WorldWideScience

Sample records for suppressing plant diseases

  1. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  2. A saponin-detoxifying enzyme mediates suppression of plant defences

    Science.gov (United States)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  3. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    Science.gov (United States)

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  4. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  5. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8

    Directory of Open Access Journals (Sweden)

    Helen L. Hayden

    2018-05-01

    Full Text Available The soilborne fungus Rhizoctonia solani anastomosis group (AG 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of R. solani AG8 through disease suppression has been well documented at our study site in Avon, South Australia. A comparative metatranscriptomic approach was applied to assess the taxonomic and functional characteristics of the rhizosphere microbiome of wheat plants grown in adjacent fields which are suppressive and non-suppressive to the plant pathogen R. solani AG8. Analysis of 12 rhizosphere metatranscriptomes (six per field was undertaken using two bioinformatic approaches involving unassembled and assembled reads. Differential expression analysis showed the dominant taxa in the rhizosphere based on mRNA annotation were Arthrobacter spp. and Pseudomonas spp. for non-suppressive samples and Stenotrophomonas spp. and Buttiauxella spp. for the suppressive samples. The assembled metatranscriptome analysis identified more differentially expressed genes than the unassembled analysis in the comparison of suppressive and non-suppressive samples. Suppressive samples showed greater expression of a polyketide cyclase, a terpenoid biosynthesis backbone gene (dxs and many cold shock proteins (csp. Non-suppressive samples were characterised by greater expression of antibiotic genes such as non-heme chloroperoxidase (cpo which is involved in pyrrolnitrin synthesis, and phenazine biosynthesis family protein F (phzF and its transcriptional activator protein (phzR. A large number of genes involved in detoxifying reactive oxygen species (ROS and superoxide radicals (sod, cat, ahp, bcp, gpx1, trx were also expressed in the non-suppressive rhizosphere samples most likely in response to the infection of wheat

  6. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    NARCIS (Netherlands)

    Cordovez da Cunha, V.; Carrion Bravo, V.J.; Etalo, D.W.; Mumm, R.; Zhu, H.; Wezel, van G.P.; Raaijmakers, J.M.

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown.

  7. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    NARCIS (Netherlands)

    Cordovez, Viviane; Carrion, Victor; Etalo, Desalegn W.; Mumm, Roland; Zhu, Hua; Van Wezel, Gilles P.; Raaijmakers, Jos M.

    2015-01-01

    BACKGROUND: In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely

  8. Take-all of Wheat and Natural Disease Suppression: A Review

    Directory of Open Access Journals (Sweden)

    Youn-Sig Kwak

    2013-06-01

    Full Text Available In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that have the ability to protect either by direct inhibition of the pathogen or by inducing resistance mechanisms in the plant. One of the best examples of protection of plant roots by antagonistic microbes occurs in soils that are suppressive to take-all disease of wheat. Take-all, caused by Gaeumannomyces graminis var. tritici, is the most economically important root disease of wheat worldwide. Take-all decline (TAD is the spontaneous decline in incidence and severity of disease after a severe outbreak of take-all during continuous wheat or barley monoculture. TAD occurs worldwide, and in the United States and The Netherlands it results from a build-up of populations of 2,4-diacetylphloroglucinol (2,4-DAPG-producing fluorescent Pseudomonas spp. during wheat monoculture. The antibiotic 2,4-DAPG has a broad spectrum of activity and is especially active against the take-all pathogen. Based on genotype analysis by repetitive sequence-based-PCR analysis and restriction fragment length polymorphism of phlD, a key 2,4-DAPG biosynthesis gene, at least 22 genotypes of 2,4-DAPG producing fluorescent Pseudomonas spp. have been described worldwide. In this review, we provide an overview of G. graminis var. tritici, the take-all disease, Pseudomonas biocontrol agents, and mechanism of disease suppression.

  9. The Effector SPRYSEC-19 of Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistance in Plants1[C][W][OA

    Science.gov (United States)

    Postma, Wiebe J.; Slootweg, Erik J.; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O.G.; van Gelderen, Kasper; Lozano-Torres, Jose L.; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-01-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants. PMID:22904163

  10. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.

    Science.gov (United States)

    Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha

    2012-01-01

    Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.

  11. Disease-induced assemblage of a plant-beneficial bacterial consortium

    DEFF Research Database (Denmark)

    Berendsen, Roeland L.; Vismans, Gilles; Yu, Ke

    2018-01-01

    Disease suppressive soils typically develop after a disease outbreak due to the subsequent assembly of protective microbiota in the rhizosphere. The role of the plant immune system in the assemblage of a protective rhizosphere microbiome is largely unknown. In this study, we demonstrate...... in a second population of plants growing in the same soil. Together our results indicate that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes, therewith potentially maximizing the chance...

  12. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  13. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    International Nuclear Information System (INIS)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la; Hamdi, Helmi; White, Jason C.; Bindraban, Prem; Dimkpa, Christian

    2015-01-01

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications

  14. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    Energy Technology Data Exchange (ETDEWEB)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la [The Connecticut Agricultural Experiment Station (United States); Hamdi, Helmi [University of Carthage, Water Research and Technology Center (Tunisia); White, Jason C., E-mail: jason.white@ct.gov [The Connecticut Agricultural Experiment Station (United States); Bindraban, Prem; Dimkpa, Christian [Virtual Fertilizer Research Center (United States)

    2015-02-15

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications.

  15. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  16. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease

    NARCIS (Netherlands)

    Xiong, Wu; Li, Rong; Ren, Yi; Liu, Chen; Zhao, Qingyun; Wu, Huasong; Jousset, Alexandre; Shen, Qirong

    2017-01-01

    Characterizing microbial communities associated with disease-suppressive soil is an important first step toward understanding the potential of microbiota to protect crops against plant pathogens. In the present study, we compared microbial communities in suppressive- and conducive-soils associated

  17. Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: Implications for disease suppression.

    Science.gov (United States)

    Dignam, Bryony E A; O'Callaghan, Maureen; Condron, Leo M; Kowalchuk, George A; Van Nostrand, Joy D; Zhou, Jizhong; Wakelin, Steven A

    2018-01-01

    Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives. Pseudomonas bacteria were selected as a general taxonomic indicator of disease suppressive potential, while genes associated with the biosynthesis of a suite of secondary metabolites provided functional markers (GeoChip 5.0 microarray analysis). The composition of both the Pseudomonas communities and disease suppressive functional genes were responsive to land use. Underlying soil properties explained 37% of the variation in Pseudomonas community structure and up to 61% of the variation in the abundance of disease suppressive functional genes. Notably, measures of soil organic matter quality, C:P ratio, and aromaticity of the dissolved organic matter content (carbon recalcitrance), influenced both the taxonomic and functional disease suppressive potential of the pasture soils. Our results suggest that key components of the soil microbial community may be managed on-farm to enhance disease suppression and plant productivity.

  18. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil

    NARCIS (Netherlands)

    Postma, J.; Scheper, R.W.A.; Schilder, M.T.

    2010-01-01

    Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from

  19. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  20. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

    Science.gov (United States)

    Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  1. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  2. Suppression of soil nitrification by plants.

    Science.gov (United States)

    Subbarao, Guntur Venkata; Yoshihashi, Tadashi; Worthington, Margaret; Nakahara, Kazuhiko; Ando, Yasuo; Sahrawat, Kanwar Lal; Rao, Idupulapati Madhusudhana; Lata, Jean-Christophe; Kishii, Masahiro; Braun, Hans-Joachim

    2015-04-01

    Nitrification, the biological oxidation of ammonium to nitrate, weakens the soil's ability to retain N and facilitates N-losses from production agriculture through nitrate-leaching and denitrification. This process has a profound influence on what form of mineral-N is absorbed, used by plants, and retained in the soil, or lost to the environment, which in turn affects N-cycling, N-use efficiency (NUE) and ecosystem health and services. As reactive-N is often the most limiting in natural ecosystems, plants have acquired a range of mechanisms that suppress soil-nitrifier activity to limit N-losses via N-leaching and denitrification. Plants' ability to produce and release nitrification inhibitors from roots and suppress soil-nitrifier activity is termed 'biological nitrification inhibition' (BNI). With recent developments in methodology for in-situ measurement of nitrification inhibition, it is now possible to characterize BNI function in plants. This review assesses the current status of our understanding of the production and release of biological nitrification inhibitors (BNIs) and their potential in improving NUE in agriculture. A suite of genetic, soil and environmental factors regulate BNI activity in plants. BNI-function can be genetically exploited to improve the BNI-capacity of major food- and feed-crops to develop next-generation production systems with reduced nitrification and N2O emission rates to benefit both agriculture and the environment. The feasibility of such an approach is discussed based on the progresses made. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants.

    Science.gov (United States)

    Golivets, Marina; Wallin, Kimberly F

    2018-05-01

    High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success. © 2018 John Wiley & Sons Ltd/CNRS.

  4. Medicinal Plants in Neurodegenerative Diseases: Perspective of Traditional Persian Medicine.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Shahpiri, Zahra; Mehri, Mohammad Reza; Bahramsoltani, Roodabeh; Rezaei, Mahdi; Raeesdana, Azade; Rahimi, Roja

    2018-01-01

    Neurodegenerative diseases are a progressive loss of structure and/or function of neurons. Weak therapeutic response and progressive nature of the diseases, as well as a wide range of side effects caused by conventional therapeutic approaches make patients seek for complementary and alternative medicine. The aim of the present paper is to discuss the neuropharmacological basis of medicinal plants and their principle phytochemicals which have been used in traditional Persian medicine for different types of neurodegenerative diseases. Medicinal plants introduced in traditional Persian medicine perform beneficial effects in neurodegenerative diseases via various cellular and molecular mechanisms including suppression of apoptosis mediated by an increase in the expression of anti-apoptotic agents (e.g. Bcl-2) as well as a decrease in the expression and activity of proapoptotic proteins (e.g. Bax, caspase 3 and 9). Alleviating inflammatory responses and suppressing the expression and function of pro-inflammatory cytokines like Tumor necrosis factor α and interleukins, as well as improvement in antioxidative performance mediated by superoxide dismutase and catalase, are among other neuroprotective mechanisms of traditional medicinal plants. Modulation of transcription, transduction, intracellular signaling pathways including ERK, p38, and MAPK, with upstream regulatory activity on inflammatory cascades, apoptosis and oxidative stress associated pathways, play an essential role in the preventive and therapeutic potential of the plants in neurodegenerative diseases. Medicinal plants used in traditional Persian medicine along with their related phytochemicals by affecting various neuropharmacological pathways can be considered as future drugs or adjuvant therapies with conventional pharmacotherapeutics; though, further clinical studies are necessary for the confirmation of their safety and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at

  5. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  6. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

    Science.gov (United States)

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop

    2015-01-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  7. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    Full Text Available The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB. A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm. Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1 and produced indole acetic acid (0.48-1.85 mg L-1 in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%, improved shoot length (31%, root length (41% and plant dry weight (60% as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  8. Evasion and suppression of plant immunity

    NARCIS (Netherlands)

    Pel, M.J.C.

    2013-01-01

    Every year up to 20% of the crop production with an economical value of almost 200 billion euro is lost due to plant diseases. To be able to develop effective and durable strategies to counteract these plant diseases, understanding the mechanisms that enable pathogens to cause disease is essential.

  9. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    van der Voort, M.; Kempenaar, M.; van Driel, M.; Raaijmakers, J.M.; Mendes, R.

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  10. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    Voort, van der M.; Kempenaar, Marcel; Driel, van Marc; Raaijmakers, Jos M.; Mendes, Rodrigo

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  11. Bacterial endophytes of perennial crops for management of plant disease

    OpenAIRE

    Melnick, Rachel L.; Bailey, B.A.; Backman, Paul A.

    2013-01-01

    Metadata only record Bacterial endophytes, microorganisms which inhabit the internal tissues of plants, can suppress disease and are often used as a biological control in annual crops. Less research, however, has been applied to the use of bacterial endophytes to prevent disease in perennial crops, which presents a more complex challenge. However, exploration of their potential as a biological control in perennial crops has been limited. This chapter assembles current knowledge on the subj...

  12. How glyphosate affects plant disease development: it is more than enhanced susceptibility.

    Science.gov (United States)

    Hammerschmidt, Ray

    2018-05-01

    Glyphosate has been shown to affect the development of plant disease in several ways. Plants utilize phenolic and other shikimic acid pathway-derived compounds as part of their defense against pathogens, and glyphosate inhibits the biosynthesis of these compounds via its mode of action. Several studies have shown a correlation between enhanced disease and suppression of phenolic compound production after glyphosate. Glyphosate-resistant crop plants have also been studied for changes in resistance as a result of carrying the glyphosate resistance trait. The evidence indicates that neither the resistance trait nor application of glyphosate to glyphosate-resistant plants increases susceptibility to disease. The only exceptions to this are cases where glyphosate has been shown to reduce rust diseases on glyphosate-resistant crops, supporting a fungicidal role for this chemical. Finally, glyphosate treatment of weeds or volunteer crops can cause a temporary increase in soil-borne pathogens that may result in disease development if crops are planted too soon after glyphosate application. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    Science.gov (United States)

    Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C. J.; Villarroel, C. A.; Ataide, L. M. S.; Dermauw, W.; Glas, J. J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R. C.; Sabelis, M. W.; Alba, J. M.

    2015-01-01

    Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can

  14. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  15. Application of Copper-Chitosan Nanoparticles Stimulate Growth and Induce Resistance in Finger Millet (Eleusine coracana Gaertn.) Plants against Blast Disease.

    Science.gov (United States)

    Sathiyabama, Muthukrishnan; Manikandan, Appu

    2018-02-28

    Copper-chitosan nanoparticle (CuChNp) was synthesized and used to study its effect on finger millet plant as a model plant system. Our objective was to explore the efficacy of CuChNp application to control blast disease of finger millet. CuChNp was applied to finger millet either as a foliar spray or as a combined application (involving seed coat and foliar spray). Both the application methods enhanced growth profile of finger millet plants and increased yield. The increased yield was nearly 89% in combined application method. Treated finger millet plants challenged with Pyricularia grisea showed suppression of blast disease development when compared to control. Nearly 75% protection was observed in the combined application of CuChNp to finger millet plants. In CuChNp treated finger millet plants, a significant increase in defense enzymes was observed, which was detected both qualitatively and quantitatively. The suppression of blast disease correlates well with increased defense enzymes in CuChNp treated finger millet plants.

  16. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities.

    Science.gov (United States)

    Kant, M R; Jonckheere, W; Knegt, B; Lemos, F; Liu, J; Schimmel, B C J; Villarroel, C A; Ataide, L M S; Dermauw, W; Glas, J J; Egas, M; Janssen, A; Van Leeuwen, T; Schuurink, R C; Sabelis, M W; Alba, J M

    2015-06-01

    Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to

  17. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    Science.gov (United States)

    Antoniou, Anastasis; Tsolakidou, Maria-Dimitra; Stringlis, Ioannis A.; Pantelides, Iakovos S.

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects. While suppressiveness is usually attributed to the compost’s microorganisms, the mechanisms governing microbial recruitment by the roots and the composition of selected microbial communities are not fully elucidated. Herein, the purpose of the study was to evaluate the impact of a compost on tomato plant growth and its suppressiveness against Fusarium oxysporum f. sp. lycopersici (Foxl) and Verticillium dahliae (Vd). First, growth parameters of tomato plants grown in sterile peat-based substrates including 20 and 30% sterile compost (80P/20C-ST and 70P/30C-ST) or non-sterile compost (80P/20C and 70P/30C) were evaluated in a growth room experiment. Plant height, total leaf surface, and fresh and dry weight of plants grown in the non-sterile compost mixes were increased compared to the plants grown in the sterile compost substrates, indicating the plant growth promoting activity of the compost’s microorganisms. Subsequently, compost’s suppressiveness against Foxl and Vd was evaluated with pathogenicity experiments on tomato plants grown in 70P/30C-ST and 70P/30C substrates. Disease intensity was significantly less in plants grown in the non-sterile compost than in those grown in the sterile compost substrate; AUDPC was 2.3- and 1.4-fold less for Foxl and Vd, respectively. Moreover, fungal quantification in planta demonstrated reduced colonization in plants grown in the non-sterile mixture. To further investigate these findings, we characterized the culturable microbiome attracted by the roots compared to the unplanted compost. Bacteria and fungi isolated from unplanted compost and the rhizosphere of plants were sequence-identified. Community-level analysis revealed

  18. In vivo assessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust.

    Science.gov (United States)

    Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja

    2018-02-01

    As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.

  19. Biological Control of Plant Disease Caused by Bacteria

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-07-01

    Full Text Available Bacterial diseases in plants are difficult to control. The emphasis is on preventing the spread of the bacteria rather than curing the diseased plant. Integrated management measures for bacterial plant pathogens should be applied for successfull control. Biological control is one of the control measures viz. through the use of microorganisms to suppress the growth and development of bacterial plant pathogen and ultimately reduce the possibility of disease onset. The study of biological control of bacterial plant pathogen was just began compared with of fungal plant pathogen. The ecological nature of diverse bacterial plant pathogens has led scientists to apply different approach in the investigation of its biological control. The complex process of entrance to its host plant for certain soil-borne bacterial plant pathogens need special techniques and combination of more than one biological control agent. Problem and progress in controlling bacterial plant pathogens biologically will be discussed in more detail in the paper and some commercial products of biological control agents (biopesticides will be introduced.     Penyakit tumbuhan karena bakteri sulit dikendalikan. Penekanan pengendalian adalah pada pencegahan penyebaran bakteri patogen dan bukan pada penyembuhan tanaman yang sudah sakit. Untuk suksesnya pengendalian bakteri patogen tumbuhan diperlukan cara pengelolaan yang terpadu. Pengendalian secara biologi merupakan salah satu cara pengendalian dengan menggunakan mikroorganisme untuk menekan pertumbuhan dan perkembangan bakteri patogen tumbuhan dengan tujuan akhir menurunkan kemungkinan timbulnya penyakit. Sifat ekologi bakteri patogen tumbuhan yang berbeda-beda mengharuskan pendekatan yang berbeda pula dalam pengendaliannya secara biologi. Masalah dan perkembangan dalam pengendalian bakteri patogen tumbuhan secara biologi didiskusikan secara detail dalam makalah ini.

  20. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  1. Disease Suppressive Soils: New Insights from the Soil Microbiome.

    Science.gov (United States)

    Schlatter, Daniel; Kinkel, Linda; Thomashow, Linda; Weller, David; Paulitz, Timothy

    2017-11-01

    Soils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils. Two general types of suppression have been described: specific and general suppression, and theories have been developed around these two models. In this review, we will present three examples of currently-studied model systems with features representative of specific and general suppressiveness: suppression to take-all (Gaeumannomyces graminis var. tritici), Rhizoctonia bare patch of wheat (Rhizoctonia solani AG-8), and Streptomyces. To compare and contrast the two models of general versus specific suppression, we propose a number of hypotheses about the nature and ecology of microbial populations and communities of suppressive soils. We outline the potential and limitations of new molecular techniques that can provide novel ways of testing these hypotheses. Finally, we consider how this greater understanding of the phytobiome can facilitate sustainable disease management in agriculture by harnessing the potential of indigenous soil microbes.

  2. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    Science.gov (United States)

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Effect of mixed and single crops on disease suppressiveness of soils

    NARCIS (Netherlands)

    Hiddink, G.A.; Termorshuizen, A.J.; Raaijmakers, J.M.; Bruggen, van A.H.C.

    2005-01-01

    The effect of mixed cropping on disease suppressiveness of soils was tested for two cropping systems, Brussels sprouts¿barley and triticale¿white clover. Disease suppressiveness of field soils was evaluated in bioassays for the soilborne pathogens Rhizoctonia solani, Fusarium oxysporum f. sp. lini,

  4. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  6. Enhancement of soil suppressiveness against Rhizoctonia solani in sugar beet by organic amendments

    NARCIS (Netherlands)

    Postma, J.; Schilder, M.T.

    2015-01-01

    The efficacy of different organic soil amendments on disease suppression to Rhizoctoniasolani AG 2-2IIIB was tested in a bio-assay with sugar beet as a test plant. Lysobacter populations in soil were quantified as a possible mechanism for disease suppression. Disease spread through the bio-assay

  7. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling.

    Science.gov (United States)

    Evers, Jochem B; Bastiaans, Lammert

    2016-05-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.

  8. [Microfungicid--a preparation based on trichoderma viride for plant diseases control].

    Science.gov (United States)

    Kolombet, L V; Zhigletsova, S K; Derbyshev, V V; Ezhov, D V; Kosareva, N I; Bystrova, E V

    2001-01-01

    A technology was designed for manufacturing a preparation based on Trichoderma viride Pers ex S.F. Gray that strongly suppresses the development of causative agents of certain plant diseases and displays a growth-stimulating activity. Cultivation of the strain in a liquid medium for 18-24 h produced up to 60 g dry biomass per liter nutrient medium. A marketable form created in this work conserves the activity of the mycelial preparation for six months. The preparation is compatible with insecticides (carbofos, vismetrin, talstar, and applaud) and certain fungicides (such as baitan). Tests performed with the liquid form of Mycofungicid (seeds were treated with this preparation at a dose of 20-30 g per metric ton before sowing) showed its high efficiency in protecting cereal crops from plant pathogens. The incidence of plant diseases decreased by 65%, and crop yields increased by 15-20%.

  9. Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease.

    Directory of Open Access Journals (Sweden)

    Lori R Shapiro

    Full Text Available Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV. We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant

  10. Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes

    Directory of Open Access Journals (Sweden)

    Dae-Sun Kang

    2017-06-01

    Full Text Available The spent mushroom substrate (SMS of Lentinula edodes that was derived from sawdust bag cultivation was used as materials for controlling Phytophthora blight disease of pepper. Water extract from SMS (WESMS of L. edodes inhibited mycelial growth of Phytophthora capsici, suppressed Phytophthora blight disease of pepper seedlings by 65% and promoted growth of the plant over 30%. In high performance liquid chromatography (HPLC analysis, oxalic acid was detected as the main organic acid compound in WESMS and inhibited the fungal mycelium at a minimum concentration of 200 mg/l. In quantitative real-time PCR, the transcriptional expression of CaBPR1 (PR protein 1, CaBGLU (β-1,3-glucanase, CaPR-4 (PR protein 4, and CaPR-10 (PR protein 10 were significantly enhanced on WESMS and DL-β-aminobutyric acid (BABA treated pepper leaves. In addition, the salicylic acid content was also increased 4 to 6 folds in the WESMS and BABA treated pepper leaves compared to water treated leaf sample. These findings suggest that WESMS of L. edodes suppress Phytophthora blight disease of pepper through multiple effects including antifungal activity, plant growth promotion, and defense gene induction.

  11. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    Science.gov (United States)

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  12. A methodology for analyzing the detection and suppression of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Siu, N.; Apostolakis, G.

    1986-01-01

    The assessment of the fire risk in nuclear power plants requires the analysis of fire scenarios within specified rooms. A methodology that integrates the fire protection features of a given room into an existing fire risk analysis framework is developed. An important component of this methodology is a model for the time required to detect and suppress a fire in a given room, called the ''hazard time.'' This model accounts for the reliability of fire detection and suppression equipment, as well as for the characteristics rates of the detection and suppression processes. Because the available evidence for fire detection and suppression in nuclear power plants is sparse and often qualitative, a second component of this methodology is a set of methods needed to employ imprecise information in a statistical analysis. These methods can be applied to a wide variety of problems

  13. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region

    NARCIS (Netherlands)

    Siegel-Hertz, Katarzyna; Edel-Hermann, Véronique; Chapelle, E.; Terrat, Sébastien; Raaijmakers, Jos M.; Steinberg, Christian

    2018-01-01

    Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic

  14. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  15. Overnight Dexamethasone Suppression Test in the Diagnosis of Cushing's Disease

    Directory of Open Access Journals (Sweden)

    Fatemeh Esfahanian

    2010-08-01

    Full Text Available Realizing the cause of Cushing's Syndrome (CS is one of the most challenging processes in clinical endocrinology. The long high dose dexamethasone suppression test (standard test is costly and need an extended inpatient stay. In this study we want to show the clinical utility of the overnight 8 mg dexamethasone suppression test (DST for differential diagnosis of CS in a referral center. Retrospectively from 2002-2005 we selected the patients of endocrinology ward in Imam hospital who were admitted with the diagnosis of Cushing syndrome and had 8 mg DST (modified test along with classic DST. In modified test a decrease in an 8 AM serum cortisol level of 50% or more is thought to indicate suppression and we compared the results of modified test with standard test. This test had been done on 42 patients: 10 male (23% and 32 female (76%. The mean age of patients was 31.39 (15-63, 32 with proven pituitary Cushing's disease, 7 with primary adrnal tumors and 3 with ectopic ACTH syndrome. The standard test according to 50% suppression of UFC had 90.62% sensitivity, and according to 90% suppression had 43.75% sensitivity. The sensitivity of this test was 71.85% for serum cortisol suppression. The modified test (8 mg overnight DST had 78% sensitivity. All of these tests had 100% specificity for the diagnosis of Cushing's disease. The positive predictive vale (PPV of all of these tests was 100%. The negative predictive value (NPV of modified test for the diagnosis of Cushing's disease was 58.82%. In standard test the NPV of serum cortisol was 52.6%, UFC 50% had 76.9% NPV and UFC 90% had 35.7% NPV. The results of serum cortisol suppression in modified test is better than standard test. Although 50% suppression of UFC in standard test had greater sensitivity than modified test, collecting of urine is difficult, time consuming and needing hospitalization, so we advice modified test that is much simpler and more convenient instead of standard test in the first

  16. Biowaste-derived hydrolysates as plant disease suppressants for oilseed rape

    Czech Academy of Sciences Publication Activity Database

    Jindřichová, Barbora; Burketová, Lenka; Montoneri, E.; Francavilla, M.

    2018-01-01

    Roč. 183, MAY 10 (2018), s. 335-342 ISSN 0959-6526 R&D Projects: GA MŠk(CZ) LD14056 Institutional support: RVO:61389030 Keywords : Biogas digestate * Compost * Induced resistance * Leptosphaeria maculans * Oilseed rape Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Plant sciences, botany Impact factor: 5.715, year: 2016

  17. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  18. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    NARCIS (Netherlands)

    Antoniou, Anastasis; Tsolakidou, Maria; Stringlis, I.; Pantelides, Iakovos

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects.

  19. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, Aad J; Lievens, Bart; Hoffland, Ellis; De Boer, W.

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  20. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Agtmaal, van Maaike; Straathof, Angela L.; Termorshuizen, Aad; Lievens, Bart; Hoffland, Ellis; Boer, de Wietse

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  1. Chapter 15. Plant pathology and managing wildland plant disease systems

    Science.gov (United States)

    David L. Nelson

    2004-01-01

    Obtaining specific, reliable knowledge on plant diseases is essential in wildland shrub resource management. However, plant disease is one of the most neglected areas of wildland resources experimental research. This section is a discussion of plant pathology and how to use it in managing plant disease systems.

  2. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Erkan, Nejdet [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Takahashi, Shinji [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Song, Daehun [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Hyundai and Kia Corporate R& D Division, Hyundai Motors, 772-1, Jangduk-dong, Hwaseong-Si, Gyeonggi-Do 445-706 (Korea, Republic of); Sagawa, Wataru; Okamoto, Koji [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan)

    2016-08-15

    Highlights: • Thermal stratification was reproduced in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants. • Horizontal temperature profiles were uniform in the toroidal suppression pool. • Subcooling-steam flow rate map of thermal stratification was obtained. • Steam bubble-induced flow model in suppression pool was suggested. • Bubble frequency strongly depends on the steam flow rate. - Abstract: Thermal stratification in the suppression pool of the Fukushima Daiichi nuclear power plants was experimentally investigated in sub-atmospheric pressure conditions using a 1/20 scale torus shaped setup. The thermal stratification was reproduced in the scaled-down suppression pool and the effect of the steam flow rate on different thermal stratification behaviors was examined for a wide range of steam flow rates. A sparger-type steam injection pipe that emulated Fukushima Daiichi Unit 3 (F1U3) was used. The steam was injected horizontally through 132 holes. The development (formation and disappearance) of thermal stratification was significantly affected by the steam flow rate. Interestingly, the thermal stratification in the suppression pool vanished when subcooling became lower than approximately 5 °C. This occurred because steam bubbles are not well condensed at low subcooling temperatures; therefore, those bubbles generate significant upward momentum, leading to mixing of the water in the suppression pool.

  3. Managing Abiotic Factors of Compost to Increase Soilborne Disease Suppression

    Science.gov (United States)

    Griffin, Deirdre E.

    2012-01-01

    Soilborne pathogens can devastate crops, causing economic losses for farmers due to reduced yields and expensive management practices. Fumigants and fungicides have harmful impacts on the surrounding environment and can be toxic to humans. Therefore, alternative methods of disease management are important. The disease suppressive abilities of…

  4. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

    Science.gov (United States)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  5. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    Science.gov (United States)

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  6. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms.

    Directory of Open Access Journals (Sweden)

    Kristina A Stinson

    2006-05-01

    Full Text Available The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.

  7. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    Science.gov (United States)

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Effect of plant spacing on weed suppression and yield of fluted ...

    African Journals Online (AJOL)

    The field study was conducted to evaluate the effect of plant spacing on weed suppression yield and economic benefit of fluted pumpkin (Telfeiria occidentalis Hook F). The experiment was carried out at the Department of Crop and Soil Science Demonstration Plot, Faculty of Agriculture, University of Port Harcourt, Nigeria ...

  9. Oligotrophic bacteria and root disease suppression in organically managed soils

    NARCIS (Netherlands)

    Senechkin, I.V.

    2013-01-01

    The objective of this thesis was to obtain a better understanding of soil health in terms of microbial and chemical characteristics as well as suppression of soil borne plant pathogens. Organic soils were chosen as an appropriate model for studying soil health. Four different organic

  10. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    Directory of Open Access Journals (Sweden)

    Paola Durán

    2017-08-01

    Full Text Available Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt. In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  11. SIRT7 Represses Myc Activity to Suppress ER Stress and Prevent Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jiyung Shin

    2013-11-01

    Full Text Available Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD+-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease. SIRT7 is induced upon ER stress and is stabilized at the promoters of ribosomal proteins through its interaction with the transcription factor Myc to silence gene expression and to relieve ER stress. SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease. Myc inactivation or pharmacological suppression of ER stress alleviates fatty liver caused by SIRT7 deficiency. Importantly, SIRT7 suppresses ER stress and reverts the fatty liver disease in diet-induced obese mice. Our study identifies SIRT7 as a cofactor of Myc for transcriptional repression and delineates a druggable regulatory branch of the ER stress response that prevents and reverts fatty liver disease.

  12. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.

    Science.gov (United States)

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-03-29

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.

  13. Medicinal plant activity on Helicobacter pylori related diseases.

    Science.gov (United States)

    Wang, Yuan-Chuen

    2014-08-14

    More than 50% of the world population is infected with Helicobacter pylori (H. pylori). The bacterium highly links to peptic ulcer diseases and duodenal ulcer, which was classified as a group I carcinogen in 1994 by the WHO. The pathogenesis of H. pylori is contributed by its virulence factors including urease, flagella, vacuolating cytotoxin A (VacA), cytotoxin-associated gene antigen (Cag A), and others. Of those virulence factors, VacA and CagA play the key roles. Infection with H. pylori vacA-positive strains can lead to vacuolation and apoptosis, whereas infection with cagA-positive strains might result in severe gastric inflammation and gastric cancer. Numerous medicinal plants have been reported for their anti-H. pylori activity, and the relevant active compounds including polyphenols, flavonoids, quinones, coumarins, terpenoids, and alkaloids have been studied. The anti-H. pylori action mechanisms, including inhibition of enzymatic (urease, DNA gyrase, dihydrofolate reductase, N-acetyltransferase, and myeloperoxidase) and adhesive activities, high redox potential, and hydrophilic/hydrophobic natures of compounds, have also been discussed in detail. H. pylori-induced gastric inflammation may progress to superficial gastritis, atrophic gastritis, and finally gastric cancer. Many natural products have anti-H. pylori-induced inflammation activity and the relevant mechanisms include suppression of nuclear factor-κB and mitogen-activated protein kinase pathway activation and inhibition of oxidative stress. Anti-H. pylori induced gastric inflammatory effects of plant products, including quercetin, apigenin, carotenoids-rich algae, tea product, garlic extract, apple peel polyphenol, and finger-root extract, have been documented. In conclusion, many medicinal plant products possess anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect. Those plant products have showed great potential as pharmaceutical candidates for H. pylori

  14. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling

    NARCIS (Netherlands)

    Evers, Jochem B.; Bastiaans, Lammert

    2016-01-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed

  15. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    Science.gov (United States)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  16. The concentration and type of liquid smoke to suppress the development of Elsinoe fawcettii causing scab on citrus plant of Japansche citroen

    Directory of Open Access Journals (Sweden)

    Triwiratno A.

    2018-04-01

    Full Text Available Citrus is the main fruit commodity in Indonesia. Scab disease is a major disease in citrus plants. Scab disease control usually uses chemical fungicides that cause environmental pollution. Liquid smoke is a natural substance as a safer fungicide. The objective of this study was to analyze the ability of liquid smoke with the most effective concentration of three types of liquid smoke ie coconut shell, teak and falcata in suppressing the development of fungus Elsinoe fawcettii in citrus Japansche Citroen (JC. The identification and treatment carried out were analysis of phenol compounds contained in three types of liquid smoke (coconut shell, teak and falcata wood, testing of in vitro antifungal properties on growth of fungus E. fawcettii isolate in petri and in vivo sprouts against disease rate scab on JC citrus plant. The results showed that phenol content of coconut shell liquid smoke was 62.747 ml / L, 227.873 ml / L of teak wood and falcata wood was 115.587 ml / L. On observation of E. fawcettii fungal colony 14 days after inocculation (dai highest percentage inhibition was smoke falcata smoke 5% concentration, able to inhibit growth of E. fawcettii equal to 77,22% whereas the lowest concentration was coconut shell smoke concentration 2% with 10.14% inhibition rate. Observation of wet weight and dry weight of E. fawcetti result of falcata smoke smoke treatment of 5% and 1% concentration have the lowest wet weight and dry weight of 0.867 g and 0.030 g, while on observation of intensity and extent of disease attack in vivo treatment of liquid smoke shell coconut wood and falcata wood have almost the same level of effectiveness. The conclusions of this study indicate that three types of liquid smoke ie coconut shell, teak and falcata wood have the ability to suppress growth and development of E. fawcetti fungus both in vitro and in vivo, while the most effective type is falcata wood. The most effective concentration in suppressing growth and

  17. Reduced herbicide doses in combination with allelopathic plant extracts suppress weeds in wheat

    International Nuclear Information System (INIS)

    Afridi, R.A.; Khan, M.A.

    2014-01-01

    Allelopathy is gaining popularity worldwide probably for decreasing the cost of production and environment friendly weed suppressing approach. Repeated field studies conducted during 2011-12 and 2012-13 at Agricutural Research Institute Tarnab, Peshawar, Pakistan where allelopathic water extracts of Oryza sativa, Parthenium hysterophorus, Phragmites australis and Datura alba along with reduced doses of phenoxaprop-p-ethyl and bromoxinil+MCPA were tested for controlling weeds in wheat. It was observed that weed density was encouragly suppressed whereas spike length (cm), number of spikelets spike-1 and 1000 grain weight (g) of the wheat were improved when the allelopathic plant water extracts were used in combination with lower doses of herbicides. Thus, allelochemicals provide weed suppressing option in wheat. However, more studies are required to fully explore the possibility of weed management and isolation of the chemicals involved in weed suppression for environment friendly weed management in wheat. Such studies may decrease the cost of crop production and total use of herbicides. (author)

  18. Effect of medicinal plants extracts on the incidence of mosaic disease caused by cucumber mosaic virus and growth of chili

    Science.gov (United States)

    Hamidson, H.; Damiri, N.; Angraini, E.

    2018-01-01

    This research was conducted to study the effect of the application of several extracts of medicinal plants on the incidence of mosaic disease caused by Cucumber Mosaic Virus infection on the chili (Capsicum annuum L.) plantation. A Randomized Block Design with eight treatments including control was used throughout the experiment. Treatments consisted of Azadiracta indica (A), Piper bitle (B), Cymbopogon citrates (C), Curcuma domestica (D), Averroa bilimbi (E), Datura stramonium (F), Annona Muricata (G) and control (H). Each treatment consist of three replications. The parameters observed were the incidence of mosaic attack due to CMV, disease severity, plant height, wet and dry weight and production (number of fruits and the weight of total fruits) each plant. Results showed that the application of medicinal plant extracts reduced the disease severity due to CMV. Extracts of Annona muricata and Datura stramonium were most effective in suppressing disease severity caused by the virus as they significantly different from control and from a number of treatment. The plants medicinal extracts were found to have increased the plant height and total weight of the plant, fruit amount and fruit weight. Extracts of Curcuma domestica, Piper bitle and Cymbopogon citrates were the third highest in fruit amount and weight and significantly different from the control.

  19. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  20. Study of ion suppression for phenolic compounds in medicinal plant extracts using liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Faccin, H; Viana, C; do Nascimento, P C; Bohrer, D; de Carvalho, L M

    2016-01-04

    A systematic study on the various sources of ion suppression in UHPLC-MS-MS analysis was carried out for 24 phenolic antioxidants in 6 different extracts of medicinal plants from Amazonia. The contributions of matrix effects, mobile-phase additives, analyte co-elution and electric charge competition during ionization to the global ion suppression were evaluated. Herein, the influence of mobile-phase additives on the ionization efficiency was found to be very pronounced, where ion suppression of approximately 90% and ion enhancement effects greater than 400% could be observed. The negative effect caused by the wrong choice of internal standard (IS) on quantitative studies was also evaluated and discussed from the perspective of ion suppression. This work also shows the importance of performing studies with this approach even for very similar matrices, such as varieties of medicinal plants from the same species, because different effects were observed for the same analyte. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.

    Science.gov (United States)

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-05-31

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63.

  2. Managing for soil health can suppress pests

    Directory of Open Access Journals (Sweden)

    Amanda Hodson

    2016-08-01

    Full Text Available A “healthy” soil can be thought of as one that functions well, both agronomically and ecologically, and one in which soil biodiversity and crop management work in synergy to suppress pests and diseases. UC researchers have pioneered many ways of managing soil biology for pest management, including strategies such as soil solarization, steam treatment and anaerobic soil disinfestation, as well as improvements on traditional methods, such as reducing tillage, amending soil with organic materials, and cover cropping. As managing for soil health becomes more of an explicit focus due to restrictions on the use of soil fumigants, integrated soil health tests will be needed that are validated for use in California. Other research needs include breeding crops for disease resistance and pest suppressive microbial communities as well as knowledge of how beneficial organisms influence plant health.

  3. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Science.gov (United States)

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce ...

  4. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.

    Science.gov (United States)

    Bradley, Geoffrey G; Punja, Zamir K

    2010-11-01

    Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.

  5. Plant-made oral vaccines against human infectious diseases-Are we there yet?

    Science.gov (United States)

    Chan, Hui-Ting; Daniell, Henry

    2015-10-01

    Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Dipping Strawberry Plants in Fungicides before Planting to Control Anthracnose

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2014-03-01

    Full Text Available Anthracnose crown rot (ACR, caused by Colletotrichum fructicola, is a serious disease of strawberry in Korea. The primary inoculums of ACR were symptomless strawberry plants, plant debris, and other host plants. To effectively control anthracnose in symptomless transplanted strawberries, it is necessary to use diseasefree plants, detect the disease early, and apply a fungicide. Therefore, in 2010 and 2011, we evaluated the efficacy of pre-plant fungicide dips by using strawberry transplants infected by C. fructicola for the control of anthracnose. Dipping plants in prochloraz-Mn for 10 min before planting was most effective for controlling anthracnose in symptomless strawberry plants and resulted in more than 76% control efficacy. Azoxystrobin showed a control efficacy of over 40%, but plants treated with pyraclostrobin, mancozeb and iminoctadine tris showed high disease severity. The control efficacy of the dip treatment with prochloraz-Mn did not differ with temperature and time. Treatment with prochloraz-Mn for more than an hour caused growth suppression in strawberry plants. Therefore, the development of anthracnose can be effectively reduced by dipping strawberry plants for 10 min in prochloraz-Mn before planting.

  7. Combating plant diseases--the Darwin connection.

    Science.gov (United States)

    Hollomon, Derek W; Brent, Keith J

    2009-11-01

    Although Darwin knew of plant diseases, he did not study them as part of his analysis of natural selection. Effective plant disease control has only been developed after his death. This article explores the relevance of Darwin's ideas to three problem areas with respect to diseases caused by fungi: emergence of new diseases, loss of disease resistance bred into plants and development of fungicide resistance. Darwin's concept of change through natural or artificial selection relied on selection of many small changes, but subsequent genetic research has shown that change can also occur through large steps. Appearance of new diseases can involve gene duplication, transfer or recombination, but all evidence points to both host plant resistance and fungicide susceptibility being overcome through point mutations. Because the population size of diseases such as rusts and powdery and downy mildews is so large, all possible point mutations are likely to occur daily, even during moderate epidemics. Overcoming control measures therefore reflects the overall fitness of these mutants, and much resource effort is being directed towards assessment of their fitness, both in the presence and in the absence of selection. While recent developments in comparative genomics have caused some revision of Darwin's ideas, experience in managing plant disease control measures clearly demonstrates the relevance of concepts he introduced 150 years ago. It also reveals the remarkable speed and the practical impact of adaptation in wild microorganism populations to changes in their environment, and the difficulty of stopping or delaying such adaptation. (c) 2009 Society of Chemical Industry.

  8. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    Science.gov (United States)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    Plant diseases are one of the seriously limiting factors of agriculture efficiency around the world. Diseases caused by fungi are the major threat to plants. Crop protection in modern agriculture heavily depends on chemical fungicides. Disadvantages of chemical pesticides soon became apparent as damage to the environment and a hazard to human health. In this regard use of biopesticides becomes an attractive alternative method of plant protection. For biological control of fungal plant diseases, separate bacterial or fungal strains as well as their communities can be used. Biopreparations must consist of microbes that are typical for local climate and soil conditions and therefore are able to survive in environments for a long time. Another option of plant pests' biological control is implementation of suppressive composts made of agricultural or other organic wastes. These composts can not only prevent the development of plant diseases, but also improve the soil fertility. The objective of this work was estimation of potential of composts and strains isolated from these composts as means for biological control of fusariosis that is one of the most widespread plant soil born disease. The composts were made up of the commonly produced agricultural wastes produced in Tatarstan Republic (Russia). Fusarium oxysporum f. sp. radicis-lycopersici was used as a model phytopathogen. Ten types of organic waste (Goat manure (GM), Chicken dung (CD), Chicken dung with straw addition (CS), Rabbit dung (RD), Cow manure (CM), Rerotting pork manure (RPM), Fresh pork manure (FPM), Pork manure with sawdust and straw (PMS), the remains of plants and leaves (PL), the vegetable waste (VW) were sampled in the big farms situated in Tatarstan Republic which is one of the main agricultural regions of Russia. The initial wastes were composted for 150 days. Further, the following characteristics of the composts were assessed: pH, electro conductivity, TOC, DOC, Ntot. On petri dishes with meat

  9. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  10. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  11. Plants used to treat skin diseases

    Science.gov (United States)

    Tabassum, Nahida; Hamdani, Mariya

    2014-01-01

    Skin diseases are numerous and a frequently occurring health problem affecting all ages from the neonates to the elderly and cause harm in number of ways. Maintaining healthy skin is important for a healthy body. Many people may develop skin diseases that affect the skin, including cancer, herpes and cellulitis. Some wild plants and their parts are frequently used to treat these diseases. The use of plants is as old as the mankind. Natural treatment is cheap and claimed to be safe. It is also suitable raw material for production of new synthetic agents. A review of some plants for the treatment of skin diseases is provided that summarizes the recent technical advancements that have taken place in this area during the past 17 years. PMID:24600196

  12. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  13. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.

    Science.gov (United States)

    Casteel, Clare L; De Alwis, Manori; Bak, Aurélie; Dong, Haili; Whitham, Steven A; Jander, Georg

    2015-09-01

    Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome

    NARCIS (Netherlands)

    Wu, Xiong; Guo, Sai; Jousset, Alexandre; Zhao, Qingyun; Wu, Huasong; Li, Rong; Kowalchuk, George A.; Shen, Qirong

    2017-01-01

    Fusarium wilt disease is a growing problem in agriculture systems. Application of bio-fertilizers containing beneficial microbes represents a promising disease control strategy. However, the mechanisms underlying disease suppression remain elusive. Here, in order to assess the importance of direct

  15. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum

    DEFF Research Database (Denmark)

    Larsen, John; Graham, James H.; Cubero, Jaime

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi known to cause plant growth depressions in tomato were examined for their biocontrol effects against root rot caused by Pythium aphanidermatum. The main hypothesis was that plant growth suppressive AM fungi would elicit a defence response in the host plant reduci...

  17. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore

    Science.gov (United States)

    Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have ...

  18. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  19. Suppressive therapy for radiation-associated nodular thyroid disease

    International Nuclear Information System (INIS)

    Tamura, Kazuo; Shimaoka, Katsutaro; Tsukada, Yoshiaki; Razack, M.S.; Sciasicia, Michael.

    1981-01-01

    A thyroid screening program for individuals who had irradiation to the head and neck areas was started at Roswell Park Memorial Institute in February 1977 and by June 1979, 1,071 patients were seen in the clinic. Three hundred and ninety-six patients were found to have palpable abnormalities of the thyroid, and following pretreatment evaluation, suppressive therapy with triiodothyronine (T3) (50 μg/day) or DT (desiccated thyroid) (120 mg/day) was administered in a double-blind fashion. Two hundred fifty patients with nodular disease completed 6 mo of treatment and are analyzed in this paper. Pretreatment thyroid function tests showed that two patients had hypothyroidism with a high thyroid-stimulating hormone (TSH) and a low thyroxine level. A high incidence of thyroid autoantibodies was also noted and surgical findings confirmed a high incidence of chronic thyroiditis. Complete disappearance of the nodules was seen in 29% of the patients, and in addition, 38% of the patients were seen to have significant shrinkage of the nodules, indicating that radiation-associated thyroid nodules were as sensitive to the thyroactive agents as nonirradiated nodular thyroid disease. There was little difference in the response rate between T3 and DT. Both agents suppressed circulating TSH levels to an unmeasurable level in 76% of the patients. There was no correlation between scan findings and response rates. Thyroid carcinoma was found in 19% of the patients who underwent surgery; although all were well-differentiated carcinomas, two-thirds of the patients already had evidence of dissemination and/or invasion suggesting the aggressive nature of postirradiation thyroid carcinoma. (author)

  20. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection.

    Directory of Open Access Journals (Sweden)

    Henry J McSorley

    Full Text Available We present immunological data from two clinical trials where the effect of experimental human hookworm (Necator americanus infection on the pathology of celiac disease was evaluated. We found that basal production of Interferon- (IFN-γ and Interleukin- (IL-17A from duodenal biopsy culture was suppressed in hookworm-infected participants compared to uninfected controls. Increased levels of CD4+CD25+Foxp3+ cells in the circulation and mucosa are associated with active celiac disease. We show that this accumulation also occurs during a short-term (1 week oral gluten challenge, and that hookworm infection suppressed the increase of circulating CD4+CD25+Foxp3+ cells during this challenge period. When duodenal biopsies from hookworm-infected participants were restimulated with the immunodominant gliadin peptide QE65, robust production of IL-2, IFN-γ and IL-17A was detected, even prior to gluten challenge while participants were strictly adhering to a gluten-free diet. Intriguingly, IL-5 was produced only after hookworm infection in response to QE65. Thus we hypothesise that hookworm-induced TH2 and IL-10 cross-regulation of the TH1/TH17 inflammatory response may be responsible for the suppression of these responses during experimental hookworm infection.

  1. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region

    Directory of Open Access Journals (Sweden)

    Katarzyna Siegel-Hertz

    2018-04-01

    Full Text Available Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic diversity of fungal and bacterial communities from suppressive and non-suppressive (conducive soils as regards Fusarium wilts sampled from the Châteaurenard region (France. Bioassays based on Fusarium wilt of flax confirmed that disease incidence was significantly lower in the suppressive soil than in the conducive soil. Furthermore, we succeeded in partly transferring Fusarium wilt-suppressiveness to the conducive soil by mixing 10% (w/w of the suppressive soil into the conducive soil. Fungal diversity differed significantly between the suppressive and conducive soils. Among dominant fungal operational taxonomic units (OTUs affiliated to known genera, 17 OTUs were detected exclusively in the suppressive soil. These OTUs were assigned to the Acremonium, Chaetomium, Cladosporium, Clonostachys, Fusarium, Ceratobasidium, Mortierella, Penicillium, Scytalidium, and Verticillium genera. Additionally, the relative abundance of specific members of the bacterial community was significantly higher in the suppressive and mixed soils than in the conducive soil. OTUs found more abundant in Fusarium wilt-suppressive soils were affiliated to the bacterial genera Adhaeribacter, Massilia, Microvirga, Rhizobium, Rhizobacter, Arthrobacter, Amycolatopsis, Rubrobacter, Paenibacillus, Stenotrophomonas, and Geobacter. Several of the fungal and bacterial genera detected exclusively or more abundantly in the Fusarium wilt-suppressive soil included genera known for their activity against F. oxysporum. Overall, this study supports the potential role of known fungal and bacterial genera in Fusarium wilt suppressive soils from Châteaurenard and pinpoints new bacterial and fungal

  2. Jinggangmycin-suppressed reproduction in the small brown planthopper (SBPH), Laodelphax striatellus (Fallen), is mediated by glucose dehydrogenase (GDH).

    Science.gov (United States)

    Ding, Jun; Wu, You; You, Lin-Lin; Xu, Bin; Ge, Lin-Quan; Yang, Guo-Qing; Wu, Jin-Cai

    2017-06-01

    The small brown planthopper (SBPH), Laodelphax striatellus (Fallen), is a serious pest insect of rice, wheat, and maize in China. SBPH not only sucks plant sap but also transmits plant disease viruses, causing serious damage. These viruses include rice striped virus disease (RSV disease), black streaked dwarf, and maize rough disease virus. SBPH outbreaks are related to the overuse of pesticides in China. Some pesticides, such as triazophos, stimulate the reproduction of SBPH, but an antibiotic fungicide jinggangmycin (JGM) suppresses its reproduction. However, mechanisms of decreased reproduction of SBPH induced by JGM remain unclear. The present findings show that JGM suppressed reproduction of SBPH (↓approximately 35.7%) and resulted in the down-regulated expression of glucose dehydrogenase (GDH). GDH-silenced control females (control+dsGDH) show that the number of eggs laid was reduced by 48.6% compared to control females. Biochemical tests show that the total lipid and fatty acid contents in JGM-treated and control+dsGDH females decreased significantly. Thus, we propose that the suppression of reproduction in SBPH induced by JGM is mediated by GDH via metabolic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Determination of factors associated with natural soil suppressivity to potato common scab.

    Directory of Open Access Journals (Sweden)

    Marketa Sagova-Mareckova

    Full Text Available Common scab of potatoes is a disease, which is difficult to manage due to complex interactions of the pathogenic bacteria (Streptomyces spp. with soil, microbial community and potato plants. In Bohemian-Moravian Highlands in the Czech Republic two sites (Vyklantice and Zdirec were selected for a study of common scab disease suppressivity. At both sites, a field with low disease severity occurs next to one with high severity and the situation was regularly observed over four decades although all four fields undergo a crop rotation. In the four fields, quantities of bacteria, actinobacteria and the gene txtB from the biosynthetic gene cluster of thaxtomin, the main pathogenicity factor of common scab, were analyzed by real-time PCR. Microbial community structure was compared by terminal fragment length polymorphism analysis. Soil and potato periderm were characterized by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium, and iron. Quality of organic matter was assessed by high performance liquid chromatography of soil extracts. The study demonstrated that the suppressive character of the fields is locally specific. At Zdirec, the suppressivity was associated with low txtB gene copies in bulk soil, while at Vyklantice site it was associated with low txtB gene copies in the tuberosphere. The differences were discussed with respect to the effect of abiotic conditions at Zdirec and interaction between potato plant and soil microbial community at Vyklantice. Soil pH, Ca soil content or cation concentrations, although different were not in the range to predict the disease severity. Low severity of common scab was associated with low content of soil C, N, C/N, Ca and Fe suggesting that oligotrophic conditions may be favorable to common scab suppression.

  4. Determination of factors associated with natural soil suppressivity to potato common scab.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Daniel, Ondrej; Omelka, Marek; Kristufek, Vaclav; Divis, Jiri; Kopecky, Jan

    2015-01-01

    Common scab of potatoes is a disease, which is difficult to manage due to complex interactions of the pathogenic bacteria (Streptomyces spp.) with soil, microbial community and potato plants. In Bohemian-Moravian Highlands in the Czech Republic two sites (Vyklantice and Zdirec) were selected for a study of common scab disease suppressivity. At both sites, a field with low disease severity occurs next to one with high severity and the situation was regularly observed over four decades although all four fields undergo a crop rotation. In the four fields, quantities of bacteria, actinobacteria and the gene txtB from the biosynthetic gene cluster of thaxtomin, the main pathogenicity factor of common scab, were analyzed by real-time PCR. Microbial community structure was compared by terminal fragment length polymorphism analysis. Soil and potato periderm were characterized by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium, and iron. Quality of organic matter was assessed by high performance liquid chromatography of soil extracts. The study demonstrated that the suppressive character of the fields is locally specific. At Zdirec, the suppressivity was associated with low txtB gene copies in bulk soil, while at Vyklantice site it was associated with low txtB gene copies in the tuberosphere. The differences were discussed with respect to the effect of abiotic conditions at Zdirec and interaction between potato plant and soil microbial community at Vyklantice. Soil pH, Ca soil content or cation concentrations, although different were not in the range to predict the disease severity. Low severity of common scab was associated with low content of soil C, N, C/N, Ca and Fe suggesting that oligotrophic conditions may be favorable to common scab suppression.

  5. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  6. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    Science.gov (United States)

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  7. Uncertainty analysis of suppression pool heating during an ATWS in a BWR-5 plant

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Johnsen, G.W.; Lellouche, G.S.

    1994-03-01

    The uncertainty has been estimated of predicting the peak temperature in the suppression pool of a BWR power plant, which undergoes an NRC-postulated Anticipated Transient Without Scram (ATWS). The ATWS is initiated by recirculation-pump trips, and then leads to power and flow oscillations as they had occurred at the LaSalle-2 Power Station in March of 1988. After limit-cycle oscillations have been established, the turbines are tripped, but without MSIV closure, allowing steam discharge through the turbine bypass into the condenser. Postulated operator actions, namely to lower the reactor vessel pressure and the level elevation in the downcomer, are simulated by a robot model which accounts for operator uncertainty. All balance of plant and control systems modeling uncertainties were part of the statistical uncertainty analysis that was patterned after the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology. The analysis showed that the predicted suppression-pool peak temperature of 329.3 K (133 degrees F) has a 95-percentile uncertainty of 14.4 K (26 degrees F), and that the size of this uncertainty bracket is dominated by the experimental uncertainty of measuring Safety and Relief Valve mass flow rates under critical-flow conditions. The analysis showed also that the probability of exceeding the suppression-pool temperature limit of 352.6 K (175 degrees F) is most likely zero (it is estimated as < 5-104). The square root of the sum of the squares of all the computed peak pool temperatures is 350.7 K (171.6 degrees F)

  8. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  9. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Directory of Open Access Journals (Sweden)

    Yiming Liu

    2016-10-01

    Full Text Available Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transfor-mation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium sup¬plemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of Agrobacterium tumefaciens in the plant tissue culture process. We generated a mutant Agrobacterium tumefaciens strain GV2260 (recA-SacB/R that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcrip¬tion factor.

  10. Nuclear techniques in plant pathology 1. Plant disease control and physiology of parasitism

    International Nuclear Information System (INIS)

    Menten, J.O.M.; Ando, A.; Tulmann Neto, A.

    1986-01-01

    Nuclear techniques are advantageously used in several areas of plant pathology. Among them are: induction of mutation for disease resistance, studies with pesticides, disease control through pathogen inactivation, induction of variability and stimulation in pathogens and natural enemies, studies of microorganism physiology and diseased plant physiology, effect of gamma radiation on pesticides, technology of pesticides application, etc. (Author) [pt

  11. iPathology: Robotic Applications and Management of Plants and Plant Diseases

    Directory of Open Access Journals (Sweden)

    Yiannis Ampatzidis

    2017-06-01

    Full Text Available The rapid development of new technologies and the changing landscape of the online world (e.g., Internet of Things (IoT, Internet of All, cloud-based solutions provide a unique opportunity for developing automated and robotic systems for urban farming, agriculture, and forestry. Technological advances in machine vision, global positioning systems, laser technologies, actuators, and mechatronics have enabled the development and implementation of robotic systems and intelligent technologies for precision agriculture. Herein, we present and review robotic applications on plant pathology and management, and emerging agricultural technologies for intra-urban agriculture. Greenhouse advanced management systems and technologies have been greatly developed in the last years, integrating IoT and WSN (Wireless Sensor Network. Machine learning, machine vision, and AI (Artificial Intelligence have been utilized and applied in agriculture for automated and robotic farming. Intelligence technologies, using machine vision/learning, have been developed not only for planting, irrigation, weeding (to some extent, pruning, and harvesting, but also for plant disease detection and identification. However, plant disease detection still represents an intriguing challenge, for both abiotic and biotic stress. Many recognition methods and technologies for identifying plant disease symptoms have been successfully developed; still, the majority of them require a controlled environment for data acquisition to avoid false positives. Machine learning methods (e.g., deep and transfer learning present promising results for improving image processing and plant symptom identification. Nevertheless, diagnostic specificity is a challenge for microorganism control and should drive the development of mechatronics and robotic solutions for disease management.

  12. A retrospective of an unconventionally trained plant pathologist: plant diseases to molecular plant pathology.

    Science.gov (United States)

    Ouchi, Seiji

    2006-01-01

    Plant pathology evolved from its mycology-oriented origins into a science dealing with biochemical mechanisms of diseases, along with enhanced crop production through disease control. This retrospective describes first my personal experience from my introduction to plant pathology, to the establishment of the concept of accessibility as a model pertaining to genetically defined basic compatibility induced by pathogens. I then refer to the development of molecular plant pathology from physiological and biochemical plant pathology fostered by the growth in recombinant technology in the second half of the past century. This progress was best reflected by the U.S.-Japan Seminar Series held at 4-5-year intervals from 1966 to 2003 and documented by publications in major journals of our discipline. These seminars emphasized that progress in science has always been supported by the invention of novel techniques and that knowledge integrated from modern genomics and subsequent proteomics should contribute to the progress of basic life sciences and, more importantly, to the elaboration of rational measures for disease control.

  13. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

    NARCIS (Netherlands)

    Z. Zelinkova (Zuzana); E. Bultman (Evelien); L. Vogelaar (Lauran); C. Bouziane (Cheima); E.J. Kuipers (Ernst); C.J. van der Woude (Janneke)

    2012-01-01

    textabstractAIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identifed through the electronic diagnosis

  14. Symbiotic immuno-suppression: is disease susceptibility the price of bleaching resistance?

    Science.gov (United States)

    Merselis, Daniel G; Lirman, Diego; Rodriguez-Lanetty, Mauricio

    2018-01-01

    Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide through the processes of bleaching and disease. These major contributors to coral mortality are both closely linked with thermal stress intensified by anthropogenic climate change. Disease outbreaks typically follow bleaching events, but a direct positive linkage between bleaching and disease has been debated. By tracking 152 individual coral ramets through the 2014 mass bleaching in a South Florida coral restoration nursery, we revealed a highly significant negative correlation between bleaching and disease in the Caribbean staghorn coral, Acropora cervicornis . To explain these results, we propose a mechanism for transient immunological protection through coral bleaching: removal of Symbiodinium during bleaching may also temporarily eliminate suppressive symbiont modulation of host immunological function. We contextualize this hypothesis within an ecological perspective in order to generate testable predictions for future investigation.

  15. Major diseases of ornamental plants and their management

    International Nuclear Information System (INIS)

    Akhtar, M.A.; Zakria, M.; Sohail, F.

    2003-01-01

    Major diseases of ornamental plants are caused by infections agents (biotic) or non-infectious (abiotic) agents. Infectious agents are bacteria, fungi, nematodes and virus. Non infectious agents are nutritional imbalances, environmental stresses and chemical toxicities. Grouping of the diseases has been done on symptomatology basis. Disease management in ornamental plants has been described through cultural practices, chemical and other control strategies. (author)

  16. Control of Vascular Streak Dieback Disease of Cocoa with Flutriafol Fungicides

    Directory of Open Access Journals (Sweden)

    Febrilia Nur'aini

    2014-12-01

    Full Text Available Vascular streak dieback caused by the fungus Oncobasidium theobromae is one of the important diseases in cocoa crop in Indonesia. One approach to control the disease is by using fungicides. The aim of this research was to determine the effect of class triazole fungicides to the intensity of the vascular streak dieback disease on cocoa seedling phase, immature and mature cocoa. Experiments were conducted in Kotta Blater, PTPN XII and Kaliwining, Indonesian  Coffee and Cocoa Research Institute. Flutriafol 250 g/l with a concentration 0,05%, 0,1% and 0,15% foliar sprayed on cocoa seedlings, immature and mature cocoa. Active compound combination of Azoxystrobin and Difenoconazole with 0,1% concentration used as a comparation fungicides. The result showed that Flutriafol with 0,05%, 0,1% and 0,15% concentration and Azoxystrobin & Difenoconazol with 0,1% concentration could suppress the vascular streak dieback disease on seedlings. On immature plants, the application of Flutriafol was not effectively suppress the vascular streak dieback disease whereas the fungicide comparison could suppress with the efficacy level of 46.22%. On mature plants,both of fungicides could not suppress the vascular streak dieback disease. Key words: Fungicide, cocoa, vascular streak dieback, triazole, flutriafol, azoxystrobin+difenoconazol

  17. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    Science.gov (United States)

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  18. Technical update on pressure suppression type containments in use in U.S. light water reactor nuclear power plants

    International Nuclear Information System (INIS)

    1978-07-01

    In 1972, Dr. S. H. Hanauer (Technical Advisor to the NRC's Executive Director for Operations) wrote a memorandum that raised several questions on the viability of pressure suppression containment concepts. The concerns raised by Dr. Hanauer have recently become the subject of considerable discussion by several members of the U.S. Congress and public. The report provides a response to these expressed concerns and a status summary for various technical matters that relate to the safety of pressure suppression type containments for light water cooled reactor plants

  19. Nuclear power plant providing a function of suppressing the deposition of radioactive substance

    International Nuclear Information System (INIS)

    Honda, T.; Kawakami, T.; Izumiya, M.; Minato, A.; Ohsumi, K.

    1988-01-01

    In a nuclear power plant having a cooling system and radioactive coolant in the cooling system, the cooling system is described including ferrous structural material in contact with the radioactive coolant, wherein the ferrous structural material has a preliminary oxide film formed thereon, by oxidation of the bare surface portion thereof, by contacting bare surfaces of the structural material with flowing water containing an oxidizing agent and no metallic ions. The preliminary oxide film is formed at those portions of the ferrous structural material to be in contact with the radioactive coolant. The preliminary oxide film is formed prior to the structural material contacting the radioactive coolant. The preliminary oxide film consists essentially of Fe/sub 2/O/sub 3/ and having a thickness of at least 300 A, whereby later formation of new oxide film while the structural material is in contact with the radioactive coolant is suppressed to thereby suppress deposition of the radioactive substances on the ferrous structural material

  20. Induced disease resistance signaling in plants

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in

  1. Detection of plant leaf diseases using image segmentation and soft computing techniques

    Directory of Open Access Journals (Sweden)

    Vijai Singh

    2017-03-01

    Full Text Available Agricultural productivity is something on which economy highly depends. This is the one of the reasons that disease detection in plants plays an important role in agriculture field, as having disease in plants are quite natural. If proper care is not taken in this area then it causes serious effects on plants and due to which respective product quality, quantity or productivity is affected. For instance a disease named little leaf disease is a hazardous disease found in pine trees in United States. Detection of plant disease through some automatic technique is beneficial as it reduces a large work of monitoring in big farms of crops, and at very early stage itself it detects the symptoms of diseases i.e. when they appear on plant leaves. This paper presents an algorithm for image segmentation technique which is used for automatic detection and classification of plant leaf diseases. It also covers survey on different diseases classification techniques that can be used for plant leaf disease detection. Image segmentation, which is an important aspect for disease detection in plant leaf disease, is done by using genetic algorithm.

  2. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.

    Science.gov (United States)

    Su, Jin; Sherman, Alexandra; Doerfler, Phillip A; Byrne, Barry J; Herzog, Roland W; Daniell, Henry

    2015-10-01

    Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  4. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  5. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression

    Directory of Open Access Journals (Sweden)

    Jose Sebastian Rufian

    2015-07-01

    Full Text Available The Pseudomonas syringae type III-secreted effector HopZ1a is a member of the HopZ / YopJ superfamily of effectors that triggers immunity in Arabidopsis. We have previously shown that HopZ1a suppresses both local (effector-triggered immunity, ETI and systemic immunity (systemic acquired resistance, SAR triggered by the heterologous effector AvrRpt2. HopZ1a has been shown to possess acetyltransferase activity, and this activity is essential to trigger immunity in Arabidopsis. HopZ1a acetyltransferase activity has been reported to require the auto-acetylation of the effector on a specific lysine (K289 residue. In this paper we analyze the relevance of autoacetylation of lysine residue 289 in HopZ1a ability to suppress plant defenses, and on the light of the results obtained, we also revise its relevance for HopZ1a avirulence activity. Our results indicate that, while the HopZ1aK289R mutant is impaired to some degree in its virulence and avirulence activities, is by no means phenotypically equivalent to the catalytically inactive HopZ1aC216A, since it is still able to trigger a defense response that induces detectable macroscopic HR and effectively protects Arabidopsis from infection, reducing growth of P. syringae within the plant. We also present evidence that the HopZ1aK289R mutant still displays virulence activities, partially suppressing both ETI and SAR.

  6. Suppression of host-seeking Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs after dual applications of plant-derived acaricides in New Jersey.

    Science.gov (United States)

    Jordan, Robert A; Dolan, Marc C; Piesman, Joseph; Schulze, Terry L

    2011-04-01

    We evaluated the ability of dual applications of natural, plant-derived acaricides to suppress nymphal Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. An aqueous formulation of 2% nootkatone provided >90% control of I. scapularis through 7 d. Control declined to 80.9% at 14 d, and a second application was made that provided >95% control through the remaining 4 wk of the nymphal season. Nootkatone provided >90% control of A. americanum through 35 d postapplication. Applications of 2% carvacrol and EcoTrol T&O resulted in rapid knockdown of both tick species, but control declined significantly to 76.7 and 73.7%, respectively, after 14 d when a second application was made that extended control of both tick species to between 86.2 and 94.8% at 21 d. Subsequently, control declined steadily in all plots by 42 d postapplication except for I. scapularis in carvacrol-treated plots, where levels of control >90% were observed through 35 d. Of the three compounds tested, 2% nootkatone provided the most consistent results, with 96.5 and 91.9% control of I. scapularis and A. americanum through 42 and 35 d, respectively. The ability of plant-derived natural products to quickly suppress and maintain significant control of populations of these medically important ticks may represent a future alternative to the use of conventional synthetic acaricides. In addition, the demonstrated efficacy of properly-timed backpack sprayer application may enable homeowner access to these minimal-risk acaricides.

  7. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  8. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  9. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron.

    Science.gov (United States)

    Segarra, Guillem; Casanova, Eva; Avilés, Manuel; Trillas, Isabel

    2010-01-01

    Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000 microM provided as EDTA/Fe(III)] in a biological control experiment with T34 and Fol in tomato plants. The reduction of the Fusarium-infected shoot by T34 was only significant at 10 microM Fe. We hypothesized that Fe competition is one of the key factors in the biocontrol activity exerted by T34 against Fol, as an increase in Fe concentration over 10 microM would lead to the suppression of T34 siderophore synthesis and thus inhibition of Fe competition with Fol. T34 significantly reduced the populations of Fol at all the doses of Fe assayed. In contrast, Fol enhanced the populations of T34 at 1 and 10 microM Fe. Nevertheless, several plant physiological parameters like net CO(2) assimilation (A), stomatal conductance (g(s)), relative quantum efficiency of PSII (Phi(PSII)), and efficiency of excitation energy capture by open PSII reactive centers (Fv'/Fm') demonstrated the protection against Fol damage by treatment with T34 at 100 microM Fe. The first physiological parameter affected by the disease progression was g(s). Plant dry weight was decreased by Fe toxicity at 100 and 1,000 microM. T34-treated plants had significantly greater heights and dry weights than control plants at 1,000 microM Fe, even though T34 did not reduce the Fe content in leaves or stems. Furthermore, T34 enhanced plant height even at the optimal Fe concentration (10 microM) compared to control plants. In conclusion, T. asperellum strain T34 protected tomato plants from both biotic (Fusarium wilt disease) and abiotic stress [Fe(III) toxic effects].

  10. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    Science.gov (United States)

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Plant Essential Oils Used Against Some Bee Diseases

    Directory of Open Access Journals (Sweden)

    Hidayet Tutun

    2018-02-01

    Full Text Available The most common honey bee diseases are American foulbrood (AFB caused by the bacterium Paenibacillus larvae, Chalkbrood caused by fungus Ascosphaera apis and diseases caused by parasitic mites such as Acarapis woodi, Varroa destructor. These diseases and pests not only cause economic loss but also cause ecological problems related to the role of honey bees, as the most important pollinators on Earth. Synthetic acaricides and antibiotics are used to keep the diseases and mites in control. Use of the drugs lead to the development of drug-resistant organisms, detrimental effect on non-target organisms and the residue problem in bee products. For this reasons, the need for alternative control methods has become compulsory in recent years. It has been known that some plant oils used widely in perfumery and food industry for flavor and smell have been used as repellent to certain insects, bactericide and fungicide. Therefore, intensive studies have been carried out on plants with anti-mites, antibacterial and antifungal potentials and these studies are still going on. Recently, studies in this area have shown that essential oils of plants such as thyme, cloves, mint, lemon grass, cinnamon, grapefruit, rosemary, marigold, are lethal to some mites, bacteria and fungi. In addition, it has been reported that some components, isolated from these plants such as sanguinarine, thymoquinone, capsaicin, carvacrol, citral, eugenol, thymol, show these effects on the organisms. As a result, in countries rich in biodiversity due to endemic plant species, the essential oils used in control of these diseases should be favored instead of or in combination with conventional drugs in integrated the disease management programs because of the lack of harmful effects of essential oils on non-target organisms and environment.

  12. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    NARCIS (Netherlands)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion Bravo, Victor; Mora, María de la Luz; Pozo, María J.

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne

  13. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines.

    Science.gov (United States)

    Hao, Lingyun; Johnson, Kameka; Cursino, Luciana; Mowery, Patricia; Burr, Thomas J

    2017-06-01

    Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H 2 O 2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  14. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-11-01

    Full Text Available Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD. Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10 chemokine ligands [ITAC (CXCL11 and Mig (CXCL9] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1, and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of

  15. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, E.; Van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.; Burrell, M.; Van de Meene, A.; Pieterse, C.M.J.; Flors, V.; Ton, J.

    2014-01-01

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

  16. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M J; Flors, Victor; Ton, Jurriaan

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

  17. Medicinal Plants with Multiple Effects on Cardiovascular Diseases: A Systematic Review.

    Science.gov (United States)

    Rouhi-Boroujeni, Hojjat; Heidarian, Esfandiar; Rouhi-Boroujeni, Hamid; Deris, Fatemeh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Hyperlipidemia, obesity, hypertension, and diabetes are the most important risk factors for cardiovascular diseases. The aim of this systematic review article is to introduce the medicinal plants that exert significant clinical effects on hypertension, hyperlipidemia, obesity, and diabetes. In this review article, the international research databases including MEDLINE, Google scholar, EBSCO, Academic Search, Web of Science, SciVerse, Scopus (SCOPUS), EBSCO, Academic Search, Cochrane, Central Register of Controlled Trials (CENTRAL) and a Chinese database (China Network Knowledge Infrastructure [CNKI]) were searched using the key words hyperlipidemia, hypertension, diabetes, herbal, obesity, and phytomedicine, matched by MESH, from their respective inceptions up to March, 2016. The plants that were effective on one, two, three, or all of four diseases were determined. The doses, side effects, the most important pharmaceutically effective compounds, the used organs, and important points regarding usage were separately recorded. Also known clinically significant interactions were presented. 1023 articles were found to be about medicinal plants and hypertension, 1912 articles about medicinal plants and hyperlipidemia, 810 articles about medicinal plants and obesity, 1174 articles about medicinal plants and diabetes. Of 144 plants included in the analysis, 83 were found to be effective on hyperlipidemia, 100 on hypertension, 66 on obesity, and 72 on diabetes. 43 plants were found to be effective on two diseases, 14 on three diseases, and 34 on all four diseases. Three plants (Tomato, Cranberry and Pomegranate), in food and therapeutic doses, were found to be used to treat cardiovascular diseases especially in pre-eclampsia and hyperlipidemia in pregnancy. Regarding the findings of this study, we can argue that the medicinal plants, other than monotherapy, can be used as poly-therapy, to treat cardiovascular diseases. Copyright© Bentham Science Publishers; For any

  18. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi.

    Science.gov (United States)

    Meyer, Susan L F; Roberts, Daniel P

    2002-03-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents.

  19. The role of ethylene perception in plant disease resistance

    NARCIS (Netherlands)

    Geraats, Bart Peter Johan

    2003-01-01

    Ethylene is a plant hormone that is involved in responses of the plant to various stress situations, such as pathogen attack. The role of ethylene in plant-pathogen interactions seems to be diverse. Exposure of plants to ethylene can induce disease resistance, but treatment with ethylene during

  20. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells.

    Science.gov (United States)

    Sherman, Alexandra; Su, Jin; Lin, Shina; Wang, Xiaomei; Herzog, Roland W; Daniell, Henry

    2014-09-04

    Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 µg/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor β and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4(+)CD25(+) and CD4(+)CD25(-) T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII. © 2014 by The American Society of Hematology.

  1. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  2. Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or - treated planting material

    NARCIS (Netherlands)

    Janse, J.; Wenneker, M.

    2002-01-01

    Testing of planting material for freedom from phytopathogenic bacteria is an important, although not exclusive, method for control of bacterial diseases of plants. Ideally, pathogen-free or pathogen-/disease-resistant planting material is desirable, but this situation is not always possible on a

  3. Differences Between Expressive Suppression and Cognitive Reappraisal Between Heart Disease and Generalal Population

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Reza Mirlohi

    2017-09-01

    Full Text Available Aim: Heart disease and emotional disorders often co-occur, but effective role in dysregulation of heart disease that is often overlooked. Evidence suggests that people with heart disease are more problems in regulating their emotions. The study compared the re-evaluation of cognitive emotion regulation commonly used two strategies- and suppression- between heart disease and the general population. Methods: Sixty men (30 with heart complaints and 30 without the condition were selected by convenience sampling method and they responded to the Emotion Regulation Questionnaire (Gross and John and a demographic questionnaire responded. To analyze the results and descriptive statistics such as frequency tables and inferential statistics, independent T-test was used SPSS software was used. Results: The result shows that heart disease and general population re-evaluation strategies groups (P<0.01. This is not only different from the strategy reassessment, but in different repression, too. (P <0.001. Conclusion: The results showed that heart disease and general population used different strategies to regulate their emotions. The key to finding the heart disease group prefer repression to regulate their emotions.

  4. Persistent suppression of subthalamic beta-band activity during rhythmic finger tapping in Parkinson's disease.

    Science.gov (United States)

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2013-03-01

    The function of synchronous oscillatory activity at beta band (15-30Hz) frequencies within the basal ganglia is unclear. Here we sought support for the hypothesis that beta activity has a global function within the basal ganglia and is not directly involved in the coding of specific biomechanical parameters of movement. We recorded local field potential activity from the subthalamic nuclei of 11 patients with Parkinson's disease during a synchronized tapping task at three different externally cued rates. Beta activity was suppressed during tapping, reaching a minimum that differed little across the different tapping rates despite an increase in velocity of finger movements. Thus beta power suppression was independent of specific motor parameters. Moreover, although beta oscillations remained suppressed during all tapping rates, periods of resynchronization between taps were markedly attenuated during high rate tapping. As such, a beta rebound above baseline between taps at the lower rates was absent at the high rate. Our results demonstrate that beta desynchronization in the region of the subthalamic nucleus is independent of motor parameters and that the beta resynchronization is differentially modulated by rate of finger tapping, These findings implicate consistent beta suppression in the facilitation of continuous movement sequences. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Preventative and Curative Effects of Several Plant Derived Agents Against Powdery Mildew Disease of Okra

    Directory of Open Access Journals (Sweden)

    Moustafa Hemdan Ahmed MOHARAM

    2012-08-01

    Full Text Available The preventative and curative effects of some plant derived agents based on plant extracts or essential oils were studied at different concentrations against Erysiphe cichoracearum DC. ex Merat, the causal pathogen of okra powdery mildew by the detached leaf-disk and potted plants bioassays. Through detached leaf-disk assay, the highest mean preventative effect (97.74% was recorded by neem seed oil followed by jojoba oil (89.82% and extract of Rynoutria sachalinensis (82.77%. Neem seed oil at 1% was the most effective agent followed by jojoba oil and extract of R. sachalinensis at 1.5% and 2%, respectively, where they suppressed E. cichoracearum completely. Potted plants assay revealed that neem seed oil, jojoba oil and extract of R. sachalinensis as well as the fungicide (active ingredient dinocap showed higher preventative efficacy at all leaf olds treated after 7 and 14 days of inoculation as compared with extracts of henna and garlic. Moreover, the preventative efficacy partly remained apparent after 14 days of inoculation at all leaf olds tested. In field trials through 2010 and 2011 growing seasons, when the first symptoms of powdery mildew appeared naturally, 1.5% jojoba oil, 2% extract of R. sachalinensis and 1% neem seed oil were sprayed individually twice on grown plants to evaluate their efficacy on controlling powdery mildew, growth and yield of okra. Resulted showed that neem seed oil was the most effective agent and highly decreased the disease severity to 29.92%, recorded the highly curative effect (68.15% and also improved plant growth and pods yield.

  6. Planting and care of fine hardwood seedlings: diseases in hardwood tree plantings

    Science.gov (United States)

    Paula M. Pijut

    2006-01-01

    Hardwood trees planted for timber production, wildlife habitat, riparian buffers, native woodland restoration, windbreaks, watershed protection, erosion control, and conservation are susceptible to damage or even death by various native and exotic fungal or bacterial diseases. Establishment, growth, and the quality of the trees produced can be affected by these disease...

  7. Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease

    Science.gov (United States)

    Ridderinkhof, K. Richard; Elias, William J.; Frysinger, Robert C.; Bashore, Theodore R.; Downs, Kara E.; van Wouwe, Nelleke C.; van den Wildenberg, Wery P. M.

    2010-01-01

    Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus. PMID:20861152

  8. Reproducibility of suppression of Pythium wilt of cucumber by compost

    Directory of Open Access Journals (Sweden)

    Mauritz Vilhelm Vestberg

    2014-10-01

    Full Text Available There is increasing global interest in using compost to suppress soil-borne fungal and bacterial diseases and nematodes. We studied the reproducibility of compost suppressive capacity (SC against Pythium wilt of cucumber using nine composts produced by the same composting plant in 2008 and 2009. A bioassay was set up in a greenhouse using cucumber inoculated with two strains of Pythium. The composts were used as 20% mixtures (v:v of a basic steam-sterilized light Sphagnum peat and sand (3:1, v:v. Shoot height was measured weekly during the 5-week experiment. At harvest, the SC was calculated as the % difference in shoot dry weight (DW between non-inoculated and inoculated cucumbers. The SC was not affected by year of production (2008 or 2009, indicating reproducibility of SC when the raw materials and the composting method are not changed. Differences in shoot height were not as pronounced as those for shoot DW. The results were encouraging, but further studies are still needed for producing compost with guaranteed suppressiveness properties.

  9. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers.

    Science.gov (United States)

    Anderson, Pamela K; Cunningham, Andrew A; Patel, Nikkita G; Morales, Francisco J; Epstein, Paul R; Daszak, Peter

    2004-10-01

    Emerging infectious diseases (EIDs) pose threats to conservation and public health. Here, we apply the definition of EIDs used in the medical and veterinary fields to botany and highlight a series of emerging plant diseases. We include EIDs of cultivated and wild plants, some of which are of significant conservation concern. The underlying cause of most plant EIDs is the anthropogenic introduction of parasites, although severe weather events are also important drivers of disease emergence. Much is known about crop plant EIDs, but there is little information about wild-plant EIDs, suggesting that their impact on conservation is underestimated. We conclude with recommendations for improving strategies for the surveillance and control of plant EIDs.

  10. Effects of medicinal plants on Alzheimer's disease and memory deficits

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2017-01-01

    Full Text Available Alzheimer's disease is an age-related neurodegenerative disorder characterized by memory deficits. Various studies have been carried out to find therapeutic approaches for Alzheimer's disease. However, the proper treatment option is still not available. There is no cure for Alzheimer's disease, but symptomatic treatment may improve the memory and other dementia related problems. Traditional medicine is practiced worldwide as memory enhancer since ancient times. Natural therapy including herbs and medicinal plants has been used in the treatment of memory deficits such as dementia, amnesia, as well as Alzheimer's disease since a long time. Medicinal plants have been used in different systems of medicine, particularly Unani system of medicines and exhibited their powerful roles in the management and cure of memory disorders. Most of herbs and plants have been chemically evaluated and their efficacy has also been proven in clinical trials. However, the underlying mechanisms of actions are still on the way. In this paper, we have reviewed the role of different medicinal plants that play an important role in the treatment of Alzheimer's disease and memory deficits using conventional herbal therapy.

  11. Effect of sunn hemp (Crotalaria juncea L.) cutting date and planting density on weed suppression in Georgia, USA.

    Science.gov (United States)

    Morris, J Bradley; Chase, Carlene; Treadwell, Danielle; Koenig, Rosie; Cho, Alyssa; Morales-Payan, Jose Pable; Murphy, Tim; Antonious, George F

    2015-01-01

    A field study was conducted in 2008 and 2009 at the USDA, ARS, Plant Genetic Resources Conservation Unit in Griffin, GA, to investigate weed suppression by sunn hemp (Crotalaria juncea L). The objectives were to (1) evaluate the effects of apical meristem removal (AMR) at three dates [5, 6, and 7 wks after planting (WAP) on May 14, 2008 and May 21, 2009] and (2) assess the impact of seeding rates (11, 28, and 45 kg ha(-1)) on weed biomass reduction. Weed species were identified at 4, 8, and 12 wks after sunn hemp planting. Sunn hemp cutting date had no significant effect on weed suppression in 2008 but significant differences for grass weeds at 4, 8, and 12 WAP and for yellow nutsedge at 8 and 12 WAP did occur when compared to the control in 2009. In comparison to the sunn hemp-free control plot in 2009, all three seeding rates had reduced grass weed dry weights at 4, 8, and 12 WAP. The total mass of yellow nutsedge when grown with sunn hemp was reduced compared to the total mass of yellow nutsedge grown in the weedy check for all seeding rates at 8 and 12 WAP. Lower grass weed biomass was observed by 12 WAP for cutting dates and seeding rates during 2008 and 2009. Sunn hemp cutting date and seeding rate reduced branch numbers in both years. The reduction in sunn hemp seeding rates revealed a decrease in weed populations.

  12. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    Science.gov (United States)

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.

  13. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    Directory of Open Access Journals (Sweden)

    Chia-Fong Wei

    Full Text Available A new pathogen, Pseudomonas syringae pv. averrhoi (Pav, which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta, glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns contributed to induce the PAMP-triggered immunity (PTI. Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  14. Plant Innate Immunity Induced by Flagellin Suppresses the Hypersensitive Response in Non-Host Plants Elicited by Pseudomonas syringae pv. averrhoi

    Science.gov (United States)

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741

  15. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response

    NARCIS (Netherlands)

    Termorshuizen, A.J.; Rijn, van E.; Gaag, van der D.J.; Alabouvette, C.; Chen, Y.; Lagerlöf, J.; Malandrakis, A.A.; Paplomatas, E.J.; Rämert, B.; Ryckeboer, J.; Steinberg, C.; Zmora-Nahum, S.

    2006-01-01

    Compost is often reported as a substrate that is able to suppress soilborne plant pathogens, but suppression varies according to the type of compost and pathosystem. Reports often deal with a single pathogen while in reality crops are attacked by multiple plant pathogens. The goal of the present

  16. Plant Polyphenolic Antioxidants in Management of Chronic Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    R.K. Das

    2017-12-01

    Full Text Available With the over growing global population, degenerative diseases are on rise, despite using modern medicine for its cure. People prefer alternative systems of medicine like natural therapy and polyherbal therapy due to adverse effects of allopathic medication. According to W.H.O. report about 70% of world population relying on natural plant-based therapy. For a suitable, sustainable and cost effective cure use of polyphenolic natural antioxidants may be an appropriate tool. Now a day’s most food and pharmaceutical products contain synthetic antioxidants. But recent data indicating that, long term use of synthetic antioxidants could have carcinogenic effects on human cells. Thus, search for new natural and efficient antioxidants is need of the hour. Phenolic compounds (polyphenols are products of secondary metabolites and constitute one of the most widely distributed groups of substance in plant kingdom with more than 10,000 phenolic structures. Polyphenols are structurally characterized by the presence of one or more aromatic benzene ring compounds with one or more functional hydroxyl groups. Polyphenols are naturally occurring and most abundant antioxidants in human diets found largely in the fruits, vegetables and beverages. Plant flavonoids are the largest and best studied class of polyphenols which include more than 4000 compounds. Numerous studies confirm that, flavonoids exert a protective action on human health and are key components of a healthy and balanced diet. Epidemiological studies and associated meta-analysis correlate and strongly   suggest that, long term consumption of diets rich in plant flavonoids offer protection against development of chronic and degenerative diseases, such as cardiovascular diseases , diabetes , cancer, osteoporosis and neurodegenerative diseases. One of the main reasons for the age related diseases is linked with reduction in cellular oxidative stress. The involvement of reactive oxygen species (ROS in

  17. AgroKnowledgeBase (AKB) for plant diseases: Poppy plant use case

    OpenAIRE

    Terhorst, Andew; Morshed, Ahsan

    2013-01-01

    World’s economy drives on crop production. Currently, most of the countries are facing food shortage in each year. Farmers are trying to increase their productivity but they need specific information so that they can take right decision in the right time. One of particular challenge facing farmers is plant disease, which can be defined as deviation from normal physiological functioning that harmful to a plant. In this paper, we proposed a knowledge based prototype called AKB that help farmer...

  18. Production of vaccines for treatment of infectious diseases by transgenic plants

    Directory of Open Access Journals (Sweden)

    Kristina LEDL

    2016-04-01

    Full Text Available Since the first pathogen antigen was expressed in transgenic plants with the aim of producing edible vaccine in early 1990s, transgenic plants have become a well-established expression system for production of alternative vaccines against various human and animal infectious diseases. The main focus of plant expression systems in the last five years has been on improving expression of well-studied antigens such as porcine reproductive and respiratory syndrome (PRRSV, bovine viral diarrhea disease virus (BVDV, footh and mouth disease virus (FMDV, hepatitis B surface antigen (HBsAg, rabies G protein, rotavirus, Newcastle disease virus (NDV, Norwalk virus capsid protein (NVCP, avian influenza virus H5N1, Escherichia coli heat-labile enterotoxin subunit B (LT-B, cholera toxin B (CT-B, human immunodeficiency virus (HIV, artherosclerosis, ebola and anthrax. Significant increases in expression have been obtained using improved expression vectors, different plant species and transformation methods.

  19. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...

  20. Embedded mobile farm robot for identification of diseased plants

    Science.gov (United States)

    Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh

    2013-07-01

    This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.

  1. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease.

    Science.gov (United States)

    Tanaka, Keijitsu; Fukuda, Mutsumi; Amaki, Yusuke; Sakaguchi, Takatoshi; Inai, Koji; Ishihara, Atsushi; Nakajima, Hiromitsu

    2017-12-01

    Powdery mildew disease of cucurbits is caused mainly by Podosphaera fusca, which is one of the most important limiting factors in cucurbit production worldwide. Previously we reported that Bacillus amyloliquefaciens biocontrol strain SD-32 produces C 17 bacillomycin D and [Ile 2002]surfactin, and that these metabolites play important roles in SD-32's biocontrol over cucumber gray mold disease. Our further investigation demonstrated that the culture broth and its supernatant suppressed cucumber powdery mildew disease in greenhouse experiments. However, the active principle(s) remained unknown. The active compound was isolated from the culture supernatant after anti-powdery mildew disease activity-guided purification and identified as prumycin. Prumycin significantly suppressed the disease, whereas bacillomycin D and [Ile 2002]surfactin did not. Prumycin did not induce the expression of plant defense genes (PR1a and VSP1), suggesting that it does not act via plant defense response. Light microscopic observations of prumycin-treated cucumber cotyledon suggested that prumycin inhibits the conidial germination of P. fusca. This study demonstrates that prumycin is a major factor in SD-32's suppression of cucumber powdery mildew disease. Our findings shed light for the first time on prumycin's role in biocontrol by Bacillus against this disease. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Risk-based management of invading plant disease.

    Science.gov (United States)

    Hyatt-Twynam, Samuel R; Parnell, Stephen; Stutt, Richard O J H; Gottwald, Tim R; Gilligan, Christopher A; Cunniffe, Nik J

    2017-05-01

    Effective control of plant disease remains a key challenge. Eradication attempts often involve removal of host plants within a certain radius of detection, targeting asymptomatic infection. Here we develop and test potentially more effective, epidemiologically motivated, control strategies, using a mathematical model previously fitted to the spread of citrus canker in Florida. We test risk-based control, which preferentially removes hosts expected to cause a high number of infections in the remaining host population. Removals then depend on past patterns of pathogen spread and host removal, which might be nontransparent to affected stakeholders. This motivates a variable radius strategy, which approximates risk-based control via removal radii that vary by location, but which are fixed in advance of any epidemic. Risk-based control outperforms variable radius control, which in turn outperforms constant radius removal. This result is robust to changes in disease spread parameters and initial patterns of susceptible host plants. However, efficiency degrades if epidemiological parameters are incorrectly characterised. Risk-based control including additional epidemiology can be used to improve disease management, but it requires good prior knowledge for optimal performance. This focuses attention on gaining maximal information from past epidemics, on understanding model transferability between locations and on adaptive management strategies that change over time. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. RNA-protein interactions in plant disease: hackers at the dinner table.

    Science.gov (United States)

    Spanu, Pietro D

    2015-09-01

    Plants are the source of most of our food, whether directly or as feed for the animals we eat. Our dinner table is a trophic level we share with the microbes that also feed on the primary photosynthetic producers. Microbes that enter into close interactions with plants need to evade or suppress detection and host immunity to access nutrients. They do this by deploying molecular tools - effectors - which target host processes. The mode of action of effector proteins in these events is varied and complex. Recent data from diverse systems indicate that RNA-interacting proteins and RNA itself are delivered by eukaryotic microbes, such as fungi and oomycetes, to host plants and contribute to the establishment of successful interactions. This is evidence that pathogenic microbes can interfere with the host software. We are beginning to see that pathogenic microbes are capable of hacking into the plants' immunity programs. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  4. Plant Pathology: A Life and Death Struggle in Rice Blast Disease.

    Science.gov (United States)

    Zhou, Jian-Min

    2016-09-26

    The fungal pathogen Magnaporthe oryzae causes severe disease symptoms and yield losses on rice plants. A new study shows that this fungus elicits disease lesions by co-opting a host protein and reveals how rice plants fight back. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Application of forwardchaining method to diagnosis of onion plant diseases

    Science.gov (United States)

    Sitanggang, Delima; Siregar, Saut D.; Situmeang, Suryani M. F.; Indra, Evta; Sagala, Ayu R.; Sihombing, Oloan; Nababan, Marlince; Pasaribu, Hendra; Damanik, Rudolf R.; Turnip, Mardi; Saragih, Rijois I. E.

    2018-04-01

    Red Onion is a tuber plant that is widely used by the people of Indonesia, both as herbs and herbal medicines. Onion farmers have limitations in identifying diseases that attack their crops.This disease can cause crop failure against the onion.This design begins with the creation of a knowledge base up to input-output design with forward chaining method. The results of this design can assist farmers in identifying their plant diseases. Based on diagnostic results of several methods that have been done testing can diagnose diseases contained in onion plants. With symptoms data that has been determined by the expert with the value of each symptom is different. As for the symptoms that have been determined that the leaves contain patches with a value of 0.3, White leaf spots value 0.4, Leaf spots form a purple zone if it is severe 0.5, Leaf tip of 0.2, Tubers rot 0.4. Based on the above diagnostic results then get the value of diagnosis 67% forward chaining with trotol disease type, Purple spotting.

  6. Automatic detection of diseased tomato plants using thermal and stereo visible light images.

    Directory of Open Access Journals (Sweden)

    Shan-e-Ahmed Raza

    Full Text Available Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles and depth of the canopy areas accessible to the thermal imaging camera. In this paper, we combine thermal and visible light image data with depth information and develop a machine learning system to remotely detect plants infected with the tomato powdery mildew fungus Oidium neolycopersici. We extract a novel feature set from the image data using local and global statistics and show that by combining these with the depth information, we can considerably improve the accuracy of detection of the diseased plants. In addition, we show that our novel feature set is capable of identifying plants which were not originally inoculated with the fungus at the start of the experiment but which subsequently developed disease through natural transmission.

  7. Greater Fusarium wilt suppression after complex than after simple organic amendments as affected by soil pH, total carbon and ammonia-oxidizing bacteria

    NARCIS (Netherlands)

    Senechkin, I.V.; Overbeek, van L.S.; Bruggen, van A.H.C.

    2014-01-01

    A field experiment was conducted to compare effects of four types of organic amendments on soil chemical, microbiological and disease suppression characteristics in an organic farm. The amendments were plant-derived fresh compost (C), steer-derived slurry (S), slurry plus dung (SD) and slurry,

  8. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review.

    Science.gov (United States)

    Asadi-Samani, Majid; Bagheri, Nader; Rafieian-Kopaei, Mahmoud; Shirzad, Hedayatollah

    2017-08-01

    Searching for new natural drugs that are capable of targeting Th1 and Th17 may lead to development of more effective treatments for inflammatory and autoimmune diseases. Most of the natural drugs can be derived from plants that are used in traditional medicine and folk medicine. The aim of this systematic review is to identify and introduce plants or plant derivatives that are effective on inflammatory diseases by inhibiting Th1 and Th17 responses. To achieve this purpose, the search terms herb, herbal medicine, herbal drug, medicinal plant, phytochemical, traditional Chinese medicine, Ayurvedic medicine, natural compound, inflammation, inflammatory diseases, Th1, Th17, T helper 1 or T helper 17 were used separately in Title/Keywords/Abstract in Web of Science and PubMed databases. In articles investigating the effect of the medicinal plants and their derivatives in inhibiting Th1 and Th17 cells, the effects of eight extracts of the medicinal plants, 21 plant-based compounds and some of their derivatives, and eight drugs derived from the medicinal plants' compounds in inhibiting Th1 and Th17 cells were reviewed. The results showed that medicinal plants and their derivates are able to suppress Th17 and Th1 T cell functions as well as cytokine secretion and differentiation. The results can be used to produce herbal drugs that suppress Th, especially Th17, responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. A comparative analysis of machine learning approaches for plant disease identification

    Directory of Open Access Journals (Sweden)

    Hidayat ur Rahman

    2017-08-01

    Full Text Available Background: The problems to leaf in plants are very severe and they usually shorten the lifespan of plants. Leaf diseases are mainly caused due to three types of attacks including viral, bacterial or fungal. Diseased leaves reduce the crop production and affect the agricultural economy. Since agriculture plays a vital role in the economy, thus effective mechanism is required to detect the problem in early stages. Methods: Traditional approaches used for the identification of diseased plants are based on field visits which is time consuming and tedious. In this paper a comparative analysis of machine learning approaches has been presented for the identification of healthy and non-healthy plant leaves. For experimental purpose three different types of plant leaves have been selected namely, cabbage, citrus and sorghum. In order to classify healthy and non-healthy plant leaves color based features such as pixels, statistical features such as mean, standard deviation, min, max and descriptors such as Histogram of Oriented Gradients (HOG have been used. Results: 382 images of cabbage, 539 images of citrus and 262 images of sorghum were used as the primary dataset. The 40% data was utilized for testing and 60% were used for training which consisted of both healthy and damaged leaves. The results showed that random forest classifier is the best machine method for classification of healthy and diseased plant leaves. Conclusion: From the extensive experimentation it is concluded that features such as color information, statistical distribution and histogram of gradients provides sufficient clue for the classification of healthy and non-healthy plants.

  10. Medicinal Plants Used for Treatment of Diarrhoeal Related Diseases in Ethiopia

    Directory of Open Access Journals (Sweden)

    Bizuneh Woldeab

    2018-01-01

    Full Text Available This paper presents a review of relevant antidiarrhoeal medicinal plants based on the fundamental knowledge accumulated by indigenous people of Ethiopia. The review includes an inventory carried out on the phytochemical and pharmacological analysis of plant species used in the treatments of diarrhoeal diseases. This study is based on a review of the literature published in scientific journals, books, theses, proceedings, and reports. A total of 132 medicinal plants used by local people of Ethiopia are reported in the reviewed literature. Herbs (43.6% were the primary source of medicinal plants, followed by trees (27%. Some findings include the predominance of leaf material used (78%, as well as the frequent use of crushing of the plant parts (38% as a mode of preparation. This study demonstrates the importance of traditional medicines in the treatment of basic human ailments such as diarrhoeal diseases in Ethiopia. Baseline information gaps were observed in different regions of Ethiopia. Thus, documentation of the knowledge held by other regions of Ethiopia that have so far received less attention and urban ethnobotany is recommended for future ethnobotanical studies. In addition, phytochemical studies are recommended mainly on frequently utilized medicinal plants for treatment of diarrhoeal diseases which can serve as a basis for future investigation of modern drug development. Although societies in Ethiopia have long used medicinal plants for diarrhoeal diseases treatment, it is also a good practice to perform toxicological tests.

  11. Medicinal Plants Used for Treatment of Diarrhoeal Related Diseases in Ethiopia

    Science.gov (United States)

    Woldeab, Bizuneh; Regassa, Reta

    2018-01-01

    This paper presents a review of relevant antidiarrhoeal medicinal plants based on the fundamental knowledge accumulated by indigenous people of Ethiopia. The review includes an inventory carried out on the phytochemical and pharmacological analysis of plant species used in the treatments of diarrhoeal diseases. This study is based on a review of the literature published in scientific journals, books, theses, proceedings, and reports. A total of 132 medicinal plants used by local people of Ethiopia are reported in the reviewed literature. Herbs (43.6%) were the primary source of medicinal plants, followed by trees (27%). Some findings include the predominance of leaf material used (78%), as well as the frequent use of crushing of the plant parts (38%) as a mode of preparation. This study demonstrates the importance of traditional medicines in the treatment of basic human ailments such as diarrhoeal diseases in Ethiopia. Baseline information gaps were observed in different regions of Ethiopia. Thus, documentation of the knowledge held by other regions of Ethiopia that have so far received less attention and urban ethnobotany is recommended for future ethnobotanical studies. In addition, phytochemical studies are recommended mainly on frequently utilized medicinal plants for treatment of diarrhoeal diseases which can serve as a basis for future investigation of modern drug development. Although societies in Ethiopia have long used medicinal plants for diarrhoeal diseases treatment, it is also a good practice to perform toxicological tests. PMID:29743923

  12. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin.

    Science.gov (United States)

    Katiyar, Santosh K

    2002-12-01

    It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, pskin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products.

  13. The molecular basis of disease resistance in higher plants

    African Journals Online (AJOL)

    xxxxxx

    Therefore, manipulating a single transcription factor could have the same effect as manipulating a set of specific genes within the plant. As highlighted above, transgenic plants allow the targeted ... including molecular techniques and genetics will provide insights into pathogen-defense mechanism and subsequent disease ...

  14. Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases

    International Nuclear Information System (INIS)

    Naher, L.; Ismail, A.

    2014-01-01

    Trichoderma spp. are mainly asexual fungi that are present in all types of agricultural soils and also in decaying wood. The antagonistic activity of Trichoderma species showed that it is parasitic on many soil-borne and foliage pathogens. The fungus is also a decomposer of cellulosic waste materials. Recent discoveries show that the fungi not only act as biocontrol agents, but also stimulate plant resistance, and plant growth and development resulting in an increase in crop production. The biocontrol activity involving mycoparasitism, antibiotics and competition for nutrients, also induces defence responses or systemic resistance responses in plants. These responses are an important part of Trichoderma in biocontrol program. Currently, Trichoderma spp., is being used to control plant diseases in sustainable diseases management systems. This paper reviews the published information on Trichoderma spp., and its biocontrol activity in sustainable disease management programs. (author)

  15. Circulating gluten-specific FOXP3+CD39+ regulatory T cells have impaired suppressive function in patients with celiac disease.

    Science.gov (United States)

    Cook, Laura; Munier, C Mee Ling; Seddiki, Nabila; van Bockel, David; Ontiveros, Noé; Hardy, Melinda Y; Gillies, Jana K; Levings, Megan K; Reid, Hugh H; Petersen, Jan; Rossjohn, Jamie; Anderson, Robert P; Zaunders, John J; Tye-Din, Jason A; Kelleher, Anthony D

    2017-12-01

    Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3) + Treg cells. Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4 + T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4 + T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4 + T cells were FOXP3 + CD39 + Treg cells, which reside within the pool of memory CD4 + CD25 + CD127 low CD45RO + Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3 + CD39 + Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. This study provides the first estimation of FOXP3 + CD39 + Treg cell frequency within circulating gluten-specific CD4 + T cells after oral gluten challenge of patients with celiac disease. FOXP3 + CD39 + Treg cells comprised a major proportion of all circulating gluten-specific CD4 + T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key

  16. Biological control agents for suppression of post-harvest diseases of potatoes: strategies on discovery and development

    Science.gov (United States)

    As used in plant pathology, the term "biological control" or its short form “biocontrol” commonly refers to the decrease in the inoculum or the disease-producing activity of a pathogen accomplished through one or more organisms, including the host plant but excluding man. Biological control of plant...

  17. Expert System For Diagnosis Pest And Disease In Fruit Plants

    Science.gov (United States)

    Dewanto, Satrio; Lukas, Jonathan

    2014-03-01

    This paper discussed the development of an expert system to diagnose pests and diseases on fruit plants. Rule base method was used to store the knowledge from experts and literatures. Control technique using backward chain and started from the symptoms to get conclusions about the pests and diseases that occur. Development of the system has been performed using software Corvid Exsys developed by Exsys company. Results showed that the development of this expert system can be used to assist users in identifying the type of pests and diseases on fruit plants. Further development and possibility of using internet for this system are proposed.

  18. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Lamia LOUNACI

    2017-01-01

    Full Text Available A seedling bioassay was developed for screening a wheat root-associated rhizobacterial strain of Paenibacillus polymyxa for ability to suppress crown and root rot pathogens of wheat. The primary aim was to evaluate the ability of P. polymyxa to suppress Fusarium graminearum, F. culmorum, F. verticillioides and Microdochium nivale, the fungal pathogens responsible for Fusarium crown and root rot and head blight of wheat in Algeria. Bioassays conducted under controlled conditions indicated that seed treatments with P. polymyxa strain SGK2 significantly reduced disease symptoms caused by all four fungal pathogens. Plant growth promotion (increased shoot and root dry weights, however, depended on the pathogen tested. Our results indicate that seed treatments with a biocontrol agent could be an additional strategy for management of wheat crown and root rot pathogens.

  19. Management of Parkinson's disease in Ayurveda: Medicinal plants and adjuvant measures.

    Science.gov (United States)

    Pathak-Gandhi, Namyata; Vaidya, Ashok D B

    2017-02-02

    Medicinal plants like Mucuna pruriens L.(DC) and Withania somnifera L.(Dunal) have been used in traditional Ayurvedic medicine to manage neurodegenerative diseases like Parkinson's disease. The aim of this review is to share the role of Ayurveda's insights, traditional usage and contemporary investigations for translational, integrative applications to manage Idiopathic Parkinson's Disease. High impact journals for Parkinson's diseases, traditional textbooks from Ayurveda as well as relevant clinical and para clinical studies with botanicals are selectively incorporated to evolve the aforesaid translational application. . A. Parkinson's disease (PD) is a complex multi-system, neurodegenerative disease. Though predominantly perceived as a motor disease, it also has debilitating non- motor features, which are frequently missed and not treated. Major treatment goals are to increase striatal dopamine levels with precursor-substitution and/or reduce its breakdown. As the disease progresses, a steady increase in the dose of levodopa is inevitable. However, higher doses cause motor complications of dyskinesia and dystonia and compromise medical treatment. B. ROLE OF MUCUNA PRURIENS L.DC), THE MOST PROMISING BOTANICAL FROM AYURVEDA: Ayurveda offers a natural source of levodopa - the seeds of Mucuna pruriens L.(DC)- which have a long standing safe use in the condition. Its clinical studies have shown pharmacokinetic profile distinct from synthetic levodopa, which is likely to reduce the untoward motor complications. Additionally, its seed extracts have shown neuroprotective benefits which are unrelated to levodopa. C. AYURVEDIC REGIMENS AND MEDICINAL PLANTS FOR NEUROPROTECTIVE AND SYMPTOMATIC BENEFITS: Other regimens (Panchakarma) and medicinal plants used in Ayurveda have been subjected to exploratory studies with promising early results in the condition. The debilitating non motor symptoms in patients have shown response with one of the regimens - medicated oil enema

  20. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2016-10-01

    Full Text Available Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1, niacin (vitamin B3, pyridoxine (vitamin B6, and menadione (vitamin K3. In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10⁶ colony-forming unit [cfu]/ml. Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  1. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-10-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea , respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10 6 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea . Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  2. The effect of climate change on plant diseases | Yáñez-López ...

    African Journals Online (AJOL)

    ... related to the effects of climate change on plant diseases. Taking into account the work done, this review addresses the impact of climate change on plant diseases, considering the effect on crop grown, development and the impact on crop production. Key words: CO2, global warming, temperature effect on diseases.

  3. A physical theory of focus development in plant disease

    NARCIS (Netherlands)

    Zawolek, M.W.

    1989-01-01

    Chapter 1. The 'diffusion theory' of focus development in plant disease is introduced. Foci develop in space and time. The theory applies primarily to air-borne fungal diseases of the foliage.

    Chapter 2. The contents of the present volume are outlined.

    Chapter 3. The

  4. Selection and Characterization of Endophytic Bacteria as Biocontrol Agents of Tomato Bacterial Wilt Disease

    Directory of Open Access Journals (Sweden)

    ABDJAD ASIH NAWANGSIH

    2011-06-01

    Full Text Available Biological control of bacterial wilt pathogen (Ralstonia solanacearum of tomato using endophytic bacteria is one of the alternative control methods to support sustainable agriculture. This study was conducted to select and characterize endophytic bacteria isolated from healthy tomato stems and to test their ability to promote plant growth and suppress bacterial wilt disease. Among 49 isolates successfully isolated, 41 were non-plant pathogenic. Green house test on six selected isolates based on antagonistic effect on R. solanacearum or ability to suppress R. solanacearum population in dual culture assays obtained BC4 and BL10 isolates as promising biocontrol agents. At six weeks after transplanting, plants treated with BC4 isolate showed significantly lower disease incidence (33% than that of control (83%. Plants height was not significantly affected by endophytic bacterial treatments. Based on 16S rRNA sequence, BC4 isolate had 97% similarity with Staphylococcus epidermidis (accession number EU834240.1, while isolate BL10 had 98% similarity with Bacillus amyloliquefaciens strain JK-SD002 (accession number AB547229.1.

  5. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  6. Transient voltage control of a DFIG-based wind power plant for suppressing overvoltage using a reactive current reduction loop

    Directory of Open Access Journals (Sweden)

    Geon Park

    2016-01-01

    Full Text Available This paper proposes a transient voltage control scheme of a doubly fed induction generator (DFIG-based wind power plant (WPP using a reactive current reduction loop to suppress the overvoltage at a point of interconnection (POI and DFIG terminal after a fault clearance. The change of terminal voltage of a DFIG is monitored at every predefined time period to detect the fault clearance. If the voltage change exceeds a set value, then the reactive current reduction loop reduces the reactive current reference in the DFIG controller using the step function. The reactive current injection of DFIGs in a WPP is rapidly reduced, and a WPP can rapidly suppress the overvoltage at a fault clearance because the reactive current reference is reduced. Using an electromagnetic transients program–released version (EMTP–RV simulator, the performance of the proposed scheme was validated for a model system comprising 20 units of a 5-MW DFIG considering various scenarios, such as fault and wind conditions. Test results show that the proposed scheme enables a WPP to suppress the overvoltage at the POI and DFIG terminal within a short time under grid fault conditions.

  7. CD4 decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV.

    Science.gov (United States)

    Helleberg, Marie; Kronborg, Gitte; Larsen, Carsten S; Pedersen, Gitte; Pedersen, Court; Obel, Niels; Gerstoft, Jan

    2013-07-01

    The clinical implications of a considerable CD4 decline despite antiretroviral treatment and viral suppression are unknown. We aimed to test the hypothesis that a major CD4 decline could be a marker of cardiovascular disease or undiagnosed cancer. Patients with human immunodeficiency virus (HIV) were followed in the Danish nationwide, population-based cohort study in the period 1995-2010 with quarterly CD4 measurements. Associations between a CD4 decline of ≥30% and cardiovascular disease, cancer, and death were analyzed using Poisson regression with date of CD4 decline as a time-updated variable. We followed 2584 virally suppressed HIV patients for 13 369 person-years (PY; median observation time, 4.7 years). Fifty-six patients developed CD4 decline (incidence rate, 4.2/1000 PY [95% confidence interval {CI}, 3.2-5.4]). CD4 counts dropped from a median of 492 cells/µL to 240 cells/µL. CD8, CD3, and total lymphocyte counts dropped concomitantly. No HIV-related factors, apart from treatment with didanosine, were associated with CD4 decline. The risk of cardiovascular disease, cancer, and death increased markedly ≤6 months after CD4 decline (incidence rate ratio, 11.7 [95% CI, 3.6-37.4] and 13.7 [95% CI, 4.3-43.6], respectively, and mortality rate ratio 4.3 [95% CI, 1.1-17.6]). A major decline in CD4 count is associated with a marked increased risk of cardiovascular disease, cancer, and death among virally suppressed HIV patients.

  8. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger.

    Science.gov (United States)

    Dinesh, Raghavan; Anandaraj, Muthuswamy; Kumar, Aundy; Bini, Yogiyar Kundil; Subila, Kizhakke Purayil; Aravind, Ravindran

    2015-04-01

    In this study, 100 PGPR strains isolated from different varieties of ginger (Zingiber officinale Rosc.) were first characterized for their morphological, biochemical, and nutrient mobilization traits in vitro. The PGPR were also screened in vitro for inhibition of Pythium myriotylum causing soft rot in ginger. Results revealed that only five PGPR showed >70% suppression of P. myriotylum. These 5 PGPR viz., GRB (Ginger rhizobacteria) 25--Burkholderia cepacia, GRB35--Bacillus amyloliquefaciens; GRB58--Serratia marcescens; GRB68--S. marcescens; GRB91--Pseudomonas aeruginosa were used for further growth promotion and biocontrol studies in the green house and field. The green house study revealed that GRB35 (B. amyloliquefaciens) and GRB68 (S. marcescens) registered markedly higher sprouting (96.3%) and lower disease incidence (48.1%) and greater rhizome yield (365.6 g pot(-1) and 384.4 g pot(-1), respectively), while control registered the lowest sprouting (66%), maximum soft rot incidence (100%) and lowest rhizome yield (134.4 g pot(-1)). In the field experiments also, GRB68 (S. marcescens) and GRB35 (B. amyloliquefaciens) registered the greatest sprouting (80% each), markedly lower soft rot incidence (5.2% and 7.3%, respectively) and higher yield (5.0 and 4.3 kg(3)m(-2), respectively) compared to chemicals like Streptomycin sulphate (73.0%, 18.5% and 2.3 kg(3)m(-2), respectively), Metalaxyl-Mancozeb (73.0%, 14.0% and 3.8 kg(3)m(-2), respectively) and control (73.0%, 25.1% and 2.2 kg 3m(-2), respectively). Overall, the results suggested that for growth promotion and management of soft rot disease in ginger, GRB35 B. amyloliquefaciens and GRB68 S. marcescens could be good alternatives to chemical measures. Since, the latter has been reported to be an opportunistic human pathogen, we recommend the use of B. amyloliquefaciens for integration into nutrient and disease management schedules for ginger cultivation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Integrating natural and social science perspectives on plant disease risk, management and policy formulation

    Science.gov (United States)

    Mills, Peter; Dehnen-Schmutz, Katharina; Ilbery, Brian; Jeger, Mike; Jones, Glyn; Little, Ruth; MacLeod, Alan; Parker, Steve; Pautasso, Marco; Pietravalle, Stephane; Maye, Damian

    2011-01-01

    Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions. PMID:21624923

  10. Achieving sustainable plant disease management through evolutionary principles.

    Science.gov (United States)

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  12. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    Science.gov (United States)

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. miR482 and Its Isoforms in Plants

    Directory of Open Access Journals (Sweden)

    Abdil Hakan EREN

    2016-09-01

    Full Text Available In plants, miR482 family members are generally 22-nucleotide long, distinguishing from other microRNA (miRNA families by their extraordinary and diverse sequence structures. Studies showed that miRNA482 is related to NBLRR (Nucleotide binding-site leucine-rich repeat genes conferring resistance to disease in plants. There are different coded NB-LRR genes which are considered as the part immune response assisting the recognition of pathogens in plant genomes. NB-LRR proteins are mostly related to effector – triggering immune system against pathogens. The main immune receptors in plants are PRR (Pattern recoginition receptor and R (Resistance proteins. R proteins code for immune system proteins by NB-LRR activity. miR482, miR1448, slmiR2118 and ath-miR472 are disease resistance related miRNAs. In several studies, miR482 was found to be a homolog of miR1448 and phylogenetic analyses showed that miR1448 is formed by tandem duplication of miR482. While suppression of miR482 results in plant susceptibility to pathogens, miR482 was considered to play role in nodulation and mycorrhizal processes of soya roots. Increasing evidences exhibit that miR482 is critical in disease resistance against pathogen attacks.

  14. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Directory of Open Access Journals (Sweden)

    Angela Wang

    2016-12-01

    Full Text Available Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark, orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  15. The role of L-DOPA in plants

    Science.gov (United States)

    Soares, Anderson Ricardo; Marchiosi, Rogério; Siqueira-Soares, Rita de Cássia; Barbosa de Lima, Rogério; Dantas dos Santos, Wanderley; Ferrarese-Filho, Osvaldo

    2014-01-01

    Since higher plants regularly release organic compounds into the environment, their decay products are often added to the soil matrix and a few have been reported as agents of plant-plant interactions. These compounds, active against higher plants, typically suppress seed germination, cause injury to root growth and other meristems, and inhibit seedling growth. Mucuna pruriens is an example of a successful cover crop with several highly active secondary chemical agents that are produced by its seeds, leaves and roots. The main phytotoxic compound encountered is the non-protein amino acid L-3,4-dihydroxyphenylalanine (L-DOPA), which is used in treating the symptoms of Parkinson disease. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin and is released from Mucuna into soils, inhibiting the growth of nearby plant species. This review summarizes knowledge regarding L-DOPA in plants, providing a brief overview about its metabolic actions. PMID:24598311

  16. Impaired Insulin Suppression of VLDL-Triglyceride Kinetics in Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Poulsen, Marianne K; Nellemann, Birgitte; Stødkilde-Jørgensen, Hans; Pedersen, Steen B; Grønbæk, Henning; Nielsen, Søren

    2016-04-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with glucose and lipid metabolic abnormalities. However, insulin suppression of very low-density lipoprotein-triglyceride (VLDL-TG) kinetics is not fully understood. The objective of the study was to determine VLDL-TG, glucose, and palmitate kinetics during fasting and hyperinsulinemia in men with (NAFLD+) and without NAFLD (NAFLD−). Twenty-seven nondiabetic, upper-body obese (waist to hip ratio > 0.9, body mass index > 28 kg/m2) men, 18 NAFLD+, and nine NAFLD− determined by magnetic resonance spectroscopy were enrolled.14C-labeled VLDL-TG and 3H-labeled glucose and palmitate tracers were applied in combination with indirect calorimetry and breath samples to assess kinetics and substrate oxidations postabsorptively and during a hyperinsulinemic-euglycemic clamp. Dual-X-ray absorptiometry and magnetic resonance imaging assessed body composition. Liver fat content was greater in NAFLD+ than NAFLD− men (21.0% vs 3.7%), even though body composition, metabolites (except triglycerides), and insulin were similar in the groups. Insulin suppression of VLDL-TG secretion (P = .0001), oxidation (P = .0003), and concentration (P= .008) as well as percentage decreases were lower in NAFLD+ than NAFLD− men (secretion: 31.9% ± 17.2% vs 64.7% ± 19.9%; oxidation: −9.0% ± 24.7% vs 46.5% ± 36.6%; concentration: 11.9% ± 20.7% vs 56.2% ± 22.9%, all P glucose production was similar in the groups. Compared with endogenous glucose production, the inability of NAFLD+ men to suppress VLDL-TG kinetics to compensate for the increased liver fat content seems to be an early pathophysiological manifestation of male NAFLD+. These data suggest therapeutic targets reducing liver fat content may ameliorate metabolic abnormalities associated with NAFLD and presumably diabetes.

  17. Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from Plants

    Directory of Open Access Journals (Sweden)

    Antonella Sgarbossa

    2015-07-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by the deposition of extracellular amyloid-beta peptide (Aβ and intracellular neurofibrillar tangles, associated with loss of neurons in the brain and consequent learning and memory deficits. Aβ is the major component of the senile plaques and is believed to play a central role in the development and progress of AD both in oligomer and fibril forms. Inhibition of the formation of Aβ fibrils as well as the destabilization of preformed Aβ in the Central Nervous System (CNS would be an attractive therapeutic target for the treatment of AD. Moreover, a large number of studies indicate that oxidative stress and mitochondrial dysfunction may play an important role in AD and their suppression or reduction via antioxidant use could be a promising preventive or therapeutic intervention for AD patients. Many antioxidant compounds have been demonstrated to protect the brain from Aβ neurotoxicity. Ferulic acid (FA is an antioxidant naturally present in plant cell walls with anti-inflammatory activities and it is able to act as a free radical scavenger. Here we present the role of FA as inhibitor or disaggregating agent of amyloid structures as well as its effects on biological models.

  18. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  19. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester.

    Science.gov (United States)

    Lim, Kyung-Min; Bae, SeungJin; Koo, Jung Eun; Kim, Eun-Sun; Bae, Ok-Nam; Lee, Joo Young

    2015-04-01

    Skin inflammation plays a central role in the pathophysiology and symptoms of diverse chronic skin diseases including atopic dermatitis (AD). In this study, we examined if caffeic acid phenethyl ester (CAPE), a skin-permeable bioactive compound from propolis, was protective against skin inflammation using in vitro cell system and in vivo animal disease models. CAPE suppressed TNF-α-induced NF-κB activation and expression of inflammatory cytokines in human keratinocytes (HaCaT). The potency and efficacy of CAPE were superior to those of a non-phenethyl derivative, caffeic acid. Consistently, topical treatment of CAPE (0.5 %) attenuated 12-O-tetradecanoylphorbol-13-acetate(TPA)-induced skin inflammation on mouse ear as CAPE reduced ear swelling and histologic inflammation scores. CAPE suppressed increased expression of pro-inflammatory molecules such as TNF-α, cyclooxygenase-2 and inducible NO synthase in TPA-stimulated skin. TPA-induced phosphorylation of IκB and ERK was blocked by CAPE suggesting that protective effects of CAPE on skin inflammation is attributed to inhibition of NF-κB activation. Most importantly, in an oxazolone-induced chronic dermatitis model, topical application of CAPE (0.5 and 1 %) was effective in alleviating AD-like symptoms such as increases of trans-epidermal water loss, skin thickening and serum IgE as well as histologic inflammation assessment. Collectively, our results propose CAPE as a promising candidate for a novel topical drug for skin inflammatory diseases.

  20. Apple replant disease: role of microbial ecology in cause and control.

    Science.gov (United States)

    Mazzola, Mark; Manici, Luisa M

    2012-01-01

    Replant disease of apple is common to all major apple growing regions of the world. Difficulties in defining disease etiology, which can be exacerbated by abiotic factors, have limited progress toward developing alternatives to soil fumigation for disease control. However, the preponderance of data derived from studies of orchard soil biology employing multidisciplinary approaches has defined a complex of pathogens/parasites as causal agents of the disease. Approaches to manipulate microbial resources endemic to the orchard soil system have been proposed to induce a state of general soil suppressiveness to replant disease. Such a long-term strategy may benefit the existing orchard through extending the period of economic viability and reduce overall disease pressure to which young trees are exposed during establishment of successive plantings on the site. Alternatively, more near-term methods have been devised to achieve specific quantitative and qualitative changes in soil biology during the period of orchard renovation that may lead to effective disease suppression.

  1. Effectiveness of BPMC Application against Bemisia tabaci (Gennadius Population and CMMV Disease Incidence on Soybean

    Directory of Open Access Journals (Sweden)

    Wartono Wartono

    2015-09-01

    Full Text Available Control of whitefly (Bemisia tabaci (Gennadius is the starting point in suppressing the CMMV disease (cowpea mild mottle virus. This study aims to determine the influence of applications BPMC (500 g a.i./l against B. tabaci populations and disease incidence of CMMV on soybean plants. Research was conducted in the field with randomized complete block design consisting of 5 treatments i.e. five concentration levels: 0.75, 1.50,2.25, and 3.00 ml/l including control (untreated with 5 replications. The results showed that BPMC is effective in suppressing the adult population of B. tabaci and disease incidence of CMMV.

  2. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer.

    Science.gov (United States)

    Ludwig, Sonja; Floros, Theofanis; Theodoraki, Marie-Nicole; Hong, Chang-Sook; Jackson, Edwin K; Lang, Stephan; Whiteside, Theresa L

    2017-08-15

    Purpose: Head and neck cancers (HNCs) often induce profound immunosuppression, which contributes to disease progression and interferes with immune-based therapies. Body fluids of patients with HNC are enriched in exosomes potentially engaged in negative regulation of antitumor immune responses. The presence and content of exosomes derived from plasma of patients with HNC are evaluated for the ability to induce immune dysfunction and influence disease activity. Experimental Design: Exosomes were isolated by size-exclusion chromatography from plasma of 38 patients with HNC and 14 healthy donors. Morphology, size, numbers, and protein and molecular contents of the recovered exosomes were determined. Coculture assays were performed to measure exosome-mediated effects on functions of normal human lymphocyte subsets and natural killer (NK) cells. The results were correlated with disease stage and activity. Results: The presence, quantity, and molecular content of isolated, plasma-derived exosomes discriminated patients with HNC with active disease (AD) from those with no evident disease (NED) after oncologic therapies. Exosomes of patients with AD were significantly more effective than exosomes of patients with NED in inducing apoptosis of CD8 + T cells, suppression of CD4 + T-cell proliferation, and upregulation of regulatory T-cell (Treg) suppressor functions (all at P Exosomes of patients with AD also downregulated NKG2D expression levels in NK cells. Conclusions: Exosomes in plasma of patients with HNC carry immunosuppressive molecules and interfere with functions of immune cells. Exosome-induced immune suppression correlates with disease activity in HNC, suggesting that plasma exosomes could be useful as biomarkers of HNC progression. Clin Cancer Res; 23(16); 4843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Rice Gene Network Inferred from Expression Profiling of Plants Overexpressing OsWRKY13,a Positive Regulator of Disease Resistance

    Institute of Scientific and Technical Information of China (English)

    Deyun Qiu; Jun Xiao; Weibo Xie; Hongbo Liu; Xianghua Li; Lizhong Xiong; Shiping Wang

    2008-01-01

    Accumulating information indicates that plant disease resistance signaling pathways frequently interact with other pathways regulating developmental processes or abiotic stress responses. However, the molecular mechanisms of these types of crosstalk remain poorly understood in most cases. Here we report that OsWRKY13, an activator of rice resistance to both bacterial and fungal pathogens, appears to function as a convergent point for crosstalk among the pathogen-induced salicylate-dependent defense pathway and five other physiologic pathways. Genome-wide analysis of the expression profiles of OsWRKY13-overexpressing lines suggests that OsWRKY13 directly or indirectly regulates the expression of more than 500 genes that are potentially involved in different physiologic processes according to the classification of the Gene Ontology database. By comparing the expression patterns of genes functioning in known pathways or cellular processes of pathogen infection and the phenotypes between OsWRKY13-overexpressing and wildtype plants, our data suggest that OsWRKY13 is also a regulator of other physiologic processes during pathogen infection. The OsWRKY13-associated disease resistance pathway synergistically interacts via OsWRKY13 with the glutathione/glutaredoxin system and flavonoid biosynthesis pathway to monitor redox homeostasis and to putatively enhance the biosynthesis of antimicrobial flavonoid phytoalexins, respectively, in OsWRKY13-overexpressing lines. Meanwhile, the OsWRKY13-associated disease resistance pathway appears to interact antagonistically with the SNAC1-mediated abiotic stress defense pathway, jasmonic acid signaling pathway, and terpenoid metabolism pathway via OsWRKY13 to suppress salt and cold defense responses as well as to putatively retard rice growth and development.

  4. Experimental coal dust suppression system installed at the Nikola Tesla thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Guzijan, D [Rudarski Institut, Belgrade (Yugoslavia). Zavod za Ventilaciju i Tehnicku Zastitu

    1988-01-01

    Describes a project conducted at the Nikola Tesla thermal power plant by the Mining Institute of Belgrade to reduce the high levels of dust concentrations in overloading stations on coal conveyors and hoppers. A mathematical model was developed to determine the ventilation capacity required at each of the 18 overloading stations with the hoppers considered successively: empty, 1/3 full, 2/3 full and completely full. Shows how this model enabled an efficient dust suppression system to be developed and subsequently installed by the Termovent company in Belgrade using 4 axial ventilators supplied by the Ventilator Company in Zagreb. The ventilators were powered by means of 5.5 kW electric motors and provided 440 Pa pressure at 950 rpm. Gives the result of dust concentration measurements indicating that the installed system achieved the results predicted by the mathematical model and that the levels were well below the statutory limit. A description of the complete installation is included. 3 refs.

  5. Pressure suppression apparatus of a nuclear power plant

    International Nuclear Information System (INIS)

    Mizumachi, W.; Funalashi, T.

    1980-01-01

    Pressure suppression apparatus for a nuclear reactor comprises a vessel surrounding a reactor pressure vessel and containing a water pool at the bottom of the vessel, and a steam exhaust pipe. The apparatus further comprises an exhaust chamber connected to the immersed portion of the exhaust pipe and provided with a number of discharge openings. (auth)

  6. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    Science.gov (United States)

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  7. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Suppression of dust explosions and ignition spots in biomass-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A.

    1995-12-31

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of peritoneal safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  9. Suppression of dust explosions and ignition spots in biomass-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A

    1996-12-31

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of peritoneal safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  10. Suppression of dust explosions and ignition spots in biomass- fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A [VTT Energy, Espoo (Finland)

    1997-12-01

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of operational safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  11. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management.

    Science.gov (United States)

    Ilyas, Humaira; Datta, Aritreyee; Bhunia, Anirban

    2017-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, and aim to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limit their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for the control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Test facility of the VVER-440 condensation-type pressure suppression system

    International Nuclear Information System (INIS)

    Wolff, H.; Arndt, S.

    2004-01-01

    Since the early nineties, GRS has supported regulatory authorities in Central and Eastern Europe in performing safety assessments of nuclear power plants. Especially studies of the condensation-type pressure suppression system of VVER-440/V-213-type plants have been important in this respect. Major steps in demonstrating complete functioning of the condensation-type pressure suppression system under accident conditions by experiments run in the Russian large scale test facility, BC V-213, have been completed in the past two years within the framework of various international experimental programs. The test results were used to validate specifically for power plants with VVER-400/V-213 reactors the COCOSYS GRS computer code, which is used in the safety assessments. The results of recalculations of the C02 EREC test, which simulates a break of a main steam pipe, demonstrate the present state of validation of COCOSYS for VVER condensation-type pressure suppression systems. (orig.) [de

  13. Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

    DEFF Research Database (Denmark)

    Hennessy, Rosanna C.; Glaring, Mikkel Andreas; Frydenlund Michelsen, Charlotte

    2015-01-01

    Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight into ...

  14. Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease.

    Science.gov (United States)

    Xu, Chengcheng; Wu, Fei; Mao, Chaoming; Wang, Xuefeng; Zheng, Tingting; Bu, Ling; Mou, Xiao; Zhou, Yuepeng; Yuan, Guoyue; Wang, Shengjun; Xiao, Yichuan

    2016-12-01

    The incidence of the autoimmune thyroid disease Hashimoto thyroiditis (HT) has increased in recent years, and increasing evidence supports the contribution of excess iodine intake to thyroid disease. In this study, we examined the status of autophagy and apoptosis in thyroid tissues obtained from patients with HT, and we determined the effects of excessive iodine on the autophagy and apoptosis of thyroid follicular cells (TFCs) in an attempt to elucidate the effects of excess iodine on HT development. Our results showed decreases in the autophagy-related protein LC3B-II, and increases in caspase-3 were observed in thyroid tissues from HT patients. Interestingly, the suppression of autophagy activity in TFCs was induced by excess iodine in vitro, and this process is mediated through transforming growth factor-β1 downregulation and activation of the Akt/mTOR signaling pathway. In addition, excess iodine induced autophagy suppression and enhanced reactive oxygen species (ROS) production and apoptosis of TFCs, which could be rescued by the activation of autophagy. Taken together, our results demonstrated that excess iodine contributed to autophagy suppression and apoptosis of TFCs, which could be important factors predisposing to increased risk of HT development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fire Source Accessibility of Water Mist Fire Suppression Improvement through Flow Method Control

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Ho; Kim, Hyeong Taek; Kim, Yun Jung; Park, Mun Hee [KHNP CRI, Daejeon (Korea, Republic of)

    2013-10-15

    Recently, nuclear power plants set CO{sub 2} fire suppression system. However it is hard to establish and to maintain and it also has difficulties performing function test. Therefore, it needs to develop a new fire suppression system to replace the existing CO{sub 2} fire suppression systems in nuclear power plant. In fact, already, there exist alternatives - gas fire suppression system or clean fire extinguishing agent, but it is hard to apply because it requires a highly complicated plan. However, water mist fire suppression system which has both water system and gas system uses small amount of water and droplet, so it is excellent at oxygen displacement and more suitable for nuclear power plant because it can avoid second damage caused by fire fighting water. This paper explains about enclosure effect of water mist fire suppression. And it suggests a study direction about water mist fire source approach improvement and enclosure effect improvement, using flow method control of ventilation system. Water mist fire suppression can be influenced by various variable. And flow and direction of ventilation system are important variable. Expectations of the plan for more fire source ventilation system is as in the following. It enhances enclosure effects of water mists, so it improves extinguish performance. Also the same effect as a inert gas injection causes can be achieved. Lastly, it is considered that combustible accessibility of water mists will increase because of descending air currents.

  16. Atmospheric cold plasma jet for plant disease treatment

    Science.gov (United States)

    Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

    2014-01-01

    This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

  17. Soil Bacterial Community Was Changed after Brassicaceous Seed Meal Application for Suppression of Fusarium Wilt on Pepper

    Directory of Open Access Journals (Sweden)

    Gaidi Ren

    2018-02-01

    Full Text Available Application of Brassicaceous seed meal (BSM is a promising biologically based disease-control practice but BSM could directly and indirectly also affect the non-target bacterial communities, including the beneficial populations. Understanding the bacterial response to BSM at the community level is of great significance for directing plant disease management through the manipulation of resident bacterial communities. Fusarium wilt is a devastating disease on pepper. However, little is known about the response of bacterial communities, especially the rhizosphere bacterial community, to BSM application to soil heavily infested with Fusarium wilt pathogen and cropped with peppers. In this study, a 25-day microcosm incubation of a natural Fusarium wilt pathogen-infested soil supplemented with three BSMs, i.e., Camelina sativa ‘Crantz’ (CAME, Brassica juncea ‘Pacific Gold’ (PG, and a mixture of PG and Sinapis alba cv. ‘IdaGold’ (IG (PG+IG, 1:1 ratio, was performed. Then, a further 35-day pot experiment was established with pepper plants growing in the BSM treated soils. The changes in the bacterial community in the soil after 25 days of incubation and changes in the rhizosphere after an additional 35 days of pepper growth were investigated by 454 pyrosequencing technique. The results show that the application of PG and PG+IG reduced the disease index by 100% and 72.8%, respectively, after 35 days of pepper growth, while the application of CAME did not have an evident suppressive effect. All BSM treatments altered the bacterial community structure and decreased the bacterial richness and diversity after 25 days of incubation, although this effect was weakened after an additional 35 days of pepper growth. At the phylum/class and the genus levels, the changes in specific bacterial populations resulting from the PG and PG+IG treatments, especially the significant increase in Actinobacteria-affiliated Streptomyces and an unclassified genus and

  18. Comparative efficacy of a red alga solieria robusta, chemical fertilizers and pesticides in managing the root diseases and growth of soybean

    International Nuclear Information System (INIS)

    Sultana, V.; Haque, S.E.; Baloch, G.N.; Ara, J.

    2011-01-01

    Application of seaweed as soil amendment for the control of soil borne plant diseases has increased in recent years due to their environment friendly role. In screen house study, a red seaweed Solieria robusta used as soil amendment showed better suppressive effect on root rotting fungus Fusarium solani than Topsin-M, a fungicide, but was found less effective than Topsin-M against Macrophomina phaseolina and Rhizoctonia solani on soybean. Solieria robusta showed similar suppressive effect on root knot nematode as did carbofuran, a nematicide. Seaweed showed slightly better effect on plant growth than urea or potash by producing taller plants, better root length and number of flowers per plant. However, mixed application of S.robusta and Topsin-M produced greater number of flowers per plant and tallest plants. (author)

  19. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    Science.gov (United States)

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  20. Epidemiology: Past, Present, and Future Impacts on Understanding Disease Dynamics and Improving Plant Disease Management-A Summary of Focus Issue Articles.

    Science.gov (United States)

    Ojiambo, P S; Yuen, J; van den Bosch, F; Madden, L V

    2017-10-01

    Epidemiology has made significant contributions to plant pathology by elucidating the general principles underlying the development of disease epidemics. This has resulted in a greatly improved theoretical and empirical understanding of the dynamics of disease epidemics in time and space, predictions of disease outbreaks or the need for disease control in real-time basis, and tactical and strategic solutions to disease problems. Availability of high-resolution experimental data at multiple temporal and spatial scales has now provided a platform to test and validate theories on the spread of diseases at a wide range of spatial scales ranging from the local to the landscape level. Relatively new approaches in plant disease epidemiology, ranging from network to information theory, coupled with the availability of large-scale datasets and the rapid development of computer technology, are leading to revolutionary thinking about epidemics that can result in considerable improvement of strategic and tactical decision making in the control and management of plant diseases. Methods that were previously restricted to topics such as population biology or evolution are now being employed in epidemiology to enable a better understanding of the forces that drive the development of plant disease epidemics in space and time. This Focus Issue of Phytopathology features research articles that address broad themes in epidemiology including social and political consequences of disease epidemics, decision theory and support, pathogen dispersal and disease spread, disease assessment and pathogen biology and disease resistance. It is important to emphasize that these articles are just a sample of the types of research projects that are relevant to epidemiology. Below, we provide a succinct summary of the articles that are published in this Focus Issue .

  1. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants

    Science.gov (United States)

    Uda, M. N. A.; Harzana Shaari, N.; Shamiera. Said, N.; Hulwani Ibrahim, Nur; Akhir, Maisara A. M.; Khairul Rabani Hashim, Mohd; Salimi, M. N.; Nuradibah, M. A.; Hashim, Uda; Gopinath, Subash C. B.

    2018-03-01

    Rice blast disease, caused by the fungus known as Pyricularia oryzae, has become an important and serious disease of rice worldwide. Around 50% of production may be lost in a field moderately affected by infection and each year the fungus destroys rice, which is enough to feed an estimated 60 million people. Therefore, use of herbal plants offer an alternative for the management of plant diseases. Herbal plant like Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale extracts can be used for controlling disease of rice blast. In this study, these four herbal plants were used for evaluating antimicrobial activity against rice plant fungus Pyricularia oryzae, which causes rice blast disease.

  2. Effect of selected essential oil plants on bacterial wilt disease ...

    African Journals Online (AJOL)

    Objective: Bacterial wilt disease caused by Ralstonia solanacearum is a major constrain to production of potatoes (Solanum tuberosum). Control of bacterial wilt is very difficult as there are no effective curative chemicals. This study was aimed at investigating the potential roles of essential oil plants in control of the disease.

  3. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

    OpenAIRE

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-01-01

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using ...

  4. Data on medicinal plants used in Central America to manage diabetes and its sequelae (skin conditions, cardiovascular disease, kidney disease, urinary problems and vision loss

    Directory of Open Access Journals (Sweden)

    Peter Giovannini

    2016-06-01

    Full Text Available The data described in this article is related to the review article “Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: a review” (Giovannini et al., 2016 [1]. We searched publications on the useful plants of Central America in databases and journals by using selected relevant keywords. We then extracted reported uses of medicinal plants within the disease categories: diabetes mellitus, kidney disease, urinary problems, skin diseases and infections, cardiovascular disease, sexual dysfunction, vision loss, and nerve damage. The following countries were included in our definition of Central America: Belize, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica and Panama. Data were compiled in a bespoke Access database. Plant names from the published sources were validated against The Plant List (TPL, (The Plant List, 2013 [2] and accepted names and synonyms were extracted. In total, the database includes 607 plant names obtained from the published sources which correspond to 537 plant taxa, 9271 synonyms and 1055 use reports.

  5. Concept for quality management to secure benefits of compost use for soil and plants

    OpenAIRE

    Fuchs, J.G.; Berner, A.; Mayer, J.; Schleiss, K.

    2014-01-01

    Use of quality compost can have an important positive impact on soil fertility and plant growth and health. For example, it increases soil humus and improves soil structure and suppressivity towards plant diseases. To obtain these positive results, it is important that the compost quality is appropriate for each use. If used inadequately, the impact of compost can also be negative. The compost producer should be responsible for the quality of his products, and has to communicate the propertie...

  6. Suppression/reducing method for total organic carbon in feedwater/condensate

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    The present invention suppresses/reduces the concentration of the total organic carbon before the startup of a reactor, to decrease (TOC) which is brought into the reactor upon startup of the operation and suppress/moderate degradation of water quality of reactor water. That is, in-service period of a condensate desalting tower is shortened, to avoid concentration increase of TOC in feed water/condensate which is leached out from the condensate desalting tower. The condensate desalting towers are put to in-service for the entire towers after increasing the vacuum degree of the condensator, to suppress leaching of TOC from the condensate desalting tower. Further, upon startup of a nuclear power plant, when the condensate desalting tower is put to in-service, condensate filters of the entire towers are previously back-washed and regenerated to remove TOC efficiently. By these procedures, TOC brought from a water supply system upon startup of the plant is thermally decomposed or radiolyzed in the reactor, thereby enabling to suppress/avoid worsening of water quality of reactor water caused by generated ion impurities. (I.S.)

  7. Potential Use of Turkish Medicinal Plants in the Treatment of Various Diseases

    Directory of Open Access Journals (Sweden)

    Gulay Ozkan

    2016-02-01

    Full Text Available Medicinal plants are sources of health-promoting substances, including phytochemicals and phytoalexins that comprise polyphenols, flavonoids, carotenoids, vitamins A, C, E and several other constituents. Many studies have indicated that medicinal plants have been used to treat human diseases for thousands of years owing to their antimicrobial and antioxidant activities. Medicinal plants reduce the oxidative stress in cells and prevent cancer, cardiovascular and inflammatory diseases, neurodegenerative and digestive system disorders. These potential beneficial effects have been attributed to the presence of bioactive compounds that show antioxidant properties by acting as free radical scavengers or metal chelators, reducing the reactions that produce reactive oxygen and nitrogen species (ROS/RNS. Considering the importance of medicinal plants in terms of their beneficial health effects, some of the medicinally important plants grown in Turkey are covered in this review with respect to their antioxidant potential and phytochemical profile.

  8. Potential Use of Turkish Medicinal Plants in the Treatment of Various Diseases.

    Science.gov (United States)

    Ozkan, Gulay; Kamiloglu, Senem; Ozdal, Tugba; Boyacioglu, Dilek; Capanoglu, Esra

    2016-02-25

    Medicinal plants are sources of health-promoting substances, including phytochemicals and phytoalexins that comprise polyphenols, flavonoids, carotenoids, vitamins A, C, E and several other constituents. Many studies have indicated that medicinal plants have been used to treat human diseases for thousands of years owing to their antimicrobial and antioxidant activities. Medicinal plants reduce the oxidative stress in cells and prevent cancer, cardiovascular and inflammatory diseases, neurodegenerative and digestive system disorders. These potential beneficial effects have been attributed to the presence of bioactive compounds that show antioxidant properties by acting as free radical scavengers or metal chelators, reducing the reactions that produce reactive oxygen and nitrogen species (ROS/RNS). Considering the importance of medicinal plants in terms of their beneficial health effects, some of the medicinally important plants grown in Turkey are covered in this review with respect to their antioxidant potential and phytochemical profile.

  9. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens

    NARCIS (Netherlands)

    Shin, Keumchul; Diepen, van G.; Blok, W.; Bruggen, van A.H.C.

    2017-01-01

    The microbial inoculant ‘Effective Microorganisms’ (EM) has been used to promote soil fertility and plant growth in agriculture. We tested effects of commercial EM products on suppression of soil-borne diseases, microbial activity and bacterial composition in organically managed sandy soils. EM was

  10. Acid suppressants for managing gastro-oesophageal reflux and gastro-oesophageal reflux disease in infants: a national survey.

    Science.gov (United States)

    Bell, Jane C; Schneuer, Francisco J; Harrison, Christopher; Trevena, Lyndal; Hiscock, Harriet; Elshaug, Adam G; Nassar, Natasha

    2018-02-22

    To evaluate the diagnosis and management of reflux and gastro-oesophageal reflux disease (GORD) in infants aged reflux and GORD and their management including prescribing of acid-suppressant medicines (proton pump inhibitors (PPIs) and histamine receptor antagonists (H2RAs)) and counselling, advice or education. Of all infants' visits, 512 (2.7%) included a diagnosis of reflux (n=413, 2.2%) or GORD (n=99, 0.5%). From 2006 to 2016, diagnostic rates decreased for reflux and increased for GORD. Prescribing of acid suppressants occurred in 43.6% visits for reflux and 48.5% visits for GORD, similar to rates of counselling, advice or education (reflux: 38.5%, GORD: 43.4% of visits). Prescribing of PPIs increased (statistically significant only for visits for reflux), while prescribing of H2RAs decreased. Overprescribing of acid suppressants to infants may be occurring. In infants, acid-suppressant medicines are no better than placebo and may have significant negative side effects; however, guidelines are inconsistent. Clear, concise and consistent guidance is needed. GPs and parents need to understand what is normal and limitations of medical therapy. We need a greater understanding of the influences on GP prescribing practices, of parents' knowledge and attitudes and of the pressures on parents of infants with these conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis

    Directory of Open Access Journals (Sweden)

    Antonio Cellini

    2017-11-01

    Full Text Available Electronic nose technology has recently been applied to the detection of several plant diseases and pests, with promising results. However, in spite of its numerous advantages, including operational simplicity, non-destructivity, and bulk sampling, drawbacks include a low sensitivity and specificity in comparison with microbiological and molecular methods. A critical review of the use of an electronic nose for plant disease diagnosis and pest detection is presented, describing the instrumental and procedural advances of sensorial analysis, for the improvement of discrimination between healthy and infected or infested plants. In conclusion, the use of electronic nose technology is suggested to assist, direct, and optimise traditionally adopted diagnostic techniques.

  12. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  13. Rapid immunohistochemical diagnosis of tobacco mosaic virus disease by microwave-assisted plant sample preparation

    Science.gov (United States)

    Zellnig, Günther; Möstl, Stefan; Zechmann, Bernd

    2013-01-01

    Immunoelectron microscopy is a powerful method to diagnose viral diseases and to study the distribution of the viral agent within plant cells and tissues. Nevertheless, current protocols for the immunological detection of viral diseases with transmission electron microscopy (TEM) in plants take between 3 and 6 days and are therefore not suited for rapid diagnosis of virus diseases in plants. In this study, we describe a method that allows rapid cytohistochemical detection of tobacco mosaic virus (TMV) in leaves of tobacco plants. With the help of microwave irradiation, sample preparation of the leaves was reduced to 90 min. After sample sectioning, virus particles were stained on the sections by immunogold labelling of the viral coat protein, which took 100 min. After investigation with the TEM, a clear visualization of TMV in tobacco cells was achieved altogether in about half a day. Comparison of gold particle density by image analysis revealed that samples prepared with the help of microwave irradiation yielded significantly higher gold particle density as samples prepared conventionally at room temperature. This study clearly demonstrates that microwave-assisted plant sample preparation in combination with cytohistochemical localization of viral coat protein is well suited for rapid diagnosis of plant virus diseases in altogether about half a day by TEM. PMID:23580761

  14. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Andrew P. Lieberman

    2014-05-01

    Full Text Available Spinal and bulbar muscular atrophy (SBMA is caused by the polyglutamine androgen receptor (polyQ-AR, a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  15. The preliminary study of MR diffusion weighted imaging with background body signal suppression on pulmonary diseases

    International Nuclear Information System (INIS)

    Wu Huawei; Cheng Jiejun; Xu Jianrong; Lu Qing; Ge Xin; Li Lei

    2008-01-01

    Objective: To evaluate maximum intensity projection (MIP) images and apparent diffusion coefficient (ADC) values of MR diffusion weighted imaging with background body signal suppression (DWIBS) on pulmonary diseases. Methods: Sixty-one patients with pulmonary diseases underwent DWlBS. The findings in three dimensional(3D) MIP image were observed and the ADC values of diseased region were measured. The diagnostic value of DWIBS on pulmonary diseases was evaluated. Results: Lung cancer and inflammatory disease were all demonstrated as dense intensity area on DWIBS. The mean ADC value of central lung cancer was (1.05±0.23) x 10 -3 mm 2 /s. The mean ADC value of peripheral lung cancer was (1.10 ± 0.17) x 10 -3 mm 2 /s. The mean ADC value of the inflammatory disease was (1.69 ± 0.29) x 10 -3 mm 2 /s. The mean ADC value had significant difference between peripheral lung cancer and the inflammatory disease (P<0.05). The MR sensitivity, specificity and accuracy in diagnosing the pulmonary diseases with DWIBS (86.84%, 82.60%, 85.24%, respectively) was higher than conventional MRI(78.94%, 78.26%, and 78.68%, respectively). Conclusion: DWIBS can demonstrate clearly the lesion's shape with 3D display. The quantitative measurement of ADC values is feasible. DWIBS may be a potential diagnostic method for differentiation on pulmonary diseases. (authors)

  16. A study of type and intensity of disease infecting banana plants Musa sp at Tegalagung village Semanding subdistrict

    Directory of Open Access Journals (Sweden)

    Supiana Dian Nurtjahyani

    2014-12-01

    Full Text Available Diseases affecting banana plants are very detrimental to farmers as these can lower production and economic income. The purpose of this study was to determine the type and intensity of the disease affecting banana plants. This research was an observational analytic study that observe and analyze condition or symptoms of diseases affecting banana plants in Tegalagung village, Semanding subdistrict, Tuban as many as 38 samples. Parameters observed were type of disease and measure intensity of the disease, data obtained were analyzed descriptively. Based on the symptoms that occurred on the leaves, the study found four disease types affecting banana plant that were fusarium wilt, bacterial wilt (Blood, Sigatoka leaf spot and stunting disease. The diseases intensity were 50% of Fusarium wilt; 26,66% of bacterial wilt (Blood; 26.32% of Sigatoka leaf spot and 15.38% of stunting disease. Conclusion of the study, the highest intensity of the disease that attacks banana plants is Fusarium wilt as high as 50%.

  17. [Fungi isolated from diseased medicinal plants].

    Science.gov (United States)

    Sato, T; Matsuhashi, M; Iida, O

    1992-01-01

    One hundred and forty-four fungal isolates were obtained from diseased Paeonia albiflora Pall. var. trichocarpa Bung., Astragalus membranaceus Bung., Lithospermum erythrorhizon Sieb. et Zucc., Ledebouriella seseloides Wolff and Bupleurum falcatum L. which were collected in the test field of Tsukuba Medicinal Plant Research Station, National Institute of Hygienic Sciences. Most of them were identified into 15 genera containing 8 species. Fungal species presumed to be pathogens of the host plants were as follows: Cladosporium paeoniae, Pestalotia paeoniicola, Glomerella cingulata, Hainesia lythri, Guignardia sp. and Alternaria sp. from P. albiflora, Fusarium spp., Rhizoctonia spp. and Neocosmospora vasinfecta from A. membranaceus, Colletotrichum gloeosporioides from L. erythrorhizon, Rhizoctonia sp., Fusarium spp., Phoma sp. and Pyrenochaeta sp. from L. seseloides, and Fusarium sp., Alternaria alternata, Phyllosticta sp., Phoma sp., Phomopsis sp. and C. gloeosporioides from B. falcatum. Roots of B. falcatum were found to be parasitized by Meloidogyne sp.

  18. Oral contraceptive therapy for polycystic ovary disease after chronic gonadotropin-releasing agonist administration. Predictors of continued ovarian suppression.

    Science.gov (United States)

    Elkind-Hirsch, K E; Anania, C; Malinak, R

    1996-09-01

    To study the beneficial effects of oral contraceptive (OC) therapy following gonadotropin-releasing hormone agonist (GnRH-a) administration in women with polycystic ovary disease (PCOD). Twenty-three hyperandrogenic women (aged 15-39) were randomized into two groups; GnRH-a (depot every 28 days) for six months or combination therapy (GnRH-a plus OC "addback") for six months. Following six months of treatment with either therapy, all patients received OC therapy for at least six months. The hormonal state was evaluated at three-month intervals. Hormone levels of luteinizing hormone (LH), testosterone (T) and free T remained suppressed within the normal range in 11 of 17 patients (65%) during the six months of OC only therapy, while the other six patients showed "escape" from suppression, with the LH, T and free T concentrations rising to pre-GnRH-a treatment levels. Use of OC addback therapy did not potentiate the long-acting therapeutic effect of GnRH-a pretreatment; three of six patients in the escape group were pretreated with combination therapy and three with GnRH-a only. In the majority of women with PCOD, OC therapy following GnRH-a administration was effective in maintaining ovarian androgen suppression. Failure to maintain ovarian suppression in this patient population was associated with higher elevations of baseline free T concentrations.

  19. Studies on the T3 suppression test with reference to the thyrodial 123I uptake in Graves' disease

    International Nuclear Information System (INIS)

    Yamaguchi, Takahiko; Kobayashi, Isao; Yamaguchi, Yoshiyuki; Iwashita, Akira; Inukai, Toshihiko; Ohshima, Kihachi; Shimomura, Yohnosuke; Kobayashi, Setsuo

    1990-01-01

    Eighty-three patients with Graves' disease had been treated with methylmercaptoimidazole (MMI). They were prescribed a maintenance dose of antithyroid drug (MMI, 5 mg/day) at the time of a T 3 suppression test. The 3-hour and 24-hour thyroidal 123 I uptake after T 3 administration (75 μg/day, 2 weeks) were measured (post T 3 uptake). In 38 patients whose post T 3 uptake was below 35% in post T 3 24-hour uptake, treatment was stopped. The T 3 suppression test was then repeated 1 and 3 months later. During a one-year follow up, 26 remained well, while 12 relapsed within 6 to 12 months. We have observed a good correlation between 3-hour uptake and 24-hour uptake of 123 I after T 3 administration (r=0.847, p 3 suppression, most patients with MMI withdrawal produced a marked overshoot of post T 3 3-hour and 24-hour uptake at one month. Retrospective analysis indicated that there was no significant difference in circulating thyroid hormone levels between remission and relapse groups. The present study provides evidence that 3-hour uptake values are able to be substituted for 24-hour uptake values during a T 3 suppression test. In addition, overshoot of thyroidal uptake after antithyroid drug withdrawal was observed in 3-hour values, similar to 24-hour values. (author)

  20. Spatial arrangements affect suppression of invasive Alternanthera philoxeroides by native Hemarthria compressa

    Science.gov (United States)

    Liao, Jianxiong; Tao, Min; Jiang, Mingxi

    2014-08-01

    It has been hypothesized that differences in spatial arrangements change the relative frequency of intra- and interspecific encounters between plant species. Manipulating spatial arrangement may play a role in invasive plant suppression when native species are used as competitors against introduced species. In this study, a replacement series experiment was performed to investigate the effects of intraspecifically random and aggregated spatial arrangements on interactions between the native plant Hemarthria compressa and the invasive plant Alternanthera philoxeroides, to test the possibility and effectiveness of H. compressa in suppressing A. philoxeroides. When both species were planted in intraspecifically random spatial patterns, H. compressa had a competitive advantage over A. philoxeroides at relative densities of 2:2 and 3:1. However, aggregation increased the strength, and therefore the cost, of intraspecific competition in H. compressa, resulting in lower biomass production, which reduced its effectiveness as an interspecific competitor. As the relative density of H. compressa in mixtures decreased, plants allocated more biomass to belowground parts, but fewer interspecific encounters lowered its inhibitory effects on A. philoxeroides. The results not only confirm that the frequency of conspecific and heterospecific encounters can influence competitive outcomes, but also suggest that a reduction in the degree of spatial aggregation in H. compressa and an increase in its relative densities may be essential to increase the suppression of A. philoxeroides.

  1. Hitchhiker's guide to multi-dimensional plant pathology.

    Science.gov (United States)

    Saunders, Diane G O

    2015-02-01

    Filamentous pathogens pose a substantial threat to global food security. One central question in plant pathology is how pathogens cause infection and manage to evade or suppress plant immunity to promote disease. With many technological advances over the past decade, including DNA sequencing technology, an array of new tools has become embedded within the toolbox of next-generation plant pathologists. By employing a multidisciplinary approach plant pathologists can fully leverage these technical advances to answer key questions in plant pathology, aimed at achieving global food security. This review discusses the impact of: cell biology and genetics on progressing our understanding of infection structure formation on the leaf surface; biochemical and molecular analysis to study how pathogens subdue plant immunity and manipulate plant processes through effectors; genomics and DNA sequencing technologies on all areas of plant pathology; and new forms of collaboration on accelerating exploitation of big data. As we embark on the next phase in plant pathology, the integration of systems biology promises to provide a holistic perspective of plant–pathogen interactions from big data and only once we fully appreciate these complexities can we design truly sustainable solutions to preserve our resources.

  2. Tricking the guard: exploiting plant defense for disease susceptibility.

    Science.gov (United States)

    Lorang, J; Kidarsa, T; Bradford, C S; Gilbert, B; Curtis, M; Tzeng, S-C; Maier, C S; Wolpert, T J

    2012-11-02

    Typically, pathogens deploy virulence effectors to disable defense. Plants defeat effectors with resistance proteins that guard effector targets. We found that a pathogen exploits a resistance protein by activating it to confer susceptibility in Arabidopsis. The guard mechanism of plant defense is recapitulated by interactions among victorin (an effector produced by the necrotrophic fungus Cochliobolus victoriae), TRX-h5 (a defense-associated thioredoxin), and LOV1 (an Arabidopsis susceptibility protein). In LOV1's absence, victorin inhibits TRX-h5, resulting in compromised defense but not disease by C. victoriae. In LOV1's presence, victorin binding to TRX-h5 activates LOV1 and elicits a resistance-like response that confers disease susceptibility. We propose that victorin is, or mimics, a conventional pathogen virulence effector that was defeated by LOV1 and confers virulence to C. victoriae solely because it incites defense.

  3. Development and Deployment of Systems-Based Approaches for the Management of Soilborne Plant Pathogens.

    Science.gov (United States)

    Chellemi, D O; Gamliel, A; Katan, J; Subbarao, K V

    2016-03-01

    Biological suppression of soilborne diseases with minimal use of outside interventive actions has been difficult to achieve in high input conventional crop production systems due to the inherent risk of pest resurgence. This review examines previous approaches to the management of soilborne disease as precursors to the evolution of a systems-based approach, in which plant disease suppression through natural biological feedback mechanisms in soil is incorporated into the design and operation of cropping systems. Two case studies are provided as examples in which a systems-based approach is being developed and deployed in the production of high value crops: lettuce/strawberry production in the coastal valleys of central California (United States) and sweet basil and other herb crop production in Israel. Considerations for developing and deploying system-based approaches are discussed and operational frameworks and metrics to guide their development are presented with the goal of offering a credible alternative to conventional approaches to soilborne disease management.

  4. Molecular Targets of Nutraceuticals Derived from Dietary Spices: Potential Role in Suppression of Inflammation and Tumorigenesis

    Science.gov (United States)

    Aggarwal, Bharat B.; Van Kuiken, Michelle E.; Iyer, Laxmi H.; Harikumar, Kuzhuvelil B.; Sung, Bokyung

    2011-01-01

    Despite the fact cancer is primarily a preventable disease, recent statistics indicate cancer will become the number one killer worldwide in 2010. Since certain cancers are more prevalent in the people of some countries than others, suggests the role of lifestyle. For instance cancer incidence among people from the Indian subcontinent, where most spices are consumed, is much lower than that in the Western World. Spices have been consumed for centuries for a variety of purposes—as flavoring agents, colorants, and preservatives. However, there is increasing evidence for the importance of plant-based foods in regular diet to lowering the risk of most chronic diseases, so spices are now emerging as more than just flavor aids, but as agents that can not only prevent but may even treat disease. In this article, we discuss the role of 41 common dietary spices with over 182 spice-derived nutraceuticals for their effects against different stages of tumorigenesis. Besides suppressing inflammatory pathways, spice-derived nutraceuticals can suppress survival, proliferation, invasion, and angiogenesis of tumor cells. We discuss how spice-derived nutraceuticals mediate such diverse effects and what their molecular targets are. Overall our review suggests “adding spice to your life” may serve as a healthy and delicious way to ward off cancer and other chronic diseases. PMID:19491364

  5. Suppression subtractive hybridization library construction and identification of epidermal bladder cell related genes in the common ice plant, Mesembryanthemum crystallinum L.

    Directory of Open Access Journals (Sweden)

    Siranet Roeurn

    2016-10-01

    Full Text Available Mesembryanthemum crystallinum L., a halophytic species, displays modified trichomes, epidermal bladder cells (EBC, on the surfaces of its aerial organs. EBCs serve to sequester excessive salt from underlying metabolically active tissues. To elucidate the molecular determinants governing EBC development in the common ice plant, we constructed a cDNA-based suppression subtractive hybridization library and identified genes differentially expressed between the wild-type and the EBC-less mutant. After hybridization, 38 clones were obtained. Among them, 24 clones had homology with plant genes of known functions, whose roles might not be directly related to EBC-morphology, while 14 clones were homologous to genes of unknown functions. After confirmation by northern blot analysis, 12 out of 14 clones of unknown functions were chosen for semi-quantitative RT-PCR analysis, and the results revealed that three clones designated as MW3, MW21, and MW31 preferentially expressed in the EBC-less mutant, whereas the other two designated as WM10 and WM28 preferentially expressed in the wild type. Among these genes, the expression of a putative jasmonate-induced gene, designated as WM28 was completely suppressed in the EBC-mutant. In addition, the deletion of C-box cis-acting element was found in the promoter region of WM28 in the EBC-less mutant. Overexpression of WM28 in Arabidopsis resulted in increased trichome number due to the upregulation of key trichome-related genes GLABRA1 (GL1, and GLABRA3 (GL3. These results demonstrate that WM28 can be an important factor responsible for EBC formation, and also suggest the similarity of developmental mechanism between trichome in Arabidopsis and EBC in common ice plant.

  6. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    Science.gov (United States)

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  7. In Vitro Screening of Antibacterial Agents for Suppression of Fire Blight Disease in Korea

    Directory of Open Access Journals (Sweden)

    Min Su Lee

    2018-03-01

    Full Text Available Since fire blight disease on apple and pear was produced in Korea in 2015, there were no registered chemicals to control against this disease. Instead, several antibacterial chemicals that were registered for other bacterial diseases such as soft rot and bacterial spot have been authorized by Rural Development Administration (RDA. However, these chemicals are not tested efficacy for fire blight disease except damage by those treatments on apple and pear in Korea. Thus, we evaluated efficiency using in vitro and in planta assays of antibacterial chemicals such as antibiotics and copper compounds including kasugamycin, oxytetracycline, oxolinic acid and streptomycin, and copper hydroxide, copper sulfate, oxine copper and tribasic copper sulfate, respectively. We also tested two kinds of biological agents. As expected, significant antibacterial effect was observed in vitro test of both antibiotics and copper-based chemicals. In planta test based on disease severity including ooze and water-soaked formation on immature pears, bacterial populations on blooms, and blight lesion formation in artificially inoculated shoots, kasugamycin, oxytetracycline and streptomycin have been shown the most efficiency among tested antibiotics. Four copper-based chemicals tested in this study, control effects are little bit lower than agricultural antibiotics but they seem to be available to use in terms of winter season. Biocontrol agents were also shown possibility to treat in eco-friendly farms. In addition, there are no antibiotic resistance genes in Korean isolates against antibiotics, which were selected for suppression of fire blight in this study.

  8. Optimal control issues in plant disease with host demographic factor and botanical fungicides

    Science.gov (United States)

    Anggriani, N.; Mardiyah, M.; Istifadah, N.; Supriatna, A. K.

    2018-03-01

    In this paper, we discuss a mathematical model of plant disease with the effect of fungicide. We assume that the fungicide is given as a preventive treatment to infectious plants. The model is constructed based on the development of the disease in which the monomolecular is monocyclic. We show the value of the Basic Reproduction Number (BRN) ℛ0 of the plant disease transmission. The BRN is computed from the largest eigenvalue of the next generation matrix of the model. The result shows that in the region where ℛ0 greater than one there is a single stable endemic equilibrium. However, in the region where ℛ0 less than one this endemic equilibrium becomes unstable. The dynamics of the model is highly sensitive to changes in contact rate and infectious period. We also discuss the optimal control of the infected plant host by considering a preventive treatment aimed at reducing the infected host plant. The obtaining optimal control shows that it can reduce the number of infected hosts compared to that without control. Some numerical simulations are also given to illustrate our analytical results.

  9. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    Alexandre eEusebio

    2012-07-01

    Full Text Available There is growing evidence for exaggerated oscillatory neuronal synchronisation in patients with Parkinson’s disease. In particular, oscillations at around 20 Hz, in the so-called beta frequency band, relate to the cardinal symptoms of bradykinesia and rigidity. Deep brain stimulation of the subthalamic nucleus can significantly improve these motor impairments. Recent evidence has demonstrated reduction of beta oscillations concurrent with alleviation of PD motor symptoms, raising the possibility that suppression of aberrant activity may mediate the effects of DBS. Here we review the evidence supporting suppression of pathological oscillations during stimulation and discuss how this might underlie the efficacy of DBS. We also consider how beta activity may provide a feedback signal suitable for next generation closed loop and intelligent stimulators.

  10. Anti-M Antibody Induced Prolonged Anemia Following Hemolytic Disease of the Newborn Due to Erythropoietic Suppression in 2 Siblings.

    Science.gov (United States)

    Ishida, Atsushi; Ohto, Hitoshi; Yasuda, Hiroyasu; Negishi, Yutaka; Tsuiki, Hideki; Arakawa, Takeshi; Yagi, Yoshihito; Uchimura, Daisuke; Miyazaki, Toru; Ohashi, Wataru; Takamoto, Shigeru

    2015-08-01

    Hemolytic disease of the newborn (HDN) arising from MNSs incompatibility is rare, with few reports of prolonged anemia and reticulocytopenia following HDN. We report the younger of 2 male siblings, both of whom had anti-M-induced HDN and anemia persisting for over a month. Peripheral reticulocytes remained inappropriately low for the degree of anemia, and they needed multiple red cell transfusions. Viral infections were ruled out. Corticosteroids were given for suspected pure red cell aplasia. Anemia and reticulocytopenia subsequently improved. Colony-forming unit erythroid assay revealed erythropoietic suppression of M antigen-positive erythroid precursor cells cultured with maternal or infant sera containing anti-M. In conclusion, maternal anti-M caused HDN and prolonged anemia by erythropoietic suppression in 2 siblings.

  11. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    Science.gov (United States)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  12. Translational control in plant antiviral immunity

    Directory of Open Access Journals (Sweden)

    João Paulo B. Machado

    Full Text Available Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP-Interacting Kinase1, is discussed in this review.

  13. Effects of tillage operations and plant density on leaf spot disease ...

    African Journals Online (AJOL)

    Two seasons experiments conducted in 2002 and 2003 revealed that Tillage operations significantly influenced leafspot disease severity; Percentage lodging 3.14; 2.08 and Grain yield 3.02; 3.84 in 2002 and 2003 respectively. Plant density also had significant difference on leafspot disease severity; Percentage lodging ...

  14. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease

    Science.gov (United States)

    Zhang, Liping; Rajan, Vik; Lin, Eugene; Hu, Zhaoyong; Han, H. Q.; Zhou, Xiaolan; Song, Yanping; Min, Hosung; Wang, Xiaonan; Du, Jie; Mitch, William E.

    2011-01-01

    Chronic kidney disease (CKD) and several other catabolic conditions are characterized by increased circulating inflammatory cytokines, defects in IGF-1 signaling, abnormal muscle protein metabolism, and progressive muscle atrophy. In these conditions, no reliable treatments successfully block the development of muscle atrophy. In mice with CKD, we found a 2- to 3-fold increase in myostatin expression in muscle. Its pharmacological inhibition by subcutaneous injections of an anti-myostatin peptibody into CKD mice (IC50 ∼1.2 nM) reversed the loss of body weight (≈5–7% increase in body mass) and muscle mass (∼10% increase in muscle mass) and suppressed circulating inflammatory cytokines vs. results from CKD mice injected with PBS. Pharmacological myostatin inhibition also decreased the rate of protein degradation (16.38±1.29%; Pmyostatin expression via a NF-κB-dependent pathway, whereas muscle cells exposed to myostatin stimulated IL-6 production via p38 MAPK and MEK1 pathways. Because IL-6 stimulates muscle protein breakdown, we conclude that CKD increases myostatin through cytokine-activated pathways, leading to muscle atrophy. Myostatin antagonism might become a therapeutic strategy for improving muscle growth in CKD and other conditions with similar characteristics.—Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H.Q., Zhou, X., Song, Y., Min, H., Wang, X., Du, J., Mitch, W. E. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. PMID:21282204

  15. Non-linked inhibitory gene controls a disease mimicking mutant in rice [Oryza sativa L.

    International Nuclear Information System (INIS)

    Jambhulkar, S.J.; Joshua, D.C.; Goswamy, D.G.

    2001-01-01

    A gamma ray induced disease mimicking mutant called luchai lesion was isolated in the rice variety White Luchai 112. The appearance of small light red lesions and their development continued from seedling to flowering. The lesions appeared gradually on older leaves and their uncontrolled spread eventually lead to leaf senescence. They resembled the disease spots caused by Magnaporthe grisea. However, pathological studies ruled out the possibility of pathogen mediated disease symptoms. Genetic studies revealed that lesions were governed by a dominant gene; however, their expression was suppressed in presence of a non-linked inhibitory gene. It is hypothesised that the plant cells of the mutant are able to sense inbuilt spontaneous signals leading to lesion development, but in presence of an inhibitory gene the signals are suppressed by perturbation in the signal transduction pathway [it

  16. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Joanna L Jankowsky

    2005-12-01

    Full Text Available The proteases (secretases that cleave amyloid-beta (Abeta peptide from the amyloid precursor protein (APP have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Abeta production in the brain, even after the onset of clinical symptoms and the development of associated pathology, will facilitate the repair of damaged tissue and removal of amyloid lesions. However, no long-term studies using animal models of amyloid pathology have yet been performed to test this hypothesis.We have generated a transgenic mouse model that genetically mimics the arrest of Abeta production expected from treatment with secretase inhibitors. These mice overexpress mutant APP from a vector that can be regulated by doxycycline. Under normal conditions, high-level expression of APP quickly induces fulminant amyloid pathology. We show that doxycycline administration inhibits transgenic APP expression by greater than 95% and reduces Abeta production to levels found in nontransgenic mice. Suppression of transgenic Abeta synthesis in this model abruptly halts the progression of amyloid pathology. However, formation and disaggregation of amyloid deposits appear to be in disequilibrium as the plaques require far longer to disperse than to assemble. Mice in which APP synthesis was suppressed for as long as 6 mo after the formation of Abeta deposits retain a considerable amyloid load, with little sign of active clearance.This study demonstrates that amyloid lesions in transgenic mice are highly stable structures in vivo that are slow to disaggregate. Our findings suggest that arresting Abeta production in patients with Alzheimer disease should halt the progression of pathology, but that early treatment may be imperative, as it appears that amyloid deposits, once formed, will require additional intervention to clear.

  18. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  19. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    Directory of Open Access Journals (Sweden)

    Han Yih Lau

    2017-12-01

    Full Text Available Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  20. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    Science.gov (United States)

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  1. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.

    Science.gov (United States)

    Silva, Marilia Santos; Arraes, Fabrício Barbosa Monteiro; Campos, Magnólia de Araújo; Grossi-de-Sa, Maira; Fernandez, Diana; Cândido, Elizabete de Souza; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima

    2018-05-01

    This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    Science.gov (United States)

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  3. Plant biotechnology and implications for rapeseed agronomy: development of new methods of pest and disease control

    Energy Technology Data Exchange (ETDEWEB)

    Maas, C. [Hoechst Schering AgrEvo GmbH, Frankfurt am Main (Germany)

    1998-12-31

    The last years several strategies are becoming available for molecular breeding to improve resistance of transgenic plants against pests. Generally, transgenic plants expressing antifungal proteins (chitinase, glucanase and RIP) have been effectively protected against a variety of fungal diseases, whereas symbiotic mycorrhizal fungi remain unaffected. Other antifungal strategies, such as artificial localized cell death, do exist for pyramiding strategies against fungal diseases. Insect predation has been controlled by expression of insect specific proteins from the bacterium Bacillus thuringensis (B.t.-toxin). A combination with other genes coding for insecticidal proteins in a transgenic plant could further enhance protection of plants against insect pests. Control of viral diseases in transgenic plants was achieved by overexpression of coat- or movement protein from the virus itself, which limits replication and spread in the plants. Other viral genes, or subgenomic fragments, either in sense or antisense orientation effectively conferred resistance to viral diseases. Several strategies also become available to engineer resistance against bacterial diseases and nemathode attack. Expression of proteinase inhibitors, active against nematodes, or specific physiological manipulation which leads to the collapse of feeding cells of sedentary nematodes has been shown to control nematode pests. This demonstrates that a fair number of strategies already exists to control plant pests by molecular breeding. In several cases a combination of different resistance strategies in one and the same plant has been shown to exert synergistic protective effects. In future, this probably will reduce the emergence of resistance breaking strains leading to genetically engineered plants with improved and stable resistance characteristics. The use of genetic engineering in resistance breeding as part of integrated pest management clearly could lead to a more ecologically sustainable

  4. IgA against gut-derived endotoxins: does it contribute to suppression of hepatic inflammation in alcohol-induced liver disease?

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Bode, C.

    2002-01-01

    Endotoxins of intestinal origin are supposed to play an important role in the development of alcoholic hepatitis in man. To estimate the role of immunoglobulin response to gut-derived endotoxin in the development of alcohol-induced liver disease, serum levels of IgA and IgG against fecal endotoxin......, endotoxin, and acute-phase proteins were measured in patients with different stages of alcoholic liver disease and in healthy controls. Antibodies of type IgA, but not IgG, against fecal endotoxins were significantly increased in patients with alcohol-induced liver disease. IgA antibodies against fecal...... endotoxin were found to be closely correlated with the plasma concentrations of alanine aminotransferase, gamma-glutamyl transferase, and C-reactive protein in patients with alcoholic liver disease. In conclusion, as IgA located in body tissue was shown to suppress the inflammatory process, enhanced...

  5. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy

    Science.gov (United States)

    Belasque, J., Jr.; Gasparoto, M. C. G.; Marcassa, L. G.

    2008-04-01

    We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant's infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532 nm10 mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees.

  6. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  7. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available BACKGROUND: Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. PRINCIPAL FINDINGS: In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum. The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. CONCLUSIONS: To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.

  8. Metabolic patterns of bacterial communities in aerobic compost teas associated with potential biocontrol of soilborne plant diseases

    Directory of Open Access Journals (Sweden)

    Catello PANE

    2014-09-01

    Full Text Available Aerated compost teas (ACTs are organic products obtained by forced aeration of composts suspended in liquid phase. These products may be biological control tools alternative to synthetic fungicides, because ACTs contain antagonistic microorganisms. In this study, soilborne disease suppressive ability of seven water ACTs, extracted from five horticultural residue-based composts, from an animal waste anaerobic solid digestate and from a commercial municipal waste compost, was assessed using in vitro and in vivo systems. All the ACTs inhibited in vitro growth of Verticillium dahliae, Fusarium oxysporum f. sp. lycopersici, Rhizoctonia solani, Sclerotinia minor, Sclerotium rolfsii and Botrytis cinerea. Filter or thermal sterilization eliminated in vitro suppression, suggesting that microorganisms play key roles in pathogen inhibition. Drenching applications of raw ACTs have potential to reduced disease symptoms caused by R. solani on savoy cabbage, S. minor on lettuce and S. rolfsii on pepper, improved the biomass production and did not show any sign of phytotoxicity. Both in vitro and in vivo suppressiveness of ACTs may be explained by antagonistic  bacterial communities that provide general suppression activities. The metabolic BIOLOG GN and GP profiles reflected the functional potential of the numerically dominant members of the microbial communities used as inoculum. This study has demonstrated that useful resident microorganisms, including mainly Gram-positive and Gram-negative antagonistic bacteria, are likely to be responsible for biological control activity of ACTs.

  9. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco.

    Science.gov (United States)

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N; Marshall, David; Hancock, Robert D; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-12-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.

  10. Characterization of the RNA silencing suppression activity of the Ebola virus VP35 protein in plants and mammalian cells.

    Science.gov (United States)

    Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S

    2012-03-01

    Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.

  11. A method for named entity normalization in biomedical articles: application to diseases and plants.

    Science.gov (United States)

    Cho, Hyejin; Choi, Wonjun; Lee, Hyunju

    2017-10-13

    In biomedical articles, a named entity recognition (NER) technique that identifies entity names from texts is an important element for extracting biological knowledge from articles. After NER is applied to articles, the next step is to normalize the identified names into standard concepts (i.e., disease names are mapped to the National Library of Medicine's Medical Subject Headings disease terms). In biomedical articles, many entity normalization methods rely on domain-specific dictionaries for resolving synonyms and abbreviations. However, the dictionaries are not comprehensive except for some entities such as genes. In recent years, biomedical articles have accumulated rapidly, and neural network-based algorithms that incorporate a large amount of unlabeled data have shown considerable success in several natural language processing problems. In this study, we propose an approach for normalizing biological entities, such as disease names and plant names, by using word embeddings to represent semantic spaces. For diseases, training data from the National Center for Biotechnology Information (NCBI) disease corpus and unlabeled data from PubMed abstracts were used to construct word representations. For plants, a training corpus that we manually constructed and unlabeled PubMed abstracts were used to represent word vectors. We showed that the proposed approach performed better than the use of only the training corpus or only the unlabeled data and showed that the normalization accuracy was improved by using our model even when the dictionaries were not comprehensive. We obtained F-scores of 0.808 and 0.690 for normalizing the NCBI disease corpus and manually constructed plant corpus, respectively. We further evaluated our approach using a data set in the disease normalization task of the BioCreative V challenge. When only the disease corpus was used as a dictionary, our approach significantly outperformed the best system of the task. The proposed approach shows robust

  12. Pressure suppression pool mixing in passive advanced BWR plants

    International Nuclear Information System (INIS)

    Gamble, Robert E.; Nguyen, Thuy T.; Shiralkar, Bharat S.; Peterson, Per F.; Greif, Ralph; Tabata, H.

    2001-01-01

    In the SBWR passive boiling water reactor, the long-term post-accident containment pressure is determined by the combination of noncondensible gas pressure and steam pressure in the wetwell gas space. The suppression pool (SP) surface temperature, which determines the vapor partial pressure, is very important to overall containment performance. Therefore, the thermal stratification of the SP due to blowdown is of primary importance. This work looks at the various phases and phenomena present during the blowdown event and identifies those that are important to thermal stratification, and the scaling necessary to model them in reduced size tests. This is important in determining which of the large body of blowdown to SP data is adequate for application to the stratification problem. The mixing by jets from the main vents is identified as the key phenomena influencing the thermal response of the suppression pool and analytical models are developed to predict the jet influence on thermal stratification. The analytical models are implemented into a system simulation code, TRACG, and used to model thermal stratification behavior in a scaled test facility. The results show good general agreement with the test data

  13. Minoxidil may suppress androgen receptor-related functions.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  14. An inventory of plants commonly used in the treatment of some disease conditions in Ogbomoso, South West, Nigeria.

    Science.gov (United States)

    Olorunnisola, O S; Adetutu, A; Afolayan, A J

    2015-02-23

    This study was designed to take an inventory of medicinal plants, recipes and methods commonly used traditionally to treat some cardiovascular and inflammatory diseases in five local government areas in Ogbomoso, Oyo State, Nigeria. First-hand field survey through semi-structured questionnaire was employed in the 5 months study. A total of 101 plant species (medicinal plants (80.90%), spices (17.5%) and vegetables (1.53%)) belonging to 51 different families were mentioned for the treatment of various types of cardiovascular and inflammatory diseases. The survey revealed that 51.5% of the plants mentioned are used for the management of inflammatory diseases, 34.7% for the treatment of cardiovascular diseases and 11.9% of the plants are used for the treatment of both diseases. Euphorbiaceae (7.9%) are the most frequently used families of plants for the treatment of the various types of diseases mentioned, followed by Caesalpiaceae, (4.9%), Apocynoceae (4.9%) and Poaceae (4.9%). Fifty-nine recipes are usually prepared for the treatment of the six types of inflammatory diseases while twenty-three recipes are reportedly used for the treatment of the four types of cardiovascular diseases mentioned in this study. The recipes covered in the survey were mostly prepared from leaves (37.6%) and roots (23.8%) decoction or infusions. Medications are mostly administered orally with few numbers of the recipes showing side effect. The study has documented indigenous plants in Ogbomoso as a potential source for the development of new drugs for the treatment of cardiovascular and inflammatory diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  16. Monitoring Spongospora subterranea Development in Potato Roots Reveals Distinct Infection Patterns and Enables Efficient Assessment of Disease Control Methods.

    Directory of Open Access Journals (Sweden)

    Tamilarasan Thangavel

    Full Text Available Spongospora subterranea is responsible for significant potato root and tuber disease globally. Study of this obligate (non-culturable pathogen that infects below-ground plant parts is technically difficult. The capacity to measure the dynamics and patterns of root infections can greatly assist in determining the efficacy of control treatments on disease progression. This study used qPCR and histological analysis in time-course experiments to measure temporal patterns of pathogen multiplication and disease development in potato (and tomato roots and tubers. Effects of delayed initiation of infection and fungicidal seed tuber and soil treatments were assessed. This study found roots at all plant developmental ages were susceptible to infection but that delaying infection significantly reduced pathogen content and resultant disease at final harvest. The pathogen was first detected in roots 15-20 days after inoculation (DAI and the presence of zoosporangia noted 15-45 DAI. Following initial infection pathogen content in roots increased at a similar rate regardless of plant age at inoculation. All fungicide treatments (except soil-applied mancozeb which had a variable response suppressed pathogen multiplication and root and tuber disease. In contrast to delayed inoculation, the fungicide treatments slowed disease progress (rate rather than delaying onset of infection. Trials under suboptimal temperatures for disease expression provided valuable data on root infection rate, demonstrating the robustness of monitoring root infection. These results provide an early measure of the efficacy of control treatments and indicate two possible patterns of disease suppression by either delayed initiation of infection which then proceeds at a similar rate or diminished epidemic rate.

  17. Monitoring Spongospora subterranea Development in Potato Roots Reveals Distinct Infection Patterns and Enables Efficient Assessment of Disease Control Methods.

    Science.gov (United States)

    Thangavel, Tamilarasan; Tegg, Robert S; Wilson, Calum R

    2015-01-01

    Spongospora subterranea is responsible for significant potato root and tuber disease globally. Study of this obligate (non-culturable) pathogen that infects below-ground plant parts is technically difficult. The capacity to measure the dynamics and patterns of root infections can greatly assist in determining the efficacy of control treatments on disease progression. This study used qPCR and histological analysis in time-course experiments to measure temporal patterns of pathogen multiplication and disease development in potato (and tomato) roots and tubers. Effects of delayed initiation of infection and fungicidal seed tuber and soil treatments were assessed. This study found roots at all plant developmental ages were susceptible to infection but that delaying infection significantly reduced pathogen content and resultant disease at final harvest. The pathogen was first detected in roots 15-20 days after inoculation (DAI) and the presence of zoosporangia noted 15-45 DAI. Following initial infection pathogen content in roots increased at a similar rate regardless of plant age at inoculation. All fungicide treatments (except soil-applied mancozeb which had a variable response) suppressed pathogen multiplication and root and tuber disease. In contrast to delayed inoculation, the fungicide treatments slowed disease progress (rate) rather than delaying onset of infection. Trials under suboptimal temperatures for disease expression provided valuable data on root infection rate, demonstrating the robustness of monitoring root infection. These results provide an early measure of the efficacy of control treatments and indicate two possible patterns of disease suppression by either delayed initiation of infection which then proceeds at a similar rate or diminished epidemic rate.

  18. Non-destructive neutron activation analysis studies on a withering disease of lowland rice occurring near an iodine plant

    International Nuclear Information System (INIS)

    Fukuzaki, N.; Moriyama, N.

    1985-01-01

    The withering disease of lowland rice that seems to be an injury caused by excess iodine was recognized in the paddy fields near an iodine isolation plant. To investigate the cause of this disease, a pot experiment of lowland rice was performed and iodine contents of soils and rice plants were determined by non-destructive neutron activation analysis. The soils of the disease-produced paddy fields were remarkably polluted with iodine, its content in roots of diseased rice plants was higher than the reported limiting values for the disease. (author)

  19. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer's Disease Therapy.

    Science.gov (United States)

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-07-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer's disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer's disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition.

  1. Diagnosis of occlusive arterial disease and assessment of IVR with fat-suppressed gadolinium-enhanced three-dimensional MR angiography

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Gemma, Kazuhito; Kawamata, Hiroshi; Okajima, Yuhji; Watari, Jun; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan); Maki, Toshio; Tsuchihashi, Toshio

    1996-10-01

    Fat-suppressed gadolinium-enhanced three-dimensional MR angiography (FS-CE-3D-MRA) was performed to make a diagnosis of occlusive arterial disease and evaluate the effectiveness of IVR treatment for it. FS-CE-3D-MRA delineated stenosis of common iliac arteries, which was confirmed by X-ray angiography. FS-CE-3D-MRA also detected ulcerated plaque and arterial wall irregularity. The effectiveness of IVR as atherectomy and stent placement was accurately assessed with FS-CE-3D-MRA. FS-CE-3D-MRA was useful in evaluating occlusive arterial disease with short examination times and high spatial resolution, although iliac circumflexial arteries were not detected by this technique. (author)

  2. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    Directory of Open Access Journals (Sweden)

    Maaike evan Agtmaal

    2015-07-01

    Full Text Available There is increasing evidence that microbial volatiles (VOCs play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD, a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are

  3. Brassinosteroid action in flowering plants: a Darwinian perspective.

    Science.gov (United States)

    Kutschera, Ulrich; Wang, Zhi-Yong

    2012-06-01

    The year 2012 marks the 150th anniversary of the publication of Charles Darwin's first botanical book, on the fertilization of orchids (1862), wherein he described pollen grains and outlined his evolutionary principles with respect to plant research. Five decades later, the growth-promoting effect of extracts of Orchid pollen on coleoptile elongation was documented. These studies led to the discovery of a new class of phytohormones, the brassinosteroids (BRs) that were isolated from rapeseed (Brassica napus) pollen. These growth-promoting steroids, which regulate height, fertility, and seed-filling in crop plants such as rice (Oryza sativa), also induce stress- and disease resistance in green algae and angiosperms. The origin and current status of BR-research is described here, with reference to BR-action and -signal transduction, and it is shown that modern high-yield rice varieties with erect leaves are deficient in endogenous BRs. Since brassinosteroids induce pathogen resistance in rice plants and hence can suppress rice blast- and bacterial blight-diseases, genetic manipulation of BR-biosynthesis or -perception may be a means to increase crop production. Basic research on BR activity in plants, such as Arabidopsis and rice, has the potential to increase crop yields further as part of a 21th century 'green biotech-revolution' that can be traced back to Darwin's classical breeding experiments. It is concluded that 'Nothing in brassinosteroid research makes sense except in the light of Darwinian evolution' and the value of basic science is highlighted, with reference to the genetic engineering of better food crops that may become resistant to a variety of plant diseases.

  4. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    International Nuclear Information System (INIS)

    Lee, G.B.; Hong, Y.P.; Im, J.N.; Chung, K.W.

    1989-01-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous

  5. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. B.; Hong, Y. P.; Im, J. N.; Chung, K. W.

    1989-07-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous.

  6. Xanthomonas euvesicatoria Causes Bacterial Spot Disease on Pepper Plant in Korea

    Directory of Open Access Journals (Sweden)

    Min-Seong Kyeon

    2016-10-01

    Full Text Available In 2004, bacterial spot-causing xanthomonads (BSX were reclassified into 4 species—Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. Bacterial spot disease on pepper plant in Korea is known to be caused by both X. axonopodis pv. vesicatoria and X. vesicatoria. Here, we reidentified the pathogen causing bacterial spots on pepper plant based on the new classification. Accordingly, 72 pathogenic isolates were obtained from the lesions on pepper plants at 42 different locations. All isolates were negative for pectolytic activity. Five isolates were positive for amylolytic activity. All of the Korean pepper isolates had a 32 kDa-protein unique to X. euvesicatoria and had the same band pattern of the rpoB gene as that of X. euvesicatoria and X. perforans as indicated by PCR-restriction fragment length polymorphism analysis. A phylogenetic tree of 16S rDNA sequences showed that all of the Korean pepper plant isolates fit into the same group as did all the reference strains of X. euvesicatoria and X. perforans. A phylogenetic tree of the nucleotide sequences of 3 housekeeping genes—gapA, gyrB, and lepA showed that all of the Korean pepper plant isolates fit into the same group as did all of the references strains of X. euvesicatoria. Based on the phenotypic and genotypic characteristics, we identified the pathogen as X. euvesicatoria. Neither X. vesicatoria, the known pathogen of pepper bacterial spot, nor X. perforans, the known pathogen of tomato plant, was isolated. Thus, we suggest that the pathogen causing bacterial spot disease of pepper plants in Korea is X. euvesicatoria.

  7. FOOT ROT DISEASE IDENTIFICATION FOR VELLAIKODI VARIETY OF BETELVINE PLANTS USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    J. Vijayakumar

    2012-11-01

    Full Text Available Betelvine plants are infected variety of diseases in the complete plantation without any premature warning of the diseases. The aim of this paper is to detection of foot rot disease in the vellaikodi variety of betelvine plants using digital image processing techniques. The digital images of the uninfected or normal betelvine leaves and the digital images of the infected in foot rot diseased betelvine leaves at different stages are collected from different Betelvine plants using a high resolution digital camera and collected betelvine images are stored with JPEG format. The digital images of the betelvine leaves analyses are done using the image processing toolbox in MATLAB which gives the normal patterns of the digital images. Using RGB encoding process, the RGB components of the betelvine leaves are separated. The mean and median values for all sample leaves are computed and calculated values are stored in the system. The mean and median values of test leaves are computed and compared with the stored values. As the result of this comparison, it is identified whether test leaves are affected by foot rot disease or not. Finally this analysis helps to recognize the foot rot disease can be identified before it spreads to entire crop.

  8. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    Science.gov (United States)

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  10. RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes.

    Science.gov (United States)

    Wagner, Nicholas; Mroczka, Andrew; Roberts, Peter D; Schreckengost, William; Voelker, Toni

    2011-09-01

    Suppression of the microsomal ω6 oleate desaturase during the seed development of soybean (Glycine max) with the 420-bp soybean FAD2-1A intron as RNAi trigger shifts the conventional fatty acid composition of soybean oil from 20% oleic and 60% polyunsaturates to one containing greater than 80% oleic acid and less than 10% polyunsaturates. To determine whether RNAi could be attenuated by reducing the trigger fragment length, transgenic plants were generated to express successively shorter 5' or 3' deletion derivatives of the FAD2-1A intron. We observed a gradual reduction in transcript suppression with shorter trigger fragments. Fatty acid composition was less affected with shorter triggers, and triggers less than 60 bp had no phenotypic effect. No trigger sequences conferring significantly higher or lower suppression efficiencies were found, and the primary determinant of suppression effect was sequence length. The observed relationship of transcript suppression with the induced fatty acid phenotype indicates that RNAi is a saturation process and not a step change between suppressed and nonsuppressed states and intermediate suppression states can be achieved. © 2010 Monsanto. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.

  11. Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W

    Science.gov (United States)

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465

  12. Antiplasmodial activity of two medicinal plants against clinical isolates of Plasmodium falciparum and Plasmodium berghei infected mice.

    Science.gov (United States)

    Attemene, Serge David Dago; Beourou, Sylvain; Tuo, Karim; Gnondjui, Albert Alloh; Konate, Abibatou; Toure, Andre Offianan; Kati-Coulibaly, Seraphin; Djaman, Joseph Alico

    2018-03-01

    Malaria is an infectious and deadly parasitic disease, associated with fever, anaemia and other ailments. Unfortunately the upsurge of plasmodium multidrug resistant constrained researchers to look for new effective drugs. Medicinal plants seem to be an unquenchable source of bioactive principles in the treatment of various diseases. The aim of this study was to assess the antiplasmodial activity of two Ivorian medicinal plants. The in vitro activity was evaluated against clinical isolates and Plasmodium falciparum K1 multidrug resistant strain using the fluorescence based SYBR green I assay. The in vivo bioassay was carried out using the classical 4 day suppressive and curative tests on Plasmodium berghei infected mice. Results showed that the in vitro bioassay of both plant extracts were found to exhibit a promising and moderate antiparasitic effects on clinical isolates (5 µg/mL plant extracts need to be investigated.

  13. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

    Science.gov (United States)

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-09-04

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called "deep learning meta-architectures". We combine each of these meta-architectures with "deep feature extractors" such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant's surrounding area.

  14. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    Science.gov (United States)

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  15. Effectiveness of several dosage formula of oil and nano emulsion of citronella against vascular streak dieback (VSD) disease on cocoa

    Science.gov (United States)

    Noveriza, R.; Trisno, J.; Rahma, H.; Yuliani, S.; Reflin; Martinius

    2018-02-01

    The disease of Vascular streak dieback (VSD) is a deadly disease of cocoa plants, because it attacks the vascular tissue of cocoa at growing point of the plant. In West Sumatra the disease was first reported in 2015 with an incidence of disease range 58.82% - 100% and an intensity of disease range 24.29% - 44.7%. The purpose of this study was to examine the effectiveness of dosage application of oil formula and nano emulsion of citronella formula against Vascular streak dieback (VSD) disease on cocoa plants in West Sumatra (in Padang Pariaman District and Limapuluh Kota District). The results showed that the percentage of VSD disease attacks in both testing sites was 100%. The oil and nano emulsion of citronella formulas can reduce the intensity of VSD disease on cocoa plants in West Sumatra, particularly in Padang Pariaman District and Limapuluh Kota District. The reduction of VSD intensity in Padang Pariaman district ranged from 8.32 to 21.13%; while in Limapuluh Kota district ranged from 4.33 to 11.80%. The nano emulsion of citronella formulation is effective to suppress the intensity of VSD disease on cocoa plants at doses 0.1% (≥ 30% of effectiveness level).

  16. Sphingolipids and plant defense/disease: the "death" connection and beyond

    Directory of Open Access Journals (Sweden)

    Robert eBerkey

    2012-04-01

    Full Text Available Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e. sphingobiology at an average rate of >1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (~6% of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD associated with plant defense or disease; (ii highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.

  17. Organic breeding: New trend in plant breeding

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2009-01-01

    Full Text Available Organic breeding is a new trend in plant breeding aimed at breeding of organic cultivars adapted to conditions and expectations of organic plant production. The best proof for the need of organic cultivars is the existence of interaction between the performances of genotypes with the kind of production (conventional or organic (graph. 1. The adaptation to low-input conditions of organic production by more eddicient uptake and utilization of plant nutrients is especially important for organic cultivars. One of the basic mechanism of weed control in organic production is the competition of organic cultivars and weeds i.e. the enhanced ability of organic cultivars to suppress the weeds. Resistance/tolerance to diseases and pests is among the most important expectations toward the organic cultivars. In comparison with the methods of conventional plant breeding, in case of organic plant breeding limitations exist in choice of methods for creation of variability and selection classified as permitted, conditionally permitted and banned. The use of genetically modified organisms and their derivated along with induced mutations is not permitted in organic production. The use of molecular markers in organic plant breeding is the only permitted modern method of biotechnology. It is not permitted to patent the breeding material of organic plant breeding or the organic cultivars. .

  18. Medicinal plants--prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review.

    Science.gov (United States)

    Ayrle, Hannah; Mevissen, Meike; Kaske, Martin; Nathues, Heiko; Gruetzner, Niels; Melzig, Matthias; Walkenhorst, Michael

    2016-06-06

    Gastrointestinal and respiratory diseases in calves and piglets lead to significant economic losses in livestock husbandry. A high morbidity has been reported for diarrhea (calves ≤ 35%; piglets ≤ 50%) and for respiratory diseases (calves ≤ 80%; piglets ≤ 40%). Despite a highly diverse etiology and pathophysiology of these diseases, treatment with antimicrobials is often the first-line therapy. Multi-antimicrobial resistance in pathogens results in international accordance to strengthen the research in novel treatment options. Medicinal plants bear a potential as alternative or additional treatment. Based on the versatile effects of their plant specific multi-component-compositions, medicinal plants can potentially act as 'multi-target drugs'. Regarding the plurality of medicinal plants, the aim of this systematic review was to identify potential medicinal plant species for prevention and treatment of gastrointestinal and respiratory diseases and for modulation of the immune system and inflammation in calves and piglets. Based on nine initial sources including standard textbooks and European ethnoveterinary studies, a total of 223 medicinal plant species related to the treatment of gastrointestinal and respiratory diseases was identified. A defined search strategy was established using the PRISMA statement to evaluate 30 medicinal plant species starting from 20'000 peer-reviewed articles published in the last 20 years (1994-2014). This strategy led to 418 references (257 in vitro, 84 in vivo and 77 clinical trials, thereof 48 clinical trials in veterinary medicine) to evaluate effects of medicinal plants and their efficacy in detail. The findings indicate that the most promising candidates for gastrointestinal diseases are Allium sativum L., Mentha x piperita L. and Salvia officinalis L.; for diseases of the respiratory tract Echinacea purpurea (L.) MOENCH, Thymus vulgaris L. and Althea officinalis L. were found most promising, and Echinacea purpurea (L

  19. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs.

    Science.gov (United States)

    Akmal, Mohd; Baig, Mirza S; Khan, Jawaid A

    2017-12-10

    Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T 0 ) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected

  20. Knowledge of Medicinal Plants for Children Diseases in the Environs of District Bannu, Khyber Pakhtoonkhwa (KPK

    Directory of Open Access Journals (Sweden)

    Shabnam Shaheen

    2017-07-01

    Full Text Available Medicinal plants are important treasures for the treatment of different types of diseases. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants related to children disorders from district Bannu, Khyber Pakhtunkhwa (KPK province of Pakistan. The information gathered was quantitatively analyzed using informant consensus factor, relative frequency of citation and use value method to establish a baseline data for more comprehensive investigations of bioactive compounds of indigenous medicinal plants specifically related to children disorders. To best of our knowledge it is first attempt to document ethno-botanical information of medicinal plants using quantitative approaches. Total of 130 informants were interviewed using questionnaire conducted during 2014–2016 to identify the preparations and uses of the medicinal plants for children diseases treatment. A total of 55 species of flowering plants belonging to 49 genera and 32 families were used as ethno-medicines in the study area. The largest number of specie belong to Leguminosae and Cucurbitaceae families (4 species each followed by Apiaceae, Moraceae, Poaceae, Rosaceae, and Solanaceae (3 species each. In addition leaves and fruits are most used parts (28%, herbs are most used life form (47%, decoction method were used for administration (27%, and oral ingestion was the main used route of application (68.5%. The highest use value was reported for species Momordica charantia and Raphnus sativus (1 for each and highest Informant Consensus Factor was observed for cardiovascular and rheumatic diseases categories (0.5 for each. Most of the species in the present study were used to cure gastrointestinal diseases (39 species. The results of present study revealed the importance of medicinal plant species and their significant role in the health care of the inhabitants in the present area. The people of Bannu own high traditional

  1. Knowledge of Medicinal Plants for Children Diseases in the Environs of District Bannu, Khyber Pakhtoonkhwa (KPK)

    Science.gov (United States)

    Shaheen, Shabnam; Abbas, Safdar; Hussain, Javid; Mabood, Fazal; Umair, Muhammad; Ali, Maroof; Ahmad, Mushtaq; Zafar, Muhammad; Farooq, Umar; Khan, Ajmal

    2017-01-01

    Medicinal plants are important treasures for the treatment of different types of diseases. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants related to children disorders from district Bannu, Khyber Pakhtunkhwa (KPK) province of Pakistan. The information gathered was quantitatively analyzed using informant consensus factor, relative frequency of citation and use value method to establish a baseline data for more comprehensive investigations of bioactive compounds of indigenous medicinal plants specifically related to children disorders. To best of our knowledge it is first attempt to document ethno-botanical information of medicinal plants using quantitative approaches. Total of 130 informants were interviewed using questionnaire conducted during 2014–2016 to identify the preparations and uses of the medicinal plants for children diseases treatment. A total of 55 species of flowering plants belonging to 49 genera and 32 families were used as ethno-medicines in the study area. The largest number of specie belong to Leguminosae and Cucurbitaceae families (4 species each) followed by Apiaceae, Moraceae, Poaceae, Rosaceae, and Solanaceae (3 species each). In addition leaves and fruits are most used parts (28%), herbs are most used life form (47%), decoction method were used for administration (27%), and oral ingestion was the main used route of application (68.5%). The highest use value was reported for species Momordica charantia and Raphnus sativus (1 for each) and highest Informant Consensus Factor was observed for cardiovascular and rheumatic diseases categories (0.5 for each). Most of the species in the present study were used to cure gastrointestinal diseases (39 species). The results of present study revealed the importance of medicinal plant species and their significant role in the health care of the inhabitants in the present area. The people of Bannu own high traditional knowledge

  2. Polyamines: Bio-Molecules with diverse functions in plant and human health and disease

    Science.gov (United States)

    Handa, Avtar K.; Fatima, Tahira; Mattoo, Autar K.

    2018-02-01

    Biogenic amines – polyamines (PAs), particularly putrescine, spermidine and spermine (and thermospermine) are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants – exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources - vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and

  3. Height suppression of tomato plug seedlings by an environment ...

    African Journals Online (AJOL)

    Experiments were conducted to investigate appropriate concentrations of plant growth retardants (PGRs) and duration of seed soaking in order to suppress hypocotyl length and plug seedling height of 2 tomato cultivars ( Lycopersicum esculentum Mill. cv. Seogeon and Seokwang). Daminozide (B-9), uniconazole ...

  4. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse.

    Science.gov (United States)

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2-6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non-suppressive

  5. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management.

    Science.gov (United States)

    Villa, Federica; Cappitelli, Francesca; Cortesi, Paolo; Kunova, Andrea

    2017-01-01

    The global food supply has been facing increasing challenges during the first decades of the 21 st century. Disease in plants is an important constraint to worldwide crop production, accounting for 20-40% of its annual harvest loss. Although the use of resistant varieties, good water management and agronomic practices are valid management tools in counteracting plant diseases, there are still many pathosystems where fungicides are widely used for disease management. However, restrictive regulations and increasing concern regarding the risk to human health and the environment, along with the incidence of fungicide resistance, have discouraged their use and have prompted for a search for new efficient, ecologically friendly and sustainable disease management strategies. The recent evidence of biofilm formation by fungal phytopathogens provides the scientific framework for designing and adapting methods and concepts developed by biofilm research that could be integrated in IPM practices. In this perspective paper, we provide evidence to support the view that the biofilm lifestyle plays a critical role in the pathogenesis of plant diseases. We describe the main factors limiting the durability of single-site fungicides, and we assemble the current knowledge on pesticide resistance in the specific context of the biofilm lifestyle. Finally, we illustrate the potential of antibiofilm compounds at sub-lethal concentrations for the development of an innovative, eco-sustainable strategy to counteract phytopathogenic fungi. Such fungicide-free solutions will be instrumental in reducing disease severity, and will permit more prudent use of fungicides decreasing thus the selection of resistant forms and safeguarding the environment.

  6. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    Science.gov (United States)

    Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (Price cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  7. Chemical and biological characterization of phytotoxins produced by Diplodia species, fungi involved in forest plants diseases

    OpenAIRE

    Masi, Marco

    2013-01-01

    In recent years, numerous studies have been initiated in order to understand what are the microorganisms involved in forest plants diseases and the role played by phytotoxins produced in the pathogenesis processes. The aim of the present thesis was to study the fungi and the phytotoxins associated with canker disease of the Italian cypress (Cupressus sempervirens L.) and the branch dieback of juniper (Juniperus phoenicea L.) which are plant diseases with noteworthy social and economical impli...

  8. Effect Of Salinization On Fusarium Wilt Disease In Tomato Plant

    International Nuclear Information System (INIS)

    Ahmed, B.M.; Fath El-Bab, T.S.

    2013-01-01

    Salinization of soils or waters is one of the serious environmental problems in agriculture. It is necessary to determine the environmental factors under which the plants give higher yields and better quality to solve this problem. The problem of salinity is characterized by disruption in the physiological processes in plant which lead to shorting in growth and decrease in yield. The study was carried out to control fusarium disease in tomato plant irrigated with salt water (500, 1500, 15000, 45000 and 100000 ppm). These treatments lead to excess in malic and citric acids i.e. from 21 mmol/g fresh weight in control to 38.8 mmol/g fresh weight at 100000 ppm for citric acid while for malic acid, the value was increased from 1.4 mmol/g fresh weight for control to 2.1 mmol/g fresh weight. The excess of malic and citric acids lead to increase in acidity and vitamin C in tomato fruits. On the other side, the plant may adapt to this stress by increasing its proline content from 0.59 µmol/g fresh weight to 6.56 µmol/g fresh weight at 100000 and abscisic acid from 0.49 µmol/g fresh weight to 20.7 µmol/g fresh weight. The results showed that the fusarium fungal growth was observed till 100000 ppm but did not form sclerotia spores at 45000 ppm. On the other hand, the electrical conductivity was found to be 0.46, 2.3, 23.1, 69.2 and 153.8 dS/m for salinity levels of 500, 1500, 15000, 45000 and 100000 ppm, respectively. This study aimed to control the fusarium wilt disease by irrigating the plant with water has high salinity

  9. Considerations of scale in the analysis of spatial pattern of plant disease epidemics.

    Science.gov (United States)

    Turechek, William W; McRoberts, Neil

    2013-01-01

    Scale is an important but somewhat neglected subject in plant pathology. Scale serves as an abstract concept, providing a framework for organizing observations and theoretical models, and plays a functional role in the organization of ecological communities and physical processes. Rich methodological resources are available to plant pathologists interested in considering either or both aspects of scale in their research. We summarize important concepts in both areas of the literature, particularly as they apply to the spatial pattern of plant disease, and highlight some new results that emphasize the importance of scaling on the emergence of different types of probability distribution in empirical observation. We also highlight the important links between heterogeneity and scale, which are of central importance in plant disease epidemiology and the analysis of spatial pattern. We consider statistical approaches that are available, where actual physical scale is known, and for more conceptual research on hierarchies, where scale plays a more abstract role, particularly for field-based research. For the latter, we highlight methods that plant pathologists could consider to account for the effect of scale in the design of field studies.

  10. Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics.

    Science.gov (United States)

    Hu, J; Jiang, J; Wang, N

    2018-02-01

    Citrus huanglongbing (HLB) or greening is a devastating disease of citrus worldwide and no effective control measure is currently available. Plant defense activators environmentally friendly compounds capable of inducing resistance against many plant pathogens. Earlier studies showed that foliar spray of plant defense inducers could slow down HLB disease progress. In this study, eight plant defense activators and three antibiotics were evaluated in three field trials for their effect to control HLB by trunk injection of young and mature sweet orange trees. Results showed that four trunk injections of several activators, including salicylic acid, oxalic acid, acibenzolar-S-methyl, and potassium phosphate, provided significant control of HLB by suppressing 'Candidatus Liberibacter asiaticus' titer and disease progress. Trunk injection of penicillin, streptomycin, and oxytetracycline hydrochloride resulted in excellent control of HLB. In general, antibiotics were more effective in reduction of 'Ca. L. asiaticus' titer and HLB symptom expressions than plant defense activators. These treatments also resulted in increased yield and better fruit quality. Injection of both salicylic acid and acibenzolar-S-methyl led to significant induction of pathogenesis-related (PR) genes PR-1 and PR-2 genes. Meanwhile, injection of either potassium phosphate or oxalic acid resulted in significant induction of PR-2 or PR-15 gene expression, respectively. These results suggested that HLB diseased trees remained inducible for systemic acquired resistance under field conditions. In summary, this study presents information regarding controlling HLB via trunk injection of plant defense activators and antibiotics, which helps citrus growers in decision making regarding developing an effective HLB management program.

  11. Foliar Application of Extract from an Azalomycin-Producing Streptomyces malaysiensis Strain MJM1968 Suppresses Yam Anthracnose Caused by Colletotrichum gloeosporioides.

    Science.gov (United States)

    Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Suh, Joo-Woh

    2016-06-28

    Yam anthracnose caused by Colletotrichum gloeosporioides (C.g) is the most devastating disease of yam (Dioscorea sp.). In the present study, we evaluated the culture filtrate extract (CFE) of azalomycin-producing Streptomyces malaysiensis strain MJM1968 for the control of yam anthracnose. MJM1968 showed strong antagonistic activity against C.g in vitro. Furthermore, the MJM1968 CFE was tested for inhibition of spore germination in C.g, where it completely inhibited spore germination at a concentration of 50 μg/ml. To assess the in planta efficacy of the CFE and spores of MJM1968 against C.g, a detached leaf bioassay was conducted, which showed both the treatments suppressed anthracnose development on detached yam leaves. Furthermore, a greenhouse study was conducted to evaluate the CFE from MJM1968 as a fungicide for the control of yam anthracnose. The CFE non-treated plants showed a disease severity of >92% after 90 days of artificial inoculation with C.g, whereas the disease severity of CFE-treated and benomyl-treated yam plants was reduced to 26% and 15%, respectively, after 90 days. Analysis of the yam tubers from the CFE-treated and non-treated groups showed that tubers from the CFE-treated plants were larger than that of non-treated plants, which produced abnormal smaller tubers typical of anthracnose. This study demonstrated the utility of the CFE from S. malaysiensis strain MJM1968 as a biofungicide for the control of yam anthracnose.

  12. Application of hordothionins and cecropin B for engineering bacterial disease resistance into plants

    NARCIS (Netherlands)

    Florack, D.

    1994-01-01

    Bacterial diseases can cause a drastic decrease of yield in certain crops. Breeding for bacterial disease resistance therefore is of utmost necessity. Up to now, traditional plant breeding was the only method to reach this goal. Recent developments in genetic engineering technology however

  13. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression.

    Science.gov (United States)

    Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao

    2017-04-01

    Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Overview of medicinal plants used for cardiovascular system disorders and diseases in ethnobotany of different areas in Iran

    Directory of Open Access Journals (Sweden)

    Baharvand-Ahmadi Babak

    2016-01-01

    Full Text Available Background and Aims: Today, cardiovascular diseases are the prominent cause of death in industrialized countries which include a variety of diseases such as hypertension, hyperlipidemia, thromboembolism, coronary heart disease, heart failure, etc. Recent research findings haveshown that not only the extent of cultivation and production of medicinal plants have not beenreduced, but also day-to-day production and consumption have increased. In traditional botanicalknowledge, herbal medicines are used for the treatment of cardiovascular disorders. In this study,we sought to gather and report medicinal plants used to treat these diseases in different regionsof Iran.Methods: The articles published about ethnobotanical study of cardiovascular diseases in variousregions of Iran, such as Arasbaran, Sistan, Kashan, Kerman, Isfahan Mobarakeh, Lorestan andIlam were prepared and summarized.Results: The results of ethnobotanical studies of various regions of Iran, such as Arasbaran, Sistan,Kashan, Kerman, Isfahan Mobarakeh, Lorestan and Ilam were gathered. The results showed thatsumac plants, barberry, yarrow, wild cucumber, horsetail, Eastern grape, hawthorn, wild rose,spinach, jujube, buckwheat, chamomile, chicory, thistle, Mary peas, nightshade, verbena, sorrel ,cherry, citrullus colocynthis, Peganum harmala, sesame and so many other plants are used for thetreatment of cardiovascular diseases and disorders.Conclusion: Herbal medicines are used effectively for some cardiovascular diseases. Rigoroustraining of patients to take precautions and drug interactions into account and to avoid thearbitrary use of medicinal plants is very important.

  15. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi.

    Science.gov (United States)

    Choi, N H; Choi, G J; Min, B-S; Jang, K S; Choi, Y H; Kang, M S; Park, M S; Choi, J E; Bae, B K; Kim, J-C

    2009-06-01

    To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi. Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively. The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi. Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.

  16. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning.

    Science.gov (United States)

    Wang, Guan; Sun, Yu; Wang, Jianxin

    2017-01-01

    Automatic and accurate estimation of disease severity is essential for food security, disease management, and yield loss prediction. Deep learning, the latest breakthrough in computer vision, is promising for fine-grained disease severity classification, as the method avoids the labor-intensive feature engineering and threshold-based segmentation. Using the apple black rot images in the PlantVillage dataset, which are further annotated by botanists with four severity stages as ground truth, a series of deep convolutional neural networks are trained to diagnose the severity of the disease. The performances of shallow networks trained from scratch and deep models fine-tuned by transfer learning are evaluated systemically in this paper. The best model is the deep VGG16 model trained with transfer learning, which yields an overall accuracy of 90.4% on the hold-out test set. The proposed deep learning model may have great potential in disease control for modern agriculture.

  17. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    Science.gov (United States)

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. EVOLUTIONARY AND ADAPTIVE ROLE OF TRANSPOSABLE ELEMENTS IN AGRICULTURAL PLANTS

    Directory of Open Access Journals (Sweden)

    Žana Marin

    2016-10-01

    Full Text Available Transposable elements (TE are stretches of DNA that represent the greatest fraction of genomes, especially in plants. Because of their high copy numbers and ability to mobilize through genome, they are able to influence the phenotypic traits and evolution of plants and also plant adaptation to environmental stress. By genetic and epigenetic mechanisms, they change the gene structure, influence gene expression and create new regulatory networks. The fraction of genome that they represent and the influence they have is variable among species; however they were detected in practically every plant genome researched up to date. Deleterious mutations may be caused by their activity which is also another reason why their expression is tightly regulated by the host organism. Gaining knowledge of TE's mechanisms and research development in the future will allow us to use them, for example for crop improvement purposes, resistance development against diseases and pathogens and suppression of invasive species.

  19. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  20. Pokeweed Antiviral Protein: Its Cytotoxicity Mechanism and Applications in Plant Disease Resistance

    Directory of Open Access Journals (Sweden)

    Rong Di

    2015-03-01

    Full Text Available Pokeweed antiviral protein (PAP is a 29 kDa type I ribosome inactivating protein (RIP found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.

  1. Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment.

    Science.gov (United States)

    Connolly, John; Sebastià, Maria-Teresa; Kirwan, Laura; Finn, John Anthony; Llurba, Rosa; Suter, Matthias; Collins, Rosemary P; Porqueddu, Claudio; Helgadóttir, Áslaug; Baadshaug, Ole H; Bélanger, Gilles; Black, Alistair; Brophy, Caroline; Čop, Jure; Dalmannsdóttir, Sigridur; Delgado, Ignacio; Elgersma, Anjo; Fothergill, Michael; Frankow-Lindberg, Bodil E; Ghesquiere, An; Golinski, Piotr; Grieu, Philippe; Gustavsson, Anne-Maj; Höglind, Mats; Huguenin-Elie, Olivier; Jørgensen, Marit; Kadziuliene, Zydre; Lunnan, Tor; Nykanen-Kurki, Paivi; Ribas, Angela; Taube, Friedhelm; Thumm, Ulrich; De Vliegher, Alex; Lüscher, Andreas

    2018-03-01

    Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment.At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, "method of nitrogen acquisition" and "pattern of temporal development".Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t  DM ha -1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity.Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%-75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture.Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). Synthesis and applications . Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were

  2. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  3. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    OpenAIRE

    Lau, Han Yih; Botella, Jose R.

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care di...

  4. Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia

    Directory of Open Access Journals (Sweden)

    Kazhila C. Chinsembu

    2016-01-01

    Full Text Available Faced with critical shortages of staff, long queues, and stigma at public health facilities in Livingstone, Zambia, persons who suffer from HIV/AIDS-related diseases use medicinal plants to manage skin infections, diarrhoea, sexually transmitted infections, tuberculosis, cough, malaria, and oral infections. In all, 94 medicinal plant species were used to manage HIV/AIDS-related diseases. Most remedies are prepared from plants of various families such as Combretaceae, Euphorbiaceae, Fabaceae, and Lamiaceae. More than two-thirds of the plants (mostly leaves and roots are utilized to treat two or more diseases related to HIV infection. Eighteen plants, namely, Achyranthes aspera L., Lannea discolor (Sond. Engl., Hyphaene petersiana Klotzsch ex Mart., Asparagus racemosus Willd., Capparis tomentosa Lam., Cleome hirta Oliv., Garcinia livingstonei T. Anderson, Euclea divinorum Hiern, Bridelia cathartica G. Bertol., Acacia nilotica Delile, Piliostigma thonningii (Schumach. Milne-Redh., Dichrostachys cinerea (L. Wight and Arn., Abrus precatorius L., Hoslundia opposita Vahl., Clerodendrum capitatum (Willd. Schumach., Ficus sycomorus L., Ximenia americana L., and Ziziphus mucronata Willd., were used to treat four or more disease conditions. About 31% of the plants in this study were administered as monotherapies. Multiuse medicinal plants may contain broad-spectrum antimicrobial agents. However, since widely used plants easily succumb to the threats of overharvesting, they need special protocols and guidelines for their genetic conservation. There is still need to confirm the antimicrobial efficacies, pharmacological parameters, cytotoxicity, and active chemical ingredients of the discovered plants.

  5. Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia.

    Science.gov (United States)

    Chinsembu, Kazhila C

    2016-01-01

    Faced with critical shortages of staff, long queues, and stigma at public health facilities in Livingstone, Zambia, persons who suffer from HIV/AIDS-related diseases use medicinal plants to manage skin infections, diarrhoea, sexually transmitted infections, tuberculosis, cough, malaria, and oral infections. In all, 94 medicinal plant species were used to manage HIV/AIDS-related diseases. Most remedies are prepared from plants of various families such as Combretaceae, Euphorbiaceae, Fabaceae, and Lamiaceae. More than two-thirds of the plants (mostly leaves and roots) are utilized to treat two or more diseases related to HIV infection. Eighteen plants, namely, Achyranthes aspera L., Lannea discolor (Sond.) Engl., Hyphaene petersiana Klotzsch ex Mart., Asparagus racemosus Willd., Capparis tomentosa Lam., Cleome hirta Oliv., Garcinia livingstonei T. Anderson, Euclea divinorum Hiern, Bridelia cathartica G. Bertol., Acacia nilotica Delile, Piliostigma thonningii (Schumach.) Milne-Redh., Dichrostachys cinerea (L.) Wight and Arn., Abrus precatorius L., Hoslundia opposita Vahl., Clerodendrum capitatum (Willd.) Schumach., Ficus sycomorus L., Ximenia americana L., and Ziziphus mucronata Willd., were used to treat four or more disease conditions. About 31% of the plants in this study were administered as monotherapies. Multiuse medicinal plants may contain broad-spectrum antimicrobial agents. However, since widely used plants easily succumb to the threats of overharvesting, they need special protocols and guidelines for their genetic conservation. There is still need to confirm the antimicrobial efficacies, pharmacological parameters, cytotoxicity, and active chemical ingredients of the discovered plants.

  6. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    Science.gov (United States)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p potato plants.

  7. Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases.

    Science.gov (United States)

    Gomez-Casati, Diego F; Zanor, Maria I; Busi, María V

    2013-01-01

    In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health.

  8. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    Science.gov (United States)

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    Science.gov (United States)

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizespepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  10. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Guan Wang

    2017-01-01

    Full Text Available Automatic and accurate estimation of disease severity is essential for food security, disease management, and yield loss prediction. Deep learning, the latest breakthrough in computer vision, is promising for fine-grained disease severity classification, as the method avoids the labor-intensive feature engineering and threshold-based segmentation. Using the apple black rot images in the PlantVillage dataset, which are further annotated by botanists with four severity stages as ground truth, a series of deep convolutional neural networks are trained to diagnose the severity of the disease. The performances of shallow networks trained from scratch and deep models fine-tuned by transfer learning are evaluated systemically in this paper. The best model is the deep VGG16 model trained with transfer learning, which yields an overall accuracy of 90.4% on the hold-out test set. The proposed deep learning model may have great potential in disease control for modern agriculture.

  11. The pressure suppression system

    International Nuclear Information System (INIS)

    Aust, E.

    1985-01-01

    Nuclear plants with boiling water reactors have a safety containment with a pressure suppression system (PSS). Proceeding on significant self-developments, today the three PSS-lines of General Electric Co. (GE), Kraftwerk Union AG (KWU) and ASEA-ATOM are predominant, which are currently represented by the MARK III type, the KWU type 72 and the BWR 75 containment. In addition, there are special developments for the nuclear ship propulsion and for the pressurized water reactors in the Soviet Union. Key design values of the PSS allow a first valuation of its loads during a hypothetical loss-of-coolant accident. (orig.) [de

  12. Determination of the appetite suppressant P57 in Hoodia gordonii plant extracts and dietary supplements by liquid chromatography/electrospray ionization mass spectrometry (LC-MSD-TOF) and LC-UV methods.

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Pawar, Rahul S; Shukla, Yatin J; Schaneberg, Brian; Khan, Ikhlas A

    2006-01-01

    Hoodia gordonii is traditionally used in South Africa for its appetite suppressant properties. P57AS3 (P57), an oxypregnane steroidal glycoside, is the only reported active constituent from this plant as an appetite suppressant. Effective quality control of these extracts or products requires rapid methods to determine P57 content. New methods of liquid chromatography/mass spectrometry (LC/MS) and LC-UV for analysis of P57 from H. gordonii have been developed. The quantitative determination of P57 was achieved with a Phenomenex Gemini (Torrance, CA) reversed-phase column using gradient mobile phase of water and acetonitrile, both containing 0.1% acetic acid. The method was validated for linearity, repeatability, and limits of detection and quantification. Good results were obtained in terms of repeatability (relative standard deviation <5.0%) and recovery (98.5-103.5%). The developed methods were applied to the determination of P57 for H. gordonii plant samples, one related genus (Opuntia ficus-indica), and dietary supplements that claim to contain H. gordonii.

  13. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  14. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  15. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

    Directory of Open Access Journals (Sweden)

    Alvaro Fuentes

    2017-09-01

    Full Text Available Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN, Region-based Fully Convolutional Network (R-FCN, and Single Shot Multibox Detector (SSD, which for the purpose of this work are called “deep learning meta-architectures”. We combine each of these meta-architectures with “deep feature extractors” such as VGG net and Residual Network (ResNet. We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant’s surrounding area.

  16. Design of the expert system to analyze disease in Plant Teak using Forward Chaining

    Directory of Open Access Journals (Sweden)

    Poningsih Poningsih

    2017-06-01

    Full Text Available Teak is one kind of plant that is already widely known and developed by the wider community in the form of plantations and community forests. This is because until now Teak wood is a commodity of luxury, high quality, the price is expensive, and high economic value. Expert systems are a part of the method sciences artificial intelligence to make an application program disease diagnosis teak computerized seek to replace and mimic the reasoning process of an expert or experts in solving the problem specification that can be said to be a duplicate from an expert because science knowledge is stored inside a database  Expert System for the diagnosis of disease teak using forward chaining method aims to explore the characteristics shown in the form of questions in order to diagnose the disease teak with web-based software. Device keel expert system can recognize the disease after consulting identity by answering some of the questions presented by the application of expert systems and can infer some kind of disease in plants teak. Data disease known customize rules (rules are made to match the characteristics of teak disease and provide treatment solutions.

  17. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.).

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Shim, Kang-Bo; Lee, Byeong-Won; Hwang, Chung-Dong; Pae, Suk-Bok; Park, Chang-Hwan; Kim, Sung-Up; Lee, Choon-Ki; Baek, In-Youl

    2013-06-28

    Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growthpromoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

  18. Two Legionnaires' disease cases associated with industrial waste water treatment plants: a case report

    Directory of Open Access Journals (Sweden)

    Putus Tuula

    2010-12-01

    Full Text Available Abstract Background Finnish and Swedish waste water systems used by the forest industry were found to be exceptionally heavily contaminated with legionellae in 2005. Case presentation We report two cases of severe pneumonia in employees working at two separate mills in Finland in 2006. Legionella serological and urinary antigen tests were used to diagnose Legionnaires' disease in the symptomatic employees, who had worked at, or close to, waste water treatment plants. Since the findings indicated a Legionella infection, the waste water and home water systems were studied in more detail. The antibody response and Legionella urinary antigen finding of Case A indicated that the infection had been caused by Legionella pneumophila serogroup 1. Case A had been exposed to legionellae while installing a pump into a post-clarification basin at the waste water treatment plant of mill A. Both the water and sludge in the basin contained high concentrations of Legionella pneumophila serogroup 1, in addition to serogroups 3 and 13. Case B was working 200 meters downwind from a waste water treatment plant, which had an active sludge basin and cooling towers. The antibody response indicated that his disease was due to Legionella pneumophila serogroup 2. The cooling tower was the only site at the waste water treatment plant yielding that serogroup, though water in the active sludge basin yielded abundant growth of Legionella pneumophila serogroup 5 and Legionella rubrilucens. Both workers recovered from the disease. Conclusion These are the first reported cases of Legionnaires' disease in Finland associated with industrial waste water systems.

  19. Traditional Persian topical medications for gastrointestinal diseases

    Directory of Open Access Journals (Sweden)

    Laleh Dehghani Tafti

    2017-03-01

    Full Text Available Drug delivery across the skin is used for several millennia to ease gastrointestinal (GI ailments in Traditional Persian Medicine (TPM. TPM topical remedies are generally being applied on the stomach, lower abdomen, lower back and liver to alleviate GI illnesses such as dyspepsia, gastritis, GI ulcers, inflammatory bowel disease, intestinal worms and infections. The aim of the present study is to survey the topical GI remedies and plant species used as ingredients for these remedies in TPM. In addition, pharmacological activities of the mentioned plants have been discussed. For this, we searched major TPM textbooks to find plants used to cure GI problems in topical use. Additionally, scientific databases were searched to obtain pharmacological data supporting the use of TPM plants in GI diseases. Rosa × damascena, Pistacia lentiscus, Malus domestica, Olea europaea and Artemisia absinthium are among the most frequently mentioned ingredients of TPM remedies. β-asarone, amygdalin, boswellic acids, guggulsterone, crocin, crocetin, isomasticadienolic acid, and cyclotides are the most important phytochemicals present in TPM plants with GI-protective activities. Pharmacological studies demonstrated GI activities for TPM plants supporting their extensive traditional use. These plants play pivotal role in alleviating GI disorders through exhibiting numerous activities including antispasmodic, anti-ulcer, anti-secretory, anti-colitis, anti-diarrheal, antibacterial and anthelmintic properties. Several mechanisms underlie these activities including the alleviation of oxidative stress, exhibiting cytoprotective activity, down-regulation of the inflammatory cytokines, suppression of the cellular signaling pathways of inflammatory responses, improving re-epithelialization and angiogenesis, down-regulation of anti-angiogenic factors, blocking activity of acetylcholine, etc.

  20. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease

    Directory of Open Access Journals (Sweden)

    Avtar K. Handa

    2018-02-01

    Full Text Available Biogenic amines—polyamines (PAs, particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants—exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources—vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin

  1. Determination of factors associated with natural soil suppressivity to potato common scab

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Daniel, O.; Omelka, M.; Krištůfek, Václav; Diviš, J.; Kopecký, J.

    2015-01-01

    Roč. 10, č. 1 (2015), e0116291 E-ISSN 1932-6203 R&D Projects: GA MZe QJ1210359 Grant - others:GA ČR(CZ) GPP201/11/P290 Program:GP Institutional support: RVO:60077344 Keywords : natural soil suppressivity * potato common scab * pathogenic bacteria Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 3.057, year: 2015

  2. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism.

    Science.gov (United States)

    Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong

    2013-04-01

    Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  3. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes.

    Science.gov (United States)

    Osuna-Cruz, Cristina M; Paytuvi-Gallart, Andreu; Di Donato, Antimo; Sundesha, Vicky; Andolfo, Giuseppe; Aiese Cigliano, Riccardo; Sanseverino, Walter; Ercolano, Maria R

    2018-01-04

    The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Insect herbivory and plant adaptation in an early successional community.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Fines, Daniel M; Bogdanowicz, Steve; Huber, Meret

    2018-05-01

    To address the role of insect herbivores in adaptation of plant populations and the persistence of selection through succession, we manipulated herbivory in a long-term field experiment. We suppressed insects in half of 16 plots over nine years and examined the genotypic structure and chemical defense of common dandelion (Taraxacum officinale), a naturally colonizing perennial apomictic plant. Insect suppression doubled dandelion abundance in the first few years, but had negligible effects thereafter. Using microsatellite DNA markers, we genotyped >2500 plants and demonstrate that insect suppression altered the genotypic composition of plots in both sampling years. Phenotypic and genotypic estimates of defensive terpenes and phenolics from the field plots allowed us to infer phenotypic plasticity and the response of dandelion populations to insect-mediated natural selection. The effects of insect suppression on plant chemistry were, indeed, driven both by plasticity and plant genotypic identity. In particular, di-phenolic inositol esters were more abundant in plots exposed to herbivory (due to the genotypic composition of the plots) and were also induced in response to herbivory. This field experiment thus demonstrates evolutionary sorting of plant genotypes in response to insect herbivores that was in same direction as the plastic defensive response within genotypes. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  5. Plants with useful traits and related methods

    Science.gov (United States)

    Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto

    2016-10-25

    The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

  6. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens.

    Science.gov (United States)

    Yoon, M-Y; Choi, G J; Choi, Y H; Jang, K S; Park, M S; Cha, B; Kim, J-C

    2010-11-01

    This study is aiming at characterizing antifungal substances from the methanol extract of Prunella vulgaris and at investigating those substances' antifungal and antioomycete activities against various plant pathogens. Two polyacetylenic acids were isolated from P. vulgaris as active principles and identified as octadeca-9,11,13-triynoic acid and trans-octadec-13-ene-9,11-diynoic acid. These two compounds inhibited the growth of Magnaporthe oryzae, Rhizoctonia solani, Phytophthora infestans, Sclerotinia sclerotiorum, Fusarium oxysporum f. sp. raphani, and Phytophthora capsici. In addition, these two compounds and the wettable powder-type formulation of an n-hexane fraction of P. vulgaris significantly suppressed the development of rice blast, tomato late blight, wheat leaf rust, and red pepper anthracnose. These data show that the extract of P. vulgaris and two polyacetylenic acids possess antifungal and antioomycete activities against a broad spectrum of tested plant pathogens. This is the first report on the occurrence of octadeca-9,11,13-triynoic acid and trans-octadec-13-ene-9,11-diynoic acid in P. vulgaris and their efficacy against plant diseases. The crude extract containing the two polyacetylenic acids can be used as a natural fungicide for the control of various plant diseases. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  7. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  8. Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals.

    Science.gov (United States)

    Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M

    2010-09-01

    Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants' individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the 'Tragedy of the Commons', providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of 'shade avoidance', but a collective, offensive 'shading' strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision.

  9. Anti-fungal activity of some medicinal plants on different pathogenic fungi

    International Nuclear Information System (INIS)

    Hussain, F.; Abid, M.; Farzana, A.; Shaukat, S.; Akbar, M.

    2015-01-01

    The antifungal activity of different medicinal and locally available plants extracts (leaves, fruit, seeds) which are usually found in the surrounding of fields or in the fields on some fungi were tested in lab conditions. Six different plants were selected for testing these plants were Acacia nilotica (Lamk.) Willd. Azadirachta indica (A.) Juss. Crotalaria juncea L. Eucalyptus camaldulensis Dehnh. Ocimum basilicum L. and Prosopis juliflora (Sw.) Dc. These plants showed antifungal activity against the Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. These plants crude extracts of leaves showed inhibition activity against the fungi and suppressed the myclial growth. Over all selected plants exhibited moderate type of inhibition against these above mentioned pathogens. Among these plants, Azadirachta indica, Ocimum basilicum and Crotalaria juncea showed the most effective results against the Aspergillus, Fusarium and Rhizoctonia sp. of fungal pathogens. Whereas, Acacia nilotica, Eucalyptus camaldulensis and Prosopis juliflora showed least potential of inhibition against all above mentioned fungal pathogens. It is investigated in present studies that Azadirachta indica, Ocimum basilicum and Crotalaria juncea can be utilized against the management of fungal diseases particularly Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. (author)

  10. Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse

    Directory of Open Access Journals (Sweden)

    Ariadna eGiné

    2016-02-01

    Full Text Available The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55 in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of ten fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE, and compared with a non-suppressive soil (M10.33. In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber, but disease severity was lower than expected (0.2 to 6.3. The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05 in both non-sterilized soils compared to the sterilized ones after one nematode generation. Pochonia chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated

  11. Efficacy of dexamethasone suppression test during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome.

    Science.gov (United States)

    Chen, Shi; Li, Ran; Lu, Lin; Duan, Lian; Zhang, Xuebin; Tong, Anli; Pan, Hui; Zhu, Huijuan; Lu, Zhaolin

    2018-01-01

    To evaluate the cut-off value of the ratio of 24 h urinary free cortisol (24 h UFC) levels post-dexamethasone to prior-dexamethasone in dexamethasone suppression test (DST) during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome. Retrospective study. The patients diagnosed with primary pigmented nodular adrenocortical disease (PPNAD, n = 25), bilateral macronodular adrenal hyperplasia (BMAH, n = 27), and adrenocortical adenoma (ADA, n = 84) were admitted to the Peking Union Medical College Hospital from 2001 to 2016. Serum cortisol, adrenocorticotropic hormone (ACTH), and 24 h UFC were measured before and after low-dose dexamethasone suppression test (LDDST) and high-dose dexamethasone suppression test (HDDST). After LDDST and HDDST, 24 h UFC elevated in patients with PPNAD (paired t-test, P = 0.007 and P = 0.001), while it remained unchanged in the BMAH group (paired t-test, P = 0.471 and P = 0.414) and decreased in the ADA group (paired t-test, P = 0.002 and P = 0.004). The 24 h UFC level after LDDST was higher in PPNAD and BMAH as compared to ADA (P < 0.017), while no significant difference was observed between PPNAD and BMAH. After HDDST, 24 h UFC was higher in patients with PPNAD as compared to that of ADA and BMAH (P < 0.017). The cut-off value of 24 h UFC (Post-L-Dex)/(Pre-L-Dex) was 1.16 with 64.0% sensitivity and 77.9% specificity, and the cut-off value of 24 h UFC (Post-H-Dex)/(Pre-H-Dex) was 1.08 with 84.0% sensitivity and 75.6% specificity. The ratio of post-dexamethasone to prior-dexamethasone had a unique advantage in distinguishing PPNAD from BMAH and ADA.

  12. The polychlorinated dibenzofuran fingerprint of iron ore sinter plant: Its persistence with suppressant and alternative fuel addition.

    Science.gov (United States)

    Thompson, Dennis; Ooi, Tze C; Anderson, David R; Fisher, Ray; Ewan, Bruce C R

    2016-07-01

    An earlier demonstration that the relative concentrations of isomers of polychlorinated dibenzofuran do not vary as the flamefront of an iron ore sinter plant progresses through the bed, and profiles are similar for two sinter strands has been widened to include studies of the similarity or otherwise between full scale strand and sinter pot profiles, effect of addition of suppressants and of coke fuel substitution with other combustible materials. For dioxin suppressant addition, a study of the whole of the tetra- penta- and hexaCDF isomer range as separated by the DB5MS chromatography column, indicates no significant change in profile: examination of the ratios of the targeted penta- and hexaCDF isomers suggests the profile is similarly unaffected by coke fuel replacement. Addition of KCl at varied levels has also been shown to have no effect on the 'fingerprint' and there is no indication of any effect by the composition of the sinter mix. The recently published full elution sequence for the DB5MS column is applied to the results obtained using this column. It is confirmed that isomers with 1,9-substitution of chlorine atoms are invariably formed in low concentrations. This is consistent with strong interaction between the 1 and 9 substituted chlorine atoms predicted by DFT thermodynamic calculations. Non-1,9-substituted PCDF equilibrium isomer distributions based on DFT-derived thermodynamic data differ considerably from stack gas distributions obtained using SP2331 column separation. A brief preliminary study indicates the same conclusions (apart from the 1,9-interaction effect) hold for the much smaller content of PCDD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Water relations, gas exchange and growth of dominant and suppressed shoots of Arbutus unedo L.

    Science.gov (United States)

    Castell, C; Terradas, J

    1995-06-01

    Basal shoots produced by Arbutus unedo L. after cutting at ground level vary in size and growth rate, and are classified accordingly as dominant or suppressed. The suppressed shoots eventually cease growth and die. In this study, we investigated the role of light and water in the competition among shoots of A. unedo. Dominant and suppressed shoots of A. unedo showed similar leaf water potentials and tissue water relations over the year, suggesting that water status is not responsible for the lack of flushing in suppressed shoots. Although suppressed shoots did not flush under low light, they showed many characteristics of shade-tolerant plants. Leaves of suppressed shoots had lower leaf conductance and light-saturated photosynthetic rate, and higher specific leaf area than leaves of dominant shoots. We conclude that light was the main resource determining competition among shoots and the death of suppressed shoots.

  14. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2013-12-01

    Full Text Available Reactive oxygen species (ROS generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H₂O₂ and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O₂− and H₂O₂ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H₂O₂and sodium nitroprusside (SNP nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H₂O₂and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10⁶ and 10⁷ cfu/ml of R. solanacearum. H₂O₂- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC’ was calculated to compare disease protection by H₂O₂ and/or SNP with untreated control. Neither H₂O₂ nor SNP protect the tomato seedlings from the bacterial wilt, but H₂O₂+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H₂O₂ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

  15. Molecular Phytopathology: Current Approaches and Main Directions in Diagnostics of Woody Plant Diseases

    Directory of Open Access Journals (Sweden)

    O. Yu. Baranov

    2014-08-01

    Full Text Available In the article the authors describe the prospects for diagnosis of woody plants diseases based on the use of modern methods of molecular plant pathology. The metagenomic approach based on the analysis of complex pathogens, including non-pathogenic microflora is described. The use the multicopy universal loci characterized by a number of advantages in determining taxonomic affiliation of infectious agents during phytopathological molecular analysis is proposed.

  16. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Directory of Open Access Journals (Sweden)

    Kelly Ben L

    2010-02-01

    Full Text Available Abstract Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite

  17. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2

    Science.gov (United States)

    Zhang, Shuai; Li, Xin; Sun, Zenghui; Shao, Shujun; Hu, Lingfei; Ye, Meng; Zhou, Yanhong; Xia, Xiaojian; Yu, Jingquan; Shi, Kai

    2015-01-01

    Increasing CO2 concentrations ([CO2]) have the potential to disrupt plant–pathogen interactions in natural and agricultural ecosystems, but the research in this area has often produced conflicting results. Variations in phytohormone salicylic acid (SA) and jasmonic acid (JA) signalling could be associated with variations in the responses of pathogens to plants grown under elevated [CO2]. In this study, interactions between tomato plants and three pathogens with different infection strategies were compared. Elevated [CO2] generally favoured SA biosynthesis and signalling but repressed the JA pathway. The exposure of plants to elevated [CO2] revealed a lower incidence and severity of disease caused by tobacco mosaic virus (TMV) and by Pseudomonas syringae, whereas plant susceptibility to necrotrophic Botrytis cinerea increased. The elevated [CO2]-induced and basal resistance to TMV and P. syringae were completely abolished in plants in which the SA signalling pathway nonexpressor of pathogenesis-related genes 1 (NPR1) had been silenced or in transgenic plants defective in SA biosynthesis. In contrast, under both ambient and elevated [CO2], the susceptibility to B. cinerea highly increased in plants in which the JA signalling pathway proteinase inhibitors (PI) gene had been silenced or in a mutant affected in JA biosynthesis. However, plants affected in SA signalling remained less susceptible to this disease. These findings highlight the modulated antagonistic relationship between SA and JA that contributes to the variation in disease susceptibility under elevated [CO2]. This information will be critical for investigating how elevated CO2 may affect plant defence and the dynamics between plants and pathogens in both agricultural and natural ecosystems. PMID:25657213

  18. Phylogeny, plant species, and plant diversity influence carbon use phenotypes among Fusarium populations in the rhizosphere microbiome

    Science.gov (United States)

    Carbon use by microorganisms in the rhizosphere microbiome has been linked to plant pathogen suppression and increased mineralization of soil nutrients for plant uptake, however factors that influence carbon use traits are poorly understood for most microbial groups. This work characterized the rela...

  19. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  20. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan, E-mail: shan_mou@126.com; Ni, Zhaohui, E-mail: doctor_nzh@126.com

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  1. Iron deposition in cranial bone marrow with sickle cell disease: MR assessment using a fat suppression technique

    International Nuclear Information System (INIS)

    Kaneko, K.; Humbert, J.H.; Kogutt, M.S.; Robinson, A.E.

    1993-01-01

    Thirteen patients with sickle cell disease (SCD) undergoing transfusion therapy and 8 control patients were examined by magnetic resonance imaging to discriminate bone marrow change due to iron deposition from hematologic marrow hyperplasia. Using T1-weighted spin echo images, only two subjects showed extremely low signal intensity marrow compatible with iron deposition. However, using T2-weighted fast spin echo images with fat suppression, cranial bone marrow in SCD patients with transfusion therapy showed considerably lower signal than that of controls. The main cause of marrow signal decrease in SCD patients with transfusion therapy was considered to be iron deposition due to repeated transfusion therapy rather than red marrow hyperplasia. (orig.)

  2. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  3. Plant latex: a promising antifungal agent for post harvest disease control.

    Science.gov (United States)

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment.

  4. Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae

    Directory of Open Access Journals (Sweden)

    Wiler Ribas Moreira

    2015-08-01

    Full Text Available Brown spot (BS, caused by the fungus Bipolaris oryzae, is one of the most important diseases contracted by rice. We investigated the effect of magnesium (Mg on the development of BS, caused by Bipolaris oryzae, and the effects of disease development on the photosynthetic performance of rice (Oryza sativa L. plants (cv. Metica-1 grown in nutrient solutions containing 0.25 or 4.0 mM of Mg. Assessments of BS severity, leaf Mg and pigment concentrations (total chlorophylls and carotenoids, were carried out at 120 h after inoculation, in addition to gas exchange parameters,. Higher leaf concentration of Mg was observed in plants supplied with 4.0 mM Mg than in those supplied with 0.25 mM. The increase in leaf Mg was accompanied by a decrease in BS severity, higher concentration of total chlorophyll and better photosynthetic performance. Plants supplied with 4.0 mM Mg had higher average values for carbon assimilation, stomatal conductance and internal leaf CO2 concentration when compared with plants supplied with 0.25 mM Mg. Conversely, the concentration of carotenoids was lower in plants supplied with the higher Mg rate. These results suggest that Mg suppresses disease severity and preserves photosynthetic performance by allowing for better stomatal conductance and, consequently, greater availability of CO2 at the carboxylation sites.

  5. Interactions of Salmonella with animals and plants.

    Science.gov (United States)

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  6. Interactions of Salmonella with animals and plants

    Directory of Open Access Journals (Sweden)

    Agnès eWiedemann

    2015-01-01

    Full Text Available Salmonella enterica species is a Gram negative bacterium, which is responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruit with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i attachment to host surfaces; (ii entry processes; (iii, multiplication; (iv suppression of host defence mechanisms ; and to point out similarities and differences between animal and plant infections.

  7. Interactions of Salmonella with animals and plants

    Science.gov (United States)

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2015-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections. PMID:25653644

  8. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  9. Effective antibiotics against 'Candidatus Liberibacter asiaticus' in HLB-affected citrus plants identified via the graft-based evaluation.

    Science.gov (United States)

    Zhang, Muqing; Guo, Ying; Powell, Charles A; Doud, Melissa S; Yang, Chuanyu; Duan, Yongping

    2014-01-01

    Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited 'Candidatus Liberibacter', is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with 'Candidatus Liberibacter asiaticus' (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application.

  10. Infection cycle of Artichoke Italian latent virus in tobacco plants: meristem invasion and recovery from disease symptoms.

    Directory of Open Access Journals (Sweden)

    Elisa Santovito

    Full Text Available Nepoviral infections induce recovery in fully expanded leaves but persist in shoot apical meristem (SAM by a largely unknown mechanism. The dynamics of infection of a grapevine isolate of Artichoke Italian latent virus (AILV-V, genus Nepovirus in tobacco plants, including colonization of SAM, symptom induction and subsequent recovery of mature leaves from symptoms, were characterized. AILV-V moved from the inoculated leaves systemically and invaded SAM in 7 days post-inoculation (dpi, remaining detectable in SAM at least up to 40 dpi. The new top leaves recovered from viral symptoms earliest at 21 dpi. Accumulation of viral RNA to a threshold level was required to trigger the overexpression of RDR6 and DCL4. Consequently, accumulation of viral RNA decreased in the systemically infected leaves, reaching the lowest concentration in the 3rd and 4th leaves at 23 dpi, which was concomitant with recovery of the younger, upper leaves from disease symptoms. No evidence of virus replication was found in the recovered leaves, but they contained infectious virus particles and were protected against re-inoculation with AILV-V. In this study we also showed that AILV-V did not suppress initiation or maintenance of RNA silencing in transgenic plants, but was able to interfere with the cell-to-cell movement of the RNA silencing signal. Our results suggest that AILV-V entrance in SAM and activation of RNA silencing may be distinct processes since the latter is triggered in fully expanded leaves by the accumulation of viral RNA above a threshold level rather than by virus entrance in SAM.

  11. The invasive plant Alternanthera philoxeroides was suppressed more intensively than its native congener by a native generalist: implications for the biotic resistance hypothesis.

    Directory of Open Access Journals (Sweden)

    Shufeng Fan

    Full Text Available Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve this controversy, but little attention has been paid to this issue. In this study, we investigated population performance, photosynthesis, leaf nitrogen concentration, and the constitutive and induced resistances of the successful invasive plant, Alternanthera philoxeroides, and its native congener, Alternanthera sessilis, in the presence of three population densities of the grasshopper, Atractomorpha sinensis. When the grasshopper was absent, leaf biomass, total biomass, photosynthesis, and leaf nitrogen concentration of A. philoxeroides were higher than those of A. sessilis. However, the morphological and physiological performances of A. philoxeroides were all decreased more intensively than A. sessilis after herbivory by grasshoppers. Especially as the concentrations of constitutive lignin and cellulose in leaf of A. philoxeroides were higher than A. sessilis, A. philoxeroides exhibited increased leaf lignin concentration to reduce its palatability only at severe herbivore load, whereas, leaf lignin, cellulose, and polyphenolic concentrations of A. sessilis all increased with increasing herbivory pressure, and cellulose and polyphenolic concentrations were higher in A. sessilis than in A. philoxeroides after herbivory. Our study indicated that the capability of the invasive plant to respond to native insect damage was lower than the native plant, and the invasive plant was suppressed more intensively than its native congener by the native insect. Our results support the biotic resistance hypothesis and suggest that native herbivores can constrain the abundance and reduce the adverse effects of invasive species.

  12. Hyperspectral imaging system for disease scanning on banana plants

    Science.gov (United States)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  13. Screening of potential medicinal plants from District Sawat specific for controlling women diseases

    International Nuclear Information System (INIS)

    Sarwat, A.; Shinwari, Z.K.; Ahmad, N.

    2012-01-01

    Ethnobotany provides a scientific rationale to identify medicinally important plant species, especially for finding new drugs that play vital role in the treatment of different diseases. This ethnobotanical survey of Swat, Khyber Pakhtunkhwa (KP) was carried out to identify medicinally important plant species that are traditionally used to treat gynecological disorders and infectious diseases, and to study their antimicrobial potential against pathogens that cause infections in females. The antimicrobial activities were investigated using the well diffusion method against four different bacterial strains and one fungal strain. Results showed that out of 12 plants studied, seven plants exhibited inhibitory effects against Candida albicans, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Woodfordia fruticosa, Quercus dilatata, Erythrina variegata, Ficus religiosa and Berberis lycium showed high antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 2.5, 1.25, 0.625, 1.25, 0.3125 mg/ml and minimum bactericidal concentration (MBC) values of 5, 2.5, 1.25, 2.5, 0.625 mg/ml, respectively. Both Woodfordia fruticosa and Quercus dilatata showed antimicrobial potential against E. coli and K. pneumoniae with similar MIC values of 2.5 mg/ml and MBC values of 5 mg/ml. Plants exhibiting inhibitory potential against S. aureus were Woodfordia fruticosa, Quercus dilatata, Azadirachta indica and Curcuma longa and all of them possessed similar MIC values of 5 mg/ml and MBC values of 2.5 mg/ml, respectively. None of the plants showed antimicrobial activity against Pseudomonas aeruginosa. Proximate analysis showed that in comparative assessment of the various species, Zanthoxylum alatum had the highest fat and energy values. (author)

  14. The dynamic relationship between plant architecture and competition.

    Science.gov (United States)

    Ford, E David

    2014-01-01

    In this review, structural and functional changes are described in single-species, even-aged, stands undergoing competition for light. Theories of the competition process as interactions between whole plants have been advanced but have not been successful in explaining these changes and how they vary between species or growing conditions. This task now falls to researchers in plant architecture. Research in plant architecture has defined three important functions of individual plants that determine the process of canopy development and competition: (i) resource acquisition plasticity; (ii) morphogenetic plasticity; (iii) architectural variation in efficiency of interception and utilization of light. In this review, this research is synthesized into a theory for competition based on five groups of postulates about the functioning of plants in stands. Group 1: competition for light takes place at the level of component foliage and branches. Group 2: the outcome of competition is determined by the dynamic interaction between processes that exert dominance and processes that react to suppression. Group 3: species differences may affect both exertion of dominance and reaction to suppression. Group 4: individual plants may simultaneously exhibit, in different component parts, resource acquisition and morphogenetic plasticity. Group 5: mortality is a time-delayed response to suppression. Development of architectural models when combined with field investigations is identifying research needed to develop a theory of architectural influences on the competition process. These include analyses of the integration of foliage and branch components into whole-plant growth and precise definitions of environmental control of morphogenetic plasticity and its interaction with acquisition of carbon for plant growth.

  15. Suppression of External NADPH Dehydrogenase—NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism

    Science.gov (United States)

    Podgórska, Anna; Borysiuk, Klaudia; Tarnowska, Agata; Jakubiak, Monika; Burian, Maria; Rasmusson, Allan G.

    2018-01-01

    Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants. PMID:29747392

  16. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    Science.gov (United States)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  17. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    Science.gov (United States)

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  18. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

  19. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Mohsen

    2015-10-21

    Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.

  20. The flavonol epicatechin reverses the suppressive effects of a stressor on long-term memory formation.

    Science.gov (United States)

    Knezevic, Bogdan; Lukowiak, Ken

    2014-11-15

    Learning and subsequent memory formation are influenced by both environmental and lifestyle factors, such as stress and diet. Epicatechin, a plant flavonol found in cocoa, red wine and green tea enhances long-term memory (LTM) formation in Lymnaea. By contrast, an ecologically relevant stressor, low-calcium pond water, suppresses LTM formation. We tested the hypothesis that epicatechin overcomes the suppressive effects of the stressor on LTM formation in the continued presence of the stressor. Snails trained in low-calcium pond water exhibit learning but not LTM. Epicatechin (15 mg l(-1)) in control pond water enhances LTM formation. When epicatechin was added to the low-calcium pond water an enhanced LTM similar to that seen in control pond water was observed. Thus, a naturally occurring bioactive plant compound was able to overcome the suppressive effects of an ecologically relevant stressor on LTM formation. © 2014. Published by The Company of Biologists Ltd.

  1. Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases.

    Science.gov (United States)

    Ngezahayo, Jérémie; Havyarimana, François; Hari, Léonard; Stévigny, Caroline; Duez, Pierre

    2015-09-15

    Infectious diseases represent a serious and worldwide public health problem. They lead to high mortality, especially in non-developed countries. In Burundi, the most frequent infectious diseases are skin and respiratory (mainly in children) infections, diarrhea, added to malaria, HIV/AIDS and tuberculosis. Local population used mostly traditional herbal medicines, sometimes animal and mineral substances, to fight against these plagues. To survey in different markets and herbal shops in Bujumbura city, medicinal plants sold to treat microbial infections, with particular emphasis on the different practices of traditional healers (THs) regarding plant parts used, methods of preparation and administration, dosage and treatment duration. The ethnobotanical survey was conducted by interviewing, using a pre-set questionnaire, sixty representative healers, belonging to different associations of THs approved and recognised by the Ministry of Health. Each interviewed herbalist also participated in the collection of samples and the determination of the common names of plants. The plausibility of recorded uses has been verified through an extensive literature search. Our informants enabled us to collect 155 different plant species, distributed in 51 families and 139 genera. The most represented families were Asteraceae (20 genera and 25 species), Fabaceae (14 genera and 16 species), Lamiaceae (12 genera and 15 species), Rubiaceae (9 genera and 9 species), Solanaceae (6 genera and 6 species) and Euphorbiaceae (5 genera and 6 families). These plants have been cited to treat 25 different alleged symptoms of microbial diseases through 271 multi-herbal recipes (MUHRs) and 60 mono-herbal recipes (MOHRs). Platostoma rotundifolium (Briq.) A. J. Paton (Lamiaceae), the most cited species, has been reported in the composition of 41 MUHRs, followed by Virectaria major (Schum.) Verdc (Rubiaceae, 39 recipes), Kalanchoe crenata (Andrews) Haw. (Crassulaceae, 37 recipes), Stomatanthes

  2. Measuring colour rivalry suppression in amblyopia.

    Science.gov (United States)

    Hofeldt, T S; Hofeldt, A J

    1999-11-01

    To determine if the colour rivalry suppression is an index of the visual impairment in amblyopia and if the stereopsis and fusion evaluator (SAFE) instrument is a reliable indicator of the difference in visual input from the two eyes. To test the accuracy of the SAFE instrument for measuring the visual input from the two eyes, colour rivalry suppression was measured in six normal subjects. A test neutral density filter (NDF) was placed before one eye to induce a temporary relative afferent defect and the subject selected the NDF before the fellow eye to neutralise the test NDF. In a non-paediatric private practice, 24 consecutive patients diagnosed with unilateral amblyopia were tested with the SAFE. Of the 24 amblyopes, 14 qualified for the study because they were able to fuse images and had no comorbid disease. The relation between depth of colour rivalry suppression, stereoacuity, and interocular difference in logMAR acuity was analysed. In normal subjects, the SAFE instrument reversed temporary defects of 0.3 to 1. 8 log units to within 0.6 log units. In amblyopes, the NDF to reverse colour rivalry suppression was positively related to interocular difference in logMAR acuity (beta=1.21, psuppression as measured with the SAFE was found to agree closely with the degree of visual acuity impairment in non-paediatric patients with amblyopia.

  3. Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper

    Directory of Open Access Journals (Sweden)

    Beom Ryong Kang

    2018-03-01

    Full Text Available Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum. Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.

  4. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction

    Directory of Open Access Journals (Sweden)

    Pan Jing

    2012-08-01

    Full Text Available Abstract Curcumin,a natural polyphenol obtained from turmeric,has been implicated to be neuroprotective in a variety of neurodegenerative disorders although the mechanism remains poorly understood. The results of our recent experiments indicated that curcumin could protect dopaminergic neurons from apoptosis in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson’s disease (PD. The death of dopaminergic neurons and the loss of dopaminergic axon in the striatum were significantly suppressed by curcumin in MPTP mouse model. Further studies showed that curcumin inhibited JNKs hyperphosphorylation induced by MPTP treatment. JNKs phosphorylation can cause translocation of Bax to mitochondria and the release of cytochrome c which both ultimately contribute to mitochondria-mediated apoptosis. These pro-apoptosis effect can be diminished by curcumin. Our experiments demonstrated that curcumin can prevent nigrostriatal degeneration by inhibiting the dysfunction of mitochondrial through suppressing hyperphosphorylation of JNKs induced by MPTP. Our results suggested that JNKs/mitochondria pathway may be a novel target in the treatment of PD patients.

  5. Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum.

    Science.gov (United States)

    Shternshis, Margarita V; Belyaev, Anatoly A; Matchenko, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2015-10-01

    Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.

  6. Acid-suppressive drugs and risk of kidney disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Qiu, Tingting; Zhou, Junwen; Zhang, Chao

    2018-04-12

    More concerns had been raised about the risk of kidney disease (KD) associated with acid-suppressive drugs (ASDs). But whether they could directly increase such risk remained unclear. Meta-analysis was conducted to comprehensively investigate this relationship. PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and three Chinese databases were searched until April 2017 for observational studies investigating the associations between ASDs and KD. Pooled log (odds ratios, ORs) or log (hazard ratios, HRs) with standard errors for KD risk were calculated using the generic inverse variance method and random-effect model. Ten studies involving 128,020 KD patients were included. Proton pump inhibitor (PPI) therapy was associated with higher risks of acute interstitial nephritis (AIN) (OR, 2.78; 95% confidence interval (CI), 1.25-6.17), acute kidney injury (AKI) (HR, 1.85; 95% CI, 1.33-2.59), chronic kidney disease (CKD) (HR, 1.47; 95% CI, 1.03-2.09), and end-stage renal disease (ESRD) (HR, 1.61; 95% CI, 1.26-2.04) than non-PPI therapy. Additionally, PPI significantly increased the risks of AKI (HR, 1.32; 95% CI, 1.16-1.51), CKD (HR, 1.28; 95% CI, 1.24-1.33) and ESRD (HR, 1.96; 95% CI, 1.21-3.17) compared to histamine 2 receptor antagonist (H 2 RA). Relationship between H 2 RA therapy and AKI (OR, 0.98; 95% CI, 0.90-1.07) or CKD (OR, 1.00; 95% CI, 0.89-1.11) was not found. PPI therapy significantly increased the risks of AIN, AKI, CKD and ESRD. Similar risks were not identified for H 2 RA therapy. More clinical trials are needed to confirm our findings. This article is protected by copyright. All rights reserved.

  7. Growth Promotion and Disease Suppression Ability of a Streptomyces sp. CB-75 from Banana Rhizosphere Soil

    Science.gov (United States)

    Chen, Yufeng; Zhou, Dengbo; Qi, Dengfeng; Gao, Zhufen; Xie, Jianghui; Luo, Yanping

    2018-01-01

    An actinomycete strain, CB-75, was isolated from the soil of a diseased banana plantation in Hainan, China. Based on phenotypic and molecular characteristics, and 99.93% sequence similarity with Streptomyces spectabilis NBRC 13424 (AB184393), the strain was identified as Streptomyces sp. This strain exhibited broad-spectrum antifungal activity against 11 plant pathogenic fungi. Type I polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) were detected, which were indicative of the antifungal compounds that Streptomyces sp. CB-75 could produce. An ethyl acetate extract from the strain exhibited the lowest minimum inhibitory concentration (MIC) against Colletotrichum musae (ATCC 96167) (0.78 μg/ml) and yielded the highest antifungal activity against Colletotrichum gloeosporioides (ATCC 16330) (50.0 μg/ml). Also, spore germination was significantly inhibited by the crude extract. After treatment with the crude extract of Streptomyces sp. CB-75 at the concentration 2 × MIC, the pathogenic fungi showed deformation, shrinkage, collapse, and tortuosity when observed by scanning electron microscopy (SEM). By gas chromatography-mass spectrometry (GC-MS) of the crude extract, 18 chemical constituents were identified; (Z)-13-docosenamide was the major constituent. Pot experiments showed that the incidence of banana seedlings was reduced after using Streptomyces sp. CB-75 treatment. The disease index was 10.23, and the prevention and control effect was 83.12%. Furthermore, Streptomyces sp. CB-75 had a growth-promoting effect on banana plants. The chlorophyll content showed 88.24% improvement, the leaf area, root length, root diameter, plant height, and stem showed 88.24, 90.49, 136.17, 61.78, and 50.98% improvement, respectively, and the shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight showed 82.38, 72.01, 195.33, and 113.33% improvement, respectively, compared with treatment of fermentation broth without Streptomyces sp. CB-75

  8. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    Science.gov (United States)

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  9. Estimating the spatial distribution of a plant disease epidemic from a sample

    Science.gov (United States)

    Sampling is of central importance in plant pathology. It facilitates our understanding of how epidemics develop in space and time and can also be used to inform disease management decisions. Making inferences from a sample is necessary because we rarely have the resources to conduct a complete censu...

  10. Factors affecting the purpose suppressive antiviral therapy for patients with recurrent genital herpes

    Directory of Open Access Journals (Sweden)

    I. S. Коlova

    2017-01-01

    Full Text Available Objective: To study the factors that influence the destination of suppressive antiviral therapy in patients with recurrent genital herpes doctors of different specialties.Material and Methods: The study was conducted based on an anonymous survey of professionals providing medical care to patients with genital herpes. The survey involved 67 experts – 44 dermatologist, 13 obstetricians and 10 urologists working in Skin and Venereal Diseases, Women’s consuitation post and Saint Petersburg clinics.Results: Most respondents indicated that among patients with genital herpes, seeking an appointment, dominated by patients with relapsing nature of the disease. Suppressive antiviral therapy is recommended 68,7% of specialists, including dermatologists 61,3%, 84,6% of obstetricians and gynecologists, and 80% of urologists. The main indications for its experts consider high frequency of relapses, the patient’s tendency to promiscuity, the desire of the patient with fewer relapses, and the emotional response of the patient for the presence of the disease. Do not prescribe suppressive therapy for recurrent genital herpes 31,4% of the doctors surveyed. Among the reasons for which are not appointed by the type of treatment, the patient is dominated by the rejection of this type of treatment, the lack of experience of the destination suppressive therapy, as well as the uncertainty of specialists in its effectiveness.Conclusion: Suppressive antiviral therapy is recommended 68,7% of specialists. Do not prescribe this type of treatment for recurrent genital herpes 31,4% of the doctors surveyed. The proportion of professionals who refuse the appointment of suppressive antiviral therapy, the highest among dermatologists (38,7% compared with 15,4% among obstetricians and 20% of urologists. The most frequent grounds for refusal from this type of treatment is the lack of confidence in its effectiveness. 

  11. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  12. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Directory of Open Access Journals (Sweden)

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  13. Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus.

    Science.gov (United States)

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhang, Yu-Ying; Lin, Chun-Jing; Zhong, Xiao-Fang; Wang, Yue-Lin; Ma, Jing-Yong; Ma, Jian; Xing, Shao-Chen

    2015-03-02

    Rice blast is a major destructive fungal disease that poses a serious threat to rice production and the improvement of blast resistance is critical to rice breeding. The antimicrobial peptide MSI-99 has been suggested as an antimicrobial peptide conferring resistance to bacterial and fungal diseases. Here, a vector harboring the MSI-99 gene was constructed and introduced into the tobacco chloroplast genome via particle bombardment. Transformed plants were obtained and verified to be homoplastomic by PCR and Southern hybridization. In planta assays demonstrated that the transgenic tobacco plants displayed an enhanced resistance to the fungal disease. The evaluation of the antimicrobial activity revealed that the crude protein extracts from the transgenic plants manifested an antimicrobial activity against E. coli, even after incubation at 120 °C for 20 min, indicating significant heat stability of MSI-99. More importantly, the MSI-99-containing protein extracts were firstly proved in vitro and in vivo to display significant suppressive effects on two rice blast isolates. These findings provide a strong basis for the development of new biopesticides to combat rice blast.

  14. Chloroplast-Expressed MSI-99 in Tobacco Improves Disease Resistance and Displays Inhibitory Effect against Rice Blast Fungus

    Directory of Open Access Journals (Sweden)

    Yun-Peng Wang

    2015-03-01

    Full Text Available Rice blast is a major destructive fungal disease that poses a serious threat to rice production and the improvement of blast resistance is critical to rice breeding. The antimicrobial peptide MSI-99 has been suggested as an antimicrobial peptide conferring resistance to bacterial and fungal diseases. Here, a vector harboring the MSI-99 gene was constructed and introduced into the tobacco chloroplast genome via particle bombardment. Transformed plants were obtained and verified to be homoplastomic by PCR and Southern hybridization. In planta assays demonstrated that the transgenic tobacco plants displayed an enhanced resistance to the fungal disease. The evaluation of the antimicrobial activity revealed that the crude protein extracts from the transgenic plants manifested an antimicrobial activity against E. coli, even after incubation at 120 °C for 20 min, indicating significant heat stability of MSI-99. More importantly, the MSI-99-containing protein extracts were firstly proved in vitro and in vivo to display significant suppressive effects on two rice blast isolates. These findings provide a strong basis for the development of new biopesticides to combat rice blast.

  15. Plants get sick too!

    Science.gov (United States)

    Although many people may never have given consideration to plant health, plants can suffer from a wide range of diseases. These plant diseases are caused by micro-organisms, including bacteria, fungi, and viruses. The audience will be introduced to short case studies of several plant diseases that m...

  16. Antimalarial activity of selected Ethiopian medicinal plants in mice

    Directory of Open Access Journals (Sweden)

    Eshetu M. Bobasa

    2018-02-01

    Full Text Available Context: Parasites are the leading killers in subtropical areas of which malaria took the lion share from protozoan diseases. Measuring the impact of antimalarial drug resistance is difficult, and the impact may not be recognized until it is severe, especially in high transmission areas. Aims: To evaluate the in vivo antimalarial activities of hydroalcoholic extracts of the roots of Piper capense and Adhatoda schimperiana, against Plasmodium berghei in mice. Methods: Four-day suppressive and curative test animal models were used to explore the antimalarial activities of the plants. 200, 400, and 600 mg/kg of each plant extract was administered to check the activities versus vehicle administered mice. Mean survival time and level of parasitemia were the major variables employed to compare the efficacy vs. negative control. Results: In both models the 400 and 600 mg/kg doses of Adhatoda schimperiana and the 600 mg/kg dose Piper capense. showed significant parasitemia suppression and increased in mean survival time at p≤0.05. The middle dose of Piper capense had a border line inhibition where the extracts were considered active when parasitemia was reduced by ≥ 30%. Conclusions: The hydroalcoholic extracts of the roots of Adhatoda schimperiana and Piper capense possess moderate antimalarial activities, which prove its traditional claims. Thus, further studies should be done to isolate the active constituents for future use in the modern drug discovery.

  17. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  18. Accuracy of plant specimen disease severity estimates: concepts, history, methods, ramifications and challenges for the future

    Science.gov (United States)

    Knowledge of the extent of the symptoms of a plant disease, generally referred to as severity, is key to both fundamental and applied aspects of plant pathology. Most commonly, severity is obtained visually and the accuracy of each estimate (closeness to the actual value) by individual raters is par...

  19. Scale-Dependent Assessment of Relative Disease Resistance to Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Peter Skelsey

    2014-03-01

    Full Text Available Phenotyping trials may not take into account sufficient spatial context to infer quantitative disease resistance of recommended varieties in commercial production settings. Recent ecological theory—the dispersal scaling hypothesis—provides evidence that host heterogeneity and scale of host heterogeneity interact in a predictable and straightforward manner to produce a unimodal (“humpbacked” distribution of epidemic outcomes. This suggests that the intrinsic artificiality (scale and design of experimental set-ups may lead to spurious conclusions regarding the resistance of selected elite cultivars, due to the failure of experimental efforts to accurately represent disease pressure in real agricultural situations. In this model-based study we investigate the interaction of host heterogeneity and scale as a confounding factor in the inference from ex-situ assessment of quantitative disease resistance to commercial production settings. We use standard modelling approaches in plant disease epidemiology and a number of different agronomic scenarios. Model results revealed that the interaction of heterogeneity and scale is a determinant of relative varietal performance under epidemic conditions. This is a previously unreported phenomenon that could provide a new basis for informing the design of future phenotyping platforms, and optimising the scale at which quantitative disease resistance is assessed.

  20. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism.

    Directory of Open Access Journals (Sweden)

    Jiansong Chen

    2017-04-01

    Full Text Available Plant pathogen effectors can recruit the host post-translational machinery to mediate their post-translational modification (PTM and regulate their activity to facilitate parasitism, but few studies have focused on this phenomenon in the field of plant-parasitic nematodes. In this study, we show that the plant-parasitic nematode Meloidogyne graminicola has evolved a novel effector, MgGPP, that is exclusively expressed within the nematode subventral esophageal gland cells and up-regulated in the early parasitic stage of M. graminicola. The effector MgGPP plays a role in nematode parasitism. Transgenic rice lines expressing MgGPP become significantly more susceptible to M. graminicola infection than wild-type control plants, and conversely, in planta, the silencing of MgGPP through RNAi technology substantially increases the resistance of rice to M. graminicola. Significantly, we show that MgGPP is secreted into host plants and targeted to the ER, where the N-glycosylation and C-terminal proteolysis of MgGPP occur. C-terminal proteolysis promotes MgGPP to leave the ER, after which it is transported to the nucleus. In addition, N-glycosylation of MgGPP is required for suppressing the host response. The research data provide an intriguing example of in planta glycosylation in concert with proteolysis of a pathogen effector, which depict a novel mechanism by which parasitic nematodes could subjugate plant immunity and promote parasitism and may present a promising target for developing new strategies against nematode infections.

  1. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    Science.gov (United States)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  2. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshu, F.

    1999-01-01

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  3. Sites of infection by pythium species in rice seedlings and effects of plant age and water depth on disease development.

    Science.gov (United States)

    Chun, S C; Schneider, R W

    1998-12-01

    ABSTRACT Seedling disease, caused primarily by several species of Pythium, is one of the major constraints to water-seeded rice production in Louisiana. The disease, also known as water-mold disease, seed rot, and seedling damping-off, causes stand reductions and growth abnormalities. In severe cases, fields must be replanted, which may result in delayed harvests and reduced yields. To develop more effective disease management tactics including biological control, this study was conducted primarily to determine sites of infection in seeds and seedlings; effect of plant age on susceptibility to P. arrhenomanes, P. myriotylum, and P. dissotocum; and minimum exposure times required for infection and seedling death. In addition, the effect of water depth on seedling disease was investigated. Infection rates of seed embryos were significantly higher than those of endosperms for all three Pythium spp. The development of roots from dry-seeded seedlings was significantly reduced by P. arrhenomanes and P. myriotylum at 5 days after planting compared with that of roots from noninoculated controls. Susceptibility of rice to all three species was sharply reduced within 2 to 6 days after planting, and seedlings were completely resistant at 8 days after planting. There was a steep reduction in emergence through the flood water, relative to the noninoculated control, following 2 to 3 days of exposure to inoculum of P. arrhenomanes and P. myriotylum. In contrast, P. dissotocum was much less virulent and required longer exposure times to cause irreversible seedling damage. Disease incidence was higher when seeds were planted into deeper water, implying that seedlings become resistant after they emerge through the flood water. These results suggest that disease control tactics including flood water management need to be employed for a very short period of time after planting. Also, given that the embryo is the primary site of infection and it is susceptible for only a few days, the

  4. The Identification of Genes Important in Pseudomonas syringae pv. phaseolicola Plant Colonisation Using In Vitro Screening of Transposon Libraries.

    Directory of Open Access Journals (Sweden)

    Bharani Manoharan

    Full Text Available The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms around plant cells. If the pathogen can suppress the plant's natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction.

  5. Plants' Metabolites as Potential Antiobesity Agents

    Directory of Open Access Journals (Sweden)

    Najla Gooda Sahib

    2012-01-01

    Full Text Available Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.

  6. Induction of Oral Tolerance with Transgenic Plants Expressing Antigens for Prevention/Treatment of Autoimmune, Allergic and Inflammatory Diseases.

    Science.gov (United States)

    Ma, Shengwu; Liao, Yu-Cai; Jevnikar, Anthony M

    2015-01-01

    The prevalence and incidence of autoimmune and allergic diseases have increased dramatically over the last several decades, especially in the developed world. The treatment of autoimmune and allergic diseases is typically with the use of non-specific immunosuppressive agents that compromise the integrity of the host immune system and therefore, increase the risk of infections. Antigenspecific immunotherapy by reinstating immunological tolerance towards self antigens without compromising immune functions is a much desired goal for the treatment of autoimmune and allergic diseases. Mucosal administration of antigen is a long-recognized method of inducing antigen-specific immune tolerance known as oral tolerance, which is viewed as having promising potential in the treatment of autoimmune and allergic diseases. Plant-based expression and delivery of recombinant antigens provide a promising new platform to induce oral tolerance, having considerable advantages including reduced cost and increased safety. Indeed, in recent years the use of tolerogenic plants for oral tolerance induction has attracted increasing attention, and considerable progress has been made. This review summarizes recent advances in using plants to deliver tolerogens for induction of oral tolerance in the treatment of autoimmune, allergic and inflammatory diseases.

  7. Impact of regurgitation on health-related quality of life in gastro-oesophageal reflux disease before and after short-term potent acid suppression therapy.

    Science.gov (United States)

    Kahrilas, Peter J; Jonsson, Andreas; Denison, Hans; Wernersson, Börje; Hughes, Nesta; Howden, Colin W

    2014-05-01

    Limited data exist on the impact of regurgitation on health-related quality of life (HRQOL) in gastro-oesophageal reflux disease (GORD). We assessed the relationship between regurgitation frequency and HRQOL before and after acid suppression therapy in GORD. We used data from two randomised trials of AZD0865 25-75 mg/day versus esomeprazole 20 or 40 mg/day in non-erosive reflux disease (NERD) (n=1415) or reflux oesophagitis (RO) (n=1460). The Reflux Disease Questionnaire was used to select patients with frequent and intense heartburn for inclusion and to assess treatment response. The Quality of Life in Reflux and Dyspepsia (QOLRAD) questionnaire was used to assess HRQOL. At baseline, 93% of patients in both the NERD and RO groups experienced regurgitation. Mean QOLRAD scores were similar for NERD and RO at baseline and at week 4 and disclosed decremental HRQOL with increasing frequency of regurgitation; a clinically relevant difference of >0.5 in mean QOLRAD scores was seen with regurgitation ≥4 days/week versus <4 days/week. The prevalence of frequent, persistent regurgitation (≥4 days/week) at week 4 among heartburn responders (≤1 day/week of mild heartburn) was 28% in NERD and 23% in RO. QOLRAD scores were higher among heartburn responders. There was a similar pattern of impact related to regurgitation frequency in heartburn responders compared with the group as a whole. Frequent regurgitation was associated with a clinically relevant, incremental decline in HRQOL beyond that associated with heartburn before and after potent acid suppression in both NERD and RO. NCT00206284 and NCT00206245.

  8. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    Science.gov (United States)

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  9. Use of Plant and Herb Derived Medicine for Therapeutic Usage in Cardiology.

    Science.gov (United States)

    Koo, Ye Eun; Song, Jiwon; Bae, Soochan

    2018-04-22

    Cardiovascular diseases (CVDs) have become prominent in mortality and morbidity rates. Prevalent cardiovascular conditions, such as hypertension, atherosclerosis and oxidative stress, are increasing at an alarming rate. Conventional drugs have been associated with adverse effects, suggesting a need for an alternative measure to ameliorate CVD. A number of plant- and herb-derived preventative food and therapeutic drugs for cardiovascular conditions are progressively used for their various benefits. Naturally derived food and drugs have fewer side effects because they come from natural elements; preventative food, such as grape seed, inhibits changes of histopathology and biomarkers in vital organs whereas therapeutic drugs, for instance Xanthone, improve heart functions by suppressing oxidative stress of myocyte. This review closely examines the various plant- and herb-derived drugs that have assumed an essential role in treating inflammation and oxidative stress for prevalent cardiovascular conditions. Furthermore, the use of plant-derived medicine with other synthetic particles, such as nanoparticles, for targeted therapy is investigated for its effective clinical use in the future.

  10. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.

    Directory of Open Access Journals (Sweden)

    Mark Diamond

    Full Text Available The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.

  11. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv 'Embul'.

    Science.gov (United States)

    Abayasekara, C L; Adikaram, N K B; Wanigasekara, U W N P; Bandara, B M R

    2013-03-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar 'Embul' (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. (1)H and (13)C NMR spectral data of one purified phytoalexin compared closely with 4'-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana.

  12. Nonchemical, cultural management strategies to suppress phytophthora root rot in northern highbush blueberry

    Science.gov (United States)

    Phytophthora cinnamomi causes root rot of highbush blueberry and decreases plant growth, yield, and profitability for growers. Fungicides can suppress root rot, but cannot be used in certified organic production systems and fungicide resistance may develop. Alternative, non-chemical, cultural manag...

  13. Possible role of common spices as a preventive and therapeutic agent for Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Omid Mirmosayyeb

    2017-01-01

    Full Text Available For centuries, spices have been consumed as food additives or medicinal agents. However, there is increasing evidence indicating the plant-based foods in regular diet may lower the risk of neurodegenerative diseases including Alzheimer disease. Spices, as one of the most commonly used plant-based food additives may provide more than just flavors, but as agents that may prevent or even halt neurodegenerative processes associated with aging. In this article, we review the role and application of five commonly used dietary spices including saffron turmeric, pepper family, zingiber, and cinnamon. Besides suppressing inflammatory pathways, these spices may act as antioxidant and inhibit acetyl cholinesterase and amyloid β aggregation. We summarized how spice-derived nutraceuticals mediate such different effects and what their molecular targets might be. Finally, some directions for future research are briefly discussed.

  14. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Science.gov (United States)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  15. Museum specimen data reveal emergence of a plant disease may be linked to increases in the insect vector population.

    Science.gov (United States)

    Zeilinger, Adam R; Rapacciuolo, Giovanni; Turek, Daniel; Oboyski, Peter T; Almeida, Rodrigo P P; Roderick, George K

    2017-09-01

    The emergence rate of new plant diseases is increasing due to novel introductions, climate change, and changes in vector populations, posing risks to agricultural sustainability. Assessing and managing future disease risks depends on understanding the causes of contemporary and historical emergence events. Since the mid-1990s, potato growers in the western United States, Mexico, and Central America have experienced severe yield loss from Zebra Chip disease and have responded by increasing insecticide use to suppress populations of the insect vector, the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). Despite the severe nature of Zebra Chip outbreaks, the causes of emergence remain unknown. We tested the hypotheses that (1) B. cockerelli occupancy has increased over the last century in California and (2) such increases are related to climate change, specifically warmer winters. We compiled a data set of 87,000 museum specimen occurrence records across the order Hemiptera collected between 1900 and 2014. We then analyzed changes in B. cockerelli distribution using a hierarchical occupancy model using changes in background species lists to correct for collecting effort. We found evidence that B. cockerelli occupancy has increased over the last century. However, these changes appear to be unrelated to climate changes, at least at the scale of our analysis. To the extent that species occupancy is related to abundance, our analysis provides the first quantitative support for the hypothesis that B. cockerelli population abundance has increased, but further work is needed to link B. cockerelli population dynamics to Zebra Chip epidemics. Finally, we demonstrate how this historical macro-ecological approach provides a general framework for comparative risk assessment of future pest and insect vector outbreaks. © 2017 by the Ecological Society of America.

  16. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  17. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    OpenAIRE

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the le...

  18. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey.

    Science.gov (United States)

    Dolan, Marc C; Jordan, Robert A; Schulze, Terry L; Schulze, Christopher J; Manning, Mark Cornell; Ruffolo, Daniel; Schmidt, Jason P; Piesman, Joseph; Karchesy, Joseph J

    2009-12-01

    We evaluated the ability of the natural, plant-derived acaricides nootkatone and carvacrol to suppress Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae). Aqueous formulations of 1 and 5% nootkatone applied by backpack sprayer to the forest litter layer completely suppressed I. scapularis nymphs through 2 d. Thereafter, the level of reduction gradually declined to nootkatone was less effective, but at a 5% concentration, the level of control was similar or greater to that observed with I. scapularis through 21 d postapplication. Initial applications of 0.05% carvacrol were ineffective, but a 5% carvacrol formulation completely suppressed nymphs of both species through 2 d and resulted in significant reduction in I. scapularis and A. americanum nymphs through 28 and 14 d postapplication, respectively. Backpack sprayer applications of 5% nootkatone to the shrub and litter layers resulted in 100% control of I. scapularis adults through 6 d, but the level of reduction declined to 71.5% at 28 d postapplication. By contrast, high-pressure applications of 2% nootkatone to the litter layer resulted in 96.2-100% suppression of both I. scapularis and A. americanum nymphs through 42 d, whereas much lower control was obtained from the same formulation applied by backpack sprayer. Backpack sprayer application of a 3.1% nootkatone nanoemulsion resulted in 97.5-98.9 and 99.3-100% reduction in I. scapularis and A. americanum nymphs, respectively, at 1 d postapplication. Between 7 d and 35 d postapplication, the level of control varied between 57.1% and 92.5% for I. scapularis and between 78.5 and 97.1% for A. americanum nymphs. The ability of natural products to quickly suppress and maintain significant control of populations of these medically important ticks at relatively low concentrations may represent a future alternative to the use of conventional synthetic acaricides.

  19. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-01-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  20. Association between vestibulo-ocular reflex suppression, balance, gait, and fall risk in ageing and neurodegenerative disease: protocol of a one-year prospective follow-up study.

    Science.gov (United States)

    Srulijes, Karin; Mack, David J; Klenk, Jochen; Schwickert, Lars; Ihlen, Espen A F; Schwenk, Michael; Lindemann, Ulrich; Meyer, Miriam; Srijana, K C; Hobert, Markus A; Brockmann, Kathrin; Wurster, Isabel; Pomper, Jörn K; Synofzik, Matthis; Schneider, Erich; Ilg, Uwe; Berg, Daniela; Maetzler, Walter; Becker, Clemens

    2015-10-09

    Falls frequency increases with age and particularly in neurogeriatric cohorts. The interplay between eye movements and locomotion may contribute substantially to the occurrence of falls, but is hardly investigated. This paper provides an overview of current approaches to simultaneously measure eye and body movements, particularly for analyzing the association of vestibulo-ocular reflex (VOR) suppression, postural deficits and falls in neurogeriatric risk cohorts. Moreover, VOR suppression is measured during head-fixed target presentation and during gaze shifting while postural control is challenged. Using these approaches, we aim at identifying quantitative parameters of eye-head-coordination during postural balance and gait, as indicators of fall risk. Patients with Progressive Supranuclear Palsy (PSP) or Parkinson's disease (PD), age- and sex-matched healthy older adults, and a cohort of young healthy adults will be recruited. Baseline assessment will include a detailed clinical assessment, covering medical history, neurological examination, disease specific clinical rating scales, falls-related self-efficacy, activities of daily living, neuro-psychological screening, assessment of mobility function and a questionnaire for retrospective falls. Moreover, participants will simultaneously perform eye and head movements (fixating a head-fixed target vs. shifting gaze to light emitting diodes in order to quantify vestibulo-ocular reflex suppression ability) under different conditions (sitting, standing, or walking). An eye/head tracker synchronized with a 3-D motion analysis system will be used to quantify parameters related to eye-head-coordination, postural balance, and gait. Established outcome parameters related to VOR suppression ability (e.g., gain, saccadic reaction time, frequency of saccades) and motor related fall risk (e.g., step-time variability, postural sway) will be calculated. Falls will be assessed prospectively over 12 months via protocols and

  1. Reassessing apoptosis in plants.

    Science.gov (United States)

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  2. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Science.gov (United States)

    Djonović, Slavica; Urbach, Jonathan M; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A; Priebe, Gregory P; Ausubel, Frederick M

    2013-03-01

    Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose

  3. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Directory of Open Access Journals (Sweden)

    Slavica Djonović

    2013-03-01

    Full Text Available Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic

  4. Biochar amendment improves soil fertility and productivity of mulberry plant

    Directory of Open Access Journals (Sweden)

    Faruque Ahmed

    2017-07-01

    Full Text Available Biochar has the potential to improve soil fertility and crop productivity. A field experiment was carried out at the experimental field of Bangladesh Sericulture Research and Training Institute (BSRTI, Rajshahi, Bangladesh. The objective of this study was to examine the effect of biochar on soil properties, growth, yield and foliar disease incidence of mulberry plant. The study consisted of 6 treatments: control, basal dose of NPK, rice husk biochar, mineral enriched biochar, basal dose + rice husk biochar and basal dose + mineral enriched biochar. Growth parameters such as node/meter, total branch number/plant, total leaf yield/hectare/year were significantly increased in basal dose + mineral enriched biochar treated plot in second year compared with the other fertilizer treatments. In second year, the total leaf yield/hectare/year were also 142.1% and 115.9% higher in combined application of basal dose + mineral enriched biochar and basal dose + rice husk biochar, respectively, than the control treatment. The soil properties such as organic matter, phosphorus, sulphur and zinc percentage were significantly increased with both the (mineral enriched and rice husk biochar treated soil applied with or without recommended basal dose of NPK than the control and only the recommended basal dose of NPK, respectively. Further, the lowest incidences of tukra (6.4%, powdery mildew (10.4% and leaf spot (7.6% disease were observed in second year under mineral enriched biochar treated plot than the others. The findings revealed that utilization of biochar has positive effect on the improvement of soil fertility and productivity as well as disease suppression of mulberry plant.

  5. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi.

    Science.gov (United States)

    Yoshida, S; Koitabashi, M; Nakamura, J; Fukuoka, T; Sakai, H; Abe, M; Kitamoto, D; Kitamoto, H

    2015-07-01

    To investigate the effects of mannosylerythritol lipids (MELs) on the hydrophobicity of solid surfaces, their suppressive activity against the early infection behaviours of several phytopathogenic fungal conidia, and their suppressive activity against disease occurrences on fungal host plant leaves. The changes in the hydrophobicity of plastic film surfaces resulting from treatments with MEL solutions (MEL-A, MEL-B, MEL-C and isoMEL-B) and synthetic surfactant solutions were evaluated based on the changes in contact angles of water droplets placed on the surfaces. The droplet angles on surfaces treated with MELs were verified to decrease within 100 s after placement, with contact angles similar to those observed on Tween 20-treated surfaces, indicating decreases in surface hydrophobicity after MEL treatments. Next, conidial germination, germ tube elongation and the formation of appressorium of Blumeria graminis f. sp. tritici, Colletotrichum dematium, Glomerella cingulata and Magnaporthe grisea were evaluated on plastic surfaces that were pretreated with surfactant solutions. On the surfaces of MEL-treated plastic film, inhibition of conidial germination, germ tube elongation, and suppression of appressoria formation tended to be observed, although the level of effect was dependent on the combination of fungal species and type of MEL. Inoculation tests revealed that the powdery mildew symptom caused by B. graminis f. sp. tritici was significantly suppressed on wheat leaf segments treated with MELs. MELs exhibited superior abilities in reducing the hydrophobicity of solid surfaces, and have the potential to suppress powdery mildew in wheat plants, presumably due to the inhibition of conidial germination. This study provides significant evidence of the potential for MELs to be used as novel agricultural chemical pesticides. © 2015 The Society for Applied Microbiology.

  6. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence.

    Directory of Open Access Journals (Sweden)

    Suayib Üstün

    Full Text Available The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv requires type III effector proteins (T3Es for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed.

  7. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids.

    Science.gov (United States)

    Sobolev, Victor; Arias, Renee; Goodman, Kerestin; Walk, Travis; Orner, Valerie; Faustinelli, Paola; Massa, Alicia

    2018-01-10

    Aspergillus flavus is a soil fungus that commonly invades peanut seeds and often produces carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such an invasion. These prenylated stilbenoids are considered peanut antifungal phytoalexins. However, the mechanism of peanut-fungus interaction has not been sufficiently studied. We used pure peanut stilbenoids arachidin-1, arachidin-3, and chiricanine A to study their effects on the viability of and metabolite production by several important toxigenic Aspergillus species. Significant reduction or virtually complete suppression of aflatoxin production was revealed in feeding experiments in A. flavus, Aspergillus parasiticus, and Aspergillus nomius. Changes in morphology, spore germination, and growth rate were observed in A. flavus exposed to the selected peanut stilbenoids. Elucidation of the mechanism of aflatoxin suppression by peanut stilbenoids could provide strategies for preventing plant invasion by the fungi that produce aflatoxins.

  8. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells.

    Science.gov (United States)

    Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio

    2012-03-15

    Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.

  9. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  10. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Sarkar

    Full Text Available M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  11. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants.

    Science.gov (United States)

    Ko, Moonkyung; Cho, Jung Hyun; Seo, Hyo-Hyoun; Lee, Hyun-Hwa; Kang, Ha-Young; Nguyen, Thai Son; Soh, Hyun Cheol; Kim, Young Soon; Kim, Jeong-Il

    2016-08-01

    Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling

  12. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish

    NARCIS (Netherlands)

    Boer, Marjan de; Sluis, Ientse van der; Loon, L.C. van; Bakker, P.A.H.M.

    1999-01-01

    Fusarium wilt diseases, caused by the fungus Fusarium oxysporum, lead to significant yield losses of crops. One strategy to control fusarium wilt is the use of antagonistic, root-colonizing Pseudomonas spp. It has been demonstrated that different strains of these bacteria suppress disease by

  13. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  14. Effects of plant conduction systems and organic fertilizer management on disease incidence and severity in ‘Osiana’ and ‘Carola’ roses

    Directory of Open Access Journals (Sweden)

    Márcia de Nazaré Oliveira Ribeiro

    2015-04-01

    Full Text Available Conventional pruning is a very common practice for pruning rose cultivars in Brazil. However, few Brazilian producers known any other efficient plant training method for roses, namely “lateral stem bending” or “arching technique”, which involves bending the branches of the rosebush in order to increase the photosynthetic rate of the plant. As well as plant training, the use of fertilizers must also be done carefully in order to obtain high quality roses. Biofertilizers are recommended because of their multiple effects: fertilizer, protein synthesis stimulant, insect repellent, and disease controller. The aim of this study was to assess the plant training system and management of organic fertilizer on the incidence and severity of disease in the ‘Osiana’ and ‘Carola’ roses. The ‘Osiana’ rosebushes received three concentrations (0%, 5%, and 15% of foliar biofertilizer applied monthly to the leaves together with two plant conduction methods (conventional pruning and lateral stem bending. ‘Carola’ roses were treated with three types of fertilizer (chemical fertilizer on the soil + bokashi on the soil, chemical fertilizer on the soil + foliar FishfertilÒand chemical fertilization on the soil without applying organic fertilizers every two weeks, together with 2 plant conduction systems (conventional pruning and lateral stem bending. The additional treatments in ‘Carola’ roses were composed of two organic fertilizers (Bokashi and foliar Fishfertil® and chemical fertilization with lateral pruning. The incidence and severity of disease in these plants during the experiment were assessed over 5 months. For the ‘Osiana’ rose, the incidence and severity of disease were not influenced by fertilizer management or plant training methods. For the ‘Carola’ roses, the different types of fertilizer caused different responses according to the plant training system used, with the biofertilizer Fishfertil® reducing the incidence

  15. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  16. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  17. CD4 decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV

    DEFF Research Database (Denmark)

    Helleberg, Marie; Kronborg, Gitte; Larsen, Carsten S

    2013-01-01

    immunodeficiency virus (HIV) were followed in the Danish nationwide, population-based cohort study in the period 1995-2010 with quarterly CD4 measurements. Associations between a CD4 decline of ≥30% and cardiovascular disease, cancer, and death were analyzed using Poisson regression with date of CD4 decline...... as a time-updated variable. Results. We followed 2584 virally suppressed HIV patients for 13 369 person-years (PY; median observation time, 4.7 years). Fifty-six patients developed CD4 decline (incidence rate, 4.2/1000 PY [95% confidence interval {CI}, 3.2-5.4]). CD4 counts dropped from a median of 492...

  18. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-α and NF-κB pathways in lipopolysaccharide-stimulated mouse macrophages

    International Nuclear Information System (INIS)

    Lee, Tzung-Yan; Lee, Ko-Chen; Chen, Shih-Yuan; Chang, Hen-Hong

    2009-01-01

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-α expression through suppression of I-κBα phosphorylation, NF-κB nuclear activation and PKC-α translocation, which in turn inhibits Ca 2+ mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-κB and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  19. Hyperspectral remote sensing techniques for early detection of plant diseases

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  20. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    Directory of Open Access Journals (Sweden)

    Tatoba R Waghmode

    Full Text Available 2-bromoethanesulfonate (BES is a structural analogue of coenzyme M (Co-M and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1 were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001 decreased by BES application possibly due to significant (P<0.001 reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance. BES significantly (P<0.001 reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  1. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases?

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-04-01

    Full Text Available Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance. Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap, rapid and eco-friendly method to control mosquito vector populations, with special reference to young instars. Furthermore, plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors. In this Editorial, parasitologists, entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.

  2. The Use of Fta Card on Dna Sample Preparation for Molecular of Plant Disease Identification

    OpenAIRE

    Sulistyawati, Purnamila; Rimbawanto, Anto

    2007-01-01

    Accurate and guick identification of pathogen is key to control the spread of plant disesases. Morphological identification is often ineffective because it requires fruit body which often are not presence, rely on characters which may be highly variable within and among species and can be slow and time consuming. Molecular identification of plant disease can overcome most of the shortcomings of morphological identification. Application of FTA Cardn for sample collection is crucial for the su...

  3. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases

    Directory of Open Access Journals (Sweden)

    Joyce Elaine Cristina Betoni

    2006-06-01

    Full Text Available Searches for substances with antimicrobial activity are frequent, and medicinal plants have been considered interesting by some researchers since they are frequently used in popular medicine as remedies for many infectious diseases. The aim of this study was to verify the synergism between 13 antimicrobial drugs and 8 plant extracts - "guaco" (Mikania glomerata, guava (Psidium guajava, clove (Syzygium aromaticum, garlic (Allium sativum, lemongrass (Cymbopogon citratus, ginger (Zingiber officinale, "carqueja" (Baccharis trimera, and mint (Mentha piperita - against Staphylococcus aureus strains, and for this purpose, the disk method was the antimicrobial susceptibility test performed. Petri dishes were prepared with or without dilution of plant extracts at sub-inhibitory concentrations in Mueller-Hinton Agar (MHA, and the inhibitory zones were recorded in millimeters. In vitro anti-Staphylococcus aureus activities of the extracts were confirmed, and synergism was verified for all the extracts; clove, guava, and lemongrass presented the highest synergism rate with antimicrobial drugs, while ginger and garlic showed limited synergistic capacity.

  4. Use of plant stanol ester margarine among persons with and without cardiovascular disease: early phases of the adoption of a functional food in Finland.

    Science.gov (United States)

    Simojoki, Meri; Luoto, Riitta; Uutela, Antti; Rita, Hannu; Boice, John D; McLaughlin, Joseph K; Puska, Pekka

    2005-06-01

    The plant stanol ester margarine Benecol is a functional food that has been shown to lower effectively serum total and LDL-cholesterol. The purpose of this post-marketing study is to characterize users of plant stanol ester margarine with and without cardiovascular disease. A cohort of plant stanol ester margarine users was established based on a compilation of 15 surveys conducted by the National Public Health Institute in Finland between 1996-2000. There were 29,772 subjects aged 35-84 years in the cohort. The users of plant stanol ester margarine were identified by the type of bread spread used. The plant stanol ester margarine was used as bread spread by 1332 (4.5%) subjects. Almost half (46%) of the users reported a history of cardiovascular disease. Persons with cardiovascular disease were more likely to use plant stanol ester margarine (8%) than persons without cardiovascular disease (3%). Users with and without cardiovascular disease seemed to share similar characteristics. In particular, they were elderly people with otherwise healthy life-styles and diet. They were less likely smokers, more likely physically active and less likely obese than nonusers. The users reported being in good or average health in general and having used cholesterol-lowering drugs. Plant stanol ester margarine seems to be used by persons for whom it was designed and in a way it was meant: as part of efforts for cardiovascular disease risk reduction.

  5. Use of plant stanol ester margarine among persons with and without cardiovascular disease: Early phases of the adoption of a functional food in Finland

    Directory of Open Access Journals (Sweden)

    Boice John D

    2005-06-01

    Full Text Available Abstract Background The plant stanol ester margarine Benecol® is a functional food that has been shown to lower effectively serum total and LDL-cholesterol. The purpose of this post-marketing study is to characterize users of plant stanol ester margarine with and without cardiovascular disease. Methods A cohort of plant stanol ester margarine users was established based on a compilation of 15 surveys conducted by the National Public Health Institute in Finland between 1996–2000. There were 29 772 subjects aged 35–84 years in the cohort. The users of plant stanol ester margarine were identified by the type of bread spread used. Results The plant stanol ester margarine was used as bread spread by 1332 (4.5% subjects. Almost half (46% of the users reported a history of cardiovascular disease. Persons with cardiovascular disease were more likely to use plant stanol ester margarine (8% than persons without cardiovascular disease (3%. Users with and without cardiovascular disease seemed to share similar characteristics. In particular, they were elderly people with otherwise healthy life-styles and diet. They were less likely smokers, more likely physically active and less likely obese than nonusers. The users reported being in good or average health in general and having used cholesterol-lowering drugs. Conclusion Plant stanol ester margarine seems to be used by persons for whom it was designed and in a way it was meant: as part of efforts for cardiovascular disease risk reduction.

  6. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  7. Venom allergen-like proteins in secretions of plant-parasitic nematodes activate and suppress extracellular plant immune receptors

    NARCIS (Netherlands)

    Lozano Torres, J.L.

    2014-01-01

    Parasitic worms threaten human, animal and plant health by infecting people, livestock and crops worldwide. Animals and plants share an anciently evolved innate immune system. Parasites modulate this immune system by secreting proteins to maintain their parasitic lifestyle. This thesis

  8. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli.

    Science.gov (United States)

    Leonard, Simon; Hommais, Florence; Nasser, William; Reverchon, Sylvie

    2017-05-01

    Plant pathogenic bacteria attack numerous agricultural crops, causing devastating effects on plant productivity and yield. They survive in diverse environments, both in plants, as pathogens, and also outside their hosts as saprophytes. Hence, they are confronted with numerous changing environmental parameters. During infection, plant pathogens have to deal with stressful conditions, such as acidic, oxidative and osmotic stresses; anaerobiosis; plant defenses; and contact with antimicrobial compounds. These adverse conditions can reduce bacterial survival and compromise disease initiation and propagation. Successful bacterial plant pathogens must detect potential hosts and also coordinate their possibly conflicting programs for survival and virulence. Consequently, these bacteria have a strong and finely tuned capacity for sensing and responding to environmental and plant stimuli. This review summarizes our current knowledge of the signals and genetic circuits that affect survival and virulence factor expression in three important and well-studied plant pathogenic bacteria with wide host ranges and the capacity for long-term environmental survival. These are: Ralstonia solanacerarum, a vascular pathogen that causes wilt disease; Agrobacterium tumefaciens, a biotrophic tumorigenic pathogen responsible for crown gall disease and Dickeya, a brute force apoplastic pathogen responsible for soft-rot disease. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Pudhom, Khanitha [Department of Chemistry, Faculty of Science and Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  10. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-κB and MAPK pathways

    International Nuclear Information System (INIS)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha; Palaga, Tanapat

    2011-01-01

    Highlights: ► A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. ► Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. ► The mode of action of this limonoid is by inhibiting activation of the NF-κB and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-κB (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 μM. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-κB p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  11. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  12. Analysis of a Mark II containment structure for hydrodynamic loads in suppression pool

    International Nuclear Information System (INIS)

    Bedrosian, B.

    1978-01-01

    During pressure-relief modes of BWR plant operation forcing signals are introduced into the suppression pool at discrete locations: exit nozzles of SRV discharge pipes (quenchers or ramsheads). These forcing signals are transmitted through the water of the suppression pool and, after reaching the pool boundaries, act as loadings on the containment structure wetted perimeter. The response of the containment structure is influenced by the presence of water as it interacts with the structure during application of the load. An adequate analysis must account for fluid-structure interaction (FSI) effects. This paper presents an exact formulation for solving the problem. FSI effects may become significant for a given geometry if the time history of loading and the dynamic properties of the coupled fluid-structure system satisfy a defined (system related) relationship. Results of analyses and parametric/sensitivity studies performed for the steel containment structure of an 1100 Mwe BWR nuclear plant of Mark II configuration are presented. (Author)

  13. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    Science.gov (United States)

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv ‘Embul’

    Science.gov (United States)

    Abayasekara, C. L.; Adikaram, N. K. B.; Wanigasekara, U. W. N. P.; Bandara, B. M. R.

    2013-01-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar ‘Embul’ (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. 1H and 13C NMR spectral data of one purified phytoalexin compared closely with 4′-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana. PMID:25288931

  15. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Humphrey, Parris T; Chevasco, Daniela; Ausubel, Frederick M; Pierce, Naomi E; Whiteman, Noah K

    2016-01-01

    Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Early detection of plant disease using close range sensing system for input into digital earth environment

    International Nuclear Information System (INIS)

    Chew, W C; Lau, A M S; Kang, C S; Hashim, M; Battay, A E

    2014-01-01

    A case study on pre-symptom stage of plant disease infection using ground based hyperspectral remote sensing was conducted. The objectives of the study are: (1) to validate the existence of pre-symptom stage of Ralstonia Solanacearum infection in Solanum Melongena L. (eggplant), and (2) to determine the induced electromagnetic spectral response for infected eggplant. From the experiment, the pre-symptom duration of Ralstonia Solanacearum infection in the case of eggplant was estimated (with the artificial photosynthetic stress conditions were adopted in the experiment to induce measurable changes in daily hyperspectral measurement of disease infected eggplant samples during the pre-symptom stage) as four days which is the critical period for practicing effective treatments. Vegetation indices namely, (1) Chlorophyll Absorption Integral (CAI), (2) Photochemical Radiation Index (PRI), and (3) Normalized Difference Vegetation Index (NDVI) have successfully shown noticeable progress of index value from the infected sample plant (with 100% light stress condition) throughout the study. Yet, other infected sample plants with moderate light stress conditions (50% or 75%) did not result any similar progress of index value from the daily leaf scale hyperspectral measurements. Apparently, extreme light stress can induce significant changes at visible portion in hyperspectral measurements for a disease infected eggplant during the pre-symptom stage

  18. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  19. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    Science.gov (United States)

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  20. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing.

    Science.gov (United States)

    Li, Jinyun; Trivedi, Pankaj; Wang, Nian

    2016-01-01

    Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.

  1. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease.

    Science.gov (United States)

    Gylling, Helena; Hallikainen, Maarit; Rajaratnam, Radhakrishnan A; Simonen, Piia; Pihlajamäki, Jussi; Laakso, Markku; Miettinen, Tatu A

    2009-03-01

    In postmenopausal coronary artery disease (CAD) women, serum plant sterols are elevated. Thus, we investigated further whether serum plant sterols reflect absolute cholesterol metabolism in CAD as in other populations and whether the ABCG5 and ABCG8 genes, associated with plant sterol metabolism, were related to the risk of CAD. In free-living postmenopausal women with (n = 47) and without (n = 62) CAD, serum noncholesterol sterols including plant sterols were analyzed with gas-liquid chromatography, cholesterol absorption with peroral isotopes, absolute cholesterol synthesis with sterol balance technique, and bile acid synthesis with quantitating fecal bile acids. In CAD women, serum plant sterol ratios to cholesterol were 21% to 26% (P synthesis were reduced. Only in controls were serum plant sterols related to cholesterol absorption (eg, sitosterol; in controls: r = 0.533, P synthesis marker) and lathosterol-cholestanol (relative synthesis-absorption marker) were related to absolute synthesis and absorption percentage (P range from .05 to sterol metabolism is disturbed in CAD women; so serum plant sterols only tended to reflect absolute cholesterol absorption. Other relative markers of cholesterol metabolism were related to the absolute ones in both groups. ABCG5 and ABCG8 genes were not associated with the risk of CAD.

  2. Nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Hidehiro; Oya, Takashi

    1996-11-05

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  3. Nuclear power plant

    International Nuclear Information System (INIS)

    Urata, Hidehiro; Oya, Takashi.

    1996-01-01

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  4. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity.

    Science.gov (United States)

    Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A

    2017-11-01

    The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.

  5. Allium White Rot Suppression with Composts and Trichoderma viride in Relation to Sclerotia Viability.

    Science.gov (United States)

    Coventry, E; Noble, R; Mead, A; Marin, F R; Perez, J A; Whipps, J M

    2006-09-01

    ABSTRACT Allium white rot (AWR) is a serious disease of Allium spp. caused by the sclerotium-forming fungus Sclerotium cepivorum. This work has examined the effects of onion waste compost (OWC) and spent mushroom compost (SMC), with and without Trichoderma viride S17A, on sclerotia viability and AWR in glasshouse and field experiments. Incorporation of OWC into soil reduced the viability of sclerotia and the incidence of AWR on onion plants in glasshouse pot bioassays, whereas SMC or T. viride S17A only reduced incidence of AWR. In two field trials, OWC reduced sclerotia viability and was as effective in reducing AWR as a fungicide (Folicur, a.i. tebuconazole). Field application of SMC had no effect on sclerotia viability and did not control AWR. However, the addition of T. viride S17A to SMC facilitated proliferation of T. viride S17A in the soil and increased the healthy onion bulb yield. The results indicate two mechanisms for the suppression of AWR: (i) reduction in the soil population of viable sclerotia, which may be due to volatile sulfur compounds detected in OWC but absent in SMC, and (ii) prevention of infection of onion plants from sclerotia following amendment of soil with OWC, SMC, or T. viride S17A.

  6. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    Science.gov (United States)

    Bivi, M. Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M. S.; Idris, Abu Seman

    2016-01-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease. PMID:27721689

  7. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid.

    Science.gov (United States)

    Bivi, M Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M S; Idris, Abu Seman

    2016-10-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  8. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    M. Shahul Hamid Rahamah Bivi

    2016-10-01

    Full Text Available Continuous supplementation of mineral nutrients and salicylic acid (SA as foliar application could improve efficacy in controlling basal stem rot (BSR disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3% was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA] (5.0% followed by T1 (5.5%, T5 (5.8%, T3 (8.3%, T6 (8.3%, T4 (13.3%, and T2 (15.8% treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  9. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade

    Science.gov (United States)

    Large carnivores can powerfully shape ecosystems by directly suppressing herbivores, thereby indirectly benefitting plants in a process known as a trophic cascade. In 2002, after a 20-year absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya. We hypothesized t...

  10. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  11. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    Science.gov (United States)

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. © 2015 American Society for Nutrition.

  12. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  13. Consequences of stereotype suppression and internal suppression motivation : A self-regulation approach

    NARCIS (Netherlands)

    Gordijn, Ernestine H; Hindriks, Inge; Koomen, W; Dijksterhuis, Ap; van Knipppenberg, A.

    The present research studied the effects of suppression of stereotypes on subsequent stereotyping. Moreover, the moderating influence of motivation to suppress stereotypes was examined. The first three experiments showed that suppression of stereotypes leads to the experience of engaging in

  14. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    NARCIS (Netherlands)

    Os, van G.J.; Agtmaal, van M.; Hol, G.; Hundscheid, M.P.J.; Runia, W.T.; Hordijk, C.; Boer, de W.

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial

  15. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    NARCIS (Netherlands)

    van Agtmaal, Maaike; van Os, Gera; Hol, Gera; Hundscheid, M.P.J.; Runia, Willemien; Hordijk, Cees; De Boer, Wietse

    2015-01-01

    BACKGROUND: There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil

  16. Growth suppression of colorectal cancer by plant-derived multiple mAb CO17-1A × BR55 via inhibition of ERK1/2 phosphorylation.

    Science.gov (United States)

    Kwak, Dong Hoon; Moussavou, Ghislain; Lee, Ju Hyoung; Heo, Sung Youn; Ko, Kisung; Hwang, Kyung-A; Jekal, Seung-Joo; Choo, Young-Kug

    2014-11-14

    We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAb(P)) CO17-1A and mAb(P) CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAb(P) CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAb(P) CO17-1A × BR55-treated. The mAb(P) CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAb(P) CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAb(P) CO17-1A × BR55. In addition, the mAb(P) CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAb(P) CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAb(P) CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.

  17. Testing fungistatic properties of soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Enzhu, Hu; Nesterenko, Elena; Liu, Professor Hong; Manukovsky, N. S.; Kovalev, Vladimir; Gurevich, Yu.; Kozlov, Vladimir; Khizhnyak, Serge; Xing, Yidong; Hu, Enzhu; Enzhu, Hu

    There are two ways of getting vegetable food in BLSS: in hydroponic culture and on soil substrates. In any case there is a chance that the plants will be affected by plant pathogenic microorganisms. The subject of the research was a soil-like substrate (SLS) for growing plants in a Bioregenerative Life Support System (BLSS). We estimated the fungistatic properties of SLS using test cultures of Bipolaris and Alternaria plant pathogenic fungi. Experiments were made with the samples of SLS, natural soil and sand (as control). We tested 2 samples of SLS produced by way of bioconversion of wheat and rice straw. We measured the disease severity of wheat seedlings and the incidence of common root rot in natural (non-infectious) background and man-made (infectious) conditions. The severity of disease on the SLS was considerably smaller both in non-infectious and infectious background conditions (8 and 12%) than on the natural soil (18 and 32%) and sand. It was the soil-like substrate that had the minimal value among the variants being compared (20% in non-infectious and 40% in infectious background conditions). This index in respect of the soil was 55 and 78%, correspondingly, and in respect of the sand - 60%, regardless of the background. It was found that SLS significantly suppressed conidia germination of Bipolaris soroikiniana (pwheat and rice straw.

  18. Delivery of gene biotechnologies to plants: Pathogen and pest control

    Science.gov (United States)

    Treatment of oligonucleotides to plants for host delivered suppression of microbes and insect pests of citrus was successful. FANA_ASO, (2'-deoxy-2'-fluoro-D- arabinonucleic acid)_( antisense oligonucleotides- AUM LifeTech) designed to: Asian citrus psyllid; Citrus plant bacterial pathogen of citru...

  19. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing.

    Science.gov (United States)

    Hedil, Marcio; Sterken, Mark G; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.

  20. Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon

    Science.gov (United States)

    Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogy...

  1. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  2. Cell-Permeable Parkin Proteins Suppress Parkinson Disease-Associated Phenotypes in Cultured Cells and Animals

    Science.gov (United States)

    Duong, Tam; Kim, Jaetaek; Ruley, H. Earl; Jo, Daewoong

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo. PMID:25019626

  3. Influence of Multiple Infection and Relatedness on Virulence: Disease Dynamics in an Experimental Plant Population and Its Castrating Parasite

    Science.gov (United States)

    Buono, Lorenza; López-Villavicencio, Manuela; Shykoff, Jacqui A.; Snirc, Alodie; Giraud, Tatiana

    2014-01-01

    The level of parasite virulence, i.e., the decrease in host's fitness due to a pathogen, is expected to depend on several parameters, such as the type of the disease (e.g., castrating or host-killing) and the prevalence of multiple infections. Although these parameters have been extensively studied theoretically, few empirical data are available to validate theoretical predictions. Using the anther smut castrating disease on Silene latifolia caused by Microbotryum lychnidis-dioicae, we studied the dynamics of multiple infections and of different components of virulence (host death, non-recovery and percentage of castrated stems) during the entire lifespan of the host in an experimental population. We monitored the number of fungal genotypes within plants and their relatedness across five years, using microsatellite markers, as well as the rates of recovery and host death in the population. The mean relatedness among genotypes within plants remained at a high level throughout the entire host lifespan despite the dynamics of the disease, with recurrent new infections. Recovery was lower for plants with multiple infections compared to plants infected by a single genotype. As expected for castrating parasites, M. lychnidis-dioicae did not increase host mortality. Mortality varied across years but was generally lower for plants that had been diseased the preceding year. This is one of the few studies to have empirically verified theoretical expectations for castrating parasites, and to show particularly i) that castrated hosts live longer, suggesting that parasites can redirect resources normally used in reproduction to increase host lifespan, lengthening their transmission phase, and ii) that multiple infections increase virulence, here in terms of non-recovery and host castration. PMID:24892951

  4. Contribution of allelopathy and competition to weed suppression by winter wheat, triticale and winter rye

    DEFF Research Database (Denmark)

    Reiss, Antje; Fomsgaard, Inge S.; Mathiassen, Solvejg Kopp

    Above-ground competition and allelopathy are two of the most dominant mechanisms of plants to subdue their competitors in their closest surroundings. In an agricultural perspective, the suppression of weeds by the crop is of particular interest, as weeds represent the largest yield loss potential...... of competitive traits, such as early vigour, crop height and leaf area index and presence of phytotoxic compounds of the group of benzoxazinoids to weed suppression. Four cultivars of each of the winter cereals wheat, triticale and rye were grown in field experiments at two locations. Soil samples were taken...

  5. Disruption of a belowground mutualism alters interactions between plants and their floral visitors.

    Science.gov (United States)

    Cahill, James F; Elle, Elizabeth; Smith, Glen R; Shore, Bryon H

    2008-07-01

    Plants engage in diverse and intimate interactions with unrelated taxa. For example, aboveground floral visitors provide pollination services, while belowground arbuscular mycorrhizal fungi (AMF) enhance nutrient capture. Traditionally in ecology, these processes were studied in isolation, reinforcing the prevailing assumption that these above- and belowground processes were also functionally distinct. More recently, there has been a growing realization that the soil surface is not a barrier to many ecological interactions, particularly those involving plants (who live simultaneously above and below ground). Because of the potentially large impact that mycorrhizae and floral visitors can have on plant performance and community dynamics, we designed an experiment to test whether these multi-species mutualisms were interdependent under field conditions. Using benomyl, a widely used fungicide, we suppressed AMF in a native grassland, measuring plant, fungal, and floral-visitor responses after three years of fungal suppression. AMF suppression caused a shift in the community of floral visitors from large-bodied bees to small-bodied bees and flies, and reduced the total number of floral visits per flowering stem 67% across the 23 flowering species found in the plots. Fungal suppression has species-specific effects on floral visits for the six most common flowering plants in this experiment. Exploratory analyses suggest these results were due to changes in floral-visitor behavior due to altered patch-level floral display, rather than through direct effects of AMF suppression on floral morphology. Our findings indicate that AMF are an important, and overlooked, driver of floral-visitor community structure with the potential to affect pollination services. These results support the growing body of research indicating that interactions among ecological interactions can be of meaningful effect size under natural field conditions and may influence individual performance

  6. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Improved attractants for enhancing tsetse fly suppression

    International Nuclear Information System (INIS)

    2003-09-01

    At the initiation of this co-ordinated research project (CRP), the available visually attractant devices and odours for entomological monitoring and for suppression of tsetse fly populations were not equally effective against all economically important tsetse fly species. For species like G. austeni, G. brevipalpis, G. swynnertoni and some species of the PALPALIS-group of tsetse flies no sufficiently effective combinations of visual or odour attractants were available for efficient suppression and standardized monitoring as part of an operational integrated intervention campaign against the tsetse and trypanosomosis (T and T) problem. The Co-ordinated Research Project on Improved Attractants for Enhancing the Efficiency of Tsetse Fly Suppression Operations and Barrier Systems used in Tsetse Control/Eradication Campaigns involved (a) the identification, synthesis and provision of candidate kairomones, their analogues and of dispensers; (b) laboratory screening of synthesised candidate kairomones through electrophysiological studies and wind tunnel experiments; (c) field tests of candidate kairomones alone or as part of odour blends, in combination with available and or new trap designs; and (d) analysis of hydrocarbons that influence tsetse sexual behaviour. The CRP accomplished several main objectives, namely: - The screening of new structurally related compounds, including specific stereoisomers, of known tsetse attractants resulted in the identification of several new candidate odour attractants with promising potential. - An efficient two-step synthetic method was developed for the pilot plant scale production of 3-n-propyphenol, synergistic tsetse kairomone component. - Electrophysiological experiments complemented with wind tunnel studies provided an efficient basis for the laboratory screening of candidate attractants prior to the initiation of laborious field tests. - New traps were identified and modifications of existing traps were tested for some species

  8. Pressure suppression experiments in the PSS test rig of the GKSS

    International Nuclear Information System (INIS)

    Aust, E.

    1975-01-01

    A pressure suppression system has been developed for the advanced pressurized water reactor. Due to its compact layout, this system enables the reactor plant to be installed in the ship in a volume and weight saving manner. Because of significant differences in design and construction of this system as compared to similar systems for land based nuclear power plants, a test facility was built to experimentally demonstrate the effectiveness and the functioning of this system. The test facility will be described and a program of the major experimental tests will be given. Finally, some preliminary results of tests with air carry over in the wet well will be presented. (orig.) [de

  9. Normal mitogen-induced suppression of the interleukin-6 (IL-6) response and its deficiency in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Warrington, R.J.; Rutherford, W.J.

    1990-01-01

    A low-frequency suppressor-cell population in normal peripheral blood inhibits the B-cell CESS response to IL-6, following pokeweed mitogen stimulation. The suppression of IL-6 responsiveness is radiation sensitive, directed against CESS targets and not mediated by inhibition of IL-6 production, and associated with nonspecific cytotoxic activity against CESS targets. The generation of these cytolytic cells is also radiation sensitive. A correlation was found between PWM-induced cytotoxicity against CESS and the suppression of IL-6-dependent IgG production. But cytotoxicity toward CESS targets is not responsible for this suppression because IL-2 induces equivalent or greater nonspecific cytotoxicity against CESS in the total absence of suppression of CESS-derived IgG production and suppression is also induced by mitogen-activated PBL separated from CESS targets by a cell-impermeable membrane. This suppression was not mediated by TNF alpha/beta or IFN-gamma. In systemic lupus erythematosus, suppression of IL-6-dependent IgG production is impaired in patients with active disease (29.2 +/- 13.7%) compared to patients with inactive disease (70 +/- 19.5%) or normal controls (82.8 +/- 9.2%). There is also a defect in mitogen-induced nonspecific cytotoxicity in active SLE (specific lysis 15.1 +/- 3.5%, compared to 34 +/- 4% in normals). Pokeweed mitogen-activated PBL can therefore normally induce suppression of B-cell IL-6 responses and this response is deficient in lupus

  10. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.

  11. Cooling facility of nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Kenji; Nagasaki, Hideo.

    1992-01-01

    In a cooling device of a nuclear power plant, an exhaust pipe for an incondensible gas is branched. One of the branched exhaust pipes is opened in a pressure suppression pool water in a suppression chamber containing pool water and the other is opened at a lower portion of a dry well incorporating a pressure vessel. In a state where the pressure in the dry well is higher than that in the suppression chamber, an off-gas is exhausted effectively by way of the exhaustion pipe in communication with the suppression chamber. In a state where there is no difference between the pressures and the opening end of the exhaustion pipe in communication with the suppression chamber is sealed with water, off-gas is exhausted by way of the exhaustion pipe in communication with the lower portion of the dry well. Then, since the incondensible gas in a heat transfer pipe is not accumulated, after-heat can be removed efficiently. Satisfactory cooling is maintained even after the coincidence of the pressures in the dry well with that in the suppression chamber, to decrease a pressure in a reactor container. (N.H.)

  12. 7-Dehydrocholesterol (7-DHC), But Not Cholesterol, Causes Suppression of Canonical TGF-β Signaling and Is Likely Involved in the Development of Atherosclerotic Cardiovascular Disease (ASCVD).

    Science.gov (United States)

    Huang, Shuan Shian; Liu, I-Hua; Chen, Chun-Lin; Chang, Jia-Ming; Johnson, Frank E; Huang, Jung San

    2017-06-01

    For several decades, cholesterol has been thought to cause ASCVD. Limiting dietary cholesterol intake has been recommended to reduce the risk of the disease. However, several recent epidemiological studies do not support a relationship between dietary cholesterol and/or blood cholesterol and ASCVD. Consequently, the role of cholesterol in atherogenesis is now uncertain. Much evidence indicates that TGF-β, an anti-inflammatory cytokine, protects against ASCVD and that suppression of canonical TGF-β signaling (Smad2-dependent) is involved in atherogenesis. We had hypothesized that cholesterol causes ASCVD by suppressing canonical TGF-β signaling in vascular endothelium. To test this hypothesis, we determine the effects of cholesterol, 7-dehydrocholesterol (7-DHC; the biosynthetic precursor of cholesterol), and other sterols on canonical TGF-β signaling. We use Mv1Lu cells (a model cell system for studying TGF-β activity) stably expressing the Smad2-dependent luciferase reporter gene. We demonstrate that 7-DHC (but not cholesterol or other sterols) effectively suppresses the TGF-β-stimulated luciferase activity. We also demonstrate that 7-DHC suppresses TGF-β-stimulated luciferase activity by promoting lipid raft/caveolae formation and subsequently recruiting cell-surface TGF-β receptors from non-lipid raft microdomains to lipid rafts/caveolae where TGF-β receptors become inactive in transducing canonical signaling and undergo rapid degradation upon TGF-β binding. We determine this by cell-surface 125 I-TGF-β-cross-linking and sucrose density gradient ultracentrifugation. We further demonstrate that methyl-β-cyclodextrin (MβCD), a sterol-chelating agent, reverses 7-DHC-induced suppression of TGF-β-stimulated luciferase activity by extrusion of 7-DHC from resident lipid rafts/caveolae. These results suggest that 7-DHC, but not cholesterol, promotes lipid raft/caveolae formation, leading to suppression of canonical TGF-β signaling and atherogenesis. J

  13. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    Science.gov (United States)

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  14. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity.

    Science.gov (United States)

    Huang, Chung-Hao; Hsiao, Weng-Rong; Huang, Ching-Wen; Chen, Kuan-Chun; Lin, Shih-Shun; Chen, Tsung-Chi; Raja, Joseph A J; Wu, Hui-Wen; Yeh, Shyi-Dong

    2015-01-01

    The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) ((109)KFTMHNQ(117)), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif ((397)IYFL(400)) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

  15. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.

    Science.gov (United States)

    Chowdhury, Soumitra Paul; Uhl, Jenny; Grosch, Rita; Alquéres, Sylvia; Pittroff, Sabrina; Dietel, Kristin; Schmitt-Kopplin, Philippe; Borriss, Rainer; Hartmann, Anton

    2015-09-01

    The commercially available inoculant Bacillus amyloliquefaciens FZB42 is able to considerably reduce lettuce bottom rot caused by Rhizoctonia solani. To understand the interaction between FZB42 and R. solani in the rhizosphere of lettuce, we used an axenic system with lettuce bacterized with FZB42 and inoculated with R. solani. Confocal laser scanning microscopy showed that FZB42 could delay the initial establishment of R. solani on the plants. To show which secondary metabolites of FZB42 are produced under these in-situ conditions, we developed an ultra-high performance liquid chromatography coupled to time of flight mass spectrometry-based method and identified surfactin, fengycin, and bacillomycin D in the lettuce rhizosphere. We hypothesized that lipopeptides and polyketides play a role in enhancing the plant defense responses in addition to the direct antagonistic effect toward R. solani and used a quantitative real-time polymerase chain reaction-based assay for marker genes involved in defense signaling pathways in lettuce. A significant higher expression of PDF 1.2 observed in the bacterized plants in response to subsequent pathogen challenge showed that FZB42 could enhance the lettuce defense response toward the fungal pathogen. To identify if surfactin or other nonribosomally synthesized secondary metabolites could elicit the observed enhanced defense gene expression, we examined two mutants of FZB42 deficient in production of surfactin and the lipopetides and polyketides, by expression analysis and pot experiments. In the absence of surfactin and other nonribosomally synthesized secondary metabolites, there was no enhanced PDF 1.2-mediated response to the pathogen challenge. Pot experiment results showed that the mutants failed to reduce disease incidence in lettuce as compared with the FZB42 wild type, indicating, that surfactin as well as other nonribosomally synthesized secondary metabolites play a role in the actual disease suppression and on lettuce

  16. Effect of plant extracts on Alzheimer′s disease: An insight into therapeutic avenues

    Directory of Open Access Journals (Sweden)

    M Obulesu

    2011-01-01

    Full Text Available Alzheimer′s disease (AD is a devastative neurodegenerative disorder which needs adequate studies on effective treatment options. The extracts of plants and their effect on the amelioration of AD symptoms have been extensively studied. This paper summarizes the mechanisms like acetylcholinesterase (AChE inhibition, modification of monoamines, antiamyloid aggregation effect, and antioxidant activity which are actively entailed in the process of amelioration of AD symptoms. These effects are induced by extracts of a few plants of different origin like Yizhi Jiannao, Moringa oleifera (Drumstick tree, Ginkgo Biloba (Ginkgo/Maidenhair tree, Cassia obtisufolia (Sicklepod, Desmodium gangeticum (Sal Leaved Desmodium, Melissa officinalis (Lemon Balm, and Salvia officinalis (Garden sage, common sage.

  17. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  18. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    Science.gov (United States)

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. E.M. Freeman: early research on cereal diseases and the rise of plant pathology at the University of Minnesota.

    Science.gov (United States)

    Peterson, P D

    2001-01-01

    E.M. Freeman's role in early cereal disease research and the beginning of plant pathology at the University of Minnesota has been overshadowed largely by the enormous prestige of his student, E.C. Stakman. During the first decade of the twentieth century, Freeman was responsible for the transferral from Europe to the United States and the subsequent nurturing of important conceptual and technical developments in the area of cereal disease pathology. Under Freeman's leadership, these ideas would come to shape the direction of plant pathology research at the University of Minnesota for decades to follow.

  20. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...