owned or leased radio systems; Technical control facilities which are under exclusive control of a government agency. This thesis describes the logical design of a proposed decision support system for use by the National Communications System in forecasting technology, prices, and costs. It is general in nature and only includes those forecasting models which are suitable for computer implementation. Because it is a logical design it can be coded and applied in many different hardware and/or software configurations.

  1. A prediction model to forecast the cost impact from a break in the production schedule

    Science.gov (United States)

    Delionback, L. M.

    1977-01-01

    The losses which are experienced after a break or stoppage in sequence of a production cycle portends an extremely complex situation and involves numerous variables, some of uncertain quantity and quality. There are no discrete formulas to define the losses during a gap in production. The techniques which are employed are therefore related to a prediction or forecast of the losses that take place, based on the conditions which exist in the production environment. Such parameters as learning curve slope, number of predecessor units, and length of time the production sequence is halted are utilized in formulating a prediction model. The pertinent current publications related to this subject are few in number, but are reviewed to provide an understanding of the problem. Example problems are illustrated together with appropriate trend curves to show the approach. Solved problems are also given to show the application of the models to actual cases or production breaks in the real world.

  2. Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example

    Science.gov (United States)

    Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing

    2017-11-01

    Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.

  3. Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report

    Directory of Open Access Journals (Sweden)

    Jun–Ichi Yano

    2014-12-01

    Full Text Available The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905 for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.

  4. Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series models

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Joao C. do L, E-mail: jcaldas@ufam.edu.br [Group of Optimization and Fuzzy Systems, Federal University of Amazonas, General Rodrigo Octavio Jordao Ramos Avenue, 3000, Academic Campus, 69077-000 Manaus, Amazonas (Brazil); Costa Junior, Carlos T. da [Postgraduate Program in Electrical Engineering, Institute of Technology, Federal University of Para, Augusto Correa Street, 1, Guama, 66075-900 Belem, Para (Brazil); Bitar, Sandro D.B. [Group of Optimization and Fuzzy Systems, Federal University of Amazonas, General Rodrigo Octavio Jordao Ramos Avenue, 3000, Academic Campus, 69077-000 Manaus, Amazonas (Brazil); Junior, Walter B. [Postgraduate Program in Electrical Engineering, Institute of Technology, Federal University of Para, Augusto Correa Street, 1, Guama, 66075-900 Belem, Para (Brazil)

    2011-09-15

    Understanding the uncertainty inherent in the analysis of diesel fuel consumption and its impact on the generation of electricity is an important topic for planning the expansion of isolated thermoelectric systems in the state of Amazonas. In light of this, a decision support system has been developed to forecast the cost of electricity production using non-stationary data by integrating the methodology of time series models with fuzzy systems and optimization tools. The method presented herein combines the potential of the Autoregressive Integrated Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) models, such as the forecasting tool, with the advantages of fuzzy set theory to compensate for the uncertainties and errors encountered in the observed data, which would degrade the validity of forecasted values. The results show that incorporation of the {alpha}-cut concept facilitated the evaluation of risks while allowing simultaneous consideration of intervals for the unitary cost of energy production. This provides the analyst with the ability to make decisions using various predicted intervals with different membership values instead of the common practice of simply using the specific costs. - Highlights: > A decision support system has been developed using SARIMA with fuzzy systems and optimizations tools. > It assists the decision-making process for planning the expansion in isolated thermoelectric systems. > The {alpha}-cut concept facilitated the evaluation of risks for the cost of electricity production. > Provides decisions using various forecasted interval for this cost with different membership values.

  5. Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series models

    International Nuclear Information System (INIS)

    Neto, Joao C. do L; Costa Junior, Carlos T. da; Bitar, Sandro D.B.; Junior, Walter B.

    2011-01-01

    Understanding the uncertainty inherent in the analysis of diesel fuel consumption and its impact on the generation of electricity is an important topic for planning the expansion of isolated thermoelectric systems in the state of Amazonas. In light of this, a decision support system has been developed to forecast the cost of electricity production using non-stationary data by integrating the methodology of time series models with fuzzy systems and optimization tools. The method presented herein combines the potential of the Autoregressive Integrated Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) models, such as the forecasting tool, with the advantages of fuzzy set theory to compensate for the uncertainties and errors encountered in the observed data, which would degrade the validity of forecasted values. The results show that incorporation of the α-cut concept facilitated the evaluation of risks while allowing simultaneous consideration of intervals for the unitary cost of energy production. This provides the analyst with the ability to make decisions using various predicted intervals with different membership values instead of the common practice of simply using the specific costs. - Highlights: → A decision support system has been developed using SARIMA with fuzzy systems and optimizations tools. → It assists the decision-making process for planning the expansion in isolated thermoelectric systems. → The α-cut concept facilitated the evaluation of risks for the cost of electricity production. → Provides decisions using various forecasted interval for this cost with different membership values.

  6. FORECAST PRODUCTION COSTS SUGAR IN THE PROVINCE OF SANTIAGO DE CUBA THROUGH ECONOMETRIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Ramón Rodríguez-Betancourt

    2016-01-01

    Full Text Available The conformation at the present time, of an economic model renovated in Cuba, it should be based in the efficient use of the productive factors which it counts the country, with emphasis in the substitution of imports. In the chapter VII, article 184 of the Limits of the Economic and Social Politics of the Party and the Revolution it can be read: "To prioritize, in short term, the substitution of imports of those foods that can be produced efficiently in the country; also it will owe to multiply the application of the results of the science and the technique."1 In fact the objective of the present investigation, using econometrics technical to carry out presage of the cost of sugar production, using factors in the productive process: days of harvest, use of the potential, recovered capacity and industrial yield. The results indicate  that the factor with more influences in the decrease of the costs is the industrial yield. It is also obtained a cost presage for the county Santiago de Cuba in different harvest stages that oscillates between $372,45 and 517,52 and it stops extreme values of $ 303,21 and $ 777,6. 

  7. Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-01-01

    Full Text Available Accurate prediction of substation project cost is helpful to improve the investment management and sustainability. It is also directly related to the economy of substation project. Ensemble Empirical Mode Decomposition (EEMD can decompose variables with non-stationary sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS algorithm can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel functions of Support Vector Machines (SVM model are optimized. By comparing the prediction results with other models, this model has higher prediction accuracy.

  8. The Forecast Scenarios of Development of the National Economy in the Context of the Need to Improve the «Cost of Living»

    Directory of Open Access Journals (Sweden)

    Kulakov Gennady T.

    2017-04-01

    Full Text Available The article is aimed at elaborating and materialization of the forecast scenarios of development of the national economy in the context of substantiating the feasibility of improving the «cost of living» being the equivalent of the liability of public authorities for the value of human life. The article researches the phenomenon of the «cost of living» in the context of sustainable innovative development of a socially oriented development of economy as an axis for developing its forecast scenarios. Focus has been set on complementarity of the terms of «cost of living» and «sustainable development» in the context of satisfying vital interests of the population of Ukraine. It has been suggested that wages accounting as an equivalent to the «cost of living» should not be included with costs but with the value added, however, the growth rate of wages must not outpace the growth rate of labor productivity. For the first time on the basis of the interdisciplinary and intersectoral approach, as well as the index method, have been elaborated baseline scenarios of development of the national economy on the basis of the upgraded human development index: pessimistic, realistic, and optimistic forecasts.

  9. Demand forecasts at national and EU level on a computer-based model taking usage costs into account

    DEFF Research Database (Denmark)

    Passamonti, Lucia; Falch, Morten; Björksten, Margareta

    1997-01-01

    The objective of this deliverable is to forecast the residential spending on selected multimedia services such as Tele-entertainment, VOD, AOD, Networked games, Teleshopping and Teleworking.......The objective of this deliverable is to forecast the residential spending on selected multimedia services such as Tele-entertainment, VOD, AOD, Networked games, Teleshopping and Teleworking....

  10. Fuel cycle forecasting - there are forecasts and there are forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Puechl, K H

    1975-12-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis.

  11. Fuel cycle forecasting - there are forecasts and there are forecasts

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1975-01-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis. (author)

  12. Impact of seasonal forecast use on agricultural income in a system with varying crop costs and returns: an empirically-grounded simulation

    Science.gov (United States)

    Gunda, T.; Bazuin, J. T.; Nay, J.; Yeung, K. L.

    2017-03-01

    Access to seasonal climate forecasts can benefit farmers by allowing them to make more informed decisions about their farming practices. However, it is unclear whether farmers realize these benefits when crop choices available to farmers have different and variable costs and returns; multiple countries have programs that incentivize production of certain crops while other crops are subject to market fluctuations. We hypothesize that the benefits of forecasts on farmer livelihoods will be moderated by the combined impact of differing crop economics and changing climate. Drawing upon methods and insights from both physical and social sciences, we develop a model of farmer decision-making to evaluate this hypothesis. The model dynamics are explored using empirical data from Sri Lanka; primary sources include survey and interview information as well as game-based experiments conducted with farmers in the field. Our simulations show that a farmer using seasonal forecasts has more diversified crop selections, which drive increases in average agricultural income. Increases in income are particularly notable under a drier climate scenario, when a farmer using seasonal forecasts is more likely to plant onions, a crop with higher possible returns. Our results indicate that, when water resources are scarce (i.e. drier climate scenario), farmer incomes could become stratified, potentially compounding existing disparities in farmers’ financial and technical abilities to use forecasts to inform their crop selections. This analysis highlights that while programs that promote production of certain crops may ensure food security in the short-term, the long-term implications of these dynamics need careful evaluation.

  13. Antiretroviral treatment switch strategies for lowering the costs of antiretroviral therapy in subjects with suppressed HIV-1 viremia in Spain

    Directory of Open Access Journals (Sweden)

    Llibre JM

    2013-05-01

    Full Text Available Josep M Llibre,1,2 Gloria Cardona,3 José R Santos,2 Angels Andreu,3 Josep O Estrada,4 Jordi Ara,4 Xavier Bonafont,3 Bonaventura Clotet1,21HIV Unit, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; 2Lluita contra la SIDA Foundation, Badalona, Barcelona, Spain; 3Hospital Pharmacy, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; 4Hospital Management, University Hospital Germans Trias i Pujol, Badalona, Barcelona, SpainBackground: The current economic recession in European countries has forced governments to design emergency measures to reduce spending on drugs, including antiretroviral therapy (ART. Switching antiretroviral drugs for others that have the same efficacy and safety profile at a lower cost (cost-reduction measures, CRM could prove to be a valid means of generating savings.Methods: Descriptive study of prospective consensus-based CRM undertaken in 2011 in a Catalonian hospital HIV unit among patients with prolonged plasma HIV-1 RNA <50 copies/mL.Results: During the study period, we made 673 switches (87.5% more than the previous year, of which 378 (56.2% were CRM (16% of all patients treated, leading to a savings of €87,410/month. Switching tenofovir/emtricitabine for abacavir/lamivudine was the most common CRM (129, 31.3%, followed by simplification to boosted protease inhibitor monotherapy (bPImono, 102, 26%. The CRM that generated the greatest saving were switching to bPImono (38%, withdrawal or replacement of raltegravir (24%, switching tenofovir/emtricitabine for abacavir/lamivudine (13%, and switching to nevirapine (5%. Cost savings with CRM were slightly higher than those achieved with medication paid for by clinical trial sponsors (€80,333/month or through discount arrangements (€76,389/month.Conclusion: Proactively switching antiretroviral therapy in selected treated patients with sustained virological suppression can generate significant cost savings in pharmacy spending in

  14. Unmixing the Mixing Cost: Contributions from Dimensional Relevance and Stimulus-Response Suppression

    Science.gov (United States)

    Mari-Beffa, Paloma; Cooper, Stephen; Houghton, George

    2012-01-01

    When participants repeat the same task in a context in which the task may also switch (a mixed block), performance deteriorates compared to when there is only one task repeating (a pure block). Three experiments were designed to assess how perceptual and motor transitions influenced this mixing cost. Experiment 1 provided three pure block…

  15. Modeling fuel treatment impacts on fire suppression cost savings: A review

    Science.gov (United States)

    Matthew P. Thompson; Nathaniel M. Anderson

    2015-01-01

    High up-front costs and uncertain return on investment make it difficult for land managers to economically justify large-scale fuel treatments, which remove trees and other vegetation to improve conditions for fire control, reduce the likelihood of ignition, or reduce potential damage from wildland fire if it occurs. In the short-term, revenue from harvested forest...

  16. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  17. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  18. Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects

    International Nuclear Information System (INIS)

    Park, Sang Yong; Kim, Jong Wook; Lee, Duk Hee

    2011-01-01

    In order to cope with climate change, the development and deployment of Hydrogen Fuel Cell Vehicles (HFCVs) is becoming more important. In this study, we developed a forecasting model for HFCVs based on the generalized Bass diffusion model and a simulation model using system dynamics. Through the developed model, we could forecast that the saturation of HFCVs in Korea can be moved up 12 years compared with the US. A sensitivity analysis on external variables such as price reduction rates of HFCVs and number of hydrogen refueling stations is also conducted. The results of this study can give insights on the effects of external variables on the market penetration of HFCVs, and the developed model can also be applied to other studies in analyzing the diffusion effects of HFCVs. - Highlights: → A forecasting model for HFCVs was developed using the generalized Bass diffusion model. → A simulation model using system dynamics was also developed. → The empirical study shows that the infrastructure is an important factor to the initial purchase. → The results of this study can promote research related to the diffusion of innovation.

  19. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor—A Solution for Smoothing the Output Power of PV Power Plants

    Science.gov (United States)

    Sukič, Primož; Štumberger, Gorazd

    2017-01-01

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078

  20. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  1. SKU demand forecasting in the presence of promotions

    NARCIS (Netherlands)

    Gür Ali, Ö.; Sayin, S.; Woensel, van T.; Fransoo, J.C.

    2009-01-01

    Promotions and shorter life cycles make grocery sales forecasting more difficult, requiring more complicated models. We identify methods of increasing complexity and data preparation cost yielding increasing improvements in forecasting accuracy, by varying the forecasting technique, the input

  2. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    Science.gov (United States)

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usuallyOFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  3. Forecasts: uncertain, inaccurate and biased?

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Ambrasaite, Inga; Salling, Kim Bang

    2012-01-01

    Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts of cons....... It is recommended that more attention is given to monitoring completed projects so future forecasts can benefit from better data availability through systematic ex-post evaluations, and an example of how to utilize such data in practice is presented.......Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts...... of construction costs, which account for the majority of total project costs. Second are the forecasts of travel time savings, which account for the majority of total project benefits. The latter of these is, inter alia, determined by forecasts of travel demand, which we shall use as a proxy for the forecasting...

  4. Forecasting oilfield economic performance

    International Nuclear Information System (INIS)

    Bradley, M.E.; Wood, A.R.O.

    1994-01-01

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended

  5. Estimating the cost-per-result of a national reflexed Cryptococcal antigenaemia screening program: Forecasting the impact of potential HIV guideline changes and treatment goals.

    Science.gov (United States)

    Cassim, Naseem; Coetzee, Lindi Marie; Schnippel, Kathryn; Glencross, Deborah Kim

    2017-01-01

    During 2016, the National Health Laboratory Service (NHLS) introduced laboratory-based reflexed Cryptococcal antigen (CrAg) screening to detect early Cryptococcal disease in immunosuppressed HIV+ patients with a confirmed CD4 count of 100 cells/μl or less. The aim of this study was to assess cost-per-result of a national screening program across different tiers of laboratory service, with variable daily CrAg test volumes. The impact of potential ART treatment guideline and treatment target changes on CrAg volumes, platform choice and laboratory workflow are considered. CD4 data (with counts per-result was calculated for four scenarios, including the existing service status quo (Scenario-I), and three other settings (as Scenarios II-IV) which were based on information from recent antiretroviral (ART) guidelines, District Health Information System (DHIS) data and UNAIDS 90/90/90 HIV/AIDS treatment targets. Scenario-II forecast CD4 testing offered only to new ART initiates recorded at DHIS. Scenario-III projected all patients notified as HIV+, but not yet on ART (recorded at DHIS) and Scenario-IV forecast CrAg screening in 90% of estimated HIV+ patients across South Africa (also DHIS). Stata was used to assess daily CrAg volumes at the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles across 52 CD4-laboratories. Daily volumes were used to determine technical effort/ operator staff costs (% full time equivalent) and cost-per-result for all scenarios. Daily volumes ranged between 3 and 64 samples for Scenario-I at the 5th and 95th percentile. Similarly, daily volumes ranges of 1-12, 2-45 and 5-100 CrAg-directed samples were noted for Scenario's II, III and IV respectively. A cut-off of 30 CrAg tests per day defined use of either LFA or EIA platform. LFA cost-per-result ranged from $8.24 to $5.44 and EIA cost-per-result between $5.58 and $4.88 across the range of test volumes. The technical effort across scenarios ranged from 3.2-27.6% depending on test volumes and

  6. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  7. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement chain and other organizations; (d) the general public, including onsite and website visitors and other media users. These benefits are respectively related to the knowledge output of scientists; human capital formation; technological spillovers; and direct cultural effects for the general public. Welfare effects for taxpayers can also be estimated by the contingent valuation of the willingness to pay for a pure public good for which there is no specific direct use (i.e., as non-use value). Using a Monte Carlo approach, w...

  8. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  9. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...... as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts...

  10. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  11. Costs of suppressing emotional sound and countereffects of a mindfulness induction: an experimental analog of tinnitus impact.

    Directory of Open Access Journals (Sweden)

    Hugo Hesser

    Full Text Available Tinnitus is the experience of sounds without an appropriate external auditory source. These auditory sensations are intertwined with emotional and attentional processing. Drawing on theories of mental control, we predicted that suppressing an affectively negative sound mimicking the psychoacoustic features of tinnitus would result in decreased persistence in a mentally challenging task (mental arithmetic that required participants to ignore the same sound, but that receiving a mindfulness exercise would reduce this effect. Normal hearing participants (N = 119 were instructed to suppress an affectively negative sound under cognitive load or were given no such instructions. Next, participants received either a mindfulness induction or an attention control task. Finally, all participants worked with mental arithmetic while exposed to the same sound. The length of time participants could persist in the second task served as the dependent variable. As hypothesized, results indicated that an auditory suppression rationale reduced time of persistence relative to no such rationale, and that a mindfulness induction counteracted this detrimental effect. The study may offer new insights into the mechanisms involved in the development of tinnitus interference. Implications are also discussed in the broader context of attention control strategies and the effects of emotional sound on task performance. The ironic processes of mental control may have an analog in the experience of sounds.

  12. Volcanic risk metrics at Mt Ruapehu, New Zealand: some background to a probabilistic eruption forecasting scheme and a cost/benefit analysis at an open conduit volcano

    Science.gov (United States)

    Jolly, Gill; Sandri, Laura; Lindsay, Jan; Scott, Brad; Sherburn, Steve; Jolly, Art; Fournier, Nico; Keys, Harry; Marzocchi, Warner

    2010-05-01

    The Bayesian Event Tree for Eruption Forecasting software (BET_EF) is a probabilistic model based on an event tree scheme that was created specifically to compute long- and short-term probabilities of different outcomes (volcanic unrest, magmatic unrest, eruption, vent location and eruption size) at long-time dormant and routinely monitored volcanoes. It is based on the assumption that upward movements of magma in a closed conduit volcano will produce detectable changes in the monitored parameters at the surface. In this perspective, the goal of BET_EF is to compute probabilities by merging information from geology, models, past data and present monitoring measurements, through a Bayesian inferential method. In the present study, we attempt to apply BET_EF to Mt Ruapehu, a very active and well-monitored volcano exhibiting the typical features of open conduit volcanoes. In such conditions, current monitoring at the surface is not necessarily able to detect short term changes at depth that may occur only seconds to minutes before an eruption. This results in so-called "blue sky eruptions" of Mt Ruapehu (for example in September 2007), that are volcanic eruptions apparently not preceded by any presently detectable signal in the current monitoring. A further complication at Mt Ruapehu arises from the well-developed hydrothermal system and the permanent crater lake sitting on top of the magmatic conduit. Both the hydrothermal system and crater lake may act to mask or change monitoring signals (if present) that magma produces deeper in the edifice. Notwithstanding these potential drawbacks, we think that an attempt to apply BET_EF at Ruapehu is worthwhile, for several reasons. First, with the exception of a few "blue sky" events, monitoring data at Mt Ruapehu can be helpful in forecasting major events, especially if a large amount of magma is intruded into the edifice and becomes available for phreatomagmatic or magmatic eruptions, as for example in 1995-96. Secondly, in

  13. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  14. CEEH's calculation of health costs from air pollution in the Danish Climate Commission's forecast; CEEH's beregning af sundhedsomkostninger (helbredsomkostninger) fra luftforurening i Klimakommissionens fremtidsforloeb. CEEH videnskabelig rapport no. 10

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K.; Ystanes Foeyn, T.H.; Gregg, J.S.; Kaspersen, P.S. (Danmarks Tekniske Univ. Risoe Nationallaboratoriet for Baeredygtig Energi, Roskilde (Denmark)); Brandt, J.; Frohn, L.M. (Aarhus Univ. Institut for Miljoevidenskab, Aarhus (Denmark)); Mathiesen, B.V. (Aalborg Univ., Aalborg (Denmark))

    2011-11-15

    The Centre for Energy, Environment and Health (CEEH) has created a model system to assess the costs due to health effects from air pollution. This report assesses the health effects from the Danish Climate Commission's scenarios and is an example of how the system can be used. Calculations have been made of the health costs caused by energy consumption and production in the Danish Climate Commission's forecasts. The costs of emissions from various sectors differ, as they have different effects on health. The report shows how important it is to address health costs when evaluating and comparing the total costs in various scenarios. If health costs are included in the socio-economic assessments of the climate commission, then the annual cost decreases with approx. 2 billion DKK. To this it should be mentioned that in addition to health effects, there are other externalities (such as effects on the environment and climate) that are not normally included in the socio-economic assessments, which means that the socio-economic costs of switching to cleaner sources of energy is often overestimated. Possible effects of reduced traffic noise by converting to electric vehicles and increased exposure to wind turbine noise is also omitted, although the noise impact of dwellings especially in the cities is believed to have significance for morbidity and thus the socio-economy. (LN).

  15. Soil-plant-relationships and ecological forecast of human internal doses from long-lived radionuclides. Dose 'cost' of the transformation of radionuclides bioavailability

    International Nuclear Information System (INIS)

    Kravets, A.P.; Grodzinsky, D.M.

    1999-01-01

    Soil pathway of radionuclides pollution of agricultural production becomes the main one at the recovery stage of postaccidental period. For this stage dynamics of the human foodstuffs cleaning and rate of internal dose due to consumption are results , of the interaction of three main factors, namely, the rate of the decrease of soil contamination, structure of soil use and transformations of bioavailability of radionuclides. Representation of these ideas in quantitative form, documentation and analysis of the main ecological causes that determine the intensity of the radionuclides mobility in the biological cycle is essential increase the accuracy of the long-term forecast of human dose formation and promote the development of adequate strategies for countermeasures. General formal model and practical method of the ecological forecast of human internal doses has been proposed and used for estimation. Refs. 5 (author)

  16. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kftw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ksny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kbli Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kaoo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kflg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kmyl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kril Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kbil Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. krfd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. ktix Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kcod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kslk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kguc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbff Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kdro Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmce Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ktpa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. klws Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kotm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. khqm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. klal Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kelp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kecg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. khbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kpbf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. konp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. pkwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. ktvf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. khks Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kpsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kgrb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kgmu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. papg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. pamc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. klrd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. patk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kowb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kfxe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. paaq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kaex Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kcrw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. paen Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kast Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kuin Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmht Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kcys Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kflo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. pakn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. pabt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. khdn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kphx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. Robust forecast comparison

    OpenAIRE

    Jin, Sainan; Corradi, Valentina; Swanson, Norman

    2015-01-01

    Forecast accuracy is typically measured in terms of a given loss function. However, as a consequence of the use of misspecified models in multiple model comparisons, relative forecast rankings are loss function dependent. This paper addresses this issue by using a novel criterion for forecast evaluation which is based on the entire distribution of forecast errors. We introduce the concepts of general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority, and we establish a ...

  15. Forecaster Behaviour and Bias in Macroeconomic Forecasts

    OpenAIRE

    Roy Batchelor

    2007-01-01

    This paper documents the presence of systematic bias in the real GDP and inflation forecasts of private sector forecasters in the G7 economies in the years 1990–2005. The data come from the monthly Consensus Economics forecasting service, and bias is measured and tested for significance using parametric fixed effect panel regressions and nonparametric tests on accuracy ranks. We examine patterns across countries and forecasters to establish whether the bias reflects the inefficient use of i...

  16. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch

    KAUST Repository

    Xie, Le; Gu, Yingzhong; Zhu, Xinxin; Genton, Marc G.

    2014-01-01

    forecasts, the overall cost benefits on system dispatch can be quantified. We integrate the improved forecast with an advanced robust look-ahead dispatch framework. This integrated forecast and economic dispatch framework is tested in a modified IEEE RTS 24

  17. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  18. Development of a sales forecasting model for canopy windows

    OpenAIRE

    2014-01-01

    M.Com. (Business Management) Forecasting is an important function used in a wide range of business planning or decision-making situations. The purpose ofthis study was to build a sales forecasting model that would be practical and cost effective, from the various forecasting methods and techniques available. Various forecast models, methods and techniques are outlined in the initial part of this study by the author. The author has outlined some of the fundamentals and limitations that unde...

  19. National Forecast Charts

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. National Forecast Charts

  20. Are Forecast Updates Progressive?

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    2010-01-01

    textabstractMacro-economic forecasts typically involve both a model component, which is replicable, as well as intuition, which is non-replicable. Intuition is expert knowledge possessed by a forecaster. If forecast updates are progressive, forecast updates should become more accurate, on average,

  1. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  2. Worldwide satellite market demand forecast

    Science.gov (United States)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-01-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  3. Flood forecasting and uncertainty of precipitation forecasts

    International Nuclear Information System (INIS)

    Kobold, Mira; Suselj, Kay

    2004-01-01

    The timely and accurate flood forecasting is essential for the reliable flood warning. The effectiveness of flood warning is dependent on the forecast accuracy of certain physical parameters, such as the peak magnitude of the flood, its timing, location and duration. The conceptual rainfall - runoff models enable the estimation of these parameters and lead to useful operational forecasts. The accurate rainfall is the most important input into hydrological models. The input for the rainfall can be real time rain-gauges data, or weather radar data, or meteorological forecasted precipitation. The torrential nature of streams and fast runoff are characteristic for the most of the Slovenian rivers. Extensive damage is caused almost every year- by rainstorms affecting different regions of Slovenia' The lag time between rainfall and runoff is very short for Slovenian territory and on-line data are used only for now casting. Forecasted precipitations are necessary for hydrological forecast for some days ahead. ECMWF (European Centre for Medium-Range Weather Forecasts) gives general forecast for several days ahead while more detailed precipitation data with limited area ALADIN/Sl model are available for two days ahead. There is a certain degree of uncertainty using such precipitation forecasts based on meteorological models. The variability of precipitation is very high in Slovenia and the uncertainty of ECMWF predicted precipitation is very large for Slovenian territory. ECMWF model can predict precipitation events correctly, but underestimates amount of precipitation in general The average underestimation is about 60% for Slovenian region. The predictions of limited area ALADIN/Si model up to; 48 hours ahead show greater applicability in hydrological forecasting. The hydrological models are sensitive to precipitation input. The deviation of runoff is much bigger than the rainfall deviation. Runoff to rainfall error fraction is about 1.6. If spatial and time distribution

  4. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  5. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  6. Robust Approaches to Forecasting

    OpenAIRE

    Jennifer Castle; David Hendry; Michael P. Clements

    2014-01-01

    We investigate alternative robust approaches to forecasting, using a new class of robust devices, contrasted with equilibrium correction models. Their forecasting properties are derived facing a range of likely empirical problems at the forecast origin, including measurement errors, implulses, omitted variables, unanticipated location shifts and incorrectly included variables that experience a shift. We derive the resulting forecast biases and error variances, and indicate when the methods ar...

  7. Inflation Forecast Contracts

    OpenAIRE

    Gersbach, Hans; Hahn, Volker

    2012-01-01

    We introduce a new type of incentive contract for central bankers: inflation forecast contracts, which make central bankers’ remunerations contingent on the precision of their inflation forecasts. We show that such contracts enable central bankers to influence inflation expectations more effectively, thus facilitating more successful stabilization of current inflation. Inflation forecast contracts improve the accuracy of inflation forecasts, but have adverse consequences for output. On balanc...

  8. The ``Grey System`` theory and its application to target cost forecasting at Chinese collieries; Die Theorie des grauen Systems und ihre Anwendung bei der Prognose der Zielkosten des gesamten Bergwerks

    Energy Technology Data Exchange (ETDEWEB)

    Ding Rijia; Yi Maosheng; Wang Shiyuan

    1997-09-01

    A production-cost forecasting system has been developed for use at Chinese collieries. Known as the `Grey System`, the theory and model-based process distinguishes between `white` information, which is human controlled, `black` information, which cannot be controlled by human actions, and `grey information`, which forms the majority component and comprises information which can only be partly or not completely collected. A grey system is therefore one in which the necessary information is absent. Future developments in the system can be forecast by analysing the regularity of the time-series values for the technical and economic characteristics of previous periods. The system employs the GM (1.1) prognostic model, which is a `grey` systematic forecasting model with one variable and one linear differential equation. It can be applied to systems which are affected simultaneously be several factors, with no overriding main factor, or in which no marked regularity exists between the controlling factors. The mathematical model constructed on the basis of the `Grey theory` is designed for large-scale economic systems which are affected by several control factors. A bigger system makes for a greater randomness element, which in turn lessens the influence of subjective interference factors and increases the accuracy of the prognosis. (orig./MSK) [Deutsch] Mit Hilfe der Theorie und von Modellen des `grauen Systems` wird eine Prognose der Produktionskosten von chinesischen Bergwerken erstellt. Die Theorie des `grauen Systems` unterscheidet zwischen den von den Menschen beherrschbaren `weissen` Informationen, den von den Menschen nicht beherrschbaren `schwarzen` Informationen und der ueberwiegenden Anzahl der Informationen, die nur teilweise oder nicht vollstaendig erfasst werden koennen und als `graue` Informationen bezeichnet werden. Ein graues System ist folglich ein System, in dem es an notwendigen Informationen fehlt. Die zukuenftige Entwicklung des Systems kann dadurch

  9. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  10. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Containing 12 new chapters, this second edition contains offers increased-coverage of weather correction and normalization of forecasts, anticipation of redevelopment, determining the validity of announced developments, and minimizing risk from over- or under-planning. It provides specific examples and detailed explanations of key points to consider for both standard and unusual utility forecasting situations, information on new algorithms and concepts in forecasting, a review of forecasting pitfalls and mistakes, case studies depicting challenging forecast environments, and load models illustrating various types of demand.

  11. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  12. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  13. Review and forecast: Making hay

    International Nuclear Information System (INIS)

    Curran, R.

    1997-01-01

    Oil and natural gas industry prospects for 1997 were reviewed. By way of providing the foundation for a very favorable forecast, a wide range of indicators of a banner year in 1996 were assembled and provided in tabular form. Some 28 tables of statistical data provide insight into the reasons for an optimistic forecast for 1997. Statistics on oil and gas production, industry expenditures, exploratory well completions, costs per barrel of oil, estimates of supply and demand for petroleum products, gas liquid production, petrochemical and fertilizer production, sulfur production, drilling statistics, natural gas sales, gross production revenues and land sales, all attest to a record year in 1996, and provide reasons for a rosy outlook for 1997. 28 tabs

  14. Cost Behavior

    DEFF Research Database (Denmark)

    Hoffmann, Kira

    The objective of this dissertation is to investigate determinants and consequences of asymmetric cost behavior. Asymmetric cost behavior arises if the change in costs is different for increases in activity compared to equivalent decreases in activity. In this case, costs are termed “sticky......” if the change is less when activity falls than when activity rises, whereas costs are termed “anti-sticky” if the change is more when activity falls than when activity rises. Understanding such cost behavior is especially relevant for decision-makers and financial analysts that rely on accurate cost information...... to facilitate resource planning and earnings forecasting. As such, this dissertation relates to the topic of firm profitability and the interpretation of cost variability. The dissertation consists of three parts that are written in the form of separate academic papers. The following section briefly summarizes...

  15. Designing an advanced available-to-promise mechanism compatible with the make-to-forecast production systems through integrating inventory allocation and job shop scheduling with due dates and weighted earliness/tardiness cost

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-06-01

    Full Text Available In the competitive business world, applying a reliable and powerful mechanism to support decision makers in manufacturing companies and helping them save time by considering varieties of effective factors is an inevitable issue. Advanced Available-to-Promise is a perfect tool to design and perform such a mechanism. In this study, this mechanism which is compatible with the Make-to-Forecast production systems is presented. The ability to distinguish between batch mode and real-time mode advanced available-to-promise is one of the unique superiorities of the proposed model. We also try to strengthen this mechanism by integrating the inventory allocation and job shop scheduling by considering due dates and weighted earliness/tardiness cost that leads to more precise decisions. A mixed integer programming (MIP model and a heuristic algorithm according to its disability to solve large size problems are presented. The designed experiments and the obtained results have proved the efficiency of the proposed heuristic method.

  16. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  17. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  18. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    This paper presents results from the first statistically significant study of traffic forecasts in transportation infrastructure projects. The sample used is the largest of its kind, covering 210 projects in 14 nations worth US$58 billion. The study shows with very high statistical significance...... that forecasters generally do a poor job of estimating the demand for transportation infrastructure projects. The result is substantial downside financial and economic risk. Forecasts have not become more accurate over the 30-year period studied. If techniques and skills for arriving at accurate demand forecasts...... forecasting. Highly inaccurate traffic forecasts combined with large standard deviations translate into large financial and economic risks. But such risks are typically ignored or downplayed by planners and decision-makers, to the detriment of social and economic welfare. The paper presents the data...

  19. FORECASTING MODELS IN MANAGEMENT

    OpenAIRE

    Sindelar, Jiri

    2008-01-01

    This article deals with the problems of forecasting models. First part of the article is dedicated to definition of the relevant areas (vertical and horizontal pillar of definition) and then the forecasting model itself is defined; as article presents theoretical background for further primary research, this definition is crucial. Finally the position of forecasting models within the management system is identified. The paper is a part of the outputs of FEM CULS grant no. 1312/11/3121.

  20. Forecasting in Planning

    OpenAIRE

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively. Quantitative forecasting is illustrated with a brief overview of time series methods. Both qualitative and quantitative methods are illustrated by an example. The role and relative importance of forec...

  1. The strategy of professional forecasting

    DEFF Research Database (Denmark)

    Ottaviani, Marco; Sørensen, Peter Norman

    2006-01-01

    We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters endeavor to convince the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts...... and the realized state. If the market expects forecasters to report their posterior expectations honestly, then forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded. The second theory posits that forecasters compete in a forecasting...... contest with pre-specified rules. In a winner-take-all contest, equilibrium forecasts are excessively differentiated...

  2. Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives

    Science.gov (United States)

    Sanabria, Orlando

    Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.

  3. Wind power forecasting accuracy and uncertainty in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Miettinen, J.; Sillanpaeae, S.

    2013-04-15

    Wind power cannot be dispatched so the production levels need to be forecasted for electricity market trading. Lower prediction errors mean lower regulation balancing costs, since relatively less energy needs to go through balance settlement. From the power system operator point of view, wind power forecast errors will impact the system net imbalances when the share of wind power increases, and more accurate forecasts mean less regulating capacity will be activated from the real time Regulating Power Market. In this publication short term forecasting of wind power is studied mainly from a wind power producer point of view. The forecast errors and imbalance costs from the day-ahead Nordic electricity markets are calculated based on real data from distributed wind power plants. Improvements to forecasting accuracy are presented using several wind forecast providers, and measures for uncertainty of the forecast are presented. Aggregation of sites lowers relative share of prediction errors considerably, up to 60%. The balancing costs were also reduced up to 60%, from 3 euro/MWh for one site to 1-1.4 euro/MWh to aggregate 24 sites. Pooling wind power production for balance settlement will be very beneficial, and larger producers who can have sites from larger geographical area will benefit in lower imbalance costs. The aggregation benefits were already significant for smaller areas, resulting in 30-40% decrease in forecast errors and 13-36% decrease in unit balancing costs, depending on the year. The resulting costs are strongly dependent on Regulating Market prices that determine the prices for the imbalances. Similar level of forecast errors resulted in 40% higher imbalance costs for 2012 compared with 2011. Combining wind forecasts from different Numerical Weather Prediction providers was studied with different combination methods for 6 sites. Averaging different providers' forecasts will lower the forecast errors by 6% for day-ahead purposes. When combining

  4. Photovoltaic energy cost limit

    International Nuclear Information System (INIS)

    Coiante, D.

    1992-01-01

    Referring to a photovoltaic system for grid connected applications, a parametric expression of kWh cost is derived. The limit of kWh cost is carried out extrapolating the values of cost components to their lowest figure. The reliability of the forecast is checked by disaggregating kWh cost in direct and indirect costs and by discussing the possible cost reduction of each component

  5. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  6. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  7. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    Directory of Open Access Journals (Sweden)

    Christian Pierdzioch

    2012-11-01

    Full Text Available We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-herding of forecasters. Forecasts are consistent with herding (anti-herding of forecasters if forecasts are biased towards (away from the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time.

  8. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Ruelke

    2013-01-01

    We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-)herding of forecasters. Forecasts are consistent with herding (anti-herding) of forecasters if forecasts are biased towards (away from) t......) the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time....

  9. Analiza weibull a datelor din garanții de la un producător de dispozitive mecatronice pentru a face previziuni în privința reclamațiilor și a costurilor/A weibull analysis of the field data from a mechatronics devices manufacturer in order to forecast the warranty claims and the costs

    Directory of Open Access Journals (Sweden)

    Ion Cristian BRAGA

    2016-12-01

    Full Text Available Based on the ISO TS 16949 requirements, the automotive suppliers shall monitor the performance of the realization processes, in order to demonstrate compliance with customer requirements. And these processes are monitored with the performance indicators which shall be based on objective data and include the customer disruption include the field return. This paper presents the analysis of the field data and computes the information to be used at forecast of the warranty claims and the associated cost.

  10. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  11. Forecasting in Planning

    NARCIS (Netherlands)

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively.

  12. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  13. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  14. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  15. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    Science.gov (United States)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  16. monthly energy consumption forecasting using wavelet analysis

    African Journals Online (AJOL)

    User

    ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...

  17. How much are you prepared to PAY for a forecast?

    Science.gov (United States)

    Arnal, Louise; Coughlan, Erin; Ramos, Maria-Helena; Pappenberger, Florian; Wetterhall, Fredrik; Bachofen, Carina; van Andel, Schalk Jan

    2015-04-01

    Probabilistic hydro-meteorological forecasts are a crucial element of the decision-making chain in the field of flood prevention. The operational use of probabilistic forecasts is increasingly promoted through the development of new novel state-of-the-art forecast methods and numerical skill is continuously increasing. However, the value of such forecasts for flood early-warning systems is a topic of diverging opinions. Indeed, the word value, when applied to flood forecasting, is multifaceted. It refers, not only to the raw cost of acquiring and maintaining a probabilistic forecasting system (in terms of human and financial resources, data volume and computational time), but also and most importantly perhaps, to the use of such products. This game aims at investigating this point. It is a willingness to pay game, embedded in a risk-based decision-making experiment. Based on a ``Red Cross/Red Crescent, Climate Centre'' game, it is a contribution to the international Hydrologic Ensemble Prediction Experiment (HEPEX). A limited number of probabilistic forecasts will be auctioned to the participants; the price of these forecasts being market driven. All participants (irrespective of having bought or not a forecast set) will then be taken through a decision-making process to issue warnings for extreme rainfall. This game will promote discussions around the topic of the value of forecasts for decision-making in the field of flood prevention.

  18. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  19. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  20. Scour Forecasting for Offshore Wind Parks

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    In an effort to minimize the costs of offshore wind parks, the present research deals with optimizing a certain aspect of the support structure, namely the approach to scour. Scour is the phenomenon of seabed changes in the vicinity of the support structure that arises when the support structure......, scour forecasts facilitate the comparison between a scour design based on either deployment of scour-protection or enhanced structural design. The broad goal is to develop a method that produces accurate scour forecasts for offshore wind parks. The present research investigates more specifically which...

  1. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  2. About the National Forecast Chart

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. The National Forecast Charts

  3. Marine Point Forecasts

    Science.gov (United States)

    will link to the zone forecast and then allow further zooming to the point of interest whereas on the Honolulu, HI Chicago, IL Northern Indiana, IN Lake Charles, LA New Orleans, LA Boston, MA Caribou, ME

  4. Socioeconomic Forecasting : [Technical Summary

    Science.gov (United States)

    2012-01-01

    Because the traffic forecasts produced by the Indiana : Statewide Travel Demand Model (ISTDM) are driven by : the demographic and socioeconomic inputs to the model, : particular attention must be given to obtaining the most : accurate demographic and...

  5. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  6. Inflow forecasting at BPA

    Energy Technology Data Exchange (ETDEWEB)

    McManamon, A. [Bonneville Power Administration, Portland, OR (United States)

    2007-07-01

    The Columbia River Power System operates with consideration for flood control, endangered species, navigation, irrigation, water supply, recreation, other fish and wildlife concerns and power production. The Bonneville Power Association (BPA) located in Portland, Oregon is responsible for 35-40 per cent of the power consumed within the region. This presentation discussed inflow power concerns at BPA. The presentation illustrated elevational relief of projects; annual and daily variability; the hydrologic cycle; national river service weather forecasting service (NRSWFS); components of NRSWFS; and hydrologic forecast locations. Project operations and inventory were included along with a comparison of the 71-year average unregulated flow with regulated flow at the Dalles. Consistency between short-term and long-term forecasts and long-term streamflow forecasts were also illustrated in graphical format. The presentation also discussed the issue of reducing model and parameter uncertainty; reducing initial conditions uncertainty; snow updating; and reducing meteorological uncertainty. tabs., figs.

  7. CCAA seasonal forecasting

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrating meteorological and indigenous knowledge-based seasonal climate forecasts in ..... Explanation is based on spiritual and social values. Taught by .... that provided medicine and food became the subject of strict rules and practices ...

  8. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  9. Conditional Probabilistic Population Forecasting

    OpenAIRE

    Sanderson, W.C.; Scherbov, S.; O'Neill, B.C.; Lutz, W.

    2003-01-01

    Since policy makers often prefer to think in terms of scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy makers it allows them to answer "what if"...

  10. Conditional probabilistic population forecasting

    OpenAIRE

    Sanderson, Warren; Scherbov, Sergei; O'Neill, Brian; Lutz, Wolfgang

    2003-01-01

    Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because it allows them...

  11. Conditional Probabilistic Population Forecasting

    OpenAIRE

    Sanderson, Warren C.; Scherbov, Sergei; O'Neill, Brian C.; Lutz, Wolfgang

    2004-01-01

    Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because...

  12. EU pharmaceutical expenditure forecast

    OpenAIRE

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives: With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ ph...

  13. Problems of Forecast

    OpenAIRE

    Kucharavy , Dmitry; De Guio , Roland

    2005-01-01

    International audience; The ability to foresee future technology is a key task of Innovative Design. The paper focuses on the obstacles to reliable prediction of technological evolution for the purpose of Innovative Design. First, a brief analysis of problems for existing forecasting methods is presented. The causes for the complexity of technology prediction are discussed in the context of reduction of the forecast errors. Second, using a contradiction analysis, a set of problems related to ...

  14. A mathematical model to forecast uranium production

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.

    1987-01-01

    The uranium production forecasting program described in this paper projects production from reasonably assured, estimated additional and speculative resources in the cost categories of less than $130/kg U. Originally designed to handle South African production, it has been expanded and redimensioned using available published information to forecast production for countries of the Western World. The program forecasts production from up to 400 plants over a period of fifty years and has built-in production models derived from documented historical data of the more important uranium provinces. It is particularly suitable to assess production capabilities on a national and global scale where variations in outputs for the individual plants tend to even out. The program is aimed at putting the uranium potential of any one country into a realistic perspective, and it could thus be useful for planning purposes and marketing strategies

  15. Valuing hydrological forecasts for a pumped storage assisted hydro facility

    Science.gov (United States)

    Zhao, Guangzhi; Davison, Matt

    2009-07-01

    SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.

  16. A fuzzy inference model for short-term load forecasting

    International Nuclear Information System (INIS)

    Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad

    2009-01-01

    This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes

  17. Research on energy supply, demand and economy forecasting in Japan

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Kamezaki, Hiroshi; Yuyama, Tomonori; Suzuki, Atsushi

    1999-10-01

    This project aims to do research on forecasts of energy demand structure and electricity generation cost in each power plant in Japan in the 21st century, considering constructing successful FBR scenario. During the process of doing research on forecasts of energy demand structure in Japan, documents published from organizations in inside and outside of Japan were collected. These documents include prospects of economic growth rate, forecasts of amount for energy supply and demand, the maximum amount of introducing new energy resources, CO2 regulation, and evaluation of energy best mixture. Organizations in Japan such as Economic Council and Japan Energy Economic Research Institute have provided long-term forecasts until the early 21st century. Meanwhile, organizations overseas have provided forecasts of economic structure, and demand and supply for energy in OECD and East Asia including Japan. In connection with forecasts of electricity generation cost in each power plant, views on the ultimate reserves and cost of resources are reviewed in this report. According to some views on oil reserves, making assumptions based on reserves/production ratio, the maximum length of the time that oil reserves will last is 150 years. In addition, this report provides summaries of cost and potential role of various resources, including solar energy and wind energy; and views on waste, safety, energy security-related externality cost, and the price of transferring CO2 emission right. (author)

  18. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch

    KAUST Repository

    Xie, Le

    2014-01-01

    We propose a novel statistical wind power forecast framework, which leverages the spatio-temporal correlation in wind speed and direction data among geographically dispersed wind farms. Critical assessment of the performance of spatio-temporal wind power forecast is performed using realistic wind farm data from West Texas. It is shown that spatio-temporal wind forecast models are numerically efficient approaches to improving forecast quality. By reducing uncertainties in near-term wind power forecasts, the overall cost benefits on system dispatch can be quantified. We integrate the improved forecast with an advanced robust look-ahead dispatch framework. This integrated forecast and economic dispatch framework is tested in a modified IEEE RTS 24-bus system. Numerical simulation suggests that the overall generation cost can be reduced by up to 6% using a robust look-ahead dispatch coupled with spatio-temporal wind forecast as compared with persistent wind forecast models. © 2013 IEEE.

  19. Venture capital: States suffer as suppression expenses climb

    Science.gov (United States)

    Krista Gebert

    2008-01-01

    The high cost of suppressing wildfires is taking a toll on federal and state agencies alike. Large wildland fires are complex, costly events influenced by a vast array of physical, climatic, and social factors. During five of the last eight years, the Forest Services' wildfire suppression expenditures have topped $1 billion, and total federal wildland suppression...

  20. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  1. Forecast communication through the newspaper Part 2: perceptions of uncertainty

    Science.gov (United States)

    Harris, Andrew J. L.

    2015-04-01

    In the first part of this review, I defined the media filter and how it can operate to frame and blame the forecaster for losses incurred during an environmental disaster. In this second part, I explore the meaning and role of uncertainty when a forecast, and its basis, is communicated through the response and decision-making chain to the newspaper, especially during a rapidly evolving natural disaster which has far-reaching business, political, and societal impacts. Within the media-based communication system, there remains a fundamental disconnect of the definition of uncertainty and the interpretation of the delivered forecast between various stakeholders. The definition and use of uncertainty differs especially between scientific, media, business, and political stakeholders. This is a serious problem for the scientific community when delivering forecasts to the public though the press. As reviewed in Part 1, the media filter can result in a negative frame, which itself is a result of bias, slant, spin, and agenda setting introduced during passage of the forecast and its uncertainty through the media filter. The result is invariably one of anger and fury, which causes loss of credibility and blaming of the forecaster. Generation of a negative frame can be aided by opacity of the decision-making process that the forecast is used to support. The impact of the forecast will be determined during passage through the decision-making chain where the precautionary principle and cost-benefit analysis, for example, will likely be applied. Choice of forecast delivery format, vehicle of communication, syntax of delivery, and lack of follow-up measures can further contribute to causing the forecast and its role to be misrepresented. Follow-up measures to negative frames may include appropriately worded press releases and conferences that target forecast misrepresentation or misinterpretation in an attempt to swing the slant back in favor of the forecaster. Review of

  2. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  3. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    When wind speed exceeds a certain value, wind turbines shut-down in order to protect their structure. This leads to sudden wind plants shut down and to new challenges concerning the secure operation of the pan-European electric system with future large scale offshore wind power. This task aims...... stopped, completely or partially, producing due to extreme wind speeds. Wind speed and power measurements from those events are presented and compared to the forecast available at Energinet.dk. The analysis looked at wind speed and wind power forecast. The main conclusion of the analysis is that the wind...... to consider it an EWP) and that the available wind speed forecasts are given as a mean wind speed over a rather large area. At wind power level, the analysis shows that prediction of accurate production levels from a wind farm experiencing EWP is rather poor. This is partially because the power curve...

  4. Financial Analysts’ Forecasts

    DEFF Research Database (Denmark)

    Stæhr, Simone

    . The primary focus is on financial analysts in the task of conducting earnings forecasts while a secondary focus is on investors’ abilities to interpret and make use of these forecasts. Simply put, financial analysts can be seen as information intermediators receiving inputs to their analyses from firm...... in the decision making and the magnitude of these constraints does sometimes vary with personal traits. Therefore, to the extent that financial analysts are subjects to behavioral biases their outputs to the investors are likely to be biased by their interpretation of information. Because investors need accuracy...... management and providing outputs to the investors. Amongst various outputs from the analysts are forecasts of earnings. According to decision theories mostly from the literature in psychology all humans are affected by cognitive constraints to some degree. These constraints may lead to unintentional biases...

  5. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  6. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  7. Spatial load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Engel, M.V.; Buri, M.J.

    1995-04-01

    The reliability, efficiency, and economy of a power delivery system depend mainly on how well its substations, transmission lines, and distribution feeders are located within the utility service area, and how well their capacities match power needs in their respective localities. Often, utility planners are forced to commit to sites, rights of way, and equipment capacities year in advance. A necessary element of effective expansion planning is a forecast of where and how much demand must be served by the future T and D system. This article reports that a three-stage method forecasts with accuracy and detail, allowing meaningful determination of sties and sizes for future substation, transmission, and distribution facilities.

  8. Gas deliverability forecasting - why bother?

    International Nuclear Information System (INIS)

    Trick, M.

    1996-01-01

    According to the author the answer to the question is an unequivocal 'yes' because gas production forecasting is extremely useful for the management and development of a gas field. To model a gas field, one must take into account reservoir performance, sandface inflow performance, wellbore pressure losses, gathering system pressure losses, and field facility performance. The integration of all these factors in a single computer-based model that incorporates proven technology will facilitate the evaluation of various development strategies. A good computer model can help to predict the most cost effective improvement methods, determine economic viability, estimate how much gas is available, evaluate whether drilling wells or adding compression will produce the most reserves, determine optimum placement of compression, evaluate changes to the gathering system, and determine if production from existing wells can be increased by wellbore modifications

  9. Forecasting Housing Approvals in Australia: Do Forecasters Herd?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    Price trends in housing markets may reflect herding of market participants. A natural question is whether such herding, to the extent that it occurred, reflects herding in forecasts of professional forecasters. Using more than 6,000 forecasts of housing approvals for Australia, we did not find...

  10. Transport project evaluation: feasibility risk assessment and scenario forecasting

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2017-01-01

    This paper presents a new approach to transport project assessment in terms of feasibility risk assessment and reference class forecasting. Conventionally, transport project assessment is based upon a Cost-Benefit Analysis (CBA) where evaluation criteria such as Benefit Cost Ratios (BCR...... on the preliminary construction cost estimates. Hereafter, a quantitative risk analysis is provided making use of Monte Carlo simulation. This approach facilitates random input parameters based upon reference class forecasting, hence, a parameter data fit has been performed in order to obtain validated probability...... Scenario Forecasting (RSF) frame. The RSF is anchored in the cost-benefit analysis; thus, it provides decision-makers with a quantitative mean of assessing the transport infrastructure project. First, the RSF method introduces uncertainties within the CBA by applying Optimism Bias uplifts...

  11. Medium-term load forecasting and wholesale transaction profitability

    International Nuclear Information System (INIS)

    Selker, F.K.; Wroblewski, W.R.

    1996-01-01

    The volume of wholesale transactions quoted at firm prices is increasing. The cost, and thus profitability, of serving these contracts strongly depends upon native load during the time of delivery. However, transactions extend beyond load forecasts based on weather information, and long-term resource planning forecasts of load peaks and energy provide inadequate detail. To address this need, Decision Focus Inc. (DFI) and Commonwealth Edison (ComEd) developed a probabilistic, medium-term load forecasting capability. In this paper the authors use a hypothetical utility to explore the impact of uncertain medium-term loads on transaction profitability

  12. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  13. Are demand forecasting techniques applicable to libraries?

    OpenAIRE

    Sridhar, M. S.

    1984-01-01

    Examines the nature and limitations of demand forecasting, discuses plausible methods of forecasting demand for information, suggests some useful hints for demand forecasting and concludes by emphasizing unified approach to demand forecasting.

  14. A Comparison Study of Return Ratio-Based Academic Enrollment Forecasting Models. Professional File. Article 129, Spring 2013

    Science.gov (United States)

    Zan, Xinxing Anna; Yoon, Sang Won; Khasawneh, Mohammad; Srihari, Krishnaswami

    2013-01-01

    In an effort to develop a low-cost and user-friendly forecasting model to minimize forecasting error, we have applied average and exponentially weighted return ratios to project undergraduate student enrollment. We tested the proposed forecasting models with different sets of historical enrollment data, such as university-, school-, and…

  15. Forecasting of superconducting compounds

    International Nuclear Information System (INIS)

    Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.

    1981-01-01

    In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning

  16. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  17. Climate Forecast System

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Web portal to all Federal, state and local government Web resources and services. The NCEP Climate when using the CFS Reanalysis (CFSR) data. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate

  18. Foresight and Forecasts

    DEFF Research Database (Denmark)

    Kilbourn, Kyle; Bay, Marie Brøndum

    In predicting areas of growth, public innovation projects may rely on optimistic visions of technology still in development as a way of ensuring novelty for funding. This paper explores what happens when forecasts of robotic technology meets the practice of sterile supply in a preliminary stage...

  19. Hydrology and flow forecasting

    NARCIS (Netherlands)

    Vrijling, J.K.; Kwadijk, J.; Van Duivendijk, J.; Van Gelder, P.; Pang, H.; Rao, S.Q.; Wang, G.Q.; Huang, X.Q.

    2002-01-01

    We have studied and applied the statistic model (i.e. MMC) and hydrological models to Upper Yellow River. This report introduces the results and some conclusions from the model. The three models, MMC, MWBM and NAM, have be applied in the research area. The forecasted discharge by the three models

  20. NWS Marine Forecast Areas

    Science.gov (United States)

    of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA NWS Marine Forecast Areas

  1. The Latest Forecast.

    Science.gov (United States)

    Laurence, David

    2002-01-01

    Discusses the "latest forecast" for the future of English departments. Addresses departmental and institutional staffing practices, employment opportunities for PhDs, the acceleration of change in the institution, and the general state of the study and teaching of English. (RS)

  2. Ecological forecasts: An emerging imperative

    Science.gov (United States)

    James S. Clark; Steven R. Carpenter; Mary Barber; Scott Collins; Andy Dobson; Jonathan A. Foley; David M. Lodge; Mercedes Pascual; Roger Pielke; William Pizer; Cathy Pringle; Walter V. Reid; Kenneth A. Rose; Osvaldo Sala; William H. Schlesinger; Diana H. Wall; David Wear

    2001-01-01

    Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts...

  3. Air Pollution Forecasts: An Overview

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  4. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  5. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  6. Storm Prediction Center Forecast Products

    Science.gov (United States)

    select the go button to submit request Local forecast by "City, St" or "ZIP" City, St Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm. Events SPC Publications SPC services. Forecast Products Current Weather Watches This is the current graphic showing any severe

  7. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  8. Optimization of the Costs and the Safety of Maritime Transport by Routing: The use of Currents Forecast in the Routing of Racing Sail Boats as a Prototype of Rout Optimization for Trading Ships

    Science.gov (United States)

    Theunynck, Denis; Peze, Thierry; Toumazou, Vincent; Zunquin, Gauthier; Cohen, Olivier; Monges, Arnaud

    2005-03-01

    It is interesting to see whether the model of routing designed for races and great Navy operations could be transferred to commercial navigation and if so, within which framework.Sail boat routing conquered its letters of nobility during great races like the « Route du Rhum » or the transatlantic race « Jacques Vabre ». It is the ultimate stage of the step begun by the Navy at the time of great operations, like D-day (Overlord )June 6, 1944, in Normandy1.Routing is, from the beginning, mainly based on statistical knowledge and weather forecast, but with the recent availability of reliable currents forecast, sail boats routers and/or skippers now have to learn how to use both winds and currents to obtain the best performance, that is to travel between two points in the shortest time possible in acceptable security conditions.Are the currents forecast only useful to racing sail boat ? Of course not, they are a great help to fisherman for whom the knowledge of currents is also the knowledge of sea temperature who indicates the probability of fish presence. They are also used in offshore work to predict the hardness of the sea during operation.A less developed field of application is the route optimization of trading ships. The idea is to optimize the use of currents to increase the relative speed of ships with no augmentation of fuel expense. This new field will require that currents forecasters learn about the specific needs of another type of clients. There is also a need of teaching because the future customers will have to learn how to use the information they will get.At this point, the introduction of the use of currents forecast in racing sail boats routing is only the first step. It is of great interest because it can rely on a high knowledge in routing.The main difference is of course that the wind direction and its force are of greater importance to a sail boat that they are for a trading ship for whom the point of interest will be the fuel consumption

  9. Probabilistic Space Weather Forecasting: a Bayesian Perspective

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.; Borovsky, J.; Care', A.

    2017-12-01

    Most of the Space Weather forecasts, both at operational and research level, are not probabilistic in nature. Unfortunately, a prediction that does not provide a confidence level is not very useful in a decision-making scenario. Nowadays, forecast models range from purely data-driven, machine learning algorithms, to physics-based approximation of first-principle equations (and everything that sits in between). Uncertainties pervade all such models, at every level: from the raw data to finite-precision implementation of numerical methods. The most rigorous way of quantifying the propagation of uncertainties is by embracing a Bayesian probabilistic approach. One of the simplest and most robust machine learning technique in the Bayesian framework is Gaussian Process regression and classification. Here, we present the application of Gaussian Processes to the problems of the DST geomagnetic index forecast, the solar wind type classification, and the estimation of diffusion parameters in radiation belt modeling. In each of these very diverse problems, the GP approach rigorously provide forecasts in the form of predictive distributions. In turn, these distributions can be used as input for ensemble simulations in order to quantify the amplification of uncertainties. We show that we have achieved excellent results in all of the standard metrics to evaluate our models, with very modest computational cost.

  10. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  11. Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input

    Science.gov (United States)

    Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko

    2011-09-01

    In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.

  12. How to judge the quality and value of weather forecast products

    Science.gov (United States)

    Thornes, John E.; Stephenson, David B.

    2001-09-01

    In order to decide whether or not a weather service supplier is giving good value for money we need to monitor the quality of the forecasts and the use that is made of the forecasts to estimate their value. A number of verification statistics are examined to measure the quality of forecasts - including Miss Rate, False Alarm Rate, the Peirce Skill Score and the Odds Ratio Skill Score - and a means of testing the significance of these values is presented. In order to assess the economic value of the forecasts a value index is suggested that takes into account the cost-loss ratio and forecast errors. It is suggested that a combination of these quality and value statistics could be used by weather forecast customers to choose the best forecast provider and to set limits for performance related contracts.

  13. Radiation effluent suppression system

    International Nuclear Information System (INIS)

    Watanabe, Atsushi.

    1992-01-01

    In a radiation release suppression system upon accident, an electromotive valve, a pneumatic operation valve or a manual operation valve is disposed to gas ventilation pipelines which are extended from both of a dry well and a wet well of a reactor container to a stuck. In addition, a combination filter of a metal fiber filter made of stainless steel etc. and an activated carbon fiber filter is disposed in the midway of pipelines in a reactor building. With such a constitution, the inside of the container can be depressurized (prevention of ruptures) and the amount of radioactive substances released to circumstances is remarkably suppressed by the effect of radioactive substance capturing effect of the metal fiber filter made of stainless steel etc. disposed in the vent pipe in the container and a radioactive substance capturing effect by the combination filter of the metal fiber filter made of stainless steel, etc. and the activated carbon fiber filter disposed in the gas ventilation pipelines even upon occurrence of an accident exceeding design basis. Systems can be simplified and minimized, and cost down can also be attained. (N.H.)

  14. Reference Scenario Forecasting: A New Approach to Transport Project Assessment

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen; Skougaard, Britt Zoëga

    2010-01-01

    This paper presents a new approach to transport project assessment in terms of feasibility risk assessment and reference class forecasting. Normally, transport project assessment is based upon a cost-benefit approach where evaluation criteria such as net present values are obtained. Recent research...... construction cost estimates. Hereafter, a quantitative risk analysis is provided making use of Monte Carlo simulation. This stochastic approach facilitates random input parameters based upon reference class forecasting, hence, a parameter data fit has been performed in order to obtain validated probability...... forecasting (RSF) frame. The RSF is anchored in the cost-benefit analysis (CBA), thus, it provides decision-makers with a quantitative mean of assessing the transport infrastructure project. First, the RSF method introduces uncertainties within the CBA by applying Optimism Bias uplifts on the preliminary...

  15. Economic evaluation of short-term wind power forecast in ERCOT. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D.; Hodge, Bri-Mathias; Brinkman, Greg; Ela, Erik; Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Banunarayanan, Venkat; Nasir, Saleh [ICF International, Fairfax, VA (United States); Freedman, Jeff [AWS Truepower, Albany, NY (United States)

    2012-07-01

    A number of wind energy integration studies have investigated the monetary value of using day-ahead wind power forecasts for grid operation decisions. Historically, these studies have shown that large cost savings could be gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter term (0- to 6-h ahead) wind power forecasts. In 2010, the Department of Energy and the National Oceanic and Atmospheric Administration partnered to form the Wind Forecasting Improvement Project (WFIP) to fund improvements in short-term wind forecasts and determine the economic value of these improvements to grid operators. In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined and the economic results of a production cost model simulation are analyzed. (orig.)

  16. Forecasting military expenditure

    Directory of Open Access Journals (Sweden)

    Tobias Böhmelt

    2014-05-01

    Full Text Available To what extent do frequently cited determinants of military spending allow us to predict and forecast future levels of expenditure? The authors draw on the data and specifications of a recent model on military expenditure and assess the predictive power of its variables using in-sample predictions, out-of-sample forecasts and Bayesian model averaging. To this end, this paper provides guidelines for prediction exercises in general using these three techniques. More substantially, however, the findings emphasize that previous levels of military spending as well as a country’s institutional and economic characteristics particularly improve our ability to predict future levels of investment in the military. Variables pertaining to the international security environment also matter, but seem less important. In addition, the results highlight that the updated model, which drops weak predictors, is not only more parsimonious, but also slightly more accurate than the original specification.

  17. The forecaster's added value

    Science.gov (United States)

    Turco, M.; Milelli, M.

    2009-09-01

    To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the

  18. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Forecasting potential crises

    International Nuclear Information System (INIS)

    Neufeld, W.P.

    1984-01-01

    Recently, the Trend Analysis Program (TAP) of the American Council of Life Insurance commissioned the Futures Group of Glastonbury, Connecticut, to examine the potential for large-scale catastrophic events in the near future. TAP was specifically concerned with five potential crises: the warming of the earth's atmosphere, the water shortage, the collapse of the physical infrastructure, the global financial crisis, and the threat of nuclear war. We are often unprepared to take action; in these cases, we lose an advantage we might have otherwise had. This is the whole idea behind forecasting: to foresee possibilities and to project how we can respond. If we are able to create forecasts against which we can test policy options and choices, we may have the luxury of adopting policies ahead of events. Rather than simply fighting fires, we have the option of creating a future more to our choosing. Short descriptions of these five potential crises and, in some cases, possible solutions are presented

  20. Frost Forecasting for Fruitgrowers

    Science.gov (United States)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  1. Uranium price forecasting methods

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1994-01-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again

  2. Prediction of a service demand using combined forecasting approach

    Science.gov (United States)

    Zhou, Ling

    2017-08-01

    Forecasting facilitates cutting down operational and management costs while ensuring service level for a logistics service provider. Our case study here is to investigate how to forecast short-term logistic demand for a LTL carrier. Combined approach depends on several forecasting methods simultaneously, instead of a single method. It can offset the weakness of a forecasting method with the strength of another, which could improve the precision performance of prediction. Main issues of combined forecast modeling are how to select methods for combination, and how to find out weight coefficients among methods. The principles of method selection include that each method should apply to the problem of forecasting itself, also methods should differ in categorical feature as much as possible. Based on these principles, exponential smoothing, ARIMA and Neural Network are chosen to form the combined approach. Besides, least square technique is employed to settle the optimal weight coefficients among forecasting methods. Simulation results show the advantage of combined approach over the three single methods. The work done in the paper helps manager to select prediction method in practice.

  3. PyForecastTools

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient of variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.

  4. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  5. Statistical methods for forecasting

    CERN Document Server

    Abraham, Bovas

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists."This book, it must be said, lives up to the words on its advertising cover: ''Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.'' It does just that!"-Journal of the Royal Statistical Society"A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series ...

  6. Measuring the effectiveness of earthquake forecasting in insurance strategies

    Science.gov (United States)

    Mignan, A.; Muir-Wood, R.

    2009-04-01

    Given the difficulty of judging whether the skill of a particular methodology of earthquake forecasts is offset by the inevitable false alarms and missed predictions, it is important to find a means to weigh the successes and failures according to a common currency. Rather than judge subjectively the relative costs and benefits of predictions, we develop a simple method to determine if the use of earthquake forecasts can increase the profitability of active financial risk management strategies employed in standard insurance procedures. Three types of risk management transactions are employed: (1) insurance underwriting, (2) reinsurance purchasing and (3) investment in CAT bonds. For each case premiums are collected based on modelled technical risk costs and losses are modelled for the portfolio in force at the time of the earthquake. A set of predetermined actions follow from the announcement of any change in earthquake hazard, so that, for each earthquake forecaster, the financial performance of an active risk management strategy can be compared with the equivalent passive strategy in which no notice is taken of earthquake forecasts. Overall performance can be tracked through time to determine which strategy gives the best long term financial performance. This will be determined by whether the skill in forecasting the location and timing of a significant earthquake (where loss is avoided) is outweighed by false predictions (when no premium is collected). This methodology is to be tested in California, where catastrophe modeling is reasonably mature and where a number of researchers issue earthquake forecasts.

  7. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    Science.gov (United States)

    2016-06-01

    dataset ci = unit cost for item i fi = demand forecast for item i 28 ai = actual demand for item i A close look at fCIMIP metric reveals a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY...June 2016 3. REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY

  8. Analysing UK real estate market forecast disagreement

    OpenAIRE

    McAllister, Patrick; Newell, G.; Matysiak, George

    2005-01-01

    Given the significance of forecasting in real estate investment decisions, this paper investigates forecast uncertainty and disagreement in real estate market forecasts. Using the Investment Property Forum (IPF) quarterly survey amongst UK independent real estate forecasters, these real estate forecasts are compared with actual real estate performance to assess a number of real estate forecasting issues in the UK over 1999-2004, including real estate forecast error, bias and consensus. The re...

  9. Effective Feature Preprocessing for Time Series Forecasting

    DEFF Research Database (Denmark)

    Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao

    2006-01-01

    Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...... series forecasting models....

  10. EU pharmaceutical expenditure forecast.

    Science.gov (United States)

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States' pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012-2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (-€9,367 million), France (-€5,589 million), and, far behind them

  11. Ex-post evaluations of demand forecast accuracy

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Driscoll, Patrick Arthur

    2014-01-01

    Travel demand forecasts play a crucial role in the preparation of decision support to policy makers in the field of transport planning. The results feed directly into impact appraisals such as cost benefit analyses and environmental impact assessments, which are mandatory for large public works...... projects in many countries. Over the last couple of decades there has been an increasing attention to the lack of demand forecast accuracy, but since data availability for comprehensive ex- post appraisals is problematic, such studies are still relatively rare. The present paper presents a review...... of the largest ex-post studies of demand forecast accuracy for transport infrastructure projects. The focus is twofold; to provide an overview of observed levels of demand forecast inaccuracy and to explore the primary explanations offered for the observed inaccuracy. Inaccuracy in the form of both bias...

  12. Forecasting of indirect consumables for a Job Shop

    Science.gov (United States)

    Shakeel, M.; Khan, S.; Khan, W. A.

    2016-08-01

    A job shop has an arrangement where similar machines (Direct consumables) are grouped together and use indirect consumables to produce a product. The indirect consumables include hack saw blades, emery paper, painting brush etc. The job shop is serving various orders at a particular time for the optimal operation of job shop. Forecasting is required to predict the demand of direct and indirect consumables in a job shop. Forecasting is also needed to manage lead time, optimize inventory cost and stock outs. The objective of this research is to obtain the forecast for indirect consumables. The paper shows how job shop can manage their indirect consumables more accurately by establishing a new technique of forecasting. This results in profitable use of job shop by multiple users.

  13. Demand forecast of turbines in the offshore wind power industry

    DEFF Research Database (Denmark)

    Martinez-Neri, Ivan

    2014-01-01

    How important is it for a manufacturing company to be able to predict the demand of their products? How much will it lose in inventory costs due to a bad forecasting technique? And what if the product in question is composed of more than 100,000 parts and costs millions of euros a piece......? This article summarises the reasoning followed by a European manufacturer to determine the demand curve of finished offshore wind turbines and how to forecast it for the purpose of production planning....

  14. Forecasting monthly peak demand of electricity in India—A critique

    International Nuclear Information System (INIS)

    Rallapalli, Srinivasa Rao; Ghosh, Sajal

    2012-01-01

    The nature of electricity differs from that of other commodities since electricity is a non-storable good and there have been significant seasonal and diurnal variations of demand. Under such condition, precise forecasting of demand for electricity should be an integral part of the planning process as this enables the policy makers to provide directions on cost-effective investment and on scheduling the operation of the existing and new power plants so that the supply of electricity can be made adequate enough to meet the future demand and its variations. Official load forecasting in India done by Central Electricity Authority (CEA) is often criticized for being overestimated due to inferior techniques used for forecasting. This paper tries to evaluate monthly peak demand forecasting performance predicted by CEA using trend method and compare it with those predicted by Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model. It has been found that MSARIMA model outperforms CEA forecasts both in-sample static and out-of-sample dynamic forecast horizons in all five regional grids in India. For better load management and grid discipline, this study suggests employing sophisticated techniques like MSARIMA for peak load forecasting in India. - Highlights: ► This paper evaluates monthly peak demand forecasting performance by CEA. ► Compares CEA forecasts it with those predicted by MSARIMA model. ► MSARIMA model outperforms CEA forecasts in all five regional grids in India. ► Opportunity exists to improve the performance of CEA forecasts.

  15. Role of hybrid forecasting techniques for transportation planning of broiler meat under uncertain demand in thailand

    Directory of Open Access Journals (Sweden)

    Thoranin Sujjaviriyasup

    2014-12-01

    Full Text Available One of numerous problems experiencing in supply chain management is the demand. Most demands are appeared in terms of uncertainty. The broiler meat industry is inevitably encountering the same problem. In this research, hybrid forecasting model of ARIMA and Support Vector Machine (SVMs are developed to forecast broiler meat export. In addition, ARIMA, SVMs, and Moving Average (MA are chosen for comparing the forecasting efficiency. All the forecasting models are tested and validated using the data of Brazil’s export, Canada’s export, and Thailand’s export. The hybrid model provides accuracy of the forecasted values that are 98.71%, 97.50%, and 93.01%, respectively. In addition, the hybrid model presents the least error of all MAE, RMSE, and MAPE comparing with other forecasting models. As forecasted data are applied to transportation planning, the mean absolute percentage error (MAPE of optimal value of forecasted value and actual value is 14.53%. The hybrid forecasting model shows an ability to reduce risk of total cost of transportation when broiler meat export is forecasted by using MA(2, MA(3, ARIMA, and SVM are 50.59%, 60.18%, 68.01%, and 46.55%, respectively. The results indicate that the developed forecasting model is recommended to broiler meat industries’ supply chain decision.

  16. Evaluation of Probabilistic Disease Forecasts.

    Science.gov (United States)

    Hughes, Gareth; Burnett, Fiona J

    2017-10-01

    The statistical evaluation of probabilistic disease forecasts often involves calculation of metrics defined conditionally on disease status, such as sensitivity and specificity. However, for the purpose of disease management decision making, metrics defined conditionally on the result of the forecast-predictive values-are also important, although less frequently reported. In this context, the application of scoring rules in the evaluation of probabilistic disease forecasts is discussed. An index of separation with application in the evaluation of probabilistic disease forecasts, described in the clinical literature, is also considered and its relation to scoring rules illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts used in plant disease management. In particular, the decomposition of scoring rules into interpretable components is an advantageous feature of their application in the evaluation of disease forecasts.

  17. Seasonal forecasting of discharge for the Raccoon River, Iowa

    Science.gov (United States)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.

  18. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge

  19. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    hypothesis of the existence of phenomenon change trends, the next step in the methodology of forecasting is the determination of a specific growth curve that describes the regularity of the development in time. These curves of growth are obtained by the analytical representation (expression of dynamic lines. There are two basic stages in the process of expression and they are: - The choice of the type of curve the shape of which corresponds to the character of the dynamic order variation - the determination of the number of values (evaluation of the curve parameters. The most widespread method of forecasting is the trend extrapolation. The basis of the trend extrapolation is the continuing of past trends in the future. The simplicity of the trend extrapolation process, on the one hand, and the absence of other information on the other hand, are the main reasons why the trend extrapolation is used for forecasting. The trend extrapolation is founded on the following assumptions: - The phenomenon development can be presented as an evolutionary trajectory or trend, - General conditions that influenced the trend development in the past will not undergo substantial changes in the future. Spare parts demand forecasting is constantly being done in all warehouses, workshops, and at all levels. Without demand forecasting, neither planning nor decision making can be done. Demand forecasting is the input for determining the level of reserve, size of the order, ordering cycles, etc. The question that arises is the one of the reliability and accuracy of a forecast and its effects. Forecasting 'by feeling' is not to be dismissed if there is nothing better, but in this case, one must be prepared for forecasting failures that cause unnecessary accumulation of certain spare parts, and also a chronic shortage of other spare parts. All this significantly increases costs and does not provide a satisfactory supply of spare parts. The main problem of the application of this model is that each

  20. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...... on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is published along with this paper, in an effort to establish...

  1. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.; Gu, Yingzhong; Xie, Le

    2014-01-01

    direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast

  2. 42 CFR 417.572 - Budget and enrollment forecast and interim reports.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Budget and enrollment forecast and interim reports... PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.572 Budget and enrollment forecast and interim reports. (a) Annual submittal. The HMO or CMP must submit an annual operating budget...

  3. Forecasting in Complex Systems

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  4. Model for equipment life-cycle cost forecasting and its application in assets management in the oil industry; Modelo para previsao de custo de ciclo de vida de equipamentos e sua aplicacao na gestao de ativos na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, Igor Gimenes; Elias Junior, Antonio; Carvalho, Marcos Henrique [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Dept. de Engenharia de Petroleo; Lima, Gabriel Alves da Costa [Centro de Estudos de Petroleo (CEPETRO/UNICAMP), SP (Brazil)

    2012-07-01

    In the area of oil exploration and production (E and P), knowing the behavior of the equipment in their life cycles becomes even more important than in other industries due to: 1) high cost and 2) severity in terms of requirements safety. The purchase of equipment should not be decided only at the initial cost, but through the life cycle cost (LCC). This paper presents a study to find the cost over the life cycle of a group of equipment used in the petroleum industry by methods of dynamic programming, as well as a discussion on how to use such information in assets management in order to obtain better financial indicators. The main causes of variation in the useful economic life of equipment is the resale value and maintenance costs. Thus, it is possible to avoid high expenditure on maintenance costs and avoid an excessive depreciation of the equipment. So it is possible to conclude that the more intense the depreciation of value, the greater the useful economic life. For maintenance costs, the more intense are the costs, the lower the useful economic life. (author)

  5. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  6. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  7. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  8. Staged decision making based on probabilistic forecasting

    Science.gov (United States)

    Booister, Nikéh; Verkade, Jan; Werner, Micha; Cranston, Michael; Cumiskey, Lydia; Zevenbergen, Chris

    2016-04-01

    Flood forecasting systems reduce, but cannot eliminate uncertainty about the future. Probabilistic forecasts explicitly show that uncertainty remains. However, as - compared to deterministic forecasts - a dimension is added ('probability' or 'likelihood'), with this added dimension decision making is made slightly more complicated. A technique of decision support is the cost-loss approach, which defines whether or not to issue a warning or implement mitigation measures (risk-based method). With the cost-loss method a warning will be issued when the ratio of the response costs to the damage reduction is less than or equal to the probability of the possible flood event. This cost-loss method is not widely used, because it motivates based on only economic values and is a technique that is relatively static (no reasoning, yes/no decision). Nevertheless it has high potential to improve risk-based decision making based on probabilistic flood forecasting because there are no other methods known that deal with probabilities in decision making. The main aim of this research was to explore the ways of making decision making based on probabilities with the cost-loss method better applicable in practice. The exploration began by identifying other situations in which decisions were taken based on uncertain forecasts or predictions. These cases spanned a range of degrees of uncertainty: from known uncertainty to deep uncertainty. Based on the types of uncertainties, concepts of dealing with situations and responses were analysed and possible applicable concepts where chosen. Out of this analysis the concepts of flexibility and robustness appeared to be fitting to the existing method. Instead of taking big decisions with bigger consequences at once, the idea is that actions and decisions are cut-up into smaller pieces and finally the decision to implement is made based on economic costs of decisions and measures and the reduced effect of flooding. The more lead-time there is in

  9. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  10. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    Science.gov (United States)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the Mizu

  11. FORECASTING NEW PRODUCT SALES

    Directory of Open Access Journals (Sweden)

    R. Siriram

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper tests the accuracy of using Linear regression, Logistics regression, and Bass curves in selected new product rollouts, based on sales data. The selected new products come from the electronics and electrical engineering and information and communications technology industries. The eight selected products are: electronic switchgear, electric motors, supervisory control and data acquisition systems, programmable logic controllers, cell phones, wireless modules, routers, and antennas. We compare the Linear regression, Logistics regression and Bass curves with respect to forecasting using analysis of variance. The accuracy of these three curves is studied and conclusions are drawn. We use an expert panel to compare the different curves and provide lessons for managers to improve forecasting new product sales. In addition, comparison between the two industries is drawn, and areas for further research are indicated.

    AFRIKAANSE OPSOMMING: Hierdie artikel toets die akkuraatheid van die gebruik van linêere regressie, logistiese regressie en Bass-krommes by die bekendstelling van nuwe produkte gebaseer op verkoopsdata. Die geselekteerde nuwe produkte is uit die elektriese en elektroniese asook informasietegnologie- en kommunikasie bedrywe. Linêere regressie, logistiese regressie en Bass-krommes word vergelyk ten opsigte van vooruitskatting deur variansie te ontleed. Die akkuraatheid word ontleed en gevolgtrekkings gemaak. Die doel is om vooruitskatting van nuwe produkverkope te verbeter.

  12. Issues in Forecasting CMEs

    Science.gov (United States)

    Pizzo, V. J.

    2017-12-01

    I will present my view of the current status of space weather forecasting abilities related to CMEs. This talk will address the large-scale aspects, but specifically not energetic particle phenomena. A key point is that all models, whether sophisticated numerical contraptions or quasi-empirical ones, are only as good as the data you feed them. Hence the emphasis will be on observations and analysis methods. First I will review where we stand with regard to the near-Sun quantitative data needed to drive any model, no matter how complex or simple-minded, and I will discuss technological roadblocks that suggest it may be some time before we see any meaningful improvements beyond what we have today. Then I cover issues related to characterizing CME propagation out through the corona and into interplanetary space, as well as to observational limitations in the vicinity of 1 AU. Since none of these observational constraints are likely to be resolved anytime soon, the real challenge is to make more informed use of what is available. Thus, this talk will focus on how we may identify and pursue the most profitable approaches, for both forecast and research applications. The discussion will highlight a number of promising leads, including those related to inclusion of solar backside information, joint magnetograph observations from L5 and Earth, how to use (not just run) ensembles, more rational use of HI observations, and suggestions for using cube-sats for deep space observations of CMEs and MCs.

  13. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  14. Global disease monitoring and forecasting with Wikipedia.

    Science.gov (United States)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y; Priedhorsky, Reid

    2014-11-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  15. Global disease monitoring and forecasting with Wikipedia.

    Directory of Open Access Journals (Sweden)

    Nicholas Generous

    2014-11-01

    Full Text Available Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  16. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  17. Naive forecasting: the fiasco of coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Peirce, W S

    1985-01-01

    The decision by the U.S. government to subsidize the development of coal gasification was based on a naive forecast that neglected the influence of price on both conventional sources of supply and consumer demand. Even before substantial construction costs were incurred on the Great Plains plant, a surplus of natural gas has developed. The political process, however, did not include the sort of critical review that often accompanies the financing decision in the private sector and that would surely have prevented this error. 17 references.

  18. Guidelines for forecasting energy demand

    International Nuclear Information System (INIS)

    Sonino, T.

    1976-11-01

    Four methodologies for forecasting energy demand are reviewed here after considering the role of energy in the economy and the analysis of energy use in different economic sectors. The special case of Israel is considered throughout, and some forecasts for energy demands in the year 2000 are presented. An energy supply mix that may be considered feasible is proposed. (author)

  19. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  20. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  1. Ensemble hydromoeteorological forecasting in Denmark

    DEFF Research Database (Denmark)

    Lucatero Villasenor, Diana

    forecasts where a dampening of the differences of precipitation quality occurs. Seasonal meteorological forecasts are possible due to changes of large scale patterns of the ocean and land, such as el Niño, that evolve at a much slower pace than the atmosphere, which can have an impact on its evolution later...

  2. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  3. Method of forecasting power distribution

    International Nuclear Information System (INIS)

    Kaneto, Kunikazu.

    1981-01-01

    Purpose: To obtain forecasting results at high accuracy by reflecting the signals from neutron detectors disposed in the reactor core on the forecasting results. Method: An on-line computer transfers, to a simulator, those process data such as temperature and flow rate for coolants in each of the sections and various measuring signals such as control rod positions from the nuclear reactor. The simulator calculates the present power distribution before the control operation. The signals from the neutron detectors at each of the positions in the reactor core are estimated from the power distribution and errors are determined based on the estimated values and the measured values to determine the smooth error distribution in the axial direction. Then, input conditions at the time to be forecast are set by a data setter. The simulator calculates the forecast power distribution after the control operation based on the set conditions. The forecast power distribution is corrected using the error distribution. (Yoshino, Y.)

  4. Energy forecasts, perspectives and methods

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J E; Mogren, A

    1984-01-01

    The authors have analyzed different methods for long term energy prognoses, in particular energy consumption forecasts. Energy supply and price prognoses are also treated, but in a less detailed manner. After defining and discussing the various methods/models used in forecasts, a generalized discussion of the influence on the prognoses from the perspectives (background factors, world view, norms, ideology) of the prognosis makers is given. Some basic formal demands that should be asked from any rational forecast are formulated and discussed. The authors conclude that different forecasting methodologies are supplementing each other. There is no best method, forecasts should be accepted as views of the future from differing perspectives. The primary prognostic problem is to show the possible futures, selecting the wanted future is a question of political process.

  5. Problems in the forecasting of solar particle events for manned missions

    International Nuclear Information System (INIS)

    Feynman, J.; Ruzmaikin, A.

    1999-01-01

    Manned spacecraft will require a much improved ability to forecast solar particle events. The lead time required will depend on the use to which the forecast is put. Here we discuss problems of forecasting with the lead times of hours to weeks. Such forecasts are needed for scheduling and carrying out activities. Our present capabilities with these lead times is extremely limited. To improve our capability we must develop an ability to predict fast coronal mass ejections (CMEs). It is not sufficient to observe that a CME has already taken place since by that time it is already too late to make predictions with these lead times. Both to learn how to predict CMEs and to carry out forecasts on time scales of several days to weeks, observations of the other side of the Sun are required. We describe a low-cost space mission of this type that would further the development of an hours-to-weeks forecast capability

  6. Forecast of dengue incidence using temperature and rainfall.

    Directory of Open Access Journals (Sweden)

    Yien Ling Hii

    Full Text Available An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore.We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98% in 2004-2010 and 98% (CI = 95%-100% in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm.We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.

  7. Forecast of dengue incidence using temperature and rainfall.

    Science.gov (United States)

    Hii, Yien Ling; Zhu, Huaiping; Ng, Nawi; Ng, Lee Ching; Rocklöv, Joacim

    2012-01-01

    An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98%) in 2004-2010 and 98% (CI = 95%-100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.

  8. Load Forecasting in Electric Utility Integrated Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Carvallo, Juan Pablo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larsen, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sanstad, Alan H [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-19

    Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric utilities to determine least-cost/risk supply and demand-side resources that meet government policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts of energy and peak demand are a critical component of the IRP process. There have been few, if any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast performance and its relationship to resource planning and actual procurement decisions. In this paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. utilities by examining and comparing plans filed in the early 2000s against recent plans, up to year 2014. We find a convergence in the methods and data sources used. We also find that forecasts in more recent IRPs generally took account of new information, but that there continued to be a systematic over-estimation of load growth rates during the period studied. We compare planned and procured resource expansion against customer load and year-to-year load growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans do not appear to be related to later procurement strategies even in the presence of large forecast errors. These findings suggest that resource procurement decisions may be driven by other factors than customer load growth. Our results have important implications for the integrated resource planning process, namely that load forecast accuracy may not be as important for resource procurement as is generally believed, that load forecast sensitivities could be used to improve the procurement process, and that management of load uncertainty should be prioritized over more complex forecasting techniques.

  9. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  10. Estimating the benefits of single value and probability forecasting for flood warning

    Directory of Open Access Journals (Sweden)

    J. S. Verkade

    2011-12-01

    Full Text Available Flood risk can be reduced by means of flood forecasting, warning and response systems (FFWRS. These systems include a forecasting sub-system which is imperfect, meaning that inherent uncertainties in hydrological forecasts may result in false alarms and missed events. This forecasting uncertainty decreases the potential reduction of flood risk, but is seldom accounted for in estimates of the benefits of FFWRSs. In the present paper, a method to estimate the benefits of (imperfect FFWRSs in reducing flood risk is presented. The method is based on a hydro-economic model of expected annual damage (EAD due to flooding, combined with the concept of Relative Economic Value (REV. The estimated benefits include not only the reduction of flood losses due to a warning response, but also consider the costs of the warning response itself, as well as the costs associated with forecasting uncertainty. The method allows for estimation of the benefits of FFWRSs that use either deterministic or probabilistic forecasts. Through application to a case study, it is shown that FFWRSs using a probabilistic forecast have the potential to realise higher benefits at all lead-times. However, it is also shown that provision of warning at increasing lead-time does not necessarily lead to an increasing reduction of flood risk, but rather that an optimal lead-time at which warnings are provided can be established as a function of forecast uncertainty and the cost-loss ratio of the user receiving and responding to the warning.

  11. Sirocco - Fukushima Forecast Description

    International Nuclear Information System (INIS)

    2011-01-01

    SYMPHONIE-NH is the non-hydrostatic ocean model following the Boussinesq hydrostatic SYMPHONIE-2010 model developed by the Sirocco system team (CNRS and Toulouse University). Both are using an Arakawa type finite difference method for the C grid. The R and D team generally gives priority to a physically based approach of modelling (global conservation of the mechanical energy, consistency of pressure and density, accuracy of the bottom pressure torque,...) that tends to favour low order and robust numerical schemes. Most of the physical and numerical options (Non-Hydrostatic, free surface, generalised coordinates combined to an ALE method,...) are particularly suitable for the coastal area. At the request of the International Atomic Energy Agency (IAEA, March 14, 2011), SIROCCO is delivering every day a real time 6-day forecast bulletin of the dispersion in seawater of radionuclides emitted by the Fukushima nuclear plant. The simulations are based on the S2010.18 release of the 3D SIROCCO ocean circulation model. The system is operational since March 24 and the bulletin is available on an 'open-access' basis since March 28. The model uses a stretched horizontal grid with a variable horizontal resolution: from 600 m x 600 m at the nearest grid point from Fukushima, to 5 km x 5 km offshore. The initial fields (T, S, U, V, SSH) and the lateral open boundary conditions are provided by the Mercator PSY4V1R3 system (one field per day, horizontal resolution 1/12 deg. x 1/12 deg.). At the sea surface, the ocean model is forced by the meteorological fluxes delivered every 3 hours by ECMWF.i The tidal forcing at the lateral open boundaries is provided by the T-UGO model, implemented for this purpose by the SIROCCO team on the Japanese Pacific coast. Some details are given on the methodology: Bathymetry, Initialization and large scale forcing, Tides, Atmospheric forcing, Forecast protocol, and Scenario for radioactive tracers

  12. Sirocco - Fukushima Forecast Description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-10

    SYMPHONIE-NH is the non-hydrostatic ocean model following the Boussinesq hydrostatic SYMPHONIE-2010 model developed by the Sirocco system team (CNRS and Toulouse University). Both are using an Arakawa type finite difference method for the C grid. The R and D team generally gives priority to a physically based approach of modelling (global conservation of the mechanical energy, consistency of pressure and density, accuracy of the bottom pressure torque,...) that tends to favour low order and robust numerical schemes. Most of the physical and numerical options (Non-Hydrostatic, free surface, generalised coordinates combined to an ALE method,...) are particularly suitable for the coastal area. At the request of the International Atomic Energy Agency (IAEA, March 14, 2011), SIROCCO is delivering every day a real time 6-day forecast bulletin of the dispersion in seawater of radionuclides emitted by the Fukushima nuclear plant. The simulations are based on the S2010.18 release of the 3D SIROCCO ocean circulation model. The system is operational since March 24 and the bulletin is available on an 'open-access' basis since March 28. The model uses a stretched horizontal grid with a variable horizontal resolution: from 600 m x 600 m at the nearest grid point from Fukushima, to 5 km x 5 km offshore. The initial fields (T, S, U, V, SSH) and the lateral open boundary conditions are provided by the Mercator PSY4V1R3 system (one field per day, horizontal resolution 1/12 deg. x 1/12 deg.). At the sea surface, the ocean model is forced by the meteorological fluxes delivered every 3 hours by ECMWF.i The tidal forcing at the lateral open boundaries is provided by the T-UGO model, implemented for this purpose by the SIROCCO team on the Japanese Pacific coast. Some details are given on the methodology: Bathymetry, Initialization and large scale forcing, Tides, Atmospheric forcing, Forecast protocol, and Scenario for radioactive tracers

  13. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  14. Added value of dynamical downscaling of winter seasonal forecasts over North America

    Science.gov (United States)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2017-04-01

    Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.

  15. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    2016-04-01

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  16. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  17. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  18. Account of the uncertainty factor in forecasting nuclear power development

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1979-01-01

    Minimization of total discounted costs for linear constraints is commonly used in forecasting nuclear energy growth. This approach is considered inadequate due to the uncertainty of exogenous variables of the model. A method of forecasting that takes into account the presence of uncertainty is elaborated. An example that demonstrates the expediency of the method and its advantage over the conventional approximation method used for taking uncertainty into account is given. In the framework of the example, the optimal strategy for nuclear energy growth over period of 500 years is determined

  19. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  20. Modeling and forecasting natural gas demand in Bangladesh

    International Nuclear Information System (INIS)

    Wadud, Zia; Dey, Himadri S.; Kabir, Md. Ashfanoor; Khan, Shahidul I.

    2011-01-01

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: → Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. → Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. → Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. → Demand forecasts reveal large divergence from previous estimates, which is important for planning. → Attempts to model demand for end-use sectors were successful only for the industrial sector.

  1. Modeling and forecasting natural gas demand in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Wadud, Zia, E-mail: ziawadud@yahoo.com [Bangladesh University of Engineering and Technology (Bangladesh); Dey, Himadri S. [University of Notre Dame (United States); Kabir, Md. Ashfanoor; Khan, Shahidul I. [Bangladesh University of Engineering and Technology (Bangladesh)

    2011-11-15

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: > Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. > Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. > Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. > Demand forecasts reveal large divergence from previous estimates, which is important for planning. > Attempts to model demand for end-use sectors were successful only for the industrial sector.

  2. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  3. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  4. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  5. 25 years of time series forecasting

    NARCIS (Netherlands)

    de Gooijer, J.G.; Hyndman, R.J.

    2006-01-01

    We review the past 25 years of research into time series forecasting. In this silver jubilee issue, we naturally highlight results published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985 and International Journal of Forecasting 1985-2005). During

  6. Estimates of Uncertainty around the RBA's Forecasts

    OpenAIRE

    Peter Tulip; Stephanie Wallace

    2012-01-01

    We use past forecast errors to construct confidence intervals and other estimates of uncertainty around the Reserve Bank of Australia's forecasts of key macroeconomic variables. Our estimates suggest that uncertainty about forecasts is high. We find that the RBA's forecasts have substantial explanatory power for the inflation rate but not for GDP growth.

  7. The Invasive Species Forecasting System

    Science.gov (United States)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  8. Recurrent networks for wave forecasting

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper presents an application of the Artificial Neural Network, namely Backpropagation Recurrent Neural Network (BRNN) with rprop update algorithm for wave forecasting...

  9. Ensemble forecasting of species distributions.

    Science.gov (United States)

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

  10. Forecasting and management of technology

    National Research Council Canada - National Science Library

    Roper, A. T

    2011-01-01

    .... The scope of this edition has broadened to include management of technology content that is relevant to now to executives in organizations while updating and strengthening the technology forecasting...

  11. Forecasting Croatian inbound tourism demand

    OpenAIRE

    Tica, Josip; Kožić, Ivan

    2015-01-01

    The aim of this paper is to present a forecasting model for the overnight stays of foreign tourists in Croatia. Tourism is one of the most important parts of the Croatian economy. It is particularly important in the context of the services sector. Regular and significant surpluses and the consumption of foreign guests are an important element of budget revenues, especially VAT. The ability to forecast the development of inbound tourism demand in a timely manner is crucial for both business...

  12. Preparing for an Uncertain Forecast

    Science.gov (United States)

    Karolak, Eric

    2011-01-01

    Navigating the world of government relations and public policy can be a little like predicting the weather. One can't always be sure what's in store or how it will affect him/her down the road. But there are common patterns and a few basic steps that can help one best prepare for a change in the forecast. Though the forecast is uncertain, early…

  13. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  14. Forecasting market developments

    International Nuclear Information System (INIS)

    Weller, T.

    1997-01-01

    Traditional planning in essence consists of linear extrapolation of established facts and experience. This approach was good enough until recently, when progress would be relatively foreseeable within a stable system. The situation has been changing with developments and modifications in the global economic sector proceeding at accelerated pace, so that conventional planning methods become hopelessly inadequate. The past is of low significance to emerging markets; planners today have to keep abreast with and take into account the possible and emerging influencing factors. Experience is a factor to be replaced by intelligent analysis and conclusion within the framework of system networks. Modern scenario modelling methods are based on this approach: They are able to simulate and forecast a whole range of ''possible futures'', derived from perceivable trends. The article illustrates the novel planning methodology by assessing the future of the renewable energy sources, applying a computerized planning method (vision design) which is based on intelligent comparative analysis of all relevant trends. (Orig./RHM) [de

  15. A national econometric forecasting model of the dental sector.

    Science.gov (United States)

    Feldstein, P J; Roehrig, C S

    1980-01-01

    The Econometric Model of the the Dental Sector forecasts a broad range of dental sector variables, including dental care prices; the amount of care produced and consumed; employment of hygienists, dental assistants, and clericals; hours worked by dentists; dental incomes; and number of dentists. These forecasts are based upon values specified by the user for the various factors which help determine the supply an demand for dental care, such as the size of the population, per capita income, the proportion of the population covered by private dental insurance, the cost of hiring clericals and dental assistants, and relevant government policies. In a test of its reliability, the model forecast dental sector behavior quite accurately for the period 1971 through 1977. PMID:7461974

  16. Impact of Public Aggregate Wind Forecasts on Electricity Market Outcomes

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2017-01-01

    Following a call to foster a transparent and more competitive market, member states of the European transmission system operator are required to publish, among other information, aggregate wind power forecasts. The publication of the latter information is expected to benefit market participants...... by offering better knowledge of the market operation, leading subsequently to a more competitive energy market. Driven by the above regulation, we consider an equilibrium study to address how public information of aggregate wind power forecasts can potentially affect market results, social welfare as well...... as the profits of participating power producers. We investigate, therefore, a joint day-ahead energy and reserve auction, where producers offer their conventional power strategically based on a complementarity approach and their wind power at generation cost based on a forecast. In parallel, an iterative game...

  17. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels.......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels...... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  18. Review of road user costs and methods.

    Science.gov (United States)

    2013-07-01

    The South Dakota Department of Transportation (SDDOT) uses road user costs (RUC) to calculate incentive or disincentive compensation for contractors, quantify project-specific liquidated damages, select the ideal sequencing of a project, and forecast...

  19. Quantile forecast discrimination ability and value

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Pinson, Pierre; Friederichs, Petra

    2015-01-01

    While probabilistic forecast verification for categorical forecasts is well established, some of the existing concepts and methods have not found their equivalent for the case of continuous variables. New tools dedicated to the assessment of forecast discrimination ability and forecast value are ...... is illustrated based on synthetic datasets, as well as for the case of global radiation forecasts from the high resolution ensemble COSMO-DE-EPS of the German Weather Service....

  20. The Value, Protocols, and Scientific Ethics of Earthquake Forecasting

    Science.gov (United States)

    Jordan, Thomas H.

    2013-04-01

    provide public sources of information on short-term probabilities that are authoritative, scientific, open, and timely. Alert procedures should be negotiated with end-users to facilitate decisions at different levels of society, based in part on objective analysis of costs and benefits but also on less tangible aspects of value-of-information, such as gains in psychological preparedness and resilience. Unfortunately, in most countries, operational forecasting systems do not conform to such high standards, and earthquake scientists are often called upon to advise the public in roles that exceed their civic authority, expertise in risk communication, and situational knowledge. Certain ethical principles are well established; e.g., announcing unreliable predictions in public forums should be avoided, because bad information can be dangerous. But what are the professional responsibilities of earthquake scientists during seismic crises, especially when the public information through official channels is thought to be inadequate or incorrect? How much should these responsibilities be discounted in the face of personal liability? How should scientists contend with highly uncertain forecasts? To what degree should the public be involved in controversies about forecasting results? No simple answers to these questions can be offered, but the need for answers can be reduced by improving operational forecasting systems. This will require more substantial, and more trustful, collaborations between scientists, civil authorities, and public stakeholders.

  1. Cost effectiveness of eptifibatide in acute coronary syndromes; an economic analysis of Western European patients enrolled in the PURSUIT trial. The Platelet IIa/IIb in unstable Angina: Receptor Suppression Using Integrilin Therapy.

    Science.gov (United States)

    Brown, R E; Henderson, R A; Koster, D; Hutton, J; Simoons, M L

    2002-01-01

    To assess the direct medical costs and cost effectiveness of routine eptifibatide use amongst patients with unstable angina and myocardial infarction without persistent ST-segment elevation in the Western European subgroup of the PURSUIT trial. Health care resources were collected for the Western European PURSUIT trial patients (n=3697). Unit costs for major resources were developed within six countries using a consistent bottom-up methodology. Resource consumption from the Western European population was used to calculate the average direct medical costs per patient in the eptifibatide and placebo arms of the trial. Eptifibatide was estimated to cost 524 Euros per treatment. Long-term survival estimated from the 6-month trial survival data and combined with the cost data was used to calculate cost-effectiveness ratios. Additionally, cost per death and non-fatal myocardial infarction at 30 days was calculated. Sensitivity analyses were conducted on the discount rate and resource consumption. Cost-effectiveness ratios ranged from 9603 Euros to 18 115 Euros per year of life saved with 3% discount. Using resource consumption based on countries with low coronary arteriography rates, the cost per year of life saved was between 3329 Euros and 10 079 Euros. Using resource consumption based on high coronary arteriography rate countries, the cost per year of life saved was between 17 089 Euros and 24 099 Euros. Assuming no difference in treatment costs except for the addition of eptifibatide, the incremental cost per year of life saved was 23 818 Euros. Routine eptifibatide use was associated with a reduction in the combined end-point of death and myocardial infarction at 30 days, which was sustained at 6 months. Long-term projections indicate a modest increase in survival in eptifibatide patients. These data translate into cost-effectiveness ratios that compare favourably with other new technologies that are currently in use. Copyright 2001 The European Society of

  2. Tariffs by marginal cost are the real economic values

    International Nuclear Information System (INIS)

    Santos, A.M. dos

    1989-01-01

    An analysis of the electric power tariffs by marginal cost in Brazilian sectors is presented with some considerations bout the economy, politics and a forecasting for 1995. Two tables with tariffs and costs are also shown. (author)

  3. MANAGEMENT EARNINGS FORECAST DISCLOSURE: A STUDY ON THE RELATIONSHIP BETWEEN EBITDA FORECAST AND FINANCIAL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    André Folster

    2015-12-01

    Full Text Available The creation of overly optimistic information can compromise the decision-making process on part of shareholders and other stakeholders. Considering that this type of information can create problems and additional costs stemming from erroneous choices made by users, the present work sought to identify financial indicators associated with the disclosure of Earnings Before Interest, Tax, Depreciation and Amortization (EBITDA estimates in Management Earnings Forecasts (Guidance reporting. The sample examined was composed of 42 companies and analyses were carried out using logistic and multiple linear regression techniques. The results showed that larger (as per total assets and more-leveraged companies show a higher level of disclosure. Companies with higher return on equity (ROE and Current Liquidity ratios, as well as lower Net Margins, present less precise earnings forecast. The companies providing more timely forecasts are also the ones that show higher ROE and Current Liquidity ratios, as well as lower Net Margins. These results indicate that users must take caution when basing decisions on such information, given that the possibility exists that companies bearing these characteristics are more likely to better-timed albeit less-accurate disclosure.

  4. Evaluating long term forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Lady, George M. [Department of Economics, College of Liberal Arts, Temple University, Philadelphia, PA 19122 (United States)

    2010-03-15

    The U.S. Department of Energy's Energy Information Administration (EIA), and its predecessor organizations, has published projections of U.S. energy production, consumption, distribution and prices annually for over 30 years. A natural issue to raise in evaluating the projections is an assessment of their accuracy compared to eventual outcomes. A related issue is the determination of the sources of 'error' in the projections that are due to differences between the actual versus realized values of the associated assumptions. One way to do this would be to run the computer-based model from which the projections are derived at the time the projected values are realized, using actual rather than assumed values for model assumptions; and, compare these results to the original projections. For long term forecasts, this approach would require that the model's software and hardware configuration be archived and available for many years, possibly decades, into the future. Such archival creates many practical problems; and, in general, it is not being done. This paper reports on an alternative approach for evaluating the projections. In the alternative approach, the model is run many times for cases in which important assumptions are changed individually and in combinations. A database is assembled from the solutions and a regression analysis is conducted for each important projected variable with the associated assumptions chosen as exogenous variables. When actual data are eventually available, the regression results are then used to estimate the sources of the differences in the projections of the endogenous variables compared to their eventual outcomes. The results presented here are for residential and commercial sector natural gas and electricity consumption. (author)

  5. Social Hierarchy and Depression: The Role of Emotion Suppression

    OpenAIRE

    Langner, Carrie A.; Epel, Elissa; Matthews, Karen; Moskowitz, Judith T.; Adler, Nancy

    2012-01-01

    Position in the social hierarchy is a major determinant of health outcomes. We examined the associations between aspects of social hierarchy and depressive symptoms with a specific focus on one potential psychological mechanism: emotion suppression. Suppressing negative emotion has mental health costs, but individuals with low social power and low social status may use these strategies to avoid conflict. Study 1 assessed perceived social power, tendency to suppress negative emotion, and depre...

  6. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2016-01-01

    The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged fundamenta......The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged...... fundamentally. In this competitive and dynamic environment, many decision-making processes rely on probabilistic forecasts to quantify the uncertain future. Although most of the papers in the energy forecasting literature focus on point or singlevalued forecasts, the research interest in probabilistic energy...

  7. The Forecasting Procedure for Long-Term Wind Speed in the Zhangye Area

    Directory of Open Access Journals (Sweden)

    Zhenhai Guo

    2010-01-01

    Full Text Available Energy crisis has made it urgent to find alternative energy sources for sustainable energy supply; wind energy is one of the attractive alternatives. Within a wind energy system, the wind speed is one key parameter; accurately forecasting of wind speed can minimize the scheduling errors and in turn increase the reliability of the electric power grid and reduce the power market ancillary service costs. This paper proposes a new hybrid model for long-term wind speed forecasting based on the first definite season index method and the Autoregressive Moving Average (ARMA models or the Generalized Autoregressive Conditional Heteroskedasticity (GARCH forecasting models. The forecasting errors are analyzed and compared with the ones obtained from the ARMA, GARCH model, and Support Vector Machine (SVM; the simulation process and results show that the developed method is simple and quite efficient for daily average wind speed forecasting of Hexi Corridor in China.

  8. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  9. Dynamic SEP event probability forecasts

    Science.gov (United States)

    Kahler, S. W.; Ling, A.

    2015-10-01

    The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.

  10. Automation of energy demand forecasting

    Science.gov (United States)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  11. The long-run forecasting of energy prices using the model of shifting trend

    International Nuclear Information System (INIS)

    Radchenko, Stanislav

    2005-01-01

    Developing models for accurate long-term energy price forecasting is an important problem because these forecasts should be useful in determining both supply and demand of energy. On the supply side, long-term forecasts determine investment decisions of energy-related companies. On the demand side, investments in physical capital and durable goods depend on price forecasts of a particular energy type. Forecasting long-run rend movements in energy prices is very important on the macroeconomic level for several developing countries because energy prices have large impacts on their real output, the balance of payments, fiscal policy, etc. Pindyck (1999) argues that the dynamics of real energy prices is mean-reverting to trend lines with slopes and levels that are shifting unpredictably over time. The hypothesis of shifting long-term trend lines was statistically tested by Benard et al. (2004). The authors find statistically significant instabilities for coal and natural gas prices. I continue the research of energy prices in the framework of continuously shifting levels and slopes of trend lines started by Pindyck (1999). The examined model offers both parsimonious approach and perspective on the developments in energy markets. Using the model of depletable resource production, Pindyck (1999) argued that the forecast of energy prices in the model is based on the long-run total marginal cost. Because the model of a shifting trend is based on the competitive behavior, one may examine deviations of oil producers from the competitive behavior by studying the difference between actual prices and long-term forecasts. To construct the long-run forecasts (10-year-ahead and 15-year-ahead) of energy prices, I modify the univariate shifting trends model of Pindyck (1999). I relax some assumptions on model parameters, the assumption of white noise error term, and propose a new Bayesian approach utilizing a Gibbs sampling algorithm to estimate the model with autocorrelation. To

  12. Exploiting Domain Knowledge to Forecast Heating Oil Consumption

    Science.gov (United States)

    Corliss, George F.; Sakauchi, Tsuginosuke; Vitullo, Steven R.; Brown, Ronald H.

    2011-11-01

    The GasDay laboratory at Marquette University provides forecasts of energy consumption. One such service is the Heating Oil Forecaster, a service for a heating oil or propane delivery company. Accurate forecasts can help reduce the number of trucks and drivers while providing efficient inventory management by stretching the time between deliveries. Accurate forecasts help retain valuable customers. If a customer runs out of fuel, the delivery service incurs costs for an emergency delivery and often a service call. Further, the customer probably changes providers. The basic modeling is simple: Fit delivery amounts sk to cumulative Heating Degree Days (HDDk = Σmax(0,60 °F—daily average temperature)), with wind adjustment, for each delivery period: sk≈ŝk = β0+β1HDDk. For the first few deliveries, there is not enough data to provide a reliable estimate K = 1/β1 so we use Bayesian techniques with priors constructed from historical data. A fresh model is trained for each customer with each delivery, producing daily consumption forecasts using actual and forecast weather until the next delivery. In practice, a delivery may not fill the oil tank if the delivery truck runs out of oil or the automatic shut-off activates prematurely. Special outlier detection and recovery based on domain knowledge addresses this and other special cases. The error at each delivery is the difference between that delivery and the aggregate of daily forecasts using actual weather since the preceding delivery. Out-of-sample testing yields MAPE = 21.2% and an average error of 6.0% of tank capacity for Company A. The MAPE and an average error as a percentage of tank capacity for Company B are 31.5 % and 6.6 %, respectively. One heating oil delivery company who uses this forecasting service [1] reported instances of a customer running out of oil reduced from about 250 in 50,000 deliveries per year before contracting for our service to about 10 with our service. They delivered slightly more

  13. Enhanced short-term wind power forecasting and value to grid operations. The wind forecasting improvement project

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States). Transmission Grid Integration; Benjamin, Stan; Wilczak, James; Marquis, Melinda [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Stern, Andrew [National Oceanic and Atmospheric Administration, Silver Spring, MD (United States); Clark, Charlton; Cline, Joel [U.S. Department of Energy, Washington, DC (United States). Wind and Water Power Program; Finley, Catherine [WindLogics, Grand Rapids, MN (United States); Freedman, Jeffrey [AWS Truepower, Albany, NY (United States)

    2012-07-01

    The current state-of-the-art wind power forecasting in the 0- to 6-h timeframe has levels of uncertainty that are adding increased costs and risks to the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: (1) a one-year field measurement campaign within two regions; (2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and (3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provide an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis. (orig.)

  14. Economic impact analysis of load forecasting

    International Nuclear Information System (INIS)

    Ranaweera, D.K.; Karady, G.G.; Farmer, R.G.

    1997-01-01

    Short term load forecasting is an essential function in electric power system operations and planning. Forecasts are needed for a variety of utility activities such as generation scheduling, scheduling of fuel purchases, maintenance scheduling and security analysis. Depending on power system characteristics, significant forecasting errors can lead to either excessively conservative scheduling or very marginal scheduling. Either can induce heavy economic penalties. This paper examines the economic impact of inaccurate load forecasts. Monte Carlo simulations were used to study the effect of different load forecasting accuracy. Investigations into the effect of improving the daily peak load forecasts, effect of different seasons of the year and effect of utilization factors are presented

  15. Urban runoff forecasting with ensemble weather predictions

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice.......This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice....

  16. Two approaches to forecast Ebola synthetic epidemics.

    Science.gov (United States)

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Medium Range Forecasts Representation (and Long Range Forecasts?)

    Science.gov (United States)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  18. Calculation of Forecast - Tool of the Decision and the Example of a Shipping Entity DANUBTRANS Galati S.C.

    Directory of Open Access Journals (Sweden)

    Mihaela-Cristina ONICA

    2011-11-01

    Full Text Available Financial forecast is the most important planning activity. Tools to achieve financial forecasting company budgets, unlike the balance sheet and income statement, not intended for external users, but domestic needs guidance in order to achieve the objective proposed in the next financial year:increase financial performance of the enterprise, reflected in increasing its value. Management forecasts, the budget is the main fields of business and to monitor compliance with budgetary provisions. Through budgeting are established affecting resources and responsibilities for each activity center. Thus, the budget is a forecast of ciphered resource damage and liability insurance for business objectives cost-effectively.

  19. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  20. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  1. Uncertainties in Forecasting Streamflow using Entropy Theory

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  2. Forecast Combination under Heavy-Tailed Errors

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    2015-11-01

    Full Text Available Forecast combination has been proven to be a very important technique to obtain accurate predictions for various applications in economics, finance, marketing and many other areas. In many applications, forecast errors exhibit heavy-tailed behaviors for various reasons. Unfortunately, to our knowledge, little has been done to obtain reliable forecast combinations for such situations. The familiar forecast combination methods, such as simple average, least squares regression or those based on the variance-covariance of the forecasts, may perform very poorly due to the fact that outliers tend to occur, and they make these methods have unstable weights, leading to un-robust forecasts. To address this problem, in this paper, we propose two nonparametric forecast combination methods. One is specially proposed for the situations in which the forecast errors are strongly believed to have heavy tails that can be modeled by a scaled Student’s t-distribution; the other is designed for relatively more general situations when there is a lack of strong or consistent evidence on the tail behaviors of the forecast errors due to a shortage of data and/or an evolving data-generating process. Adaptive risk bounds of both methods are developed. They show that the resulting combined forecasts yield near optimal mean forecast errors relative to the candidate forecasts. Simulations and a real example demonstrate their superior performance in that they indeed tend to have significantly smaller prediction errors than the previous combination methods in the presence of forecast outliers.

  3. Models for forecasting energy use in the US farm sector

    Science.gov (United States)

    Christensen, L. R.

    1981-07-01

    Econometric models were developed and estimated for the purpose of forecasting electricity and petroleum demand in US agriculture. A structural approach is pursued which takes account of the fact that the quantity demanded of any one input is a decision made in conjunction with other input decisions. Three different functional forms of varying degrees of complexity are specified for the structural cost function, which describes the cost of production as a function of the level of output and factor prices. Demand for materials (all purchased inputs) is derived from these models. A separate model which break this demand up into demand for the four components of materials is used to produce forecasts of electricity and petroleum is a stepwise manner.

  4. Profit Forecast Model Using Monte Carlo Simulation in Excel

    Directory of Open Access Journals (Sweden)

    Petru BALOGH

    2014-01-01

    Full Text Available Profit forecast is very important for any company. The purpose of this study is to provide a method to estimate the profit and the probability of obtaining the expected profit. Monte Carlo methods are stochastic techniques–meaning they are based on the use of random numbers and probability statistics to investigate problems. Monte Carlo simulation furnishes the decision-maker with a range of possible outcomes and the probabilities they will occur for any choice of action. Our example of Monte Carlo simulation in Excel will be a simplified profit forecast model. Each step of the analysis will be described in detail. The input data for the case presented: the number of leads per month, the percentage of leads that result in sales, , the cost of a single lead, the profit per sale and fixed cost, allow obtaining profit and associated probabilities of achieving.

  5. Inventory model using bayesian dynamic linear model for demand forecasting

    Directory of Open Access Journals (Sweden)

    Marisol Valencia-Cárdenas

    2014-12-01

    Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti

  6. Forecasting Macroeconomic Labour Market Flows

    DEFF Research Database (Denmark)

    Wilke, Ralf

    2017-01-01

    Forecasting labour market flows is important for budgeting and decision-making in government departments and public administration. Macroeconomic forecasts are normally obtained from time series data. In this article, we follow another approach that uses individual-level statistical analysis...... to predict the number of exits out of unemployment insurance claims. We present a comparative study of econometric, actuarial and statistical methodologies that base on different data structures. The results with records of the German unemployment insurance suggest that prediction based on individual-level...

  7. Incorporating Forecast Uncertainty in Utility Control Center

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  8. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.

    2015-01-01

    Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed

  9. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  10. Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2014-07-01

    Full Text Available The scientific evaluation methodology for the forecast accuracy of wind power forecasting models is an important issue in the domain of wind power forecasting. However, traditional forecast evaluation criteria, such as Mean Squared Error (MSE and Mean Absolute Error (MAE, have limitations in application to some degree. In this paper, a modern evaluation criterion, the Diebold-Mariano (DM test, is introduced. The DM test can discriminate the significant differences of forecasting accuracy between different models based on the scheme of quantitative analysis. Furthermore, the augmented DM test with rolling windows approach is proposed to give a more strict forecasting evaluation. By extending the loss function to an asymmetric structure, the asymmetric DM test is proposed. Case study indicates that the evaluation criteria based on DM test can relieve the influence of random sample disturbance. Moreover, the proposed augmented DM test can provide more evidence when the cost of changing models is expensive, and the proposed asymmetric DM test can add in the asymmetric factor, and provide practical evaluation of wind power forecasting models. It is concluded that the two refined DM tests can provide reference to the comprehensive evaluation for wind power forecasting models.

  11. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  12. Suppression device for the reactor water level lowering

    International Nuclear Information System (INIS)

    Kasuga, Hajime; Kasuga, Hiroshi.

    1984-01-01

    Purpose: To suppress the lowering in the reactor water level so as to avoid unnecessary actuation of ECCS upon generation of transient changes which forecasts the lowering of the reactor water level in a BWR type reactor. Constitution: There are provided a water level suppression signal generator for generating a water level suppression signal upon generation of a transient change signal which forecasts the water level lowering in a nuclear reactor and a recycling flow rate controller that applies a recycling flow rate control signal to a recycling pump drive motor by the water level lowering suppression signal. The velocity of the recycling pump is controlled by a reactor scram signal by way of the water level lowering suppresion signal generator and a recycling flow rate controller. Then, the recycling reactor core flow rate is decreased and the void amount in the reactor is transiently increased where the water level tends to increase. Accordingly, the water level lowering by the scram is moderated by the increasing tendency of the water level. (Ikeda, J.)

  13. Operational Earthquake Forecasting: Proposed Guidelines for Implementation (Invited)

    Science.gov (United States)

    Jordan, T. H.

    2010-12-01

    timely, and they need to convey the epistemic uncertainties in the operational forecasts. (b) Earthquake probabilities should be based on operationally qualified, regularly updated forecasting systems. All operational procedures should be rigorously reviewed by experts in the creation, delivery, and utility of earthquake forecasts. (c) The quality of all operational models should be evaluated for reliability and skill by retrospective testing, and the models should be under continuous prospective testing in a CSEP-type environment against established long-term forecasts and a wide variety of alternative, time-dependent models. (d) Short-term models used in operational forecasting should be consistent with the long-term forecasts used in PSHA. (e) Alert procedures should be standardized to facilitate decisions at different levels of government and among the public, based in part on objective analysis of costs and benefits. (f) In establishing alert procedures, consideration should also be made of the less tangible aspects of value-of-information, such as gains in psychological preparedness and resilience. Authoritative statements of increased risk, even when the absolute probability is low, can provide a psychological benefit to the public by filling information vacuums that can lead to informal predictions and misinformation.

  14. Forecast communication through the newspaper Part 1: Framing the forecaster

    Science.gov (United States)

    Harris, Andrew J. L.

    2015-04-01

    This review is split into two parts both of which address issues of forecast communication of an environmental disaster through the newspaper during a period of crisis. The first part explores the process by which information passes from the scientist or forecaster, through the media filter, to the public. As part of this filter preference, omission, selection of data, source, quote and story, as well as placement of the same information within an individual piece or within the newspaper itself, can serve to distort the message. The result is the introduction of bias and slant—that is, the message becomes distorted so as to favor one side of the argument against another as it passes through the filter. Bias can be used to support spin or agenda setting, so that a particular emphasis becomes placed on the story which exerts an influence on the reader's judgment. The net result of the filter components is either a negative (contrary) or positive (supportive) frame. Tabloidization of the news has also resulted in the use of strong, evocative, exaggerated words, headlines and images to support a frame. I illustrate these various elements of the media filter using coverage of the air space closure due to the April 2010 eruption of Eyjafjallajökull (Iceland). Using the British press coverage of this event it is not difficult to find examples of all media filter elements, application of which resulted in bias against the forecast and forecaster. These actors then became named and blamed. Within this logic, it becomes only too easy for forecasters and scientists to be framed in a negative way through blame culture. The result is that forecast is framed in such a way so as to cause the forecaster to be blamed for all losses associated with the loss-causing event. Within the social amplification of risk framework (SARF), this can amplify a negative impression of the risk, the event and the response. However, actions can be taken to avoid such an outcome. These actions

  15. Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L

    Science.gov (United States)

    Lesmana, E.; Subartini, B.; Riaman; Jabar, D. A.

    2018-03-01

    This study discusses the data forecasting sales of carbon electrodes at PT. INDAC INT L uses winters and double moving average methods, while for predicting the amount of inventory and cost required in ordering raw material of carbon electrode next period using Economic Order Quantity (EOQ) model. The result of error analysis shows that winters method for next period gives result of MAE, MSE, and MAPE, the winters method is a better forecasting method for forecasting sales of carbon electrode products. So that PT. INDAC INT L is advised to provide products that will be sold following the sales amount by the winters method.

  16. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1996-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  17. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  18. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  19. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    Science.gov (United States)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  20. Meteorologically Driven Dengue and Chikungunya Forecasts

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to incorporate weather forecasts and reported DF and ChikV case data into a disease transmission model to forecast disease case numbers...