WorldWideScience

Sample records for suppresses virus infection

  1. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir.

    Science.gov (United States)

    Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio

    2017-08-15

    A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected

  2. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  3. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    Science.gov (United States)

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  5. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses.

    Directory of Open Access Journals (Sweden)

    Songsong Wu

    2017-03-01

    Full Text Available Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4, could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility loci. Reactive oxygen species (ROS plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases.

  6. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-01-01

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection

  7. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  8. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  9. Israeli Acute Paralysis Virus Infection Leads to an Enhanced RNA Interference Response and Not Its Suppression in the Bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Kaat Cappelle

    2016-12-01

    Full Text Available RNA interference (RNAi is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host’s immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV, known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virus infections.

  10. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection.

    Science.gov (United States)

    Maliogka, Varvara I; Calvo, María; Carbonell, Alberto; García, Juan Antonio; Valli, Adrian

    2012-07-01

    HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.

  11. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  12. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    International Nuclear Information System (INIS)

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  13. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    Science.gov (United States)

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral

  14. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  15. Perinatal Exposure to Insecticide Methamidophos Suppressed Production of Proinflammatory Cytokines Responding to Virus Infection in Lung Tissues in Mice

    Directory of Open Access Journals (Sweden)

    Wataru Watanabe

    2013-01-01

    Full Text Available Methamidophos, a representative organophosphate insecticide, is regulated because of its severe neurotoxicity, but it is suspected of contaminating agricultural foods in many countries due to illicit use. To reveal unknown effects of methamidophos on human health, we evaluated the developmental immunotoxicity of methamidophos using a respiratory syncytial virus (RSV infection mouse model. Pregnant mice were exposed to methamidophos (10 or 20 ppm in their drinking water from gestation day 10 to weaning on postnatal day 21. Offsprings born to these dams were intranasally infected with RSV. The levels of interleukin-6 (IL-6 and interferon-gamma in the bronchoalveolar lavage fluids after infection were significantly decreased in offspring mice exposed to methamidophos. Treatment with methamidophos did not affect the pulmonary viral titers but suppressed moderately the inflammation of lung tissues of RSV-infected offspring, histopathologically. DNA microarray analysis revealed that gene expression of the cytokines in the lungs of offspring mice exposed to 20 ppm of methamidophos was apparently suppressed compared with the control. Methamidophos did not suppress IL-6 production in RSV-infected J774.1 cell cultures. Thus, exposure of the mother to methamidophos during pregnancy and nursing was suggested to cause an irregular immune response in the lung tissues in the offspring mice.

  16. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  17. Clinical aspects of feline immunodeficiency and feline leukemia virus infection.

    Science.gov (United States)

    Hartmann, Katrin

    2011-10-15

    Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with a global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FIV can cause an acquired immunodeficiency syndrome that increases the risk of developing opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia) and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less important as a deadly infectious agent as in the last 20 years prevalence has been decreasing in most countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Stability of RNA silencing-based traits after virus infection

    DEFF Research Database (Denmark)

    Jørgensen, Bodil; Albrechtsen, Merete

    2007-01-01

    with constructs based on virus coat protein (CP) genes or other viral genes has been successfully used to engineer PTGS-mediated virus resistance into a large number of crop plants and some transgenic lines have been commercially exploited. However the discovery that plant viruses encode suppressors of gene...... silencing has raised concerns that virus infection of crop plants might reverse the new silencing-based traits. Most studies of virus suppression of silencing have used model systems based on silencing of reporter genes. A few studies have analysed the effects of virus infections on plants with genetically...... engineered virus resistance based on either a simple sense or an inverted repeat construct. We decided to use genetically engineered virus resistance in potato as a model system for further studies of the effect of virus infection on genetically engineered traits. We present for the first time a comparison...

  19. Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep

    Directory of Open Access Journals (Sweden)

    Burny Arsène

    2007-07-01

    Full Text Available Abstract Background During malignant progression, tumor cells need to acquire novel characteristics that lead to uncontrolled growth and reduced immunogenicity. In the Bovine Leukemia Virus-induced ovine leukemia model, silencing of viral gene expression has been proposed as a mechanism leading to immune evasion. However, whether proviral expression in tumors is completely suppressed in vivo was not conclusively demonstrated. Therefore, we studied viral expression in two selected experimentally-infected sheep, the virus or the disease of which had features that made it possible to distinguish tumor cells from their nontransformed counterparts. Results In the first animal, we observed the emergence of a genetically modified provirus simultaneously with leukemia onset. We found a Tax-mutated (TaxK303 replication-deficient provirus in the malignant B-cell clone while functional provirus (TaxE303 had been consistently monitored over the 17-month aleukemic period. In the second case, both non-transformed and transformed BLV-infected cells were present at the same time, but at distinct sites. While there was potentially-active provirus in the non-leukemic blood B-cell population, as demonstrated by ex-vivo culture and injection into naïve sheep, virus expression was completely suppressed in the malignant B-cells isolated from the lymphoid tumors despite the absence of genetic alterations in the proviral genome. These observations suggest that silencing of viral genes, including the oncoprotein Tax, is associated with tumor onset. Conclusion Our findings suggest that silencing is critical for tumor progression and identify two distinct mechanisms-genetic and epigenetic-involved in the complete suppression of virus and Tax expression. We demonstrate that, in contrast to systems that require sustained oncogene expression, the major viral transforming protein Tax can be turned-off without reversing the transformed phenotype. We propose that suppression

  20. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    Science.gov (United States)

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  1. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    Directory of Open Access Journals (Sweden)

    Caline G Matar

    2015-05-01

    Full Text Available Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68 infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.

  2. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp.

    Science.gov (United States)

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen; Zhang, Xiaobo

    2017-04-15

    In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp ( Marsupenaeus japonicus ). Dorsal , the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. Copyright © 2017 American Society for Microbiology.

  3. Hepatitis A virus infection suppresses hepatitis C virus replication and may lead to clearance of HCV.

    Science.gov (United States)

    Deterding, Katja; Tegtmeyer, Björn; Cornberg, Markus; Hadem, Johannes; Potthoff, Andrej; Böker, Klaus H W; Tillmann, Hans L; Manns, Michael P; Wedemeyer, Heiner

    2006-12-01

    The significance of hepatitis A virus (HAV) super-infection in patients with chronic hepatitis C had been a matter of debate. While some studies suggested an incidence of fulminant hepatitis A of up to 35%, this could not be confirmed by others. We identified 17 anti-HCV-positive patients with acute hepatitis A from a cohort of 3170 anti-HCV-positive patients recruited at a single center over a period of 12 years. Importantly, none of the anti-HCV-positive patients had a fulminant course of hepatitis A. HCV-RNA was detected by PCR in 84% of the anti-HCV-positive/anti-HAV-IgM-negative patients but only in 65% of anti-HCV-positive patients with acute hepatitis A (p=0.03), indicating suppression of HCV replication during hepatitis A. Previous HAV infection had no effect on HCV replication. After recovery from hepatitis A, an increased HCV replication could be demonstrated for 6 out of 9 patients with serial quantitative HCV-RNA values available while 2 patients remained HCV-RNA negative after clearance of HAV throughout follow-up of at least 2 years. HAV super-infection is associated with decreased HCV-RNA replication which may lead to recovery from HCV in some individuals. Fulminant hepatitis A is not frequent in patients with chronic hepatitis C recruited at a tertiary referral center.

  4. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    International Nuclear Information System (INIS)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-01-01

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  5. Antibody-mediated immunotherapy against chronic hepatitis B virus infection.

    Science.gov (United States)

    Gao, Ying; Zhang, Tian-Ying; Yuan, Quan; Xia, Ning-Shao

    2017-08-03

    The currently available drugs to treat hepatitis B virus (HBV) infection include interferons and nucleos(t)ide analogs, which can only induce disease remission and are inefficient for the functional cure of patients with chronic HBV infection (CHB). Since high titers of circulating hepatitis B surface antigen (HBsAg) may be essential to exhaust the host anti-HBV immune response and they cannot be significantly reduced by current drugs, new antiviral strategies aiming to suppress serum hepatitis B surface antigen (HBsAg) could help restore virus-specific immune responses and promote the eradication of the virus. As an alternative strategy, immunotherapy with HBsAg-specific antibodies has shown some direct HBsAg suppression effects in several preclinical and clinical trial studies. However, most described previously HBsAg-specific antibodies only had very short-term HBsAg suppression effects in CHB patients and animal models mimicking persistent HBV infection. More-potent antibodies with long-lasting HBsAg clearance effects are required for the development of the clinical application of antibody-mediated immunotherapy for CHB treatment. Our recent study described a novel mAb E6F6 that targets a unique epitope on HBsAg. It could durably suppress the levels of HBsAg and HBV DNA via Fcγ receptor-dependent phagocytosis in vivo. In this commentary, we summarize the current research progress, including the therapeutic roles and mechanisms of antibody-mediated HBV clearance as well as the epitope-determined therapeutic potency of the antibody. These insights may provide some clues and guidance to facilitate the development of therapeutic antibodies against persistent viral infection.

  6. Neonatal herpes simplex virus infections.

    Science.gov (United States)

    Pinninti, Swetha G; Kimberlin, David W

    2018-04-01

    Neonatal herpes simplex virus (HSV) is an uncommon but devastating infection in the newborn, associated with significant morbidity and mortality. The use of PCR for identification of infected infants and acyclovir for treatment has significantly improved the prognosis for affected infants. The subsequent use of suppressive therapy with oral acyclovir following completion of parenteral treatment of acute disease has further enhanced the long-term prognosis for these infants. This review article will discuss the epidemiology, risk factors and routes of acquisition, clinical presentation, and evaluation of an infant suspected to have the infection, and treatment of proven neonatal HSV disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism

    International Nuclear Information System (INIS)

    Cihak, J.; Lehmann-Grube, F.

    1978-01-01

    Experiments are described aimed at analysing the mechanism responsible for the absence of cell-mediated immunity against LCM virus-infected cells in neonatally established LCM virus carrier mice. Virus-specific cell-mediated immunity was assessed by 51 Cr release and target cell reduction assays. Attempts to demonstrate cells in spleens of CBA/J carrier mice able to suppress in syngeneic recipients the induction or the effector phase of the cytotoxic T-cell response against LCM virus-infected cells were unsuccessful. Also, no factors were detected in CBA/J and C57BL/6J carrier mice, either spleen cell-associated or free in the circulation, which would block the activity of cytotoxic T-lymphocytes against LCM virus-infected syngeneic target cells. The results indicate that inability of LCM virus carrier mice to act immunologically against virus-infected target cells is due to deletion or irreversible inactivation of T lymphocytes carrying receptors for virally altered cell membrane antigens. (author)

  8. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

    Science.gov (United States)

    Vermeulen, Ben L; Devriendt, Bert; Olyslaegers, Dominique A; Dedeurwaerder, Annelike; Desmarets, Lowiese M; Favoreel, Herman W; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-05-31

    A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25-Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Virus-like particles suppress growth of the red-tide-forming marine dinoflagellate Gymnodinium mikimotoi.

    Science.gov (United States)

    Onji, Masashi; Nakano, Shin-ichi; Suzuki, Satoru

    2003-01-01

    We isolated 2 virus-like agents that suppressed growth of Gymnodinium mikimotoi from coastal waters of the Uwa Sea, Japan. The agents found in the flagellate cells, named GM6 and GM7, were filterable in a 0.22-microm-pore filter with approximately 100-nm shapes. Electron microscopic observation showed the presence of virus-like particles in severely damaged G. mikimotoi cells infected by GM6. The growth-suppression activity of the agents (GM6 or GM7) was lost by heating at 50 degrees C, with treatments of DNase and protease, and filtration through a 0.05-microm filter. Our results suggest that the agents are DNA viruses infectious to and virulent for G. mikimotoi. This is the first report of a virus-like agent specific to G. mikimotoi.

  10. Extended Release of an Anti–Heparan Sulfate Peptide From a Contact Lens Suppresses Corneal Herpes Simplex Virus-1 Infection

    Science.gov (United States)

    Jaishankar, Dinesh; Buhrman, Jason S.; Valyi-Nagy, Tibor; Gemeinhart, Richard A.; Shukla, Deepak

    2016-01-01

    Purpose To prolong the release of a heparan sulfate binding peptide, G2-C, using a commercially available contact lens as a delivery vehicle and to demonstrate the ability of the released peptide to block herpes simplex virus-1 (HSV-1) infection using in vitro, ex vivo, and in vivo models of corneal HSV-1 infection. Methods Commercially available contact lenses were immersed in peptide solution for 5 days prior to determining the release of the peptide at various time points. Cytotoxicity of the released samples was determined by MTT and cell cycle analysis, and the functional activity of the released samples were assessed by viral entry, and viral spread assay using human corneal epithelial cells (HCE). The ability to suppress infection in human and pig cornea ex vivo and mouse in vivo models were also assessed. Results Peptide G2-C was released through the contact lens. Following release for 3 days, the peptide showed significant activity by inhibiting HSV-1 viral entry and spread in HCE cells. Significant suppression of infection was also observed in the ex vivo and in vivo experiments involving corneas. Conclusions Extended release of an anti–HS peptide through a commercially available contact lens can generate significant anti–HSV-1 activity and provides a new and effective way to control corneal herpes. PMID:26780322

  11. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22.

    Science.gov (United States)

    Cheng, Fan; Ramos da Silva, Suzane; Huang, I-Chueh; Jung, Jae U; Gao, Shou-Jiang

    2018-02-15

    The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application. IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV

  12. Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection.

    Science.gov (United States)

    Percopo, Caroline M; Rice, Tyler A; Brenner, Todd A; Dyer, Kimberly D; Luo, Janice L; Kanakabandi, Kishore; Sturdevant, Daniel E; Porcella, Stephen F; Domachowske, Joseph B; Keicher, Jesse D; Rosenberg, Helene F

    2015-09-01

    We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms. Published by Elsevier B.V.

  13. Viruses infecting reptiles.

    Science.gov (United States)

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  14. Viruses Infecting Reptiles

    Directory of Open Access Journals (Sweden)

    Rachel E. Marschang

    2011-11-01

    Full Text Available A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  15. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus

    NARCIS (Netherlands)

    Silva, Mariana Ruiz; Briseno, Jose A. Aguilar; Upasani, Vinit; van der Ende-Metselaar, Heidi; Smit, Jolanda M.; Rodenhuis-Zybert, Izabela A.

    2017-01-01

    Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large

  16. Viral suppression of multiple escape mutants by de novo CD8+ T cell responses in a human immunodeficiency virus-1 Infected elite suppressor

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2011-08-01

    Full Text Available Abstract Elite suppressors or controllers (ES are HIV-1 infected patients who maintain undetectable viral loads without treatment. While HLA-B*57-positive ES are usually infected with virus that is unmutated at CTL epitopes, a single, dominant variant containing CTL escape mutations is typically seen in plasma during chronic infection. We describe an ES who developed seven distinct and rare escape variants at an HLA-B*57-restricted Gag epitope over a five year period. Interestingly, he developed proliferative, de novo CTL responses that suppressed replication of each of these variants. These responses, in combination with low viral fitness of each variant, may contribute to sustained elite control in this ES.

  17. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  18. Herpes Simplex Virus Infections of the Central Nervous System.

    Science.gov (United States)

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  19. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant.

    Science.gov (United States)

    Garcia-Ruiz, Hernan; Gabriel Peralta, Sergio M; Harte-Maxwell, Patricia A

    2018-03-14

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana . Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.

  20. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Science.gov (United States)

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  1. Autophagy interaction with herpes simplex virus type-1 infection

    Science.gov (United States)

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  2. Secondary Hemophagocytic Syndrome Associated with Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    S. R. Rodionovskaya

    2015-01-01

    Full Text Available Hemophagocytic syndrome is one of the complications of herpes virus infections. Here, we describe the case of a 8—year-old male with secondary hemophagocytic syndrome. The disease was diagnosed in the early stages. The patient received treatment with dexamethasone, intravenous immunoglobulin, which has led to a weakening of the ignition and the suppression of the disease with rapid treatment.

  3. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    Science.gov (United States)

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. [Zika virus infection during pregnancy].

    Science.gov (United States)

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Identification of gene products suppressed by human immunodeficiency virus type 1 infection or gp120 exposure of primary human astrocytes by rapid subtraction hybridization.

    Science.gov (United States)

    Su, Zao-Zhong; Kang, Dong-Chul; Chen, Yinming; Pekarskaya, Olga; Chao, Wei; Volsky, David J; Fisher, Paul B

    2003-06-01

    Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.

  6. Post-infection immunodeficiency virus control by neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamamoto

    Full Text Available BACKGROUND: Unlike most acute viral infections controlled with the appearance of virus-specific neutralizing antibodies (NAbs, primary HIV infections are not met with such potent and early antibody responses. This brings into question if or how the presence of potent antibodies can contribute to primary HIV control, but protective efficacies of antiviral antibodies in primary HIV infections have remained elusive; and, it has been speculated that even NAb induction could have only a limited suppressive effect on primary HIV replication once infection is established. Here, in an attempt to answer this question, we examined the effect of passive NAb immunization post-infection on primary viral replication in a macaque AIDS model. METHODS AND FINDINGS: The inoculums for passive immunization with simian immunodeficiency virus mac239 (SIVmac239-specific neutralizing activity were prepared by purifying polyclonal immunoglobulin G from pooled plasma of six SIVmac239-infected rhesus macaques with NAb induction in the chronic phase. Passive immunization of rhesus macaques with the NAbs at day 7 after SIVmac239 challenge resulted in significant reduction of set-point plasma viral loads and preservation of central memory CD4 T lymphocyte counts, despite the limited detection period of the administered NAb responses. Peripheral lymph node dendritic cell (DC-associated viral RNA loads showed a remarkable peak with the NAb administration, and DCs stimulated in vitro with NAb-preincubated SIV activated virus-specific CD4 T lymphocytes in an Fc-dependent manner, implying antibody-mediated virion uptake by DCs and enhanced T cell priming. CONCLUSIONS: Our results present evidence indicating that potent antibody induction post-infection can result in primary immunodeficiency virus control and suggest direct and indirect contribution of its absence to initial control failure in HIV infections. Although difficulty in achieving requisite neutralizing titers for

  7. Plant RNA Regulatory Network and RNA Granules in Virus Infection

    Directory of Open Access Journals (Sweden)

    Kristiina Mäkinen

    2017-12-01

    Full Text Available Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and

  8. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  9. Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.

    Science.gov (United States)

    Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M

    1981-01-01

    When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.

  10. [ZIKA--VIRUS INFECTION].

    Science.gov (United States)

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  11. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  13. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  14. Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals.

    Science.gov (United States)

    Ferns, R Bridget; Tarr, Alexander W; Hue, Stephane; Urbanowicz, Richard A; McClure, C Patrick; Gilson, Richard; Ball, Jonathan K; Nastouli, Eleni; Garson, Jeremy A; Pillay, Deenan

    2016-05-01

    HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Nosocomial virus infections].

    Science.gov (United States)

    Eggers, H J

    1986-12-01

    Enveloped viruses, e.g. influenza- or varicella viruses may cause highly contagious airborne infections. Their spread is difficult to control, also in hospitals. In the case of influenza and varicella immune prophylaxis and chemotherapy/chemoprophylaxis are possible. This is of particular significance, since varicella and zoster are of increasing importance for immunocompromized patients. Diarrhea is caused to a large extent by viruses. Rotavirus infections play an important role in infancy, and are frequently acquired in the hospital. In a study on infectious gastroenteritis of infants in a hospital we were able to show that 30 percent of all rotavirus infections were of nosocomial origin. Admission of a rotavirus-excreting patient (or personnel) may start a long chain of rotavirus infections on pediatric wards. Even careful hygienic measures in the hospital can hardly prevent the spread of enterovirus infections. Such infections may be severe and lethal for newborns, as shown by us in a study on an outbreak of echovirus 11 disease on a maternity ward. We have recently obtained data on the "stickiness" of enteroviruses on human skin. This could explain essential features of the spread of enteroviruses in the population.

  16. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    Science.gov (United States)

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  17. Hepatitis C virus infection in the human immunodeficiency virus infected patient

    DEFF Research Database (Denmark)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-01-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and...

  18. Hepatitis B virus X protein suppresses caveolin-1 expression in hepatocellular carcinoma by regulating DNA methylation

    International Nuclear Information System (INIS)

    Yan, Jun; Lu, Qian; Dong, Jiahong; Li, Xiaowu; Ma, Kuansheng; Cai, Lei

    2012-01-01

    To understand the molecular mechanisms of caveolin-1 downregulation by hepatitis B virus X protein (HBx). The DNA methylation status of the caveolin-1 promoter was examined by nested methylation-specific PCR of 33 hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) samples. The SMMC-7721 hepatoma cell line was transfected with a recombinant HBx adenoviral vector, and the effects of HBx protein on caveolin-1 expression and promoter methylation were examined and confirmed by sequencing. A reporter gene containing the caveolin-1 promoter region was constructed, and the effects of HBx on the transcriptional activity of the promoter were also studied. Methylation of the caveolin-1 promoter was detected in 84.8% (28/33) of HBV-infected HCC samples. Expression of caveolin-1 was significantly downregulated (P = 0.022), and multiple CpG sites in the promoter region of caveolin-1 were methylated in SMMC-7721 cells after HBx transfection. Transfected HBx significantly suppressed caveolin-1 promoter activity (P = 0.001). HBx protein induces methylation of the caveolin-1 promoter region and suppresses its expression

  19. Suppression of human papillomavirus gene expression in vitro and in vivo by herpes simplex virus type 2 infection

    International Nuclear Information System (INIS)

    Fang, L.; Ward, M.G.; Welsh, P.A.; Budgeon, L.R.; Neely, E.B.; Howett, M.K.

    2003-01-01

    Recent epidemiological studies have found that women infected with both herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) type 16 or HPV-18 are at greater risk of developing cervical carcinoma compared to women infected with only one virus. However, it remains unclear if HSV-2 is a cofactor for cervical cancer or if HPV and HSV-2 interact in any way. We have studied the effect of HSV-2 infection on HPV-11 gene expression in an in vitro double-infection assay. HPV transcripts were down-regulated in response to HSV-2 infection. Two HSV-2 vhs mutants failed to reduce HPV-16 E1-circumflexE4 transcripts. We also studied the effect of HSV-2 infection on preexisting experimental papillomas in a vaginal epithelial xenograft model. Doubly infected grafts demonstrated papillomatous transformation and the classical cytopathic effect from HSV-2 infection. HPV and HSV DNA signals were mutually exclusive. These studies may have therapeutic applications for HPV infections and related neoplasms

  20. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  1. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  2. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro.

    Science.gov (United States)

    Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi

    2017-01-19

    Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2-5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3C pro , demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3C pro .

  3. The role of inducer cells in mediating in vitro suppression of feline immunodeficiency virus replication

    International Nuclear Information System (INIS)

    Phadke, Anagha P.; Choi, In-Soo; Li Zhongxia; Weaver, Eric; Collisson, Ellen W.

    2004-01-01

    CD8 + T-cell-mediated suppression of feline immunodeficiency virus (FIV) replication has been described by several groups, although the mechanisms of activation and conditions for viral suppression vary with the methodologies. We have previously reported that CD8 + T-cell-mediated suppression of FIV replication required inducer cell stimulation of the effector cells. The focus of the present study was to examine the essential role of inducer cells required for the induction of this soluble anti-FIV activity. Both FIV-PPR-infected T cells and feline skin fibroblasts (FSF) infected with an alphavirus vector expressing FIV capsid or the irrelevant antigen lacZ, stimulated autologous or heterologous effector cells to produce supernatants that suppressed FIV replication. Thus, induction of this suppression of FIV replication did not strictly require autologous inducer cells and did not require the presence of FIV antigen. Anti-viral activity correlated with the presence of CD8 + T cells. Suppression was maximal when the inducer cells and the effector cells were in contact with each other, because separation of the inducer and effector cells by a 0.45-μm membrane reduced FIV suppression by approximately 50%. These findings emphasize the importance for membrane antigen interactions and cytokines in the optimal induction of effector cell synthesis of the soluble anti-FIV activity

  4. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78.

    Science.gov (United States)

    Chen, Hsin-Hsin; Chen, Chien-Chin; Lin, Yee-Shin; Chang, Po-Chun; Lu, Zi-Yi; Lin, Chiou-Feng; Chen, Chia-Ling; Chang, Chih-Peng

    2017-06-01

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. C–C Chemokines Released by Lipopolysaccharide (LPS)-stimulated Human Macrophages Suppress HIV-1 Infection in Both Macrophages and T Cells

    Science.gov (United States)

    Verani, Alessia; Scarlatti, Gabriella; Comar, Manola; Tresoldi, Eleonora; Polo, Simona; Giacca, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Vercelli, Donata

    1997-01-01

    Human immunodeficiency virus-1 (HIV-1) expression in monocyte-derived macrophages (MDM) infected in vitro is known to be inhibited by lipopolysaccharide (LPS). However, the mechanisms are incompletely understood. We show here that HIV-1 suppression is mediated by soluble factors released by MDM stimulated with physiologically significant concentrations of LPS. LPS-conditioned supernatants from MDM inhibited HIV-1 replication in both MDM and T cells. Depletion of C–C chemokines (RANTES, MIP-1α, and MIP-1β) neutralized the ability of LPS-conditioned supernatants to inhibit HIV-1 replication in MDM. A combination of recombinant C–C chemokines blocked HIV-1 infection as effectively as LPS. Here, we report an inhibitory effect of C–C chemokines on HIV replication in primary macrophages. Our results raise the possibility that monocytes may play a dual role in HIV infection: while representing a reservoir for the virus, they may contribute to the containment of the infection by releasing factors that suppress HIV replication not only in monocytes but also in T lymphocytes. PMID:9120386

  6. Impact of hepatitis B virus co-infection on response to highly active antiretroviral treatment and outcome in HIV-infected individuals

    DEFF Research Database (Denmark)

    Omland, L H; Weis, N; Skinhøj, P

    2008-01-01

    BACKGROUND: The impact of chronic hepatitis B virus (HBV) infection on viral suppression, immune recovery and mortality in HIV-1 infected patients on highly active antiretroviral treatment (HAART) is a matter of debate. The impact of HBeAg status is unknown. METHODS: This prospective cohort study.......6%). Study endpoints were viral load, CD4 cell count and mortality. RESULTS: HBV co-infection had no impact on response to HAART regarding viral suppression or immune recovery. HBV co-infection was associated with several outcomes: overall mortality [mortality rate ratio (MRR) 1.5; 95% confidence interval...... (CI) 1.1-2.1], liver-related mortality (MRR 4.0; 95% CI 1.6-9.9) and AIDS-related deaths (MRR 1.7; 95% CI 1.0-3.0). The presence of HBeAg did not influence patients' response to HAART. CONCLUSIONS: In HIV patients, chronic HBV infection has no impact on response to HAART concerning viral load...

  7. Neonatal herpes simplex virus infections: where are we now?

    Science.gov (United States)

    Thompson, Clara; Whitley, Richard

    2011-01-01

    Neonatal herpes simplex virus (HSV) infection continues to cause significant morbidity and mortality despite advances in diagnosis and treatment. Prior to antiviral therapy, 85% of patients with disseminated HSV disease and 50% of patients with central nervous system disease died within 1 year. The advent of antiviral therapy has dramatically improved the prognosis of neonatal HSV with initially vidarabine and subsequently acyclovir increasing the survival rate of infected neonates and improving long-term developmental outcomes. More recently, polymerase chain reaction has allowed earlier identification of HSV infection and provided a quantitative guide to treatment. Current advances in the treatment of neonatal HSV infections are looking toward the role of prolonged oral suppression therapy in reducing the incidence of recurrent disease. Of concern, however, are increasing reports of acyclovir-resistant HSV isolates in patients following prolonged therapy.

  8. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  9. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  10. Suppression of Shrimp Melanization during White Spot Syndrome Virus Infection*

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-01-01

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. PMID:25572398

  11. Herpes Simplex Virus Suppressive Therapy in Herpes Simplex Virus-2/Human Immunodeficiency Virus-1 Coinfected Women Is Associated With Reduced Systemic CXCL10 But Not Genital Cytokines.

    Science.gov (United States)

    Andersen-Nissen, Erica; Chang, Joanne T; Thomas, Katherine K; Adams, Devin; Celum, Connie; Sanchez, Jorge; Coombs, Robert W; McElrath, M Juliana; Baeten, Jared M

    2016-12-01

    Herpes simplex virus type-2 (HSV-2) may heighten immune activation and increase human immunodeficiency virus 1 (HIV-1) replication, resulting in greater infectivity and faster HIV-1 disease progression. An 18-week randomized, placebo-controlled crossover trial of 500 mg valacyclovir twice daily in 20 antiretroviral-naive women coinfected with HSV-2 and HIV-1 was conducted and HSV-2 suppression was found to significantly reduce both HSV-2 and HIV-1 viral loads both systemically and the endocervical compartment. To determine the effect of HSV-2 suppression on systemic and genital mucosal inflammation, plasma specimens, and endocervical swabs were collected weekly from volunteers in the trial and cryopreserved. Plasma was assessed for concentrations of 31 cytokines and chemokines; endocervical fluid was eluted from swabs and assayed for 14 cytokines and chemokines. Valacyclovir significantly reduced plasma CXCL10 but did not significantly alter other cytokine concentrations in either compartment. These data suggest genital tract inflammation in women persists despite HSV-2 suppression, supporting the lack of effect on transmission seen in large scale efficacy trials. Alternative therapies are needed to reduce persistent mucosal inflammation that may enhance transmission of HSV-2 and HIV-1.

  12. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Directory of Open Access Journals (Sweden)

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  13. Comparative Pathology of Hepatitis A Virus and Hepatitis E Virus Infection.

    Science.gov (United States)

    Cullen, John M; Lemon, Stanley M

    2018-04-30

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) cause acute, self-limiting hepatic infections that are usually spread by the fecal-oral route in humans. Naturally occurring and experimental infections are possible in a variety of nonhuman primates and, in the case of HEV, a number of other species. Many advances in understanding the pathogenesis of these viruses have come from studies in experimental animals. In general, animals infected with these viruses recapitulate the histologic lesions seen in infected humans, but typically with less severe clinical and histopathological manifestations. This review describes the histopathologic changes associated with HAV and HEV infection in humans and experimental animals. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Zika virus infection.

    Science.gov (United States)

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  15. Suppression of shrimp melanization during white spot syndrome virus infection.

    Science.gov (United States)

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-03-06

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. In vitro measles virus infection of human lymphocyte subsets demonstrates high susceptibility and permissiveness of both naive and memory B cells

    NARCIS (Netherlands)

    B.M. Laksono (Brigitta); C. Grosserichter-Wagener (Christina); R.D. de Vries (Rory); Langeveld, S.A.G. (Simone A.G.); M.D. Brem (Maarten); J.J.M. van Dongen (Jacques); Katsikis, P.D. (Peter D.); M.P.G. Koopmans D.V.M. (Marion); M.C. van Zelm (Menno); R.L. de Swart (Rik)

    2018-01-01

    textabstractMeasles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and

  17. Effect of Antiviral Agents in Equine Abortion Virus-Infected Hamsters1

    Science.gov (United States)

    Lieberman, Melvin; Pascale, Andrea; Schafer, Thomas W.; Came, Paul E.

    1972-01-01

    Equine abortion virus, a member of the herpesvirus group, produces a lethal infection in hamsters. With this system, the protective effect of certain inhibitors of deoxyribonucleic acid viruses, inducers of interferon and exogenous interferon, was evaluated. Of the various agents studied, 9-β-d-arabinofuranosyladenine markedly suppressed mortality, and 5-iodo-2′-deoxyuridine, distamycin A, and N-ethylisatin β-thiosemicarbazone were inactive. Of the inducers tested, statolon, ultraviolet-irradiated Newcastle disease virus, and polyriboinosinic:polyribocytidylic acid (poly I:C) were protective, and endotoxin, polyacrylic acid, and polymethacrylic acid did not protect. Administration of exogenous interferon did not afford protection. Statolon and ultraviolet-irradiated Newcastle disease virus induced circulating interferon in hamsters, whereas poly I:C, endotoxin, and polyacrylic acid did not produce interferon. Because of the severity of the disease produced in hamsters by equine abortion virus, lack of protective activity by an agent in this system should not preclude possible efficacy against other members of the herpesvirus group. PMID:4376907

  18. EPIDEMIOLOGY OF THE HERPES SIMPLEX VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Ljiljana Kostadinović

    2002-07-01

    Full Text Available Over 150 sorts of viruses are capable of causing diseases of the respiratory ways. The virus infections have become the cost to be paid for urbanization and industrialization. The acute virus infections jeopardize mankind by their complications with numerous consequences. They open up the way to super infections, they provoke endogenous infections and lead to insufficiency of the vital organs. The viruses penetrate the organism mainly through the respiratory ways, digestive and urinary-sexual organs and skin. Some viruses immediately at the place of their entrance into the organism find receptive cells in which they can multiply (herpes virus and etc.. Some viruses must get through the blood, through the lymph or the nerve fibers to the target organs that they have affinity for.The changes that primarily occur in the mouth with manifest lymphadenopathy of the surrounding area emerge with respect to the type of the acute infection dis-ease.The human herpes viruses are responsible for a great number of diseases in people; that is why it can be said that the infections they induce are a very frequent cause of people's diseases in the world. Man is natural and the only host for the types I and II of the herpes simplex virus (HSV; that is why the infected person is regarded as the source of infection. The infection transmission can be by direct contact or over the contaminated secretions during the sexual intercourse. The age and the socioeconomic status (living conditions, level of medical culture, habits, etc. affect to agreat extent epidemiology of the HSV infection. The HSV distribution in the region of Niš in the five-year period (from 1987 to 1992 was the highest in the early and late summer (June and September.

  19. Hepatitis C virus infection in the human immunodeficiency virus infected patient.

    Science.gov (United States)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-09-14

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and, to a lesser extent, through blood transfusion and blood products. Recently, there has been an increase in HCV infections among men who have sex with men. In the context of effective antiretroviral treatment, liver-related deaths are now more common than Acquired Immune Deficiency Syndrome-related deaths among HIV-HCV coinfected individuals. Morbidity and mortality rates from chronic HCV infection will increase because the infection incidence peaked in the mid-1980s and because liver disease progresses slowly and is clinically silent to cirrhosis and end-stage-liver disease over a 15-20 year time period for 15%-20% of chronically infected individuals. HCV treatment has rapidly changed with the development of new direct-acting antiviral agents; therefore, cure rates have greatly improved because the new treatment regimens target different parts of the HCV life cycle. In this review, we focus on the epidemiology, diagnosis and the natural course of HCV as well as current and future strategies for HCV therapy in the context of HIV-HCV coinfection in the western world.

  20. Quantitative Analysis of MicroRNAs in Vaccinia virus Infection Reveals Diversity in Their Susceptibility to Modification and Suppression.

    Directory of Open Access Journals (Sweden)

    Amy H Buck

    Full Text Available Vaccinia virus (VACV is a large cytoplasmic DNA virus that causes dramatic alterations to many cellular pathways including microRNA biogenesis. The virus encodes a poly(A polymerase which was previously shown to add poly(A tails to the 3' end of cellular miRNAs, resulting in their degradation by 24 hours post infection (hpi. Here we used small RNA sequencing to quantify the impact of VACV infection on cellular miRNAs in human cells at both early (6 h and late (24 h times post infection. A detailed quantitative analysis of individual miRNAs revealed marked diversity in the extent of their modification and relative change in abundance during infection. Some miRNAs became highly modified (e.g. miR-29a-3p, miR-27b-3p whereas others appeared resistant (e.g. miR-16-5p. Furthermore, miRNAs that were highly tailed at 6 hpi were not necessarily among the most reduced at 24 hpi. These results suggest that intrinsic features of human cellular miRNAs cause them to be differentially polyadenylated and altered in abundance during VACV infection. We also demonstrate that intermediate and late VACV gene expression are required for optimal repression of some miRNAs including miR-27-3p. Overall this work reveals complex and varied consequences of VACV infection on host miRNAs and identifies miRNAs which are largely resistant to VACV-induced polyadenylation and are therefore present at functional levels during the initial stages of infection and replication.

  1. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    International Nuclear Information System (INIS)

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro

    2005-01-01

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection

  2. The impact of hepatitis A virus infection on hepatitis C virus infection: a competitive exclusion hypothesis.

    Science.gov (United States)

    Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Chaib, Eleazar; Massad, Eduardo

    2013-01-01

    We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.

  3. Hepatic disorder in Zika virus infection

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is the present global problem. This arbovirus infection can cause acute ilness and affect fetus in utero. However, there can be other additional clinical manifestation including to the hepatic disorder. In this short commentary article, the author brielfy discusses on the liver problem due to Zika virus infection.

  4. Bovine herpes virus infections in cattle.

    Science.gov (United States)

    Nandi, S; Kumar, Manoj; Manohar, M; Chauhan, R S

    2009-06-01

    Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.

  5. Photodynamic treatment of Herpes simplex virus infection in vitro

    International Nuclear Information System (INIS)

    Lytle, C.D.; Hester, L.D.

    1976-01-01

    The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus growth in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes

  6. Suppression of injuries caused by a lytic RNA virus (mengovirus) and their uncoupling from viral reproduction by mutual cell/virus disarmament.

    Science.gov (United States)

    Mikitas, Olga V; Ivin, Yuri Y; Golyshev, Sergey A; Povarova, Natalia V; Galkina, Svetlana I; Pletjushkina, Olga Y; Nadezhdina, Elena S; Gmyl, Anatoly P; Agol, Vadim I

    2012-05-01

    Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.

  7. Viruses infecting marine molluscs.

    Science.gov (United States)

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Aryl Hydrocarbon Receptor Activation Reduces Dendritic Cell Function during Influenza Virus Infection

    Science.gov (United States)

    Jin, Guang-Bi; Moore, Amanda J.; Head, Jennifer L.; Neumiller, Joshua J.; Lawrence, B. Paige

    2010-01-01

    It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell–dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus–specific CD8+ T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8+ T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8+ T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8+ T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection. PMID:20498003

  9. [Epidemiologic aspects of human immunodeficiency virus and hepatitis virus infections].

    Science.gov (United States)

    Diarra, M; Konate, A; Minta, D; Sounko, A; Dembele, M; Toure, C S; Kalle, A; Traore, H H; Maiga, M Y

    2006-01-01

    In order to determinate the prevalence of hepatitis B virus and hepatitis C virus among patients infected by the HIV, We realized a transverse survey case--control in hepato-gastro-enterological ward and serology unity of National Institute of Research in Public health (INRSP). Our sample was constituted with 100 patients HIV positive compared to 100 controls HIV negative. The viral markers research has been made by methods immuno-enzymatiqueses of ELISA 3rd generation. Tests permitted to get the following results: Hepatitis B surface antigen (HBs Ag) was positive among 21% with patients HIV positive versus 23% among control (p = 0,732); Antibody to hepatitis C virus (anti-HCV ab) was present among 23% with patients HIV positive versus 0% among control (p <0,05). Female was predominant among co-infections patient, but without statistic link (p = 0,9 and p = 0,45); The co-infection HBV- HCV was significatively linked to age beyond 40 years (p = 0,0005). Co-infections with HIV infection and hepatitis virus are not rare and deserve to be investigated.

  10. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication.

    Science.gov (United States)

    Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G

    2017-12-19

    Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.

  11. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2014-01-01

    Full Text Available Hepatitis B virus (HBV persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1. Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1 interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV, therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.

  12. Increased carotid intima-media thickness associated with antibody responses to varicella-zoster virus and cytomegalovirus in HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Mar Masiá

    Full Text Available OBJECTIVE: We investigated the relationship of the Herpesviridiae with inflammation and subclinical atherosclerosis in HIV-infected patients. METHODS: Prospective study including virologically suppressed HIV-infected patients. IgG antibodies against herpesviruses, carotid intima-media thickness (cIMT, endothelial function through flow-mediated dilatation (FMD of the brachial artery, and blood atherosclerosis biomarkers (hsCRP, TNF-α, IL-6, MCP-1, MDA, sCD14, sCD163, VCAM-1, ICAM-1, D-dimer, and PAI-1 were measured. RESULTS: 136 patients with HIV viral load <200 copies/ml were included. 93.4% patients were infected with herpes simplex virus type-1, 55.9% with herpes simplex virus type-2, 97.1% with varicella-zoster virus, 65.4% with human herpesvirus-6, 91.2% with cytomegalovirus, and 99.3% with Epstein-Barr virus. Previous AIDS diagnosis was associated with higher cytomegalovirus IgG titers (23,000 vs 17,000 AU, P = 0.011 and higher varicella-zoster virus IgG titers (3.19 vs 2.88 AU, P = 0.047, and there was a positive correlation of the Framingham risk score with IgG levels against cytomegalovirus (Spearman's Rho 0.216, P = 0.016 and Herpes simplex virus-2 (Spearman's Rho 0.293, P = 0.001. IgG antibodies against cytomegalovirus correlated in adjusted analysis with the cIMT (P = 0.030. High seropositivity for varicella-zoster virus (OR 2.91, 95% CI 1.05-8.01, P = 0.039, and for cytomegalovirus (OR 3.79, 95% CI 1.20-11.97, P = 0.023 were predictors for the highest quartile of the cIMT in adjusted analyses. PAI-1 levels were independently associated with cytomegalovirus IgG titers (P = 0.041, IL-6 and ICAM-1 levels with varicella-zoster virus IgG (P = 0.046 and P = 0.035 respectively, and hsCRP levels with Herpes simplex virus-2 IgG (P = 0.035. CONCLUSION: In virologically suppressed HIV-infected patients, antibody responses against herpesviruses are associated with subclinical atherosclerosis, and with increased inflammation and coagulation

  13. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  14. Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Immune-Mediated Liver Injury and Compromise Virus Control During Acute Hepatitis B Virus Infection in Mice.

    Science.gov (United States)

    Qu, Mengmeng; Yuan, Xu; Liu, Dan; Ma, Yuhong; Zhu, Jun; Cui, Jun; Yu, Mengxue; Li, Changyong; Guo, Deyin

    2017-06-01

    Mesenchymal stem cells (MSCs) have been used as therapeutic tools not only for their ability to differentiate toward different cells, but also for their unique immunomodulatory properties. However, it is still unknown how MSCs may affect immunity during hepatitis B virus (HBV) infection. This study was designed to explore the effect of bone marrow-derived MSCs (BM-MSCs) on hepatic natural killer (NK) cells in a mouse model of acute HBV infection. Mice were injected with 1 × 10 6 BM-MSCs, which stained with chloromethyl derivatives of fluorescein diacetate fluorescent probe, 24 h before hydrodynamic injection of viral DNA (pHBV1.3) through the tail vein. In vivo imaging system revealed that BM-MSCs were accumulated in the injured liver, and they attenuated immune-mediated liver injury during HBV infection, as shown by lower alanine aminotransferase levels, reduced proinflammatory cytokine production, and decreased inflammatory cell infiltration in the liver. Importantly, administration of BM-MSCs restrained the increased expression of natural-killer group 2, member D (NKG2D), an important receptor required for NK cell activation in the liver from HBV-infected mice. BM-MSCs also reduced NKG2D expression on NK cells and suppressed the cytotoxicity of NK cells in vitro. Furthermore, BM-MSC-derived transforming growth factor-β1 suppressed NKG2D expression on NK cells. As a consequence, BM-MSC treatment enhanced HBV gene expression and replication in vivo. These results demonstrate that adoptive transfer of BM-MSCs influences innate immunity and limits immune-mediated liver injury during acute HBV infection by suppressing NK cell activity. Meanwhile, the effect of BM-MSCs on prolonging virus clearance needs to be considered in the future.

  15. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  16. Genital herpes simplex virus infections.

    Science.gov (United States)

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  17. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    International Nuclear Information System (INIS)

    Straus, S.E.

    1989-01-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle the neurons

  18. Zika Virus Infection: Current Concerns and Perspectives.

    Science.gov (United States)

    Maharajan, Mari Kannan; Ranjan, Aruna; Chu, Jian Feng; Foo, Wei Lim; Chai, Zhi Xin; Lau, Eileen YinYien; Ye, Heuy Mien; Theam, Xi Jin; Lok, Yen Ling

    2016-12-01

    The Zika virus outbreaks highlight the growing importance need for a reliable, specific and rapid diagnostic device to detect Zika virus, as it is often recognized as a mild disease without being identified. Many Zika virus infection cases have been misdiagnosed or underreported because of the non-specific clinical presentation. The aim of this review was to provide a critical and comprehensive overview of the published peer-reviewed evidence related to clinical presentations, various diagnostic methods and modes of transmission of Zika virus infection, as well as potential therapeutic targets to combat microcephaly. Zika virus is mainly transmitted through bites from Aedes aegypti mosquito. It can also be transmitted through blood, perinatally and sexually. Pregnant women are advised to postpone or avoid travelling to areas where active Zika virus transmission is reported, as this infection is directly linked to foetal microcephaly. Due to the high prevalence of Guillain-Barre syndrome and microcephaly in the endemic area, it is vital to confirm the diagnosis of Zika virus. Zika virus infection had been declared as a public health emergency and of international concern by the World Health Organisation. Governments and agencies should play an important role in terms of investing time and resources to fundamentally understand this infection so that a vaccine can be developed besides raising awareness.

  19. Epidemiological studies on viral infections and co-infections : Human immunodeficiency virus, hepatitis C virus and human papillomavirus

    NARCIS (Netherlands)

    van Santen, D.K.

    2018-01-01

    The research described in this thesis aimed to increase our understanding of the incidence, disease progression and treatment of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and human papillomavirus (HPV) infections and co-infections in key populations. Chapter 1 contains an overview

  20. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  1. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Andrew F van den Hurk

    Full Text Available Incidence of disease due to dengue (DENV, chikungunya (CHIKV and yellow fever (YFV viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

  2. Community Respiratory Viruses as a Cause of Lower Respiratory Tract Infections Following Suppressive Chemotherapy in Cancer Patients

    International Nuclear Information System (INIS)

    El-Mahallawy, H.A.; Ibrahim, M.H.; Shalaby, L.; Kandil

    2005-01-01

    Community respiratory viruses are an important cause of respiratory disease in the immunocompromised patients with cancer. To evaluate the occurrence and clinical significance of respiratory virus infections in hospitalized cancer patients at National Cancer Institute, Cairo University, during anticancer treatment, we studied cases that developed episodes of lower respiratory tract infections (LRTI). Patients and Methods: Thirty patients with LRTI were studied clinically, radiologically, and microbiologically. Sputum cultures were done and an immunofluorescence search for IgM antibodies of influenza A and B, parainfluenza serotypes 1,2 and 3, adenovirus, respiratory syncytial virus, Legionella pneumophila, Coxiella burnettii, Chlamydia pneumoniae, and Mycoplasma pneumoniae were performed on serum samples of patients. The main presenting symptom was cough and expectoration. Hematologic malignancy was the underlying disease in 86.6% of cases. Blood cultures were positive in II patients (36.6%) only. Sputum cultures revealed a bacterial pathogen in [3 cases and fungi in 3; whereas viral and atypical bacterial lgM antibodies were detected in 13 and 4 patients; respectively. Influenza virus was the commonest virus detected, being of type B in 4 cases, type A in one case and mixed A and B in another 5 cases; followed by RSV in 5 patients. Taken together, bacteria were identified as a single cause of LRTI in 10 cases, viruses in 6, fungi in 3 and mixed causes in 7. Still, there were 4 undiagnosed cases. This study showed that respiratory viruses are common in LRTI, either as a single cause or mixed with bacterial pathogens. in hospitalized cancer patients receiving chemotherapy. Diagnostic tests for respiratory viruses should be incorporated in the routine diagnostic study of patients with hematologic malignancies. Also, it must be emphasized that early CT chest is crucial as a base-line prior to initiation of anti-fungal or anti-viral therapy. In cancer patients with a

  3. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  4. Simian Immunodeficiency Virus (SIV-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication

    Directory of Open Access Journals (Sweden)

    Kumudhini Preethi Haran

    2018-03-01

    Full Text Available There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh cells using antiviral chimeric antigen receptor (CAR T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure of HIV and SIV infections.

  5. Roles for Endothelial Cells in Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Nadine A. Dalrymple

    2012-01-01

    Full Text Available Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.

  6. Zika virus infections in pregnancy: epidemics and case management

    Directory of Open Access Journals (Sweden)

    Fatih sahiner

    2016-03-01

    Full Text Available Zika virus is an RNA virus belonging to the Flaviviridae family, and is primarily transmitted by Aedes mosquitoes. Only a small number of cases had been described until 2007 when the first major Zika virus outbreak occurred on Yap Island, Micronesia. Approximately 80% of people infected with Zika virus do not exhibit any symptoms. Symptomatic infections are generally moderate and characterized by acute onset of fever, maculopapular rash, arthralgia, or conjunctivitis. The virus has recently attracted a broad interest due to the emerging cases of microcephaly that are possibly associated with mothers infected by the Zika virus during pregnancy, and the regional increases in the incidence of Guillain-Barre syndrome during the epidemic periods. Although the relationship between Zika virus infection and these abnormalities is not obviously understood yet, Zika virus testing is recommended for infants with microcephaly or intracranial calcifications whose mothers were potentially infected with the Zika virus during pregnancy. Every day, new reports are being published about the outbreaks associated with this virus; nevertheless, no new cases of this virus have been reported in Turkey. Despite this, we cannot currently exclude the possibility of the encounter with the virus because of the presence of Aedes mosquitoes, which are responsible for the spread of the virus, are prevalent in Turkey, and an increasing number of travel-related cases are being reported from different countries. In the light of the current knowledge on this virus, this review aims to discuss the course of Zika virus infections in detail, especially congenital infection, and presenting current information about the case management and preventive measures. [Cukurova Med J 2016; 41(1.000: 143-151

  7. Chikungunya virus infection in travellers to Australia.

    Science.gov (United States)

    Johnson, Douglas F; Druce, Julian D; Chapman, Scott; Swaminathan, Ashwin; Wolf, Josh; Richards, Jack S; Korman, Tony; Birch, Chris; Richards, Michael J

    2008-01-07

    We report eight recent cases of Chikungunya virus infection in travellers to Australia. Patients presented with fevers, rigors, headaches, arthralgia, and rash. The current Indian Ocean epidemic and Italian outbreak have featured prominently on Internet infectious disease bulletins, and Chikungunya virus infection had been anticipated in travellers from the outbreak areas. Diagnosis was by a generic alphavirus reverse transcriptase polymerase chain reaction with confirmatory sequencing. Prompt diagnosis of Chikungunya virus infections is of public health significance as the mosquito vectors for transmission exist in Australia. There is potential for this infection to spread in the largely naïve Australian population.

  8. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    2011-12-01

    Full Text Available Hantavirus pulmonary syndrome (HPS, also referred to as hantavirus cardiopulmonary syndrome (HCPS, is a rare but frequently fatal disease caused by New World hantaviruses. In humans HPS is associated with severe pulmonary edema and cardiogenic shock; however, the pathogenesis of this disease remains unclear largely due to a lack of suitable animal models for the study of disease progression. In this study we monitored clinical, virological, pathophysiological parameters and host immunological responses to decipher pathological factors and events in the lethal Syrian hamster model of HPS following intranasal inoculation of Andes virus. Transcriptional profiling of the host gene responses demonstrated a suppression of innate immune responses in most organs analyzed during the early stage of infection, except for in the lung which had low level activation of several pro-inflammatory genes. During this phase Andes virus established a systemic infection in hamsters, with viral antigen readily detectable in the endothelium of the majority of tissues analyzed by 7-8 days post-inoculation. Despite wide-spread infection, histological analysis confirmed pathological abnormalities were almost exclusively found in the lungs. Immediately preceding clinical signs of disease, intense activation of pro-inflammatory and Th1/Th2 responses were observed in the lungs as well as the heart, but not in peripheral organs, suggesting that localized immune-modulations by infection is paramount to pathogenesis. Throughout the course of infection a strong suppression of regulatory T-cell responses was noted and is hypothesized to be the basis of the aberrant immune activations. The unique and comprehensive monitoring of host immune responses to hantavirus infection increases our understanding of the immuno-pathogenesis of HPS and will facilitate the development of treatment strategies targeting deleterious host immunological responses.

  9. Hepatitis C Virus Infection in Nigerians | Ejiofor | Nigerian Medical ...

    African Journals Online (AJOL)

    Background: Hepatitis C virus is a chronic life long infection in the majority of patients who are infected with the virus. Not much is known and written/published about this virus in Nigeria. Objective: To asses the status of hepatitis C virus infection in Nigeria. Materials and method: Sources of information were mainly from ...

  10. Postnatal persistent infection with classical Swine Fever virus and its immunological implications.

    Directory of Open Access Journals (Sweden)

    Sara Muñoz-González

    Full Text Available It is well established that trans-placental transmission of classical swine fever virus (CSFV during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs

  11. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    Science.gov (United States)

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-10-28

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  13. Virus specific antigens in mammalian cells infected with herpes simplex virus

    Science.gov (United States)

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  14. The immunomodulator, ammonium trichloro[1,2-ethanediolato-O,O']-tellurate, suppresses the propagation of herpes simplex virus 2 by reducing the infectivity of the virus progeny.

    Science.gov (United States)

    Sheinboim, D; Hindiyeh, M; Mendelson, E; Albeck, M; Sredni, B; Dovrat, S

    2015-07-01

    Persistent investigations for the identification of novel anti-herpetic drugs are being conducted worldwide, as current treatment options are sometimes insufficient. The immunomodulator, ammonium trichloro[1,2‑ethanediolato‑O,O']‑tellurate (AS101), a non‑toxic tellurium (Ⅳ) compound, has been shown to exhibit anti‑viral activity against a variety of viruses in cell cultures and in animal models. In the present study, the anti‑viral activity of AS101 against herpes simplex virus (HSV)‑1 and 2 was investigated in vitro. The results demonstrated that AS101 significantly restricted HSV‑2-induced plaque formation and reduced the infectivity of the HSV‑2 yield, while HSV‑1 was affected to a lesser extent. The incubation of mature HSV‑1 and HSV‑2 viruses with AS101 had no effect on viral infectivity, indicating that the compound interrupts de novo viral synthesis. The addition of AS101 at up to 9 h post‑infection had almost the same effect as did the addition of the drug together with the virus (it maintained 80% of its total anti‑viral capacity). Quantitative PCR and immunofluoresence staining of viral structural proteins revealed that the viral DNA and protein synthesis stages were not interrupted by the administration of AS101. By contrast, in the presence of the compound, significantly fewer viable viruses (≥2 log reduction) were recovered from the AS10‑treated cell cultures. Of note, when we determined the viability of the intracellular virus, formed in the presence of the compound, a less severe (≤1 log) effect was observed. Taken together, these data strongly suggest that AS101 primarily interferes with late stages of viral replication, such as viral particle envelopment or egress, leading to the production of a defective virus progeny.

  15. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum.

    Science.gov (United States)

    Verchot, Jeanmarie

    2016-11-19

    The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus-host interactions will provide new targets for crop improvement.

  16. Hepatitis C virus infection in HIV-infected patients.

    Science.gov (United States)

    Sulkowski, Mark S

    2007-10-01

    The hepatitis C virus (HCV) is a spherical enveloped RNA virus of the Flaviviridae family, classified within the Hepacivirus genus. Since its discovery in 1989, HCV has been recognized as a major cause of chronic hepatitis and hepatic fibrosis that progresses in some patients to cirrhosis and hepatocellular carcinoma. In the United States, approximately 4 million people have been infected with HCV, and 10,000 HCVrelated deaths occur each year. Due to shared routes of transmission, HCV and HIV co-infection are common, affecting approximately one third of all HIV-infected persons in the United States. In addition, HIV co-infection is associated with higher HCV RNA viral load and a more rapid progression of HCV-related liver disease, leading to an increased risk of cirrhosis. HCV infection may also impact the course and management of HIV disease, particularly by increasing the risk of antiretroviral drug-induced hepatotoxicity. Thus, chronic HCV infection acts as an opportunistic disease in HIV-infected persons because the incidence of infection is increased and the natural history of HCV infection is accelerated in co-infected persons. Strategies to prevent primary HCV infection and to modify the progression of HCV-related liver disease are urgently needed among HIV/HCV co-infected individuals.

  17. Chikungunya Virus Infection of Aedes Mosquitoes.

    Science.gov (United States)

    Wong, Hui Vern; Chan, Yoke Fun; Sam, I-Ching; Sulaiman, Wan Yusof Wan; Vythilingam, Indra

    2016-01-01

    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.

  18. Testosterone correlates with Venezuelan equine encephalitis virus infection in macaques

    Directory of Open Access Journals (Sweden)

    Koterski James

    2006-03-01

    Full Text Available Abstract Here we briefly report testosterone and cytokine responses to Venezuelan equine encephalitis virus (VEEV in macaques which were used as part of a larger study conducted by the Department of Defense to better characterize pathological responses to aerosolized VEEV in non-human primates. Serial samples were collected and analyzed for testosterone and cytokines prior to and during infection in 8 captive male macaques. Infected animals exhibited a febrile response with few significant changes in cytokine levels. Baseline testosterone levels were positively associated with viremia following exposure and were significantly higher than levels obtained during infection. Such findings suggest that disease-induced androgen suppression is a reasonable area for future study. Decreased androgen levels during physiological perturbations may function, in part, to prevent immunosuppression by high testosterone levels and to prevent the use of energetic resources for metabolically-expensive anabolic functions.

  19. Infection of potato mesophyll protoplasts with five plant viruses.

    Science.gov (United States)

    Barker, H; Harrison, B D

    1982-12-01

    Methods are described for preparing potato mesophyll protoplasts that are suitable for infection with inocula of virus nucleoprotein or RNA. The protoplasts could be infected with four sap-transmissible viruses (tobacco mosaic, tobacco rattle, tobacco ringspot and tomato black ring viruses) and with potato leafroll virus, which is not saptransmissible. No differences were observed in ability to infect protoplasts with potato leafroll virus strains differing either in virulence in intact plants or in aphid transmissibility.

  20. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    Science.gov (United States)

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  1. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    S Rochelle Mikkelsen

    2011-02-01

    Full Text Available Feline immunodeficiency virus (FIV infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+CD25(hiFoxP3(+ immunosuppressive regulatory T (Treg cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  2. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Science.gov (United States)

    Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A

    2011-02-25

    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  3. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    Science.gov (United States)

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  4. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  5. Ebola Virus Infection Modelling and Identifiability Problems

    Directory of Open Access Journals (Sweden)

    Van-Kinh eNguyen

    2015-04-01

    Full Text Available The recent outbreaks of Ebola virus (EBOV infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4, basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently neededto tackle this lethal disease. Mathematical modelling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modelling approach to unravel the interaction between EBOV and the host cells isstill missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells in EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parametersin viral infections kinetics is the key contribution of this work, paving the way for future modelling work on EBOV infection.

  6. Mitigating Prenatal Zika Virus Infection in the Americas.

    Science.gov (United States)

    Ndeffo-Mbah, Martial L; Parpia, Alyssa S; Galvani, Alison P

    2016-10-18

    Because of the risk for Zika virus infection in the Americas and the links between infection and microcephaly, other serious neurologic conditions, and fetal death, health ministries across the region have advised women to delay pregnancy. However, the effectiveness of this policy in reducing prenatal Zika virus infection has yet to be quantified. To evaluate the effectiveness of pregnancy-delay policies on the incidence and prevalence of prenatal Zika virus infection. Vector-borne Zika virus transmission model fitted to epidemiologic data from 2015 to 2016 on Zika virus infection in Colombia. Colombia, August 2015 to July 2017. Population of Colombia, stratified by sex, age, and pregnancy status. Recommendations to delay pregnancy by 3, 6, 9, 12, or 24 months, at different levels of adherence. Weekly and cumulative incidence of prenatal infections and microcephaly cases. With 50% adherence to recommendations to delay pregnancy by 9 to 24 months, the cumulative incidence of prenatal Zika virus infections is likely to decrease by 17% to 44%, whereas recommendations to delay pregnancy by 6 or fewer months are likely to increase prenatal infections by 2% to 7%. This paradoxical exacerbation of prenatal Zika virus exposure is due to an elevated risk for pregnancies to shift toward the peak of the outbreak. Sexual transmission was not explicitly accounted for in the model because of limited data but was implicitly subsumed within the overall transmission rate, which was calibrated to observed incidence. Pregnancy delays can have a substantial effect on reducing cases of microcephaly but risks exacerbating the Zika virus outbreak if the duration is not sufficient. Duration of the delay, population adherence, and the timing of initiation of the intervention must be carefully considered. National Institutes of Health.

  7. The CD8 T Cell Response to Respiratory Virus Infections.

    Science.gov (United States)

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  8. Additive interactions of unrelated viruses in mixed infections of cowpea.

    Directory of Open Access Journals (Sweden)

    Imade Yolanda Nsa

    2015-10-01

    Full Text Available This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar White and 2 IITA lines; IT81D-985 and TVu76. The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV, genus Potyvirus, Cowpea mottle virus (CMeV, genus Carmovirus and Southern bean mosaic virus (SBMV, genus Sobemovirus singly and in mixture (double and triple at 10, 20 and 30 days after planting (DAP. The treated plants were assessed for susceptibility to the viruses, growth and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10DAP; only cultivar White produced some seeds at 30DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30DAP with a reduction of 80%. Overall, the commercial cultivar White was the least susceptible to the virus treatments and produced the most yield (flowers, pods and seeds. CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  9. Tetraspanin Assemblies in Virus Infection

    Directory of Open Access Journals (Sweden)

    Luise Florin

    2018-05-01

    Full Text Available Tetraspanins (Tspans are a family of four-span transmembrane proteins, known as plasma membrane “master organizers.” They form Tspan-enriched microdomains (TEMs or TERMs through lateral association with one another and other membrane proteins. If multiple microdomains associate with each other, larger platforms can form. For infection, viruses interact with multiple cell surface components, including receptors, activating proteases, and signaling molecules. It appears that Tspans, such as CD151, CD82, CD81, CD63, CD9, Tspan9, and Tspan7, coordinate these associations by concentrating the interacting partners into Tspan platforms. In addition to mediating viral attachment and entry, these platforms may also be involved in intracellular trafficking of internalized viruses and assist in defining virus assembly and exit sites. In conclusion, Tspans play a role in viral infection at different stages of the virus replication cycle. The present review highlights recently published data on this topic, with a focus on events at the plasma membrane. In light of these findings, we propose a model for how Tspan interactions may organize cofactors for viral infection into distinct molecular platforms.

  10. Medicinal herbs for hepatitis C virus infection

    DEFF Research Database (Denmark)

    Liu, Jianping; Manheimer, Eric; Tsutani, Kiichiro

    2003-01-01

    The aim of this study was to assess beneficial and harmful effects of medicinal herbs for hepatitis C virus (HCV) infection.......The aim of this study was to assess beneficial and harmful effects of medicinal herbs for hepatitis C virus (HCV) infection....

  11. MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection.

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2018-01-01

    Full Text Available Dengue virus (DENV and Zika virus (ZIKV are members of the Flaviviridae and are predominantly transmitted via mosquito bites. Both viruses are responsible for a growing number of infections in tropical and subtropical regions. DENV infection can cause lethargy with severe morbidity and dengue shock syndrome leading to death in some cases. ZIKV is now linked with Guillain-Barré syndrome and fetal malformations including microcephaly and developmental disorders (congenital Zika syndrome. The protective and pathogenic roles played by the immune response in these infections is unknown. Mucosal-associated invariant T (MAIT cells are a population of innate T cells with potent anti-bacterial activity. MAIT cells have also been postulated to play a role in the immune response to viral infections. In this study, we evaluated MAIT cell frequency, phenotype, and function in samples from subjects with acute and convalescent DENV infection. We found that in acute DENV infection, MAIT cells had elevated co-expression of the activation markers CD38 and HLA-DR and had a poor IFNγ response following bacterial stimulation. Furthermore, we found that MAIT cells can produce IFNγ in response to in vitro infection with ZIKV. This MAIT cell response was independent of MR1, but dependent on IL-12 and IL-18. Our results suggest that MAIT cells may play an important role in the immune response to Flavivirus infections.

  12. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    Jeanmarie Verchot

    2016-11-01

    Full Text Available The endoplasmic reticulum (ER is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement.

  13. Nora virus persistent infections are not affected by the RNAi machinery.

    Science.gov (United States)

    Habayeb, Mazen S; Ekström, Jens-Ola; Hultmark, Dan

    2009-05-29

    Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses.

  14. Cowpea viruses: Effect of single and mixed infections on symptomatology and virus concentration

    Directory of Open Access Journals (Sweden)

    Nsa Imade Y

    2007-09-01

    Full Text Available Abstract Natural multiple viral infections of cultivated cowpeas have been reported in Nigeria. In this study, three Nigerian commercial cowpea cultivars ("Olo 11", "Oloyin" and "White" and two lines from the IITA (IT86D- 719 and TVU 76 were mechanically inoculated with Cowpea aphid-borne mosaic virus (CABMV, Bean southern mosaic virus (SBMV and Cowpea mottle virus (CMeV singly, as well as in all possible combinations at 10, 20 and 30 days after planting (DAP. Samples of leaves or stems were collected at 10, 20 and 30 days after inoculation (DAI and analyzed for relative virus concentration by Enzyme-Linked Immunosrbent Assay. All the cultivars and lines {CVS/L} were susceptible to the viruses but the commercial CVS showed more severe symptoms and had relatively higher viral concentration. In single virus infections, CABMV which induced the most severe symptoms had absorbance values (at 405 nm of 0.11 to 0.46 while SBMV and CMeV which induced moderate symptoms had virus titre of 0.74 to 1.99 and 0.11 to 0.90 respectively. Plants inoculated 10 DAP had significantly higher virus concentration than those inoculated 30 DAP. In mixed infections involving CABMV (10 DAP apical necrosis and death were observed in commercial cultivars "Olo 11" and "White". Enhancement of CMeV titers were observed in plants infected with CMeV + CABMV. Multiple viral infections of cowpeas may result in complete yield loss, hence, the availability of seeds of cultivars with a high level of multiple virus resistance is recommended as a means of control.

  15. Comparison of association of diabetes mellitus in hepatitis C virus infection and hepatitis B virus infection

    International Nuclear Information System (INIS)

    Khan, I.A.; Bukhari, M.H.; Khokhar, M.S.

    2013-01-01

    Background: While patients with liver disease are known to have a higher prevalence of glucose intolerance, preliminary studies suggest that hepatitis C virus (HCV) infection may be an additional risk factor for the development of diabetes mellitus (DM). Objective: The presented study was aimed to study and determine a relationship between the relative proportions of Diabetes Mellitus in patients suffering from HCV infection. Study Design: This cross sectional study. Study Settings: Patients were registered from outdoor as well as indoor departments of different teaching hospitals (Services hospital Lahore and medical departments in Jinnah hospital, Mayo hospital, Sir Ganga Ram hospital) in Lahore, Pakistan. Methods: This cross sectional study was comprised of age and sex matched 258 patients of viral hepatitis B infection and viral hepatitis C infection, conducted at Hepatitis Clinic Services Hospital, affiliated with Post Graduate Medical Institute, Lahore. Diagnosis of HBV was made with evidence of hepatitis B surface antigen, HCV infection was diagnosed if patient was sero positive for anti HCV (ELISA methods) and HCV - RNA (By PCR). Diabetes Mellitus was diagnosed after fulfilling the American Diabetic Association Criteria, from November, 2000 to September, 2002. Results: A total of 318 patients were registered, out of which 258 cases fulfilled the inclusion criteria, 164 hepatitis C infected and 94 hepatitis B infected cases, 16.46% hepatitis C infected cases were diagnosed as diabetics while 4.25% hepatitis B infected cases were diagnosed as diabetics. Conclusion: This study concludes that there is high Association and relationship of Diabetes Mellitus with Hepatitis C virus infection as compared with Hepatitis B virus infection. (author)

  16. Human Immunodeficiency Virus and Hepatitis C Virus Co-infection ...

    African Journals Online (AJOL)

    Human Immunodeficiency Virus and Hepatitis C Virus Co-infection in Cameroon: Investigation of the Genetic Diversity and Virulent ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... DNA sequencing, and bioinformatics tools for sequence management and analysis.

  17. Autophagy in Negative-Strand RNA Virus Infection

    Directory of Open Access Journals (Sweden)

    Yupeng Wang

    2018-02-01

    Full Text Available Autophagy is a homoeostatic process by which cytoplasmic material is targeted for degradation by the cell. Viruses have learned to manipulate the autophagic pathway to ensure their own replication and survival. Although much progress has been achieved in dissecting the interplay between viruses and cellular autophagic machinery, it is not well understood how the cellular autophagic pathway is utilized by viruses and manipulated to their own advantage. In this review, we briefly introduce autophagy, viral xenophagy and the interaction among autophagy, virus and immune response, then focus on the interplay between NS-RNA viruses and autophagy during virus infection. We have selected some exemplary NS-RNA viruses and will describe how these NS-RNA viruses regulate autophagy and the role of autophagy in NS-RNA viral replication and in immune responses to virus infection. We also review recent advances in understanding how NS-RNA viral proteins perturb autophagy and how autophagy-related proteins contribute to NS-RNA virus replication, pathogenesis and antiviral immunity.

  18. Zika virus infection – a new epidemic threat

    Directory of Open Access Journals (Sweden)

    Dominika Pomorska

    2016-06-01

    Full Text Available Zika virus, like dengue and yellow fever viruses, is an RNA virus of the Flaviviridae family. The virus is transmitted by Aedes mosquitoes. On February 1, 2016, the World Health Organization declared Zika virus a Public Health Emergency of International Concern, similarly as in the case of Ebola virus in 2014 and bird flu virus in 2009. Although the Zika virus commonly causes a mild flu-like illness, it can cause congenital infections in the foetus. Based on the recommendations of the International Health Regulations Emergency Committee, the World Health Organization confirmed the possible relationship between the increase in the incidence of Zika virus infections and an increased number of infants with microcephaly. The incidence of microcephaly in Brazil in 2015 was 10–20 times higher than in previous years. A total of 691 cases of travel-related Zika infections have been reported in the United States of America, including 206 pregnant women – with 11 cases of sexually transmitted infection; Guillain–Barré syndrome complication was identified in 2 cases. There is an emphasis on measures to prevent mosquito bites and eliminate mosquito breeding sites in the countries affected by the epidemic. Due to both, Zika virus isolation from sperm and the growing number of sexually transmitted infections, measures to prevent sexual transmission of Zika virus have also been taken. There is an ongoing research to develop vaccine against the Zika virus, however, the estimated time of vaccine development is several years.

  19. Infection of phytoplankton by aerosolized marine viruses

    Science.gov (United States)

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  20. Zika virus infection of Hofbauer cells.

    Science.gov (United States)

    Simoni, Michael K; Jurado, Kellie Ann; Abrahams, Vikki M; Fikrig, Erol; Guller, Seth

    2017-02-01

    Recent studies have linked antenatal infection with Zika virus (ZIKV) with major adverse fetal and neonatal outcomes, including microcephaly. There is a growing consensus for the existence of a congenital Zika syndrome (CZS). Previous studies have indicated that non-placental macrophages play a key role in the replication of dengue virus (DENV), a closely related flavivirus. As the placenta provides the conduit for vertical transmission of certain viruses, and placental Hofbauer cells (HBCs) are fetal-placental macrophages located adjacent to fetal capillaries, it is not surprising that several recent studies have examined infection of HBCs by ZIKV. In this review, we describe congenital abnormalities associated with ZIKV infection, the role of HBCs in the placental response to infection, and evidence for the susceptibility of HBCs to ZIKV infection. We conclude that HBCs may contribute to the spread of ZIKV in placenta and promote vertical transmission of ZIKV, ultimately compromising fetal and neonatal development and function. Current evidence strongly suggests that further studies are warranted to dissect the specific molecular mechanism through which ZIKV infects HBCs and its potential impact on the development of CZS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  2. Human papilloma virus infection and psoriasis: Did human papilloma virus infection trigger psoriasis?

    Science.gov (United States)

    Jain, Sonia P; Gulhane, Sachin; Pandey, Neha; Bisne, Esha

    2015-01-01

    Psoriasis is an autoimmune chronic inflammatory skin disease known to be triggered by streptococcal and HIV infections. However, human papilloma virus infection (HPV) as a triggering factor for the development of psoriasis has not been reported yet. We, hereby report a case of plaque type with inverse psoriasis which probably could have been triggered by genital warts (HPV infection) and discuss the possible pathomechanisms for their coexistence and its management.

  3. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner.

    Science.gov (United States)

    Carbonell, Alberto; Dujovny, Gabriela; García, Juan Antonio; Valli, Adrian

    2012-02-01

    Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.

  4. Inhibition of Neurogenesis by Zika virus Infection.

    Science.gov (United States)

    Ahmad, Fahim; Siddiqui, Amna; Kamal, Mohammad A; Sohrab, Sayed S

    2018-02-01

    The association between Zika virus infection and neurological disorder has raised urgent global alarm. The ongoing epidemic has triggered quick responses in the scientific community. The first case of Zika virus was reported in 2015 from Brazil and now has spread over 30 countries. Nearly four hundred cases of travel-associated Zika virus infection have also been reported in the United States. Zika virus is primarily transmitted by mosquito belongs to the genus Aedes that are widely distributed throughout the world including the Southern United States. Additionally, the virus can also be transmitted from males to females by sexual contact. The epidemiological investigations during the current outbreak found a causal link between infection in pregnant women and development of microcephaly in their unborn babies. This finding is a cause for grave concern since microcephaly is a serious neural developmental disorder that can lead to significant post-natal developmental abnormalities and disabilities. Recently, published data indicate that Zika virus infection affects the growth of fetal neural progenitor cells and cerebral neurons that results in malformation of cerebral cortex leading to microcephaly. Recently, it has been reported that Zika virus infection deregulates the signaling pathway of neuronal cell and inhibit the neurogenesis resulting into dementia. In this review we have discussed about the information about cellular and molecular mechanisms in neurodegeneration of human neuronal cells and inhibit the neurogenesis. Additionally, this information will be very helpful further not only in neuro-scientific research but also designing and development of management strategies for microcephaly and other mosquito borne disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  6. Influenza Virus Infection in Nonhuman Primates

    Science.gov (United States)

    Karlsson, Erik A.; Engel, Gregory A.; Feeroz, M.M.; San, Sorn; Rompis, Aida; Lee, Benjamin P. Y.-H.; Shaw, Eric; Oh, Gunwha; Schillaci, Michael A.; Grant, Richard; Heidrich, John; Schultz-Cherry, Stacey

    2012-01-01

    To determine whether nonhuman primates are infected with influenza viruses in nature, we conducted serologic and swab studies among macaques from several parts of the world. Our detection of influenza virus and antibodies to influenza virus raises questions about the role of nonhuman primates in the ecology of influenza. PMID:23017256

  7. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  8. Human immunodeficiency virus and hepatitus B virus co-infection ...

    African Journals Online (AJOL)

    Human immunodeficiency virus and hepatitus B virus co-infection amog patients in Kano Nigeria. EE Nwokedi, MA Emokpae, AI Dutse. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 15(3) July-September 2006: 227-229. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  9. Comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super infection with hepatitis D virus; an experience at tertiary care centre

    International Nuclear Information System (INIS)

    Hassan, K.D.; Mahmood, T.; Farooq, M.U.

    2008-01-01

    The hepatitis D virus super-infection contributes significantly to the morbidity and mortality of hepatitis B virus infection. The objectives were to describe the incidence of Hepatitis D virus and comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super-infection of hepatitis D virus. This Cross-sectional comparative study was conducted at Department of Medicine and Gastroenterology Clinic Jinnah Postgraduate Medical Centre, Karachi, Pakistan from February 2007 to July 2007. HBsAg positive patients who attended our Gastroenterology clinic were selected for the study. After screening for Anti-HDV these patients were segregated in to Anti-HDV positive and negative groups. Data was analyzed on SPSS 12. Eighty-four patients were selected. Seventy-three patients who fulfilled the inclusion criteria were enrolled in to the study. Anti-HDV was positive in 23 (31.5%) patients. Among these 23 anti-HDV positive, HDV-RNA was detected in 15 (75%) patients. The differences of age, gender, marital status and area of residence whether rural or urban were not significant between the two groups. HBV-DNA was significantly suppressed in majority of anti- HDV positive patients (p=0.019). Mean serum ALT levels were significantly higher in patients who had HDV infection (p=0.014). HDV infection was common in this series of patients with a frequency of 31.5%. All patients of chronic HBV should be screened for HDV whether they are asymptomatic HBV carriers or have chronic active hepatitis particularly when they have raised serum ALT. (author)

  10. Effect of Interferon, Polyacrylic Acid, and Polymethacrylic Acid on Tail Lesions in Mice Infected with Vaccinia Virus

    Science.gov (United States)

    De Clercq, E.; De Somer, P.

    1968-01-01

    Intravenous inoculation of mice with vaccinia virus produced characteristic lesions of the tail surface which were suppressed by intraperitoneal administration of interferon and polyacrylic acid (PAA). Polymethacrylic acid (PMAA) stimulated the formation of vaccinia virus lesions. For full activity, both interferon and PAA must be given prior to infection. PAA was still significantly effective at small dose levels (3 mg/kg) and achieved protection for at least 4 weeks. Protection increased with increasing molecular weight of the polymer. The mode of action of PAA is discussed. PMID:5676405

  11. Human immunodeficiency virus infection and the liver.

    Science.gov (United States)

    Crane, Megan; Iser, David; Lewin, Sharon R

    2012-03-27

    Liver disease in human immunodeficiency virus (HIV)-infected individuals encompasses the spectrum from abnormal liver function tests, liver decompensation, with and without evidence of cirrhosis on biopsy, to non-alcoholic liver disease and its more severe form, non-alcoholic steatohepatitis and hepatocellular cancer. HIV can infect multiple cells in the liver, leading to enhanced intrahepatic apoptosis, activation and fibrosis. HIV can also alter gastro-intestinal tract permeability, leading to increased levels of circulating lipopolysaccharide that may have an impact on liver function. This review focuses on recent changes in the epidemiology, pathogenesis and clinical presentation of liver disease in HIV-infected patients, in the absence of co-infection with hepatitis B virus or hepatitis C virus, with a specific focus on issues relevant to low and middle income countries.

  12. Saffold virus infection associated with human myocarditis

    DEFF Research Database (Denmark)

    Nielsen, Trine Skov; Nielsen, Alex Yde; Banner, Jytte

    2016-01-01

    BACKGROUND: Saffold virus was described in 2007 as one of the first human viruses within the genus cardioviruses. Cardioviruses may cause severe infections of the myocardium in animals, and several studies have associated saffold virus with human disease. As a result, saffold virus has been...... isolated from different anatomical compartments, including the myocardium, but, until now, it has not been possible to demonstrate the accompanying histopathological signs of inflammation. OBJECTIVES: The aim of the study was to examine if saffold virus is capable of causing invasive infection in the human...... myocardium. STUDY DESIGN: Using real-time PCR, we retrospectively examined formalin-fixed paraffin embedded cardiac tissue specimens from 150 deceased individuals diagnosed with myocarditis at autopsy. The results were compared with histological findings. RESULTS AND CONCLUSIONS: Saffold virus was detected...

  13. Hepatitis C virus coinfection does not influence the CD4 cell recovery in HIV-1-infected patients with maximum virologic suppression

    DEFF Research Database (Denmark)

    Peters, Lars; Mocroft, Amanda; Soriano, Vincent

    2009-01-01

    BACKGROUND: Conflicting data exist whether hepatitis C virus (HCV) affects the CD4 cell recovery in patients with HIV starting antiretroviral treatment. OBJECTIVE: To investigate the influence of HCV coinfection on the CD4 recovery in patients with maximum virologic suppression within the EuroSIDA...

  14. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Science.gov (United States)

    Stittelaar, Koert J.; de Waal, Leon; van Amerongen, Geert; Veldhuis Kroeze, Edwin J.B.; Fraaij, Pieter L.A.; van Baalen, Carel A.; van Kampen, Jeroen J.A.; van der Vries, Erhard; Osterhaus, Albert D.M.E.; de Swart, Rik L.

    2016-01-01

    Human respiratory syncytial virus (HRSV) is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo). Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50) administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI). Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies. PMID:27314379

  15. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Directory of Open Access Journals (Sweden)

    Koert J. Stittelaar

    2016-06-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo. Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50 administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI. Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies.

  16. Prenatal brain MRI of fetuses with Zika virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Guillemette-Artur, Prisca [Centre Hospitalier de Polynesie Francaise, Service de Radiologie, Pirae, Tahiti (Country Unknown); Besnard, Marianne [Centre Hospitalier de Polynesie Francaise, Service de Reanimation Neo-natale, Pirae, Tahiti (Country Unknown); Eyrolle-Guignot, Dominique [Centre Hospitalier de Polynesie Francaise, Service d' Obstetrique, Pirae, Tahiti (Country Unknown); Jouannic, Jean-Marie [Universite Pierre et Marie Curie, Service de Medecine Foetale, Hopital d' Enfants Armand-Trousseau, Paris (France); Garel, Catherine [Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France)

    2016-06-15

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections. (orig.)

  17. Prenatal brain MRI of fetuses with Zika virus infection

    International Nuclear Information System (INIS)

    Guillemette-Artur, Prisca; Besnard, Marianne; Eyrolle-Guignot, Dominique; Jouannic, Jean-Marie; Garel, Catherine

    2016-01-01

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections. (orig.)

  18. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    Science.gov (United States)

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  19. Infection and Proliferation of Giant Viruses in Amoeba Cells.

    Science.gov (United States)

    Takemura, Masaharu

    2016-01-01

    Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.

  20. First Imported Case of Zika Virus Infection into Korea.

    Science.gov (United States)

    Jang, Hee-Chang; Park, Wan Beom; Kim, Uh Jin; Chun, June Young; Choi, Su-Jin; Choe, Pyoeng Gyun; Jung, Sook-In; Jee, Youngmee; Kim, Nam-Joong; Choi, Eun Hwa; Oh, Myoung-Don

    2016-07-01

    Since Zika virus has been spreading rapidly in the Americas from 2015, the outbreak of Zika virus infection becomes a global health emergency because it can cause neurological complications and adverse fetal outcome including microcephaly. Here, we report clinical manifestations and virus isolation findings from a case of Zika virus infection imported from Brazil. The patient, 43-year-old Korean man, developed fever, myalgia, eyeball pain, and maculopapular rash, but not neurological manifestations. Zika virus was isolated from his semen, and reverse-transcriptase PCR was positive for the virus in the blood, urine, and saliva on the 7th day of the illness but was negative on the 21st day. He recovered spontaneously without any neurological complications. He is the first case of Zika virus infection in Korea imported from Brazil.

  1. Getah Virus Infection among Racehorses, Japan, 2014

    Science.gov (United States)

    Bannai, Hiroshi; Tsujimura, Koji; Kobayashi, Minoru; Kikuchi, Takuya; Yamanaka, Takashi; Kondo, Takashi

    2015-01-01

    An outbreak of Getah virus infection occurred among racehorses in Japan during September and October 2014. Of 49 febrile horses tested by reverse transcription PCR, 25 were positive for Getah virus. Viruses detected in 2014 were phylogenetically different from the virus isolated in Japan in 1978. PMID:25898181

  2. TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species.

    Directory of Open Access Journals (Sweden)

    Andrea Kirmaier

    2010-08-01

    Full Text Available Simian immunodeficiency viruses of sooty mangabeys (SIVsm are the source of multiple, successful cross-species transmissions, having given rise to HIV-2 in humans, SIVmac in rhesus macaques, and SIVstm in stump-tailed macaques. Cellular assays and phylogenetic comparisons indirectly support a role for TRIM5alpha, the product of the TRIM5 gene, in suppressing interspecies transmission and emergence of retroviruses in nature. Here, we investigate the in vivo role of TRIM5 directly, focusing on transmission of primate immunodeficiency viruses between outbred primate hosts. Specifically, we retrospectively analyzed experimental cross-species transmission of SIVsm in two cohorts of rhesus macaques and found a significant effect of TRIM5 genotype on viral replication levels. The effect was especially pronounced in a cohort of animals infected with SIVsmE543-3, where TRIM5 genotype correlated with approximately 100-fold to 1,000-fold differences in viral replication levels. Surprisingly, transmission occurred even in individuals bearing restrictive TRIM5 genotypes, resulting in attenuation of replication rather than an outright block to infection. In cell-culture assays, the same TRIM5 alleles associated with viral suppression in vivo blocked infectivity of two SIVsm strains, but not the macaque-adapted strain SIVmac239. Adaptations appeared in the viral capsid in animals with restrictive TRIM5 genotypes, and similar adaptations coincide with emergence of SIVmac in captive macaques in the 1970s. Thus, host TRIM5 can suppress viral replication in vivo, exerting selective pressure during the initial stages of cross-species transmission.

  3. Acute Hepatitis E Virus infection with coincident reactivation of Epstein-Barr virus infection in an immunosuppressed patient with rheumatoid arthritis: a case report.

    Science.gov (United States)

    Schultze, Detlev; Mani, Bernhard; Dollenmaier, Günter; Sahli, Roland; Zbinden, Andrea; Krayenbühl, Pierre Alexandre

    2015-10-29

    Hepatitis E virus (HEV) is the most recently discovered of the hepatotropic viruses, and is considered an emerging pathogen in developed countries with the possibility of fulminant hepatitis in immunocompromised patients. Especially in the latter elevated transaminases should be taken as a clue to consider HEV infection, as it can be treated by discontinuation of immunosuppression and/or ribavirin therapy. To our best knowledge, this is a unique case of autochthonous HEV infection with coincident reactivation of Epstein-Barr virus (EBV) infection in an immunosuppressed patient with rheumatoid arthritis (RA). A 68-year-old Swiss woman with RA developed hepatitis initially diagnosed as methotrexate-induced liver injury, but later diagnosed as autochthonous HEV infection accompanied by reactivation of her latent EBV infection. She showed confounding serological results pointing to three hepatotropic viruses (HEV, Hepatitis B virus (HBV) and EBV) that could be resolved by detection of HEV and EBV viraemia. The patient recovered by temporary discontinuation of immunosuppressive therapy. In immunosuppressed patients with RA and signs of liver injury, HEV infection should be considered, as infection can be treated by discontinuation of immunosuppression. Although anti-HEV-IgM antibody assays can be used as first line virological tools, nucleic acid amplification tests (NAAT) for detection of HEV RNA are recommended--as in our case--if confounding serological results from other hepatotropic viruses are obtained. After discontinuation of immunosuppressive therapy, our patient recovered from both HEV infection and reactivation of latent EBV infection without sequelae.

  4. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M; Clark, Andrew; Swayne, David E

    2017-11-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus-naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.

  5. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.

    Science.gov (United States)

    Casteel, Clare L; De Alwis, Manori; Bak, Aurélie; Dong, Haili; Whitham, Steven A; Jander, Georg

    2015-09-01

    Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  7. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Alarming incidence of hepatitis C virus re-infection after treatment of sexually acquired acute hepatitis C virus infection in HIV-infected MSM

    NARCIS (Netherlands)

    Lambers, Femke A. E.; Prins, Maria; Thomas, Xiomara; Molenkamp, Richard; Kwa, David; Brinkman, Kees; van der Meer, Jan T. M.; Schinkel, Janke; Countinho, R.; Reesink, H.; van Baarle, D.; Smit, C.; Gras, L.; van der Veldt, W.

    2011-01-01

    Recent data indicate that seroprevalence of sexually transmitted hepatitis C virus (HCV) infection among MSM is stabilizing in Amsterdam. However, little is known about the incidence of HCV re-infection in MSM who have cleared their HCV infection. We, therefore, studied the incidence of re-infection

  9. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    Science.gov (United States)

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hepatitis B and C virus co-infections in human immunodeficiency virus positive North Indian patients

    Science.gov (United States)

    Gupta, Swati; Singh, Sarman

    2006-01-01

    AIM: To determine the prevalence of hepatitis B and C virus infections in human immunodeficiency virus (HIV) -positive patients at a tertiary care hospital in New Delhi, India. METHODS: Serum samples from 451 HIV positive patients were analyzed for HBsAg and HCV antibodies during three years (Jan 2003-Dec 2005). The control group comprised of apparently healthy bone-marrow and renal donors. RESULTS: The study population comprised essentially of heterosexually transmitted HIV infection. The prevalence rate of HBsAg in this population was 5.3% as compared to 1.4% in apparently healthy donors (P < 0.001). Though prevalence of HCV co-infection (2.43%) was lower than HBV in this group of HIV positive patients, the prevalence was significantly higher (P < 0.05) than controls (0.7%). Triple infection of HIV, HBV and HCV was not detected in any patient. CONCLUSION: Our study shows a significantly high prevalence of hepatitis virus infections in HIV infected patients. Hepatitis viruses in HIV may lead to faster progression to liver cirrhosis and a higher risk of antiretroviral therapy induced hepatotoxicity. Therefore, it would be advisable to detect hepatitis virus co-infections in these patients at the earliest. PMID:17106941

  11. Prenatal brain MRI of fetuses with Zika virus infection.

    Science.gov (United States)

    Guillemette-Artur, Prisca; Besnard, Marianne; Eyrolle-Guignot, Dominique; Jouannic, Jean-Marie; Garel, Catherine

    2016-06-01

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections.

  12. Time from HIV infection to virological suppression: dramatic fall from 2007 to 2016.

    Science.gov (United States)

    Medland, Nicholas A; Nicholson, Suellen; Chow, Eric P F; Read, Timothy R H; Bradshaw, Catriona S; Denham, Ian; Fairley, Christopher K

    2017-11-13

    Time from HIV infection to virological suppression: dramatic fall from 2007 to 2016. We examined the time from HIV infection to virological suppression in MSM who were first diagnosed at Melbourne Sexual Health Centre between 2007 and 2016. Retrospective cohort. Date of infection was imputed from the testing history or serological evidence of recent infection (negative or indeterminate western blot) or baseline CD4 cell count. Date of virological suppression was determined using clinical viral load data. We analysed predictors of diagnosis with serological evidence of recent infection (logistic regression) and time from diagnosis to suppression and from infection to suppression (Cox regression) using demographic, clinical, and behavioral covariates. Between 2007 and 2016, the median time from HIV infection to diagnosis fell from 6.8 to 4.3 months (P = 0.001), from diagnosis to suppression fell from 22.7 to 3.2 months (P < 0.0001), and from infection to suppression fell from 49.0 to 9.6 months (P < 0.0001). Serological evidence of recent infection increased from 15.6 to 34.3% (P < 0.0001) of diagnoses. In the multivariate analyses, age, being recently arrived from a non-English speaking country, history of IDU, other sexually transmitted infections, and sexual risk were not associated with any of these measures. The duration of infectiousness in MSM diagnosed with HIV infection at Melbourne Sexual Health Centre in Victoria has fallen dramatically between 2007 and 2016 and the proportion diagnosed with serological evidence of recent infection has increased. This effect is observed across all population subgroups and marks a positive milestone for the treatment as prevention paradigm.

  13. Mechanisms of immune evasion in Epstein-Barr virus infection

    NARCIS (Netherlands)

    Gram., A.M.

    2016-01-01

    The human herpesvirus Epstein-Barr virus (EBV) is a large DNA virus that infects over 90% of the adult world population. EBV is the causative agent of infectious mononucleosis and EBV infection is associated with various malignancies. EBV establishes lifelong infections in immunocompetent hosts. To

  14. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Science.gov (United States)

    Valli, Adrian; Busnadiego, Idoia; Maliogka, Varvara; Ferrero, Diego; Castón, José R; Rodríguez, José Francisco; García, Juan Antonio

    2012-01-01

    RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  15. Molecular characterization of viruses associated with gastrointestinal infection in HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Raquel C Silva

    Full Text Available BACKGROUND: Diarrhea is a major cause of morbidity and mortality among HIV-infected patients worldwide. OBJECTIVE: We sought to determine the frequency of viral gastrointestinal infections among Brazilian HIV-infected patients with diarrhea. METHODS: A collection of 90 fecal specimens from HIV-infected individuals with diarrhea, previously tested for the presence of bacteria and parasite was analyzed by polymerase chain reaction and sequence analysis for the presence of enteric viruses such as astrovirus, norovirus, rotavirus groups A, B and C, adenovirus, herpes simplex virus, Epstein-Barr virus, cytomegalovirus, and human bocavirus. RESULTS: Twenty patients (22.2%; n = 90 were infected with parasites (11 single infections and nine coinfected with virus. Enteropathogenic bacteria were not found. Virus infections were detected in 28.9% (26/90 of the specimens. Cytomegalovirus was the most common virus detected (24.4%; 22/90. Coinfections with viruses and/or parasite were observed in 10 (11.1% samples. CONCLUSION: Gastrointestinal virus infections were more frequent than parasitic or bacterial infections in this patient population.

  16. Mechanisms of CD8+ T cell-mediated suppression of HIV/SIV replication.

    Science.gov (United States)

    McBrien, Julia Bergild; Kumar, Nitasha A; Silvestri, Guido

    2018-02-10

    In this article, we summarize the role of CD8 + T cells during natural and antiretroviral therapy (ART)-treated HIV and SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the rationale for CD8 + T cell-based HIV cure strategies. Evidence suggests that CD8 + T cells are involved in the control of virus replication during HIV and SIV infections. During early HIV infection, the cytolytic activity of CD8 + T cells is responsible for control of viremia. However, it has been proposed that CD8 + T cells also use non-cytolytic mechanisms to control SIV infection. More recently, CD8 + T cells were shown to be required to fully suppress virus production in ART-treated SIV-infected macaques, suggesting that CD8 + T cells are involved in the control of virus transcription in latently infected cells that persist under ART. A better understanding of the complex antiviral activities of CD8 + T cells during HIV/SIV infection will pave the way for immune interventions aimed at harnessing these functions to target the HIV reservoir. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Doubled dosage of sofosbuviris expected for inhibiting Zika virus infection

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    Sofosbuvir is a new antiviral drug that has been recommended for management of hepatitis C virus (HCV) for a few years. New researches support that sofosbuvir might be useful for the management of Zika virus infection. Based on the pharmacological activity, inhibiting the HCV RNA-dependent RNA polymerase (RdRp or NS5 protein), sofosbuvir is proposed for its effectiveness against Zika virus infection. Here, the authors used a mathematical modelling theoretical approach to predict the expected dosage of sofosbuvir for inhibiting Zika virus infection. Based on the modeling study, if sofosbuvir is assigned for management of Zika virus infection, doubled dosage of the present dosage for hepatitis C management is recommended.

  18. Negative-strand RNA viruses: The plant-infecting counterparts

    NARCIS (Netherlands)

    Kormelink, R.J.M.; Garcia, M.L.; Goodin, M.; Sasaya, T.; Haenni, A.L.

    2011-01-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome

  19. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    Science.gov (United States)

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1

  20. Zika virus infection confers protection against West Nile virus challenge in mice.

    Science.gov (United States)

    Vázquez-Calvo, Ángela; Blázquez, Ana-Belén; Escribano-Romero, Estela; Merino-Ramos, Teresa; Saiz, Juan-Carlos; Martín-Acebes, Miguel A; Jiménez de Oya, Nereida

    2017-09-20

    Flaviviruses are RNA viruses that constitute a worrisome threat to global human and animal health. Zika virus (ZIKV), which was initially reported to cause a mild disease, recently spread in the Americas, infecting millions of people. During this recent epidemic, ZIKV infection has been linked to serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome (GBS) and microcephaly. Because information about ZIKV immunity remains scarce, we assessed the humoral response of immunocompetent mice to infection with three viral strains of diverse geographical origin (Africa, Asia and America). No infected animals showed any sign of disease or died after infection. However, specific neutralizing antibodies were elicited in all infected mice. Considering the rapid expansion of ZIKV throughout the American continent and its co-circulation with other medically relevant flaviviruses, such as West Nile virus (WNV), the induction of protective immunity between ZIKV and WNV was analyzed. Remarkably, protection after challenge with WNV was observed in mice previously infected with ZIKV, as survival rates were significantly higher than in control mice. Moreover, previous ZIKV infection enhanced the humoral immune response against WNV. These findings may be relevant in geographical areas where both ZIKV and WNV co-circulate, as well as for the future development of broad-spectrum flavivirus vaccines.

  1. Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy

    Science.gov (United States)

    Solomon, Ajantha; Ghneim, Khader; Ahlers, Jeffrey; Cameron, Mark J.; Smith, Miranda Z.; Spelman, Tim; McMahon, James; Velayudham, Pushparaj; Brown, Gregor; Roney, Janine; Watson, Jo; Prince, Miles H.; Hoy, Jennifer F.; Chomont, Nicolas; Fromentin, Rémi; Procopio, Francesco A.; Zeidan, Joumana; Palmer, Sarah; Odevall, Lina; Johnstone, Ricky W.; Martin, Ben P.; Sinclair, Elizabeth; Deeks, Steven G.; Hazuda, Daria J.; Cameron, Paul U.; Sékaly, Rafick-Pierre; Lewin, Sharon R.

    2014-01-01

    Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells. Trial Registration ClinicalTrials.gov NCT01365065 PMID:25393648

  2. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Julian H Elliott

    2014-10-01

    Full Text Available Human immunodeficiency virus (HIV persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART. The primary endpoint was change in cell associated unspliced (CA-US HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065. Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90% with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1. CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells.ClinicalTrials.gov NCT01365065.

  3. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Doehlemann, Gunther

    2013-01-01

    While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.

  5. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-01-01

    Full Text Available Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8 probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.

  6. Functional RNA during Zika virus infection

    NARCIS (Netherlands)

    Göertz, Giel P.; Abbo, Sandra R.; Fros, Jelke J.; Pijlman, Gorben P.

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae; genus Flavivirus) is a pathogenic mosquito-borne RNA virus that currently threatens human health in the Americas, large parts of Asia and occasionally elsewhere in the world. ZIKV infection is often asymptomatic but can cause severe symptoms including

  7. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  8. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.

    Science.gov (United States)

    Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah A

    2017-04-20

    Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.

  9. Virus Diseases Infecting Almond Germplasm in Lebanon

    OpenAIRE

    Adeeb Saad; Yusuf Abou-Jawdah; Zahi Kanaan-Atallah

    2000-01-01

    Cultivated and wild almond species were surveyed for virus diseases. Four viruses infected cultivated almonds (Prunus dulcis): Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), Apple chlorotic leaf spot virus (ACLSV) and Apple mosaic virus (ApMV). Only ACLSV and ApMV were detected on wild almonds, (Prunus orientalis and P. korschinskii). The occurence of PNRSV or PDV on seeds used for the production of rootstocks, on seedlings in nurseries, and on mother plants reve...

  10. Within-host spatiotemporal dynamics of plant virus infection at the cellular level.

    Directory of Open Access Journals (Sweden)

    Nicolas Tromas

    2014-02-01

    Full Text Available A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3, and few cells were coinfected by both virus variants (<0.1. We then estimated the cellular contagion rate (R, the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI, the number of virions infecting a cell, were low (<1.5. Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.

  11. Phyllanthus species for chronic hepatitis B virus infection

    DEFF Research Database (Denmark)

    Yun, Xia; Luo, Hui; Liu, Jian Ping

    2011-01-01

    Phyllanthus species for patients with chronic hepatitis B virus (HBV) infection have been assessed in clinical trials, but no consensus regarding their usefulness exists.......Phyllanthus species for patients with chronic hepatitis B virus (HBV) infection have been assessed in clinical trials, but no consensus regarding their usefulness exists....

  12. Coinfecting viruses as determinants of HIV disease.

    Science.gov (United States)

    Lisco, Andrea; Vanpouille, Christophe; Margolis, Leonid

    2009-02-01

    The human body constitutes a balanced ecosystem of its own cells together with various microbes ("host-microbe ecosystem"). The transmission of HIV-1 and the progression of HIV disease in such an ecosystem are accompanied by de novo infection by other microbes or by activation of microbes that were present in the host in homeostatic equilibrium before HIV-1 infection. In recent years, data have accumulated on the interactions of these coinfecting microbes-viruses in particular-with HIV. Coinfecting viruses generate negative and positive signals that suppress or upregulate HIV-1. We suggest that the signals generated by these viruses may largely affect HIV transmission, pathogenesis, and evolution. The study of the mechanisms of HIV interaction with coinfecting viruses may indicate strategies to suppress positive signals, enhance negative signals, and lead to the development of new and original anti-HIV therapies.

  13. Reduced incorporation of the influenza B virus BM2 protein in virus particles decreases infectivity

    International Nuclear Information System (INIS)

    Jackson, David; Zuercher, Thomas; Barclay, Wendy

    2004-01-01

    BM2 is the fourth integral membrane protein encoded by the influenza B virus genome. It is synthesized late in infection and transported to the plasma membrane from where it is subsequently incorporated into progeny virus particles. It has recently been reported that BM2 has ion channel activity and may be the functional homologue of the influenza A virus M2 protein acting as an ion channel involved in viral entry. Using a reverse genetic approach it was not possible to recover virus which lacked BM2. A recombinant influenza B virus was generated in which the BM2 AUG initiation codon was mutated to GUG. This decreased the efficiency of translation of BM2 protein such that progeny virions contained only 1/8 the amount of BM2 seen in wild-type virus. The reduction in BM2 incorporation resulted in a reduction in infectivity although there was no concomitant decrease in the numbers of virions released from the infected cells. These data imply that the incorporation of sufficient BM2 protein into influenza B virions is required for infectivity of the virus particles

  14. Nervous System Injury and Neuroimaging of Zika Virus Infection

    Science.gov (United States)

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383

  15. Infection and Replication of Influenza Virus at the Ocular Surface.

    Science.gov (United States)

    Creager, Hannah M; Kumar, Amrita; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M; Belser, Jessica A

    2018-04-01

    Although influenza viruses typically cause respiratory tract disease, some viruses, particularly those with an H7 hemagglutinin, have been isolated from the eyes of conjunctivitis cases. Previous work has shown that isolates of multiple subtypes from both ocular and respiratory infections are capable of replication in human ex vivo ocular tissues and corneal or conjunctival cell monolayers, leaving the determinants of ocular tropism unclear. Here, we evaluated the effect of several variables on tropism for ocular cells cultured in vitro and examined the potential effect of the tear film on viral infectivity. All viruses tested were able to replicate in primary human corneal epithelial cell monolayers subjected to aerosol inoculation. The temperature at which cells were cultured postinoculation minimally affected infectivity. Replication efficiency, in contrast, was reduced at 33°C relative to that at 37°C, and this effect was slightly greater for the conjunctivitis isolates than for the respiratory ones. With the exception of a seasonal H3N2 virus, the subset of viruses studied in multilayer corneal tissue constructs also replicated productively after either aerosol or liquid inoculation. Human tears significantly inhibited the hemagglutination of both ocular and nonocular isolates, but the effect on viral infectivity was more variable, with tears reducing the infectivity of nonocular isolates more than ocular isolates. These data suggest that most influenza viruses may be capable of establishing infection if they reach the surface of ocular cells but that this is more likely for ocular-tropic viruses, as they are better able to maintain their infectivity during passage through the tear film. IMPORTANCE The potential spread of zoonotic influenza viruses to humans represents an important threat to public health. Unfortunately, despite the importance of cellular and tissue tropism to pathogenesis, determinants of influenza virus tropism have yet to be fully

  16. Characterization of a Suppressive Cis-acting Element in the Epstein–Barr Virus LMP1 Promoter

    Directory of Open Access Journals (Sweden)

    Masahiro Yoshida

    2017-11-01

    Full Text Available Latent membrane protein 1 (LMP1 is a major oncogene encoded by Epstein–Barr virus (EBV and is essential for immortalization of B cells by the virus. Previous studies suggested that several transcription factors, such as PU.1, RBP-Jκ, NFκB, EBF1, AP-2 and STAT, are involved in LMP1 induction; however, the means by which the oncogene is negatively regulated remains unclear. Here, we introduced short mutations into the proximal LMP1 promoter that includes recognition sites for the E-box and Ikaros transcription factors in the context of EBV-bacterial artificial chromosome. Upon infection, the mutant exhibited increased LMP1 expression and EBV-mediated immortalization of B cells. However, single mutations of either the E-box or Ikaros sites had limited effects on LMP1 expression and transformation. Our results suggest that this region contains a suppressive cis-regulatory element, but other transcriptional repressors (apart from the E-box and Ikaros transcription factors may remain to be discovered.

  17. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (Pducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (Pducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. Published by Elsevier B.V.

  18. Immunodomination during peripheral vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Leon C W Lin

    Full Text Available Immunodominance is a fundamental property of CD8(+ T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d., subcutaneous (s.c., intraperitoneal (i.p. and intravenous (i.v. injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c. compared with those that allow systemic virus dissemination (i.p. and i.v.. This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+ T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1 and CD86 (B7-2, which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+ T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+ T cell immunity to viruses.

  19. Life-Threatening Sochi Virus Infections, Russia

    Science.gov (United States)

    Tkachenko, Evgeniy A.; Morozov, Vyacheslav G.; Yunicheva, Yulia V.; Pilikova, Olga M.; Malkin, Gennadiy; Ishmukhametov, Aydar A.; Heinemann, Patrick; Witkowski, Peter T.; Klempa, Boris; Dzagurova, Tamara K.

    2015-01-01

    Sochi virus was recently identified as a new hantavirus genotype carried by the Black Sea field mouse, Apodemus ponticus. We evaluated 62 patients in Russia with Sochi virus infection. Most clinical cases were severe, and the case-fatality rate was as high as 14.5%. PMID:26584463

  20. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication.

    Directory of Open Access Journals (Sweden)

    Deepika Bhullar

    Full Text Available Japanese encephalitis virus (JEV has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5'- and 3'-non-coding regions (NCRs. The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB interacts in vitro with both the 5'-NCR of the positive-sense genomic RNA--5NCR(+, and its complementary sequence in the negative-sense replication intermediate RNA--3NCR(-. The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(- RNA with viral RNA-dependent RNA polymerase (NS5 protein, an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.

  2. Tracking the potyviral P1 protein in Nicotiana benthamiana plants during plum pox virus infection.

    Science.gov (United States)

    Vozárová, Z; Glasa, M; Šubr, Z W

    The P1 protein is derived from the N terminus of potyvirus-coded polyprotein. In addition to the proteolytic activity essential for its maturation, it probably participates in suppression of host defense and/or in virus replication. Clear validation of the P1 in vivo function(s), however, is not yet available. We applied an infectious cDNA clone of plum pox virus (PPV), where the P1 was N-fused with a hexahistidine tag, to trace this protein in Nicotiana benthamiana plants during the PPV infection. Immunoblot analysis with the anti-his antibody showed a diffuse band corresponding to the molecular weight about 70-80 kDa (about twice larger than expected) in the root samples from early stage of infection. This signal culminated on the sixth day post inoculation, later it rapidly disappeared. Sample denaturation by boiling in SDS before centrifugal clarification was essential, indicating strong affinity of P1-his to some plant compound sedimenting with the tissue and cell debris.

  3. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  4. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  5. Clonorchis sinensis infection and co-infection with the hepatitis B virus are important factors associated with cholangiocarcinoma and hepatocellular carcinoma.

    Science.gov (United States)

    Shi, Yunliang; Jiang, Zhihua; Yang, Yichao; Zheng, Peiqiu; Wei, Haiyan; Lin, Yuan; Lv, Guoli; Yang, Qingli

    2017-10-01

    To evaluate the contributions of Clonorchis sinensis and hepatitis B virus to the development of cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC), C. sinensis and hepatitis B virus infections in 20 clinical liver cancer cases from a C. sinensis- and hepatitis B virus-epidemic region were detected. Eight cases of ICC, 11 cases of HCC and one mixed ICC and HCC case were verified by CT, pathological section and (or) observations during surgery. The C. sinensis infection was detected by stool microscopy and ELISA, and the worms and eggs found during surgery and in pathological sections also allowed for diagnoses. Hepatitis B virus infections were detected by ELISA. In the 20 cases, 18 patients were diagnosed with C. sinensis infections. Eight of the 20 patients were infected with the hepatitis B virus, and seven were co-infected with C. sinensis. In the eight ICC patients, seven were diagnosed with C. sinensis infection, and two had mixed infections with the hepatitis B virus. In the 11 HCC patients, 10 were diagnosed with C. sinensis, four had mixed infections with the hepatitis B virus, and only one HCC patient presented a single infection by the hepatitis B virus. These clinical observations revealed that C. sinensis infection and C. sinensis co-infection with the hepatitis B virus are important factors in ICC and HCC.

  6. A novel SIV gag-specific CD4(+)T-cell clone suppresses SIVmac239 replication in CD4(+)T cells revealing the interplay between antiviral effector cells and their infected targets.

    Science.gov (United States)

    Ayala, Victor I; Trivett, Matthew T; Coren, Lori V; Jain, Sumiti; Bohn, Patrick S; Wiseman, Roger W; O'Connor, David H; Ohlen, Claes; Ott, David E

    2016-06-01

    To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    Science.gov (United States)

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  8. Avian influenza A virus and Newcastle disease virus mono- and co-infections in birds

    Directory of Open Access Journals (Sweden)

    Iv. Zarkov

    2017-06-01

    Full Text Available The main features of avian influenza viruses (AIV and Newcastle disease virus (APMV-1, the possibilities for isolation and identification in laboratory conditions, methods of diagnostics, main hosts, clinical signs and virus shedding are reviewed in chronological order. The other part of the review explains the mechanisms and interactions in cases of co-infection of AIV and APMV-1, either between them or with other pathogens in various indicator systems – cell cultures, chick embryos or birds. The emphasis is placed on quantitative data on the virus present mainly in the first ten days following experimental infection of birds, the periods of virus carrier ship and shedding, clinical signs, pathological changes, diagnostic challenges

  9. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Adrian Valli

    Full Text Available RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  10. Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain.

    Science.gov (United States)

    Jóźwik, A; Manteufel, J; Selbitz, H-J; Truyen, U

    2009-10-01

    The demonstration of field isolates of porcine parvovirus (PPV) that differ genetically and antigenically from vaccine strains of PPV raises the question of whether the broadly used inactivated vaccines can still protect sows against the novel viruses. Ten specific-pathogen-free primiparous sows were assigned to three groups and were vaccinated with one of two vaccines based on the old vaccine strains, or served as non-vaccinated controls. After insemination, all sows were challenged with the prototype genotype 2 virus, PPV-27a, on gestation day 41; fetuses were delivered on gestation day 90 and examined for virus infection. The fetuses of the vaccinated sows were protected against disease, but both the vaccinated and the non-vaccinated sows showed a marked increase in antibody titres after challenge infection, indicating replication of the challenge virus. All sows (vaccinated and non-vaccinated) shed the challenge virus for at least 10 days after infection, with no difference in the pattern or duration of virus shedding.

  11. A new model of Hantaan virus persistence in mice: the balance between HTNV infection and CD8+ T-cell responses

    International Nuclear Information System (INIS)

    Araki, Koichi; Yoshimatsu, Kumiko; Lee, Byoung-Hee; Kariwa, Hiroaki; Takashima, Ikuo; Arikawa, Jiro

    2004-01-01

    We established a viral persistence model that involves the adoptive transfer of spleen cells from immunocompetent mice (H-2 d ) into Hantaan virus (HTNV)-infected severe combined immunodeficient (SCID, H-2 d ) mice. The infection is maintained despite the presence of neutralizing antibodies, without apparent signs of disease, and there is a correlation between HTNV persistence and the lack of HTNV-specific CD8 + T cells. In addition, disseminated HTNV infection before the initiation of immune responses appears to be important for virus persistence. The suppression of HTNV-specific CD8 + T cells in the present model appears to occur at the periphery. The present study also demonstrates that CD8 + T cells contribute to the clearance of HTNV. Thus, it seems that HTNV-specific CD8 + T cells play a key role in HTNV persistence in mice. This model of viral persistence is useful for studies of immune responses and immunocytotherapy against viral infection

  12. Advances in Animal Models of Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhang Hang

    2015-12-01

    Full Text Available Hepatitis B virus (HBV infection seriously affects human health. Stable and reliable animal models of HBV infection bear significance in studying pathogenesis of this health condition and development of intervention measures. HBV exhibits high specificity for hosts, and chimpanzee is long used as sole animal model of HBV infection. However, use of chimpanzees is strictly constrained because of ethical reasons. Many methods were used to establish small-animal models of HBV infection. Tupaia is the only nonprimate animal that can be infected by HBV. Use of HBV-related duck hepatitis virus and marmot hepatitis virus infection model contributed to evaluation of mechanism of HBV replication and HBV treatment methods. In recent years, development of human–mouse chimeric model provided possibility of using common experimental animals to carry out HBV research. These models feature their own advantages and disadvantages and can be complementary in some ways. This study provides an overview of current and commonly used animal models of HBV infection.

  13. Temporal Analysis of Andes Virus and Sin Nombre Virus Infections of Syrian Hamsters

    Science.gov (United States)

    2007-05-01

    Microbiology . All Rights Reserved. Temporal Analysis of Andes Virus and Sin Nombre Virus Infections of Syrian Hamsters Victoria Wahl-Jensen,1 Jennifer...Ye, C., J. Prescott , R. Nofchissey, D. Goade, and B. Hjelle. 2004. Neutralizing antibodies and Sin Nombre virus RNA after recovery from hantavirus

  14. Interferon production and immune response induction in pathogenic rabies virus-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Marcovistz, R; Leal, E C; De Souza Matos, D C [Departamento de Immunologia, Instituto Oswaldo Cruz, Caixa Postal 926, 21045 Rio de Janeiro (Brazil); Tsiang, H [Service Rage, Istitut Pasteur, Paris (France)

    1994-08-01

    Pathogenic parental rabies virus strain CVS (challenge virus standard) and its apathogenic variant RV194-2 were shown to differ in their ability to induce interferon (IFN) and immune response of the host. After intracerebral inoculation. IFN and antibody production was higher in the RV194-2 virus-infected mice than in the CVS infection. The enhancement of 2-5A synthetase activity, an IFN-mediated enzyme marker, showed biochemical evidence that IFN is active in both apathogenic and pathogenic infections. On the other hand, spontaneous proliferation in vitro of thymocytes and splenocytes from CVS virus-infected mice was strongly inhibited in contrast to the RV194-2 infection. In the CVS infection, the thymocyte proliferation However, in the RV194-2 infection, the thymocyte proliferation was higher than of the splenocytes. These results suggest a better performance of T-cell response to the RV194-2 infection. This fact can be critical for an enhancement of antibody production in the apathogenic infection and subsequent virus clearance from the brain of RV194-2 virus-infected mice. (author) 1 fig., 3 tabs., 32 refs.

  15. Clinical studies on hepatitis B, C, and E virus infection

    NARCIS (Netherlands)

    Willemse, S.B.

    2017-01-01

    Chronic viral hepatitis is a major cause of liver-related morbidity and mortality. This thesis describes clinical aspects of hepatitis B, C, and E virus infection. Part I focuses on hepatitis B virus (HBV) infection. This part describes immune responses of patients with acute HBV-infection,

  16. The Prospect of Immunoglobulin Y for Therapy of Canine parvovirus Infection in Dogs

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Suartini

    2015-06-01

    Full Text Available Canine parvovirus (CPV is a highly infectious virus. The virus causes death in dogs worldwide. The mortality rate due to infection of CPV in dog reaches 91%. Prevention of CPV infection in puppies has been done by vaccination which is effectively proven. Protective mechanisms of maternal antibodies contribute to the failure of vaccination. Highly stable characteristics of parvovirus enable the virus still exist in the environment. Various therapies are performed only to suppress the clinical symptoms but can not reduce puppy mortalities. This review discusses CPV alternative therapy and the advantages using immunoglobulin Y (IgY specific antibodies isolated from chicken egg yolk. Immunoglobulin Y will neutralize the virus, so it can not infect host cells. Intravenous IgY therapy has shown to suppress the spread of CPV infection and prevent death.

  17. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    Science.gov (United States)

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  18. Effects of acute respiratory virus infection upon tracheal mucous transport

    International Nuclear Information System (INIS)

    Gerrard, C.S.; Levandowski, R.A.; Gerrity, T.R.; Yeates, D.B.; Klein, E.

    1985-01-01

    Tracheal mucous velocity was measured in 13 healthy non-smokers using an aerosol labelled with /sup 99m/Tc and a multidetector probe during respiratory virus infections. The movement of boluses of tracheal mucous were either absent or reduced in number in five subjects with myxovirus infection (four influenza and one respiratory syncytial virus) within 48 hr of the onset of symptoms and in four subjects 1 wk later. One subject with influenza still had reduced bolus formation 12-16 wk after infection. Frequent coughing was a feature of those subjects with absent tracheal boluses. In contrast, four subjects with rhinovirus infection had normal tracheal mucous velocity at 48 hr after the onset of symptoms (4.1 +/- 1.3 mm/min). Tracheal mucous velocity was also normal (4.6 +/- 1.1 mm/min) in four subjects in whom no specific viral agent could be defined but had typical symptomatology of respiratory viral infection. During health tracheal mucous velocity was normal (4.8 +/- 1.6 mm/min) in the eleven subjects who had measurements made. Disturbances in tracheal mucous transport during virus infection appear to depend upon the type of virus and are most severe in influenza A and respiratory syncytial virus infection

  19. Inhibition of Mayaro virus replication by cerulenin in Aedes albopictus cells

    International Nuclear Information System (INIS)

    Pereira, H.S.; Rebello, M.A.

    1998-01-01

    The antibiotic cerulenin, an inhibitor of lipid synthesis, was shown to suppress Mayaro virus replication in Aedes albopictus cells at non-cytotoxic doses. Cerulenin blocked the incorporation of [ 3 H]glycerol into lipids when present at anytime post infection. Cerulenin added at the beginning of infection inhibited the synthesis of virus proteins. However, when this antibiotic was added at later stages of infection, it had only a mild effect on the virus protein synthesis. The possibility that cerulenin acts by blocking an initial step in the Mayaro virus replication after virus entry and before late viral translation is discussed. (authors)

  20. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    OpenAIRE

    Hua, Rong-Hong; Chen, Na-Sha; Qin, Cheng-Feng; Deng, Yong-Qiang; Ge, Jin-Ying; Wang, Xi-Jun; Qiao, Zu-Jian; Chen, Wei-Ye; Wen, Zhi-Yuan; Liu, Wen-Xin; Hu, Sen; Bu, Zhi-Gao

    2010-01-01

    Abstract Background Differential diagnose of Japanese encephalitis virus (JEV) infection from other flavivirus especially West Nile virus (WNV) and Dengue virus (DV) infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the P...

  1. Neonatal herpes simplex virus infection: epidemiology and treatment.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Does a feline leukemia virus infection pave the way for Bartonella henselae infection in cats?

    Science.gov (United States)

    Buchmann, Alexandra U; Kershaw, Olivia; Kempf, Volkhard A J; Gruber, Achim D

    2010-09-01

    Domestic cats serve as the reservoir hosts of Bartonella henselae and may develop mild clinical symptoms or none after experimental infection. In humans, B. henselae infection can result in self-limiting cat scratch disease. However, immunocompromised patients may suffer from more-severe courses of infection or may even develop the potentially lethal disease bacillary angiomatosis. It was reasoned that cats with immunocompromising viral infections may react similarly to B. henselae infection. The aim of our study was to investigate the influence of the most important viruses known to cause immunosuppression in cats-Feline leukemia virus (FeLV), Feline immunodeficiency virus (FIV), and Feline panleukopenia virus (FPV)-on natural B. henselae infection in cats. Accordingly, 142 cats from animal shelters were necropsied and tested for B. henselae and concurrent infections with FeLV, FIV, or FPV by PCR and immunohistochemistry. A significant association was found between B. henselae and FeLV infections (P = 0.00028), but not between B. henselae and FIV (P = 1.0) or FPV (P = 0.756) infection, age (P = 0.392), or gender (P = 0.126). The results suggest that susceptibility to B. henselae infection is higher in cats with concurrent FeLV infections, regardless of whether the infection is latent or progressive. Histopathology and immunohistochemistry for B. henselae failed to identify lesions that could be attributed specifically to B. henselae infection. We conclude that the course of natural B. henselae infection in cats does not seem to be influenced by immunosuppressive viral infections in general but that latent FeLV infection may predispose cats to B. henselae infection or persistence.

  3. Human leukocyte antigen-e alleles are associated with hepatitis c virus, torque teno virus, and toxoplasma co-infections but are not associated with hepatitis b virus, hepatitis d virus, and GB virus c co-infections in human immunodeficiency virus patients

    Directory of Open Access Journals (Sweden)

    Afiono Agung Prasetyo

    2016-01-01

    Full Text Available Context: Data regarding the distribution of Human Leukocyte Antigen (HLA-E alleles and their association with blood-borne pathogen infections/co-infections are limited for many populations, including Indonesia. Aims: The aim of this study was to analyze the association between HLA-E allelic variants and infection with blood-borne pathogens such as hepatitis B virus (HBV, hepatitis C virus (HCV, hepatitis D virus (HDV, torque teno virus (TTV, GB virus C (GBV-C, and Toxoplasma gondii (T. gondii in Indonesian Javanese human immunodeficiency virus (HIV patients. Settings and Design: A total of 320 anti-HIV-positive blood samples were analyzed for HBV, HCV, HDV, TTV, GBV-C, and T. gondii infection status and its association with HLA-E allelic variants. Materials and Methods: Nucleic acid was extracted from plasma samples and used for the molecular detection of HBV DNA, HCV RNA, HDV RNA, TTV DNA, and GBV-C RNA, whereas hepatitis B surface antigen, anti-HCV, immunoglobulin M and G (IgM and IgG anti-T. gondii were detected through serological testing. The blood samples were genotyped for HLA-E loci using a sequence-specific primer-polymerase chain reaction. Statistical Analysis Used: Either the Chi-square or Fisher′s exact test was performed to analyze the frequency of HLA-E alleles and blood-borne pathogen infections in the population. Odds ratios (ORs were calculated to measure the association between the antibodies found and the participants′ possible risk behaviors. A logistic regression analysis was used to assess the associations. Results: HLA-EFNx010101/0101 was associated with HCV/TTV co-infection (adjusted OR [aOR]: 3.5; 95% confidence interval [CI]: 1.156-10.734; P = 0.027 and IgM/IgG anti-Toxo positivity (aOR: 27.0; 95% CI: 3.626-200.472; P = 0.001. HLA-EFNx010103/0103 was associated with TTV co-infection (aOR: 2.7; 95% CI: 1.509-4.796; P = 0.001. Conclusions: HLA-E alleles in Indonesian Javanese HIV patients were found to be associated

  4. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    Science.gov (United States)

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  5. Zika virus infection: The resurgence of a neglected disease

    Directory of Open Access Journals (Sweden)

    Tushar Kambale

    2016-01-01

    Full Text Available "Zika virus" (ZIKV is an enveloped, icosahedral virus and has a positive-sense, single-stranded RNA genome approximately 11 kb in length. Genetic studies have revealed three ZIKV lineages: East African, West African, and Asian. Serologic studies and virus isolations have demonstrated that the virus has a wide geographic distribution, spanning East and West Africa, the Americas, Indian subcontinent, and Southeast Asia. ZIKV can cause complications such as Guillain-Barré syndrome, meningitis, meningoencephalitis, and myelitis. During pregnancy ZIKV infection can lead to miscarriages and microcephaly, cerebral calcifications, macular neuroretinal atrophy, and loss of foveal reflex in the fetus. A clinically suspected case of infection with dengue negative result should be further tested for Flavivirus, including Zika. Immunofluorescence or enzyme-linked immunosorbent assay is used to detect specific IgM or IgG antibodies against ZIKV. In cases of positive ZIKV infection, symptomatic treatment should be given after excluding other condition such as dengue, malaria, and bacterial infections.

  6. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus-Infected Patients.

    Science.gov (United States)

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-10-15

    The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. All blood samples from suspected Ebola virus-infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus-infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus-infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. In vitro infection of salmonid epidermal tissues by infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus

    Science.gov (United States)

    Yamamoto, T.; Batts, W.N.; Winton, J.R.

    1992-01-01

    The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.

  8. Effect of low-pathogenicity influenza virus H3N8 infection on Mycoplasma gallisepticum infection of chickens.

    Science.gov (United States)

    Stipkovits, Laszlo; Egyed, Laszlo; Palfi, Vilmos; Beres, Andrea; Pitlik, Ervin; Somogyi, Maria; Szathmary, Susan; Denes, Bela

    2012-01-01

    Mycoplasma infection is still very common in chicken and turkey flocks. Several low-pathogenicity avian influenza (LPAI) viruses are circulating in wild birds that can be easily transmitted to poultry flocks. However, the effect of LPAI on mycoplasma infection is not well understood. The aim of the present study was to investigate the infection of LPAI virus H3N8 (A/mallard/Hungary/19616/07) in chickens challenged with Mycoplasma gallisepticum. Two groups of chickens were aerosol challenged with M. gallisepticum. Later one of these groups and one mycoplasma-free group were aerosol challenged with the LPAI H3N8 virus. The birds were observed for clinical signs for 8 days, then euthanized, and examined for the presence of M. gallisepticum in the trachea, lung, air sac, liver, spleen, kidney and heart, and for developing anti-mycoplasma and anti-viral antibodies. The LPAI H3N8 virus did not cause any clinical signs but M. gallisepticum infection caused clinical signs, reduction of body weight gain and colonization of the inner organs. These parameters were more severe in the birds co-infected with M. gallisepticum and LPAI H3N8 virus than in the group challenged with M. gallisepticum alone. In addition, in the birds infected with both M. gallisepticum and LPAI H3N8 virus, the anti-mycoplasma antibody response was reduced significantly when compared with the group challenged with M. gallisepticum alone. Co-infection with LPAI H3N8 virus thus enhanced pathogenesis of M. gallisepticum infection significantly.

  9. Aedes aegypti uses RNA interference in defense against Sindbis virus infection.

    Science.gov (United States)

    Campbell, Corey L; Keene, Kimberly M; Brackney, Douglas E; Olson, Ken E; Blair, Carol D; Wilusz, Jeffrey; Foy, Brian D

    2008-03-17

    RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.

  10. Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Navas-Castillo, Jesús; Moriones, Enrique; Martínez-Zubiaur, Yamila

    2012-01-01

    As a result of surveys conducted during the last few years to search for wild reservoirs of begomoviruses in Cuba, we detected a novel bipartite begomovirus, sida yellow mottle virus (SiYMoV), infecting Sida rhombifolia plants. The complete genome sequence was obtained, showing that DNA-A was 2622 nucleotides (nt) in length and that it was most closely related (87.6% nucleotide identity) to DNA-A of an isolate of sida golden mosaic virus (SiGMV) that infects snap beans (Phaseolus vulgaris) in Florida. The DNA-B sequence was 2600 nt in length and shared the highest nucleotide identity (75.1%) with corchorus yellow spot virus (CoYSV). Phylogenetic relationship analysis showed that both DNA components of SiYMoV were grouped in the Abutilon clade, along with begomoviruses from Florida and the Caribbean islands. We also present here the complete nucleotide sequence of a novel strain of sida yellow vein virus found infecting Malvastrum coromandelianum and an isolate of euphorbia mosaic virus that was found for the first time infecting Euphorbia heterophylla in Cuba.

  11. Transfusion associated hepatitis B virus infection among sickle cell ...

    African Journals Online (AJOL)

    Background: Transfusion of blood products is a recognised way of transmitting infections particularly viruses. The extent to which blood transfusion contributes to hepatitis B virus (HBV) infections in transfused patients with sickle cell anaemia (SCA) has been found to be 20% in Lagos, Nigeria. Mamman in Zaria however ...

  12. Human immunodeficiency virus (HIV) infection in tuberculosis ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection in tuberculosis patients in Addis ... METHODS: A cross-sectional survey whereby blood sample was collected ... of co-infection appeared to have increased compared to previous studies, 6.6%, ...

  13. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  14. Increased concordance of severe respiratory syncytial virus infection in identical twins

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; Stensballe, Lone Graff; Skytthe, Axel

    2008-01-01

    (concordance rate: 0.66 vs 0.53), which suggests genetic influences on disease severity. Genetic factors accounted for 16%, family environment for 73%, and nonshared environment for 11% of the individual susceptibility to develop severe respiratory syncytial virus infection. CONCLUSIONS: The severity...... of respiratory syncytial virus infection is determined partly by genetic factors. This result should stimulate the search for genetic markers of disease severity.......OBJECTIVE: We estimated differences in the severity of respiratory syncytial virus infection attributable to genetic and environmental factors. METHODS: Record linkage data on hospitalizations attributable to respiratory syncytial virus infection were gathered on all twins (12,346 pairs) born...

  15. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells.

    Science.gov (United States)

    Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L

    2018-04-15

    Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the

  16. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses.

    Science.gov (United States)

    Spickler, Anna R; Trampel, Darrell W; Roth, James A

    2008-12-01

    Some avian influenza viruses may be transmissible to mammals by ingestion. Cats and dogs have been infected by H5N1 avian influenza viruses when they ate raw poultry, and two human H5N1 infections were linked to the ingestion of uncooked duck blood. The possibility of zoonotic influenza from exposure to raw poultry products raises concerns about flocks with unrecognized infections. The present review examines the onset of virus shedding and the development of clinical signs for a variety of avian influenza viruses in chickens. In experimentally infected birds, some high-pathogenicity avian influenza (HPAI) and low-pathogenicity avian influenza (LPAI) viruses can occur in faeces and respiratory secretions as early as 1 to 2 days after inoculation. Some HPAI viruses have also been found in meat 1 day after inoculation and in eggs after 3 days. There is no evidence that LPAI viruses can be found in meat, and the risk of their occurrence in eggs is poorly understood. Studies in experimentally infected birds suggest that clinical signs usually develop within a few days of virus shedding; however, some models and outbreak descriptions suggest that clinical signs may not become evident for a week or more in some H5 or H7 HPAI-infected flocks. During this time, avian influenza viruses might be found in poultry products. LPAI viruses can be shed in asymptomatically infected or minimally affected flocks, but these viruses are unlikely to cause significant human disease.

  17. Occurrence of Viruses Infecting Foxtail Millet (Setaria italica in South Korea

    Directory of Open Access Journals (Sweden)

    Chung Youl Park

    2017-03-01

    Full Text Available In 2015, a nationwide survey was carried out to investigate about occurrence pattern of virus infecting foxtail millet. A total 100 foxtail millet leaf samples showing virus-like and abnormal symptoms were collected in the seven main cultivated regions of Korea. Four viruses were identified using reverse transcription polymerase chain reaction and RNA sequencing. Of the collected 100 foxtail millet samples, 10 were Barley virus G (BVG, 4 were Rice stripe virus (RSV, 1 was Northern cereal mosaic virus (NCMV, and 1 was Sugarcane yellow leaf virus (ScYLV infection. To our best knowledge, this is the first report of BVG and NCMV infecting foxtail millet in Korea and ScYLV is expected as new Polerovirus species. This research will be useful in breeding for improved disease-resistant foxtail millet cultivars.

  18. Co-infections and Pathogenesis of KSHV-Associated Malignancies

    Directory of Open Access Journals (Sweden)

    Suhani eThakker

    2016-02-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV, also known as human herpes virus 8 (HHV-8 is one of the several carcinogenic viruses that infect humans. KSHV infection has been implicated in the development of Kaposi’s sarcoma (KS, primary effusion lymphoma (PEL, and multicentric Castleman’s Disease (MCD. While KSHV infection is necessary for the development of KSHV associated malignancies, it is not sufficient to induce tumoriegenesis. Evidently, other co-factors are essential for the progression of KSHV induced malignancies. One of the most important co-factors, necessary for the progression of KSHV induced tumors, is immune suppression that frequently arises during co-infection with HIV and also by other immune suppressants. In this mini-review, we discuss the roles of co-infection with HIV and other pathogens on KSHV infection and pathogenesis.

  19. Zika virus infection acquired during brief travel to Indonesia.

    Science.gov (United States)

    Kwong, Jason C; Druce, Julian D; Leder, Karin

    2013-09-01

    Zika virus infection closely resembles dengue fever. It is possible that many cases are misdiagnosed or missed. We report a case of Zika virus infection in an Australian traveler who returned from Indonesia with fever and rash. Further case identification is required to determine the evolving epidemiology of this disease.

  20. Co-infections with Chikungunya and Dengue Viruses, Guatemala, 2015.

    Science.gov (United States)

    Edwards, Thomas; Signor, Leticia Del Carmen Castillo; Williams, Christopher; Donis, Evelin; Cuevas, Luis E; Adams, Emily R

    2016-11-01

    We screened serum samples referred to the national reference laboratory in Guatemala that were positive for chikungunya or dengue viruses in June 2015. Co-infection with both viruses was detected by reverse transcription PCR in 46 (32%) of 144 samples. Specimens should be tested for both arboviruses to detect co-infections.

  1. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015-2016.

    Science.gov (United States)

    Surachetpong, Win; Janetanakit, Taveesak; Nonthabenjawan, Nutthawan; Tattiyapong, Puntanat; Sirikanchana, Kwanrawee; Amonsin, Alongkorn

    2017-06-01

    During 2015-2016, several outbreaks of tilapia lake virus infection occurred among tilapia in Thailand. Phylogenetic analysis showed that the virus from Thailand grouped with a tilapia virus (family Orthomyxoviridae) from Israel. This emerging virus is a threat to tilapia aquaculture in Asia and worldwide.

  2. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015?2016

    OpenAIRE

    Surachetpong, Win; Janetanakit, Taveesak; Nonthabenjawan, Nutthawan; Tattiyapong, Puntanat; Sirikanchana, Kwanrawee; Amonsin, Alongkorn

    2017-01-01

    During 2015?2016, several outbreaks of tilapia lake virus infection occurred among tilapia in Thailand. Phylogenetic analysis showed that the virus from Thailand grouped with a tilapia virus (family Orthomyxoviridae) from Israel. This emerging virus is a threat to tilapia aquaculture in Asia and worldwide.

  3. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads.

    Science.gov (United States)

    Rando, R F; Ojwang, J; Elbaggari, A; Reyes, G R; Tinder, R; McGrath, M S; Hogan, M E

    1995-01-27

    An oligonucleotide (I100-15) composed of only deoxyguanosine and thymidine was able to inhibit human immunodeficiency virus type-1 (HIV-1) in culture assay systems. I100-15 did not block virus entry into cells but did reduce viral-specific transcripts. As assessed by NMR and polyacrylamide gel methods, I100-15 appears to form a structure in which two stacked guanosine tetrads are connected by three two-base long loops. Structure/activity experiments indicated that formation of intramolecular guanosine tetrads was necessary to achieve maximum antiviral activity. The single deoxyguanosine nucleotide present in each loop was found to be extremely important for the overall antiviral activity. The toxicity of I100-15 was determined to be well above the 50% effective dose (ED50) in culture which yielded a high therapeutic index (> 100). The addition of a cholesterol moiety to the 3' terminus of I100-15 (I100-23) reduced the ED50 value to less than 50 nM (from 0.12 microM for I100-15) and increased the duration of viral suppression to greater than 21 days (versus 7-10 days for I100-15) after removal of the drug from infected cell cultures. The favorable therapeutic index of such molecules coupled with the prolonged suppression of HIV-1, suggest that such compounds further warrant investigation as potential therapeutic agents.

  4. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  5. Effects of interferon on cultured cells persistently infected with viruses

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M

    1986-01-01

    The role of interferon (IFN) in viral persistence at the cellular level was investigated. Two types of persistent infections were chosen. The first type was cell lines which contained hepatitis B virus (HBV) DNA (PLC/PRF/5 and Hep 3B cells) uninfected control hepatoma cells, (Mahlavu, HA22T and Hep G2 cells) or simian virus 40 (SV40) DNA (C2, C6, C11 cells) and control uninfected (CV-1 cells). In the second type of infection Vero cells persistently infected with SSPE or Sendai virus were used. The aim of this work was to determine what effect IFN had in these infections in terms of its antiviral and antiproliferative effects; which of the two major IFN-induced pathways, E enzyme or protein kinase were induced; whether there were any differences in sensitivity to IFN between the DNA and RNA virus persistent infections. The anti-viral effect of IFN was examined by its ability to inhibit Sindbis virus replication using a radioimmunoassay system. The antiproliferative effect of IFN was determined by cell counting and /sup 3/H-thymidine incorporation. The activation of the ribonuclease F, determined by the inhibition of /sup 3/H-leucine incorporation after introduction of 2-5 actin into the cells, was variable, being activated in all cell lines with the exception of the PLC/PRF/5, Hep 3B and Hep G2 cells. Major differences between the two DNA persistent infections and the two RNA persistent infections were found. No correlation was found between the presence of HBV or SV40 persistent infections and the sensitivity of the cell lines to IFN. Both the SSPE and Sendai virus persistent infections were resistant to the antiviral and antiproliferative effect of IFN.

  6. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Directory of Open Access Journals (Sweden)

    Arthur K Tugume

    Full Text Available BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae encodes a Class 1 RNase III (RNase3, a putative hydrophobic protein (p7 and a 22-kDa protein (p22 from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b encoding an RNase3 homolog (<56% identity to SPCSV RNase3 able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in

  7. A Naturally Occurring Domestic Cat APOBEC3 Variant Confers Resistance to Feline Immunodeficiency Virus Infection.

    Science.gov (United States)

    Yoshikawa, Rokusuke; Izumi, Taisuke; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Ren, Fengrong; Carpenter, Michael A; Ikeda, Terumasa; Münk, Carsten; Harris, Reuben S; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary "arms race" between the domestic cat and its cognate lentivirus. Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian

  8. Towards antiviral therapies for treating dengue virus infections.

    Science.gov (United States)

    Kaptein, Suzanne Jf; Neyts, Johan

    2016-10-01

    Dengue virus is an emerging human pathogen that poses a huge public health burden by infecting annually about 390 million individuals of which a quarter report with clinical manifestations. Although progress has been made in understanding dengue pathogenesis, a licensed vaccine or antiviral therapy against this virus is still lacking. Treatment of patients is confined to symptomatic alleviation and supportive care. The development of dengue therapeutics thus remains of utmost importance. This review focuses on the few molecules that were evaluated in dengue virus-infected patients: balapiravir, chloroquine, lovastatin, prednisolone and celgosivir. The lessons learned from these clinical trials can be very helpful for the design of future trials for the next generation of dengue virus inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  10. Chikungunya VIrUS infection

    African Journals Online (AJOL)

    A retrospective study of 107 cases of serologically proven chikungunya (CHIK) virus infection was undertaken. All respondents 'had contracted the. 'disease at least 3 years previously; 87,9% had fully .recovered, 3,7% experienced only occasional stiff- ness or mild discomfort, 2,8% had persistent resi- dual joint stiffness but ...

  11. Possible Zika Virus Infection Among Pregnant Women - United States and Territories, May 2016.

    Science.gov (United States)

    Simeone, Regina M; Shapiro-Mendoza, Carrie K; Meaney-Delman, Dana; Petersen, Emily E; Galang, Romeo R; Oduyebo, Titilope; Rivera-Garcia, Brenda; Valencia-Prado, Miguel; Newsome, Kimberly B; Pérez-Padilla, Janice; Williams, Tonya R; Biggerstaff, Matthew; Jamieson, Denise J; Honein, Margaret A

    2016-05-27

    Zika virus is a cause of microcephaly and brain abnormalities (1), and it is the first known mosquito-borne infection to cause congenital anomalies in humans. The establishment of a comprehensive surveillance system to monitor pregnant women with Zika virus infection will provide data to further elucidate the full range of potential outcomes for fetuses and infants of mothers with asymptomatic and symptomatic Zika virus infection during pregnancy. In February 2016, Zika virus disease and congenital Zika virus infections became nationally notifiable conditions in the United States (2). Cases in pregnant women with laboratory evidence of Zika virus infection who have either 1) symptomatic infection or 2) asymptomatic infection with diagnosed complications of pregnancy can be reported as cases of Zika virus disease to ArboNET* (2), CDC's national arboviral diseases surveillance system. Under existing interim guidelines from the Council for State and Territorial Epidemiologists (CSTE), asymptomatic Zika virus infections in pregnant women who do not have known pregnancy complications are not reportable. ArboNET does not currently include pregnancy surveillance information (e.g., gestational age or pregnancy exposures) or pregnancy outcomes. To understand the full impact of infection on the fetus and neonate, other systems are needed for reporting and active monitoring of pregnant women with laboratory evidence of possible Zika virus infection during pregnancy. Thus, in collaboration with state, local, tribal, and territorial health departments, CDC established two surveillance systems to monitor pregnancies and congenital outcomes among women with laboratory evidence of Zika virus infection(†) in the United States and territories: 1) the U.S. Zika Pregnancy Registry (USZPR),(§) which monitors pregnant women residing in U.S. states and all U.S. territories except Puerto Rico, and 2) the Zika Active Pregnancy Surveillance System (ZAPSS), which monitors pregnant women

  12. Pneumothorax in human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Sibes Kumar Das

    2015-01-01

    Full Text Available Pneumothorax occurs more frequently in people with Human immunodeficiency virus infection in comparison with the general population. In most cases it is secondary the underlying pulmonary disorder, especially pulmonary infections. Though Pneumocystis jiroveci pneumonia is most common pulmonary infection associated with pneumothorax, other infections, non-infective etiology and iatrogenic causes are also encountered. Pneumothorax in these patients are associated with persistent bronchopleural fistula, prolonged hospital stay, poor success with intercostal tube drain, frequent requirement of surgical intervention and increased mortality. Optimal therapeutic approach in these patients is still not well-defined.

  13. Canine distemper virus infection in a lesser grison (Galictis cuja: first report and virus phylogeny

    Directory of Open Access Journals (Sweden)

    Jane Megid

    2013-02-01

    Full Text Available Infectious diseases in wild animals have been increasing as a result of their habitat alterations and closer contact with domestic animals. Canine distemper virus (CDV has been reported in several species of wild carnivores, presenting a threat to wildlife conservation. We described the first case of canine distemper virus infection in lesser grison (Galictis cuja. A free-ranging individual, with no visible clinical sigs, presented sudden death after one day in captivity. Molecular diagnosis for CDV infection was performed using whole blood collected by postmortem intracardiac puncture, which resulted positive. The virus phylogeny indicated that domestic dogs were the probable source of infection.

  14. Laboratory Diagnosis of Zika Virus Infection.

    Science.gov (United States)

    Landry, Marie Louise; St George, Kirsten

    2017-01-01

    -The rapid and accurate diagnosis of Zika virus infection is an international priority. -To review current recommendations, methods, limitations, and priorities for Zika virus testing. -Sources include published literature, public health recommendations, laboratory procedures, and testing experience. -Until recently, the laboratory diagnosis of Zika infection was confined to public health or research laboratories that prepared their own reagents, and test capacity has been limited. Furthermore, Zika cross-reacts serologically with other flaviviruses, such as dengue, West Nile, and yellow fever. Current or past infection, or even vaccination with another flavivirus, will often cause false-positive or uninterpretable Zika serology results. Detection of viral RNA during acute infection using nucleic acid amplification tests provides more specific results, and a number of commercial nucleic acid amplification tests have received emergency use authorization. In addition to serum, testing of whole blood and urine is recommended because of the higher vial loads and longer duration of shedding. However, nucleic acid amplification testing has limited utility because many patients are asymptomatic or present for testing after the brief period of Zika shedding has passed. Thus, the greatest need and most difficult challenge is development of accurate antibody tests for the diagnosis of recent Zika infection. Research is urgently needed to identify Zika virus epitopes that do not cross-react with other flavivirus antigens. New information is emerging at a rapid pace and, with ongoing public-private and international collaborations and government support, it is hoped that rapid progress will be made in developing robust and widely applicable diagnostic tools.

  15. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo.

    Directory of Open Access Journals (Sweden)

    Bernadette M Dutia

    2009-08-01

    Full Text Available Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells.Murine gammaherpesvirus 68 (MHV-68 was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.

  16. Diagnosis and Management of Paediatric Hepatitis C Virus Infection ...

    African Journals Online (AJOL)

    Background: HepatitisC virus is a chronic life-long infection in themajority of patientswho are infected with the virus.Without accurate diagnosis and follow up, these children cannot be offered optimal care, and are at risk of presenting in adult life with significant liver pathology and long-term sequelae. Objective: To explore ...

  17. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Allison Groseth

    Full Text Available The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV and the hemorrhagic fever-causing Junin virus (JUNV, in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.

  18. Epstein-Barr Virus: The Path from Latent to Productive Infection.

    Science.gov (United States)

    Chiu, Ya-Fang; Sugden, Bill

    2016-09-29

    The intrinsic properties of different viruses have driven their study. For example, the capacity for efficient productive infection of cultured cells by herpes simplex virus 1 has made it a paradigm for this mode of infection for herpesviruses in general. Epstein-Barr virus, another herpesvirus, has two properties that have driven its study: It causes human cancers, and it exhibits a tractable transition from its latent to its productive cycle in cell culture. Here, we review our understanding of the path Epstein-Barr virus follows to move from a latent infection to and through its productive cycle. We use information from human infections to provide a framework for describing studies in cell culture and, where possible, the molecular resolutions from these studies. We also pose questions whose answers we think are pivotal to understanding this path, and we provide answers where we can.

  19. Hepatitis C virus infection and risk of coronary artery disease

    DEFF Research Database (Denmark)

    Roed, Torsten; Lebech, Anne-Mette; Kjaer, Andreas

    2012-01-01

    Several chronic infections have been associated with cardiovascular diseases, including Chlamydia pneumoniae, human immunodeficiency virus and viral hepatitis. This review evaluates the literature on the association between chronic hepatitis C virus (HCV) infection and the risk of coronary artery...

  20. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    International Nuclear Information System (INIS)

    Chotiwan, Nunya; Roehrig, John T.; Schlesinger, Jacob J.; Blair, Carol D.; Huang, Claire Y.-H.

    2014-01-01

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection

  1. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    Energy Technology Data Exchange (ETDEWEB)

    Chotiwan, Nunya; Roehrig, John T. [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Schlesinger, Jacob J. [Department of Medicine, University of Rochester, Rochester, NY 14642 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H., E-mail: yxh0@cdc.gov [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2014-05-15

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.

  2. Infection by a Giant Virus (AaV Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae

    Directory of Open Access Journals (Sweden)

    Mohammad Moniruzzaman

    2018-04-01

    Full Text Available While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to be associated with important ecological processes, including the collapse of algal blooms. However, the molecular aspects of giant virus–host interactions remain largely unknown. Aureococcus anophagefferens virus (AaV, a giant virus in the Mimiviridae clade, is known to play a critical role in regulating the fate of brown tide blooms caused by the pelagophyte Aureococcus anophagefferens. To understand the physiological response of A. anophagefferens CCMP1984 upon AaV infection, we studied the transcriptomic landscape of this host–virus pair over an entire infection cycle using a RNA-sequencing approach. A massive transcriptional response of the host was evident as early as 5 min post-infection, with modulation of specific processes likely related to both host defense mechanism(s and viral takeover of the cell. Infected Aureococcus showed a relative suppression of host-cell transcripts associated with photosynthesis, cytoskeleton formation, fatty acid, and carbohydrate biosynthesis. In contrast, host cell processes related to protein synthesis, polyamine biosynthesis, cellular respiration, transcription, and RNA processing were overrepresented compared to the healthy cultures at different stages of the infection cycle. A large number of redox active host-selenoproteins were overexpressed, which suggested that viral replication and assembly progresses in a highly oxidative environment. The majority (99.2% of annotated AaV genes were expressed at some point during the infection cycle and demonstrated a clear temporal–expression pattern and an increasing relative expression for the majority of the genes through the time course. We detected a putative early promoter motif for AaV, which was highly similar to the early promoter elements of two other Mimiviridae members

  3. Longitudinal Analysis of Natural Killer Cells in Dengue Virus-Infected Patients in Comparison to Chikungunya and Chikungunya/Dengue Virus-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Caroline Petitdemange

    2016-03-01

    Full Text Available Dengue virus (DENV is the most prominent arbovirus worldwide, causing major epidemics in South-East Asia, South America and Africa. In 2010, a major DENV-2 outbreak occurred in Gabon with cases of patients co-infected with chikungunya virus (CHIKV. Although the innate immune response is thought to be of primordial importance in the development and outcome of arbovirus-associated pathologies, our knowledge of the role of natural killer (NK cells during DENV-2 infection is in its infancy.We performed the first extensive comparative longitudinal characterization of NK cells in patients infected by DENV-2, CHIKV or both viruses. Hierarchical clustering and principal component analyses were performed to discriminate between CHIKV and DENV-2 infected patients.We observed that both activation and differentiation of NK cells are induced during the acute phase of infection by DENV-2 and CHIKV. Combinatorial analysis however, revealed that both arboviruses induced two different signatures of NK-cell responses, with CHIKV more associated with terminal differentiation, and DENV-2 with inhibitory KIRs. We show also that intracellular production of interferon-γ (IFN-γ by NK cells is strongly stimulated in acute DENV-2 infection, compared to CHIKV.Although specific differences were observed between CHIKV and DENV-2 infections, the significant remodeling of NK cell populations observed here suggests their potential roles in the control of both infections.

  4. Drug-induced hypersensitivity syndrome associated with Epstein-Barr virus infection.

    Science.gov (United States)

    Descamps, V; Mahe, E; Houhou, N; Abramowitz, L; Rozenberg, F; Ranger-Rogez, S; Crickx, B

    2003-05-01

    Association of drug-induced hypersensitivity syndrome with viral infection is debated. Human herpesvirus 6 (HHV-6) reactivation has been the most frequently reported infection associated with this syndrome. However, a case of cytomegalovirus (CMV) infection was recently described associated with anticonvulsant-induced hypersensitivity syndrome. We report a case of severe allopurinol-induced hypersensitivity syndrome with pancreatitis associated with Epstein-Barr virus (EBV) infection. Active EBV infection was demonstrated in two consecutive serum samples by the presence of anti-EBV early antigen (EA) IgM antibodies and an increase in anti-EBV EA IgG antibodies, whereas no anti-EBV nuclear antigen IgG antibodies were detected. EBV DNA was detected by polymerase chain reaction (PCR) in peripheral blood mononuclear cells. Reactivation of HHV-6 was suggested only by the presence of anti-HHV-6 IgM antibodies, but HHV-6 DNA was not detected by PCR in the serum. Other viral investigations showed previous infection (CMV, rubella, measles, parvovirus B19), immunization after vaccination (hepatitis B virus), or absence of previous infection (hepatitis C virus, human immunodeficiency virus). We suggest that EBV infection may participate in some cases, as do the other herpesviruses HHV-6 or CMV, in the development of drug-induced hypersensitivity syndrome.

  5. Varicella-zoster virus (chickenpox) infection in pregnancy

    DEFF Research Database (Denmark)

    Lamont, Ronald F; Sobel, Jack D; Carrington, D

    2011-01-01

    Please cite this paper as: Lamont R, Sobel J, Carrington D, Mazaki-Tovi S, Kusanovic J, Vaisbuch E, Romero R. Varicella-zoster virus (chickenpox) infection in pregnancy. BJOG 2011; DOI: 10.1111/j.1471-0528.2011.02983.x. Congenital varicella syndrome, maternal varicella-zoster virus pneumonia and ...

  6. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Steven B Bradfute

    Full Text Available Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs, and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  7. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Science.gov (United States)

    Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Ayithan, Natarajan; Tailor, Prafullakumar; Shaia, Carl I; Bray, Mike; Ozato, Keiko; Bavari, Sina

    2015-01-01

    Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  8. MicroRNA and the innate immune response toinfluenza A virus infection in pigs

    DEFF Research Database (Denmark)

    Brogaard, Louise

    response to influenza A virus infection requires the joint expression profiling of protein-coding gene and microRNA expression. Paper 1 is a review which emphasizes the importance of the pig in the study of influenza Avirus infections. Pigs are themselves natural hosts for influenza A virus, and our close......Influenza A virus infections are a major public health concern. Many million cases of diseaseassociated with influenza A virus occur every year during seasonal epidemics, and especially vulnerable populations such as the elderly, pregnant women, young children, and individual swith underlying...... conditions such as diabetes and patients of autoimmune diseases are at higher risk of severe complications from influenza A virus infection. However, in otherwise healthy individuals, influenza A virus infection is relatively short-lived, commonly being cleared within one to two weeks. Influenza A virus...

  9. Hepatitis C virus infection in Ghana: time for action is now

    African Journals Online (AJOL)

    Introduction. Chronic hepatitis C virus (HCV) infection is a blood borne infection just like hepatitis B virus (HBV) and. Human Immunodeficiency Virus (HIV) with a signifi- cant global health impact. Since the discovery of the. HCV, several developments including a better under- standing of the clinical epidemiology, ...

  10. How hepatitis D virus can hinder the control of hepatitis B virus.

    Directory of Open Access Journals (Sweden)

    Maria Xiridou

    Full Text Available BACKGROUND: Hepatitis D (or hepatitis delta virus is a defective virus that relies on hepatitis B virus (HBV for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV. METHODOLOGY AND PRINCIPAL FINDINGS: We introduced a mathematical model for the transmission of HBV and hepatitis D, where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses. The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV. Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the virus, as control of HBV depends also on the reproduction numbers of dual infections. CONCLUSIONS AND SIGNIFICANCE: For populations where hepatitis D is endemic, plans for control programs ignoring the presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the efficacy of control measures.

  11. Cells in Dengue Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Sansanee Noisakran

    2010-01-01

    Full Text Available Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS. The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.

  12. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    Science.gov (United States)

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. First case of imported Zika virus infection in Spain.

    Science.gov (United States)

    Bachiller-Luque, Pablo; Domínguez-Gil González, Marta; Álvarez-Manzanares, Jesús; Vázquez, Ana; De Ory, Fernando; Sánchez-Seco Fariñas, M Paz

    2016-04-01

    We report a case of Zika virus (ZIKV) infection in a patient with diarrhea, fever, synovitis, non-purulent conjunctivitis, and with discreet retro-orbital pain, after returning from Colombia in January 2016. The patient referred several mosquito bites. Presence of ZIKV was detected by PCR (polymerase chain reaction) in plasma. Rapid microbiological diagnosis of ZIKV infection is needed in European countries with circulation of its vector, in order to avoid autochthonous circulation. The recent association of ZIKV infection with abortion and microcephaly, and a Guillain-Barré syndrome highlights the need for laboratory differentiation of ZIKV from other virus infection. Women with potential risk for Zika virus infection who are pregnant or planning to become pregnant must mention that fact during prenatal visits in order to be evaluated and properly monitored. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Hendra Virus Infection in Dog, Australia, 2013

    OpenAIRE

    Kirkland, Peter D.; Gabor, Melinda; Poe, Ian; Neale, Kristie; Chaffey, Kim; Finlaison, Deborah S.; Gu, Xingnian; Hick, Paul M.; Read, Andrew J.; Wright, Therese; Middleton, Deborah

    2015-01-01

    Hendra virus occasionally causes severe disease in horses and humans. In Australia in 2013, infection was detected in a dog that had been in contact with an infected horse. Abnormalities and viral RNA were found in the dog?s kidney, brain, lymph nodes, spleen, and liver. Dogs should be kept away from infected horses.

  15. Modulation of inflammation and pathology during dengue virus infection by p38 MAPK inhibitor SB203580.

    Science.gov (United States)

    Fu, Yilong; Yip, Andy; Seah, Peck Gee; Blasco, Francesca; Shi, Pei-Yong; Hervé, Maxime

    2014-10-01

    Dengue virus (DENV) infection could lead to dengue fever (DF), dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). The disease outcome is controlled by both viral and host factors. Inflammation mediators from DENV-infected cells could contribute to increased vascular permeability, leading to severe DHF/DSS. Therefore, suppression of inflammation could be a potential therapeutic approach for treatment of dengue patients. In this context, p38 MAPK (mitogen-activated protein kinase) is a key enzyme that modulates the initiation of stress and inflammatory responses. Here we show that SB203580, a p38 MAPK inhibitor, suppressed the over production of DENV-induced pro-inflammatory mediators such as TNF-α, IL-8, and RANTES from human PBMCs, monocytic THP-1, and granulocyte KU812 cell lines. Oral administration of SB203580 in DENV-infected AG129 mice prevented hematocrit rise and lymphopenia, limited the development of inflammation and pathology (including intestine leakage), and significantly improved survival. These results, for the first time, have provided experimental evidence to imply that a short term inhibition of p38 MAPK may be beneficial to reduce disease symptoms in dengue patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Autophagy in Measles Virus Infection

    Directory of Open Access Journals (Sweden)

    Aurore Rozières

    2017-11-01

    Full Text Available Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1 or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2, which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  17. Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015.

    Science.gov (United States)

    Schuler-Faccini, Lavinia; Ribeiro, Erlane M; Feitosa, Ian M L; Horovitz, Dafne D G; Cavalcanti, Denise P; Pessoa, André; Doriqui, Maria Juliana R; Neri, Joao Ivanildo; Neto, Joao Monteiro de Pina; Wanderley, Hector Y C; Cernach, Mirlene; El-Husny, Antonette S; Pone, Marcos V S; Serao, Cassio L C; Sanseverino, Maria Teresa V

    2016-01-29

    In early 2015, an outbreak of Zika virus, a flavivirus transmitted by Aedes mosquitoes, was identified in northeast Brazil, an area where dengue virus was also circulating. By September, reports of an increase in the number of infants born with microcephaly in Zika virus-affected areas began to emerge, and Zika virus RNA was identified in the amniotic fluid of two women whose fetuses had been found to have microcephaly by prenatal ultrasound. The Brazil Ministry of Health (MoH) established a task force to investigate the possible association of microcephaly with Zika virus infection during pregnancy and a registry for incident microcephaly cases (head circumference ≥2 standard deviations [SD] below the mean for sex and gestational age at birth) and pregnancy outcomes among women suspected to have had Zika virus infection during pregnancy. Among a cohort of 35 infants with microcephaly born during August-October 2015 in eight of Brazil's 26 states and reported to the registry, the mothers of all 35 had lived in or visited Zika virus-affected areas during pregnancy, 25 (71%) infants had severe microcephaly (head circumference >3 SD below the mean for sex and gestational age), 17 (49%) had at least one neurologic abnormality, and among 27 infants who had neuroimaging studies, all had abnormalities. Tests for other congenital infections were negative. All infants had a lumbar puncture as part of the evaluation and cerebrospinal fluid (CSF) samples were sent to a reference laboratory in Brazil for Zika virus testing; results are not yet available. Further studies are needed to confirm the association of microcephaly with Zika virus infection during pregnancy and to understand any other adverse pregnancy outcomes associated with Zika virus infection. Pregnant women in Zika virus-affected areas should protect themselves from mosquito bites by using air conditioning, screens, or nets when indoors, wearing long sleeves and pants, using permethrin-treated clothing and gear

  18. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  19. Replication and clearance of respiratory syncytial virus - Apoptosis is an important pathway of virus clearance after experimental infection with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Viuff, B.; Tjørnehøj, Kirsten; Larsen, Lars Erik

    2002-01-01

    and clearance in a natural target animal. Replication of BRSV was demonstrated in the luminal part of the respiratory epithelial cells and replication in the upper respiratory tract preceded the replication in the lower respiratory tract. Virus excreted to the lumen of the respiratory tract was cleared...... and the infections with human respiratory syncytial. virus and BRSV have similar clinical, pathological, and epidemiological characteristics. In this study we used experimental BRSV infection in calves as a model of respiratory syncytial virus infection to demonstrate important aspects of viral replication......Human respiratory syncytial virus is an important cause of severe respiratory disease in young children, the elderly, and in immunocompromised adults. Similarly, bovine respiratory syncytial virus (BRSV) is causing severe, sometimes fatal, respiratory disease in calves. Both viruses are pneumovirus...

  20. Neutralizing Antibodies and Pathogenesis of Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Françoise Stoll-Keller

    2012-10-01

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. The interplay between the virus and host innate and adaptive immune responses determines the outcome of infection. There is increasing evidence that host neutralizing responses play a relevant role in the resulting pathogenesis. Furthermore, viral evasion from host neutralizing antibodies has been revealed to be an important contributor in leading both to viral persistence in acute liver graft infection following liver transplantation, and to chronic viral infection. The development of novel model systems to study HCV entry and neutralization has allowed a detailed understanding of the molecular mechanisms of virus-host interactions during antibody-mediated neutralization. The understanding of these mechanisms will ultimately contribute to the development of novel antiviral preventive strategies for liver graft infection and an urgently needed vaccine. This review summarizes recent concepts of the role of neutralizing antibodies in viral clearance and protection, and highlights consequences of viral escape from neutralizing antibodies in the pathogenesis of HCV infection.

  1. Serious invasive Saffold virus infections in children, 2009

    DEFF Research Database (Denmark)

    Nielsen, Alex Christian Yde; Böttiger, Blenda; Banner, Jytte

    2012-01-01

    The first human virus in the genus Cardiovirus was described in 2007 and named Saffold virus (SAFV). Cardioviruses can cause severe infections of the myocardium and central nervous system in animals, but SAFV has not yet been convincingly associated with disease in humans. To study a possible ass...... association between SAFV and infections in the human central nervous system, we designed a real-time PCR for SAFV and tested cerebrospinal fluid (CSF) samples from children...

  2. A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea.

    Science.gov (United States)

    Liu, Ying; Ishino, Sonoko; Ishino, Yoshizumi; Pehau-Arnaudet, Gérard; Krupovic, Mart; Prangishvili, David

    2017-07-01

    Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated. IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae." Copyright © 2017 American Society for Microbiology.

  3. Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher M.; Bidle, Kay D., E-mail: bidle@marine.rutgers.edu

    2014-10-15

    Infection dynamics (saturation kinetics, infection efficiency, adsorption and burst size) for the Aureococcus anophagefferens-Brown Tide virus (AaV) system were investigated using susceptible and resistant strains. Adsorption assays revealed that virus affinity to the cell surface is a key determinant of infectivity. Saturation of infection occurred at a multiplicity of infection (MOI) of 8 viruses per host and resulted in ∼90–95% of infected cells, with burst sizes ranging from 164 to 191. Insight from the AaV genome implicates recycling of host nucleotides rather than de novo synthesis as a constraint on viral replication. Viral yields and mean burst sizes were significantly diminished with increasing MOI. This phenomenon, which was reminiscent of phage-induced ‘lysis from without’, appeared to be caused by viral contact and was unrelated to bacteria, signaling/toxic compounds, or defective interfering viruses. We posit that high-MOI effects attenuate viral proliferation in natural systems providing a negative feedback on virus-induced bloom collapse.

  4. Zika Virus: Mechanisms of Infection During Pregnancy.

    Science.gov (United States)

    King, Nicholas J C; Teixeira, Mauro M; Mahalingam, Suresh

    2017-09-01

    Immune status changes during pregnancy, with pro-inflammatory and anti-inflammatory contexts at different stages, making pregnant women potentially more susceptible to various infections. Infection by Zika virus during pregnancy can cause developmental damage to the fetus, and the altered immune response during pregnancy could contribute to disease during Zika infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Zika virus infection: Past and present of another emerging vector-borne disease.

    Science.gov (United States)

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  6. [Clinical analysis of two cases of imported children Zika virus infection in China].

    Science.gov (United States)

    Zheng, C G; Xu, Y; Jiang, H Q; Yin, Y X; Zhang, J H; Zhu, W J; Liang, X J; Chen, M X; Ye, J W; Tan, L M; Luo, D; Gong, S T

    2016-05-01

    To analyze the clinical characteristics, outcome and diagnosis of two cases of imported children Zika virus infection in China. A retrospective analysis was performed on clinical characteristics, treatment and outcome of two cases of imported children with Zika virus infection in February 2016 in Enping People's Hospital of Guangdong. Two cases of children with imported Zika virus infection resided in an affected area of Venezuela, 8-year-old girl and her 6 year-old brother. The main findings on physical examination included the following manifestations: fever, rash, and conjunctivitis. The rash was first limited to the abdomen, but extended to the torso, neck and face, and faded after 3-4 d. The total number of white blood cells was not high and liver function was normal. The diagnosis of two cases of Zika virus infection was confirmed by the expert group of Guangdong Provincial Center for Disease Control and Prevention, according to the epidemiological history, clinical manifestations and Zika virus nucleic acid detection results.Treatment of Zika virus infection involves supportive care. Two Zika virus infection children had a relatively benign outcome. At present, Zika virus infection in children is an imported disease in China. No specific therapy is available for this disease. Information on long-term outcomes among infants and children with Zika virus disease is limited, routine pediatric care is advised for these infants and children.

  7. Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors

    Directory of Open Access Journals (Sweden)

    Yesseinia I. Angleró-Rodríguez

    2017-10-01

    Full Text Available Zika (ZIKV and dengue virus (DENV are transmitted to humans by Aedes mosquitoes. However, the molecular interactions between the vector and ZIKV remain largely unexplored. In this work, we further investigated the tropism of ZIKV in two different Aedes aegypti strains and show that the virus infection kinetics, tissue migration, and susceptibility to infection differ between mosquito strains. We also compare the vector transcriptome changes upon ZIKV or DENV infection demonstrating that 40% of the mosquito’s midgut infection-responsive transcriptome is virus-specific at 7 days after virus ingestion. Regulated genes included key factors of the mosquito’s anti-viral immunity. Comparison of the ZIKV and DENV infection-responsive transcriptome data to those available for yellow fever virus and West Nile virus identified 26 genes likely to play key roles in virus infection of Aedes mosquitoes. Through reverse genetic analyses, we show that the Toll and the Jak/Stat innate immune pathways mediate increased resistance to ZIKV infection, and the conserved DENV host factors vATPase and inosine-5′-monophosphate dehydrogenase are also utilized for ZIKV infection.

  8. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    Science.gov (United States)

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  9. Early events associated with infection of Epstein-Barr virus infection of primary B-cells.

    Directory of Open Access Journals (Sweden)

    Sabyasachi Halder

    2009-09-01

    Full Text Available Epstein Barr virus (EBV is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology was used to introduce an expression cassette of green fluorescent protein (GFP by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6-7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6-12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.

  10. Screening Criteria for Ophthalmic Manifestations of Congenital Zika Virus Infection.

    Science.gov (United States)

    Zin, Andrea A; Tsui, Irena; Rossetto, Julia; Vasconcelos, Zilton; Adachi, Kristina; Valderramos, Stephanie; Halai, Umme-Aiman; Pone, Marcos Vinicius da Silva; Pone, Sheila Moura; Silveira Filho, Joel Carlos Barros; Aibe, Mitsue S; da Costa, Ana Carolina C; Zin, Olivia A; Belfort, Rubens; Brasil, Patricia; Nielsen-Saines, Karin; Moreira, Maria Elisabeth Lopes

    2017-09-01

    Current guidelines recommend screening eye examinations for infants with microcephaly or laboratory-confirmed Zika virus infection but not for all infants potentially exposed to Zika virus in utero. To evaluate eye findings in a cohort of infants whose mothers had polymerase chain reaction-confirmed Zika virus infection during pregnancy. In this descriptive case series performed from January 2 through October 30, 2016, infants were examined from birth to 1 year of age by a multidisciplinary medical team, including a pediatric ophthalmologist, from Fernandes Figueira Institute, a Ministry of Health referral center for high-risk pregnancies and infectious diseases in children in Rio de Janeiro, Brazil. Mother-infant pairs from Rio de Janeiro, Brazil, who presented with suspected Zika virus infection during pregnancy were referred to our institution and had serum, urine, amniotic fluid, or placenta samples tested by real-time polymerase chain reaction for Zika virus. Description of eye findings, presence of microcephaly or other central nervous system abnormalities, and timing of infection in infants with confirmed Zika virus during pregnancy. Eye abnormalities were correlated with central nervous system findings, microcephaly, and the timing of maternal infection. Of the 112 with polymerase chain reaction-confirmed Zika virus infection in maternal specimens, 24 infants (21.4%) examined had eye abnormalities (median age at first eye examination, 31 days; range, 0-305 days). Ten infants (41.7%) with eye abnormalities did not have microcephaly, and 8 (33.3%) did not have any central nervous system findings. Fourteen infants with eye abnormalities (58.3%) were born to women infected in the first trimester, 8 (33.3%) in the second trimester, and 2 (8.3%) in the third trimester. Optic nerve and retinal abnormalities were the most frequent findings. Eye abnormalities were statistically associated with microcephaly (odds ratio [OR], 19.1; 95% CI, 6.0-61.0), other central

  11. Neonatal Herpes Simplex Virus Infection.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-09-01

    Herpes simplex virus (HSV) 1 and HSV-2 infections are highly prevalent worldwide and are characterized by establishing lifelong infection with periods of latency interspersed with periodic episodes of reactivation. Acquisition of HSV by an infant during the peripartum or postpartum period results in neonatal HSV disease, a rare but significant infection that can be associated with severe morbidity and mortality, especially if there is dissemination or central nervous system involvement. Diagnostic and therapeutic advances have led to improvements in mortality and, to a lesser extent, neurodevelopmental outcomes, but room exists for further improvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Persistent infection with ebola virus under conditions of partial immunity.

    Science.gov (United States)

    Gupta, Manisha; Mahanty, Siddhartha; Greer, Patricia; Towner, Jonathan S; Shieh, Wun-Ju; Zaki, Sherif R; Ahmed, Rafi; Rollin, Pierre E

    2004-01-01

    Ebola hemorrhagic fever in humans is associated with high mortality; however, some infected hosts clear the virus and recover. The mechanisms by which this occurs and the correlates of protective immunity are not well defined. Using a mouse model, we determined the role of the immune system in clearance of and protection against Ebola virus. All CD8 T-cell-deficient mice succumbed to subcutaneous infection and had high viral antigen titers in tissues, whereas mice deficient in B cells or CD4 T cells cleared infection and survived, suggesting that CD8 T cells, independent of CD4 T cells and antibodies, are critical to protection against subcutaneous Ebola virus infection. B-cell-deficient mice that survived the primary subcutaneous infection (vaccinated mice) transiently depleted or not depleted of CD4 T cells also survived lethal intraperitoneal rechallenge for >/==" BORDER="0">25 days. However, all vaccinated B-cell-deficient mice depleted of CD8 T cells had high viral antigen titers in tissues following intraperitoneal rechallenge and died within 6 days, suggesting that memory CD8 T cells by themselves can protect mice from early death. Surprisingly, vaccinated B-cell-deficient mice, after initially clearing the infection, were found to have viral antigens in tissues later (day 120 to 150 post-intraperitoneal infection). Furthermore, following intraperitoneal rechallenge, vaccinated B-cell-deficient mice that were transiently depleted of CD4 T cells had high levels of viral antigen in tissues earlier (days 50 to 70) than vaccinated undepleted mice. This demonstrates that under certain immunodeficiency conditions, Ebola virus can persist and that loss of primed CD4 T cells accelerates the course of persistent infections. These data show that CD8 T cells play an important role in protection against acute disease, while both CD4 T cells and antibodies are required for long-term protection, and they provide evidence of persistent infection by Ebola virus suggesting

  13. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    Science.gov (United States)

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  14. A neonatal murine model for evaluation of enterovirus E HY12 virus infection and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Xiaochun Gai

    Full Text Available HY12 viruses are enteroviruses recently isolated from cattle characterized by severe respiratory and digestive disease with high morbidity and mortality in China. While the viruses exhibit unique biological and molecular characters distinct from known enterovirus E, the pathogenicity and viral pathogenesis remains largely unknown.Neonatal mice of Balb/C, ICR, and Kunming strain are infected with HY12 to determine the susceptible mouse strain. The minimal infection dose, the virus infection routes, the pathogenicity and tissue tropism for HY12 were determined by infecting susceptible mice with HY12 viruses, and confirmed by different approaches including virus isolation and recovery, virus detection, histopathology, and immunohistochemistry.A murine model for HY12 infection was successfully established and employed to investigate the pathogenicity of HY12 viruses. ICR mouse strain is the most susceptible strain for HY12 infection with a minimal infective dose as 2×106TCID50/mouse. HY12 viruses have the capability of infecting ICR suckling mice via all infection routes including intranasal administration, oral administration, intraperitoneal injection, subcutaneous injection, and intramuscular injection, which are confirmed by the isolation and recovery of viruses from HY12-infected mice; detection of viruses by RT-PCR; observations of pathological lesions and inflammatory cell infiltrations in the intestine, lung, liver, and brain; uncovering of HY12 virus antigens in majority of tissues, especially in intestine, lung, and infected brain of mice by immunohistochemistry assay.A neonatal murine model for HY12 infection is successfully established for determining the susceptible mouse strain, the minimal infective dose, the infection route, the viral pathogenicity and the tropism of HY12, thus providing an invaluable model system for elucidating the pathogenesis of HY12 viruses and the elicited immunity.

  15. Chinese sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection

    Science.gov (United States)

    Chinese Sacbrood virus (CSBV) is a common honey bee virus that infects both the European honey bee (A. mellifera) and the Asian honey bee (A. cerana). However, CSBV has much more devastating effects on Asian honey bees than on European honey bees, posing a serious threat to the agricultural and nat...

  16. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians

    Directory of Open Access Journals (Sweden)

    Claine F

    2015-06-01

    Full Text Available François Claine, Damien Coupeau, Laetitia Wiggers, Benoît Muylkens, Nathalie Kirschvink Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS, University of Namur (UNamur, Namur, Belgium Abstract: In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus was first discovered in the same region where bluetongue virus serotype 8 (BTV-8 emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp. and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants. Keywords: Schmallenberg virus, Europe, ruminants, review

  17. Advances in the Treatment of Human Immunodeficiency Virus and Hepatitis B Virus Co-infection

    Directory of Open Access Journals (Sweden)

    Sun Guofang

    2016-06-01

    Full Text Available Hepatitis B virus (HBV and human immunodeficiency virus (HIV are transmitted through the same pathways. Therefore, the incidence of HBV in the HIV-infected population is higher than that in the healthy population, and is more obvious in China given the high HBV prevalence in the country. HIV and HBV co-infection can accelerate the disease process of HBV. Moreover, the incidence of cirrhosis and end-stage liver disease is higher in patients co-infected with HIV and HBV than in patients infected HBV alone. When treating patients co-infected with HIV and HBV for HBV infection alone, care should be taken to avoid the induction of HIV resistance. HBV should be considered during drug selection for anti-retroviral treatment. Furthermore, the effective HBV treatment should be retained if anti-retroviral drugs require changing.

  18. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  19. Protective role of host aquaporin 6 against Hazara virus, a model for Crimean-Congo hemorrhagic fever virus infection.

    Science.gov (United States)

    Molinas, Andrea; Mirazimi, Ali; Holm, Angelika; Loitto, Vesa M; Magnusson, Karl-Eric; Vikström, Elena

    2016-04-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is an arthropod-borne pathogen that causes infectious disease with severe hemorrhagic manifestations in vascular system in humans. The proper function of the cells in the vascular system is critically regulated by aquaporins (AQP), water channels that facilitate fluxes of water and small solutes across membranes. With Hazara virus as a model for CCHFV, we investigated the effects of viruses on AQP6 and the impact of AQP6 on virus infectivity in host cells, using transiently expressed GFP-AQP6 cells, immunofluorescent assay for virus detection, epifluorescent imaging of living cells and confocal microscopy. In GFP-AQP6 expressing cells, Hazara virus reduced both the cellular and perinuclear AQP6 distribution and changed the cell area. Infection of human cell with CCHFV strain IbAR 10200 downregulated AQP6 expression at mRNA level. Interestingly, the overexpression of AQP6 in host cells decreased the infectivity of Hazara virus, speaking for a protective role of AQP6. We suggest the possibility for AQP6 being a novel player in the virus-host interactions, which may lead to less severe outcomes of an infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Zika virus infection in Vietnam: current epidemic, strain origin, spreading risk, and perspective.

    Science.gov (United States)

    Chu, Dinh-Toi; Ngoc, Vo Truong Nhu; Tao, Yang

    2017-11-01

    Zika virus infection and its associated microcephaly have being receiving global concern. This infection has spread widely since the first outbreak was recorded in Africa in 1952. Now, it has been reported in over 70 countries on five continents including Africa, North and South America, Asia, and Europe. Vietnam is one of the most recent countries which had cases of Zika virus infection at the end of 2016. This country has also reported the first case of a microcephaly-born baby which was probably linked to Zika virus infection. However, information on the Zika virus epidemic in Vietnam is still limited. This brief report intends to update the current Zika virus epidemic, and to discuss challenges and perspectives in controlling this infection in Vietnam.

  1. Viruses as Sole Causative Agents of Severe Acute Respiratory Tract Infections in Children.

    Science.gov (United States)

    Moesker, Fleur M; van Kampen, Jeroen J A; van Rossum, Annemarie M C; de Hoog, Matthijs; Koopmans, Marion P G; Osterhaus, Albert D M E; Fraaij, Pieter L A

    2016-01-01

    Respiratory syncytial virus (RSV) and influenza A viruses are known to cause severe acute respiratory tract infections (SARIs) in children. For other viruses like human rhinoviruses (HRVs) this is less well established. Viral or bacterial co-infections are often considered essential for severe manifestations of these virus infections. The study aims at identifying viruses that may cause SARI in children in the absence of viral and bacterial co-infections, at identifying disease characteristics associated with these single virus infections, and at identifying a possible correlation between viral loads and disease severities. Between April 2007 and March 2012, we identified children (acute respiratory tract infection (ARTI) (controls). Data were extracted from the clinical and laboratory databases of our tertiary care paediatric hospital. Patient specimens were tested for fifteen respiratory viruses with real-time reverse transcriptase PCR assays and we selected patients with a single virus infection only. Typical bacterial co-infections were considered unlikely to have contributed to the PICU or MC admission based on C-reactive protein-levels or bacteriological test results if performed. We identified 44 patients admitted to PICU with SARI and 40 patients admitted to MC with ARTI. Twelve viruses were associated with SARI, ten of which were also associated with ARTI in the absence of typical bacterial and viral co-infections, with RSV and HRV being the most frequent causes. Viral loads were not different between PICU-SARI patients and MC-ARTI patients. Both SARI and ARTI may be caused by single viral pathogens in previously healthy children as well as in children with a medical history. No relationship between viral load and disease severity was identified.

  2. Immune Activation in the Pathogenesis of Dengue Virus Infection

    NARCIS (Netherlands)

    C.A.M. van de Weg (Cornelia A.M.)

    2014-01-01

    markdownabstract__Abstract__ Dengue virus (DENV) is a positive-stranded RNA virus and belongs to the Flaviviridae family. The virus is transmitted by the bite of an infected Aedes-mosquito and circulates in tropical and subtropical areas around the world. The incidence of dengue has risen

  3. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection

    Science.gov (United States)

    Ortega-Prieto, Ana Maria; Dorner, Marcus

    2017-01-01

    Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a “stealth” virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses. PMID:28862649

  4. Pathogenesis of canine distemper virus in experimentally infected raccoon dogs, foxes, and minks.

    Science.gov (United States)

    Zhao, Jianjun; Shi, Ning; Sun, Yangang; Martella, Vito; Nikolin, Veljko; Zhu, Chunsheng; Zhang, Hailing; Hu, Bo; Bai, Xue; Yan, Xijun

    2015-10-01

    Canine distemper virus (CDV) infects a broad range of carnivores and causes a highly contagious disease with severe immunosuppression. The disease severity markedly varies in different species. To investigate the pathogenesis of CDV in raccoon dog (Nyctereutes procyonoides), fox (Vulpes vulpes) and mink (Neovison vison) species, three groups of CDV sero-negative animals were infected with CDV strain LN(10)1. This CDV strain belongs to the Asia-1 genotype, which is epidemiologically predominant in carnivores in China. CDV infection provoked marked differences in virulence in the three species that were studied. Raccoon dogs developed fever, severe conjunctivitis, and pathological lesions, with 100% (5/5) mortality and with high viral RNA loads in organs within 15 days post infection (dpi). In infected foxes, the onset of the disease was delayed, with 40% (2/5) mortality by 21 dpi. Infected minks developed only mild clinical signs and pathological lesions, and mortality was not observed. Raccoon dogs and foxes showed more severe immune suppression (lymphopenia, decreased lymphocyte proliferation, viremia and low-level virus neutralizing antibodies) than minks. We also observed a distinct pattern of cytokine mRNA transcripts at different times after infection. Decreased IFN-γ and IL-4 mRNA responses were evident in the animals with fatal disease, while up-regulation of these cytokines was observed in the animals surviving the infection. Increased TNF-α response was detected in animals with mild or severe clinical signs. Based on the results, we could distinguish three different patterns of disease after experimental CDV infection, e.g. a mild form in minks, a moderate form in foxes and a severe disease in raccoon dogs. The observed differences in susceptibility to CDV could be related to distinct host cytokine profiles. Comparative evaluation of CDV pathogenesis in various animal species is pivotal to generate models suitable for the evaluation of CDV

  5. Special Issue: Viruses Infecting Fish, Amphibians, and Reptiles

    Directory of Open Access Journals (Sweden)

    V. Gregory Chinchar

    2011-09-01

    Full Text Available Although viruses infecting and affecting humans are the focus of considerable research effort, viruses that target other animal species, including cold-blooded vertebrates, are receiving increased attention. In part this reflects the interests of comparative virologists, but increasingly it is based on the impact that many viruses have on ecologically and commercially important animals. Frogs and other amphibians are sentinels of environmental health and their disappearance following viral or fungal (chytrid infection is a cause for alarm. Likewise, because aquaculture and mariculture are providing an increasingly large percentage of the “seafood” consumed by humans, viral agents that adversely impact the harvest of cultured fish and amphibians are of equal concern. [...

  6. Hepatitis B Virus infection in Nigeria – a review | Emechebe ...

    African Journals Online (AJOL)

    ... virus in the general population also play role in Nigeria. Conclusion: Reduction in the of hepatitis B virus infection could be achieved by public enlightenment campaign, mass immunization of the children and adults at risk while antiviral drugs and immunostimulatory therapy should be provided for those already infected.

  7. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Clinical signs, diagnosis, and case reports of Vaccinia virus infections

    Directory of Open Access Journals (Sweden)

    Daniela Carla Medeiros Silva

    Full Text Available Vaccinia virus is responsible for a zoonosis that usually affects cattle and human beings in Brazil. The initial clinical signs of the infection are focal red skin areas, fever, and general symptoms similar to those of a cold. Then, pustules and ulcerated lesions surrounded by edema and erythema follow, as well as local lymphadenopathy that can last for weeks. Cure and healing of the lesions occur over several weeks, leaving a typical scar in the skin of people and animals affected. The infection definitive diagnosis is made through morphological characterization of the virus by use of electron microscopy, followed by PCR for specific viral genes. Since 1963, circulating orthopoxviruses in infectious outbreaks in several regions of Brazil have been reported. Later, the etiological agent of those infections was characterized as samples of Vaccinia virus. In addition, the widespread use of those viruses in research laboratories and mass vaccination of militaries have contributed to increase the cases of those infections worldwide. Thus, several epidemiological and clinical studies are required, as well as studies of viral immunology, public health, and economic impact, because little is known about those Vaccinia virus outbreaks in Brazil.

  9. Nonhuman Primate Models of Hepatitis A Virus and Hepatitis E Virus Infections.

    Science.gov (United States)

    Lanford, Robert E; Walker, Christopher M; Lemon, Stanley M

    2018-04-23

    Although phylogenetically unrelated, human hepatitis viruses share an exclusive or near exclusive tropism for replication in differentiated hepatocytes. This narrow tissue tropism may contribute to the restriction of the host ranges of these viruses to relatively few host species, mostly nonhuman primates. Nonhuman primate models thus figure prominently in our current understanding of the replication and pathogenesis of these viruses, including the enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV), and have also played major roles in vaccine development. This review draws comparisons of HAV and HEV infection from studies conducted in nonhuman primates, and describes how such studies have contributed to our current understanding of the biology of these viruses. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Silva-Campa, Erika; Flores-Mendoza, Lilian; Resendiz, Monica; Pinelli-Saavedra, Araceli; Mata-Haro, Veronica; Mwangi, Waithaka; Hernandez, Jesus

    2009-01-01

    Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3 + CD25 + T cells, an effect that was reversible by IFN-α treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3 + CD25 + T cells is dependent on TGF-β but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3 + CD25 + T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3 + CD25 + T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-α treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

  11. Low Temperature Storage of Southern Rice Black-Streaked Dwarf Virus-Infected Rice Plants Cannot Sustain Virus Transmission by the Vector.

    Science.gov (United States)

    Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin

    2016-02-01

    Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Activity of andrographolide against chikungunya virus infection.

    Science.gov (United States)

    Wintachai, Phitchayapak; Kaur, Parveen; Lee, Regina Ching Hua; Ramphan, Suwipa; Kuadkitkan, Atichat; Wikan, Nitwara; Ubol, Sukathida; Roytrakul, Sittiruk; Chu, Justin Jang Hann; Smith, Duncan R

    2015-09-18

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.

  13. Hepatitis E Virus (HEV) Infection in Ireland

    LENUS (Irish Health Repository)

    Hickey, C

    2016-09-01

    Hepatitis E virus (HEV) is a single stranded RNA virus causing infection worldwide. In developing countries HEV genotypes 1 and 2 spread faeco-orally via water. Recently, infections with HEV have been detected in Europe and North America in patients with no travel history. These are food-borne HEV genotypes 3 and 4, a pig-associated zoonosis. Most infections are asymptomatic but morbidity and chronic infection may occur with prior liver disease or immunosuppression. International seroprevalence rates vary and with improved diagnostics have increased. To determine the current prevalence in this region we studied anonymised serum samples submitted in 2015 for routine testing. We detected anti-HEV IgG in 16\\/198 (8%) individuals, highest rate in 40-59 year olds (43.8%). This is higher than reported for the same region in 1995 (0.4%) using a previous generation assay. This study provides evidence of HEV circulation in Ireland and reinforces the need for ongoing surveillance.

  14. Radiologic findings of childhood lower respiratory tract infection by influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Taek; Park, Choong Ki; Shin, Hee Jung; Choi, Yo Won; Jeon, Seok Chol; Hahm, Chang Kok; Hern, Ahn You [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2002-08-01

    After the RS (respiratory syncytial) virus, the influenza virus is the most common cause of childhood lower respiratory tract infection. We assessed the radiologic findings of childhood lower respiratory tract infection by the influenza virus. A total of 105 pediatric patients (76 males and 29 females; mean age, 2.4 years) with symptoms of respiratory tract infection were examined between March 1997 and April 2000. Nasopharyngeal aspirates were obtained and influenza virus infection was confirmed by direct or indirect immunofluorescent assays. Peribronchial infiltration, hyperinflation, atelectasis, pulmonary consolidation, and hilar lymphadenopathy were evaluated retrospectively at simple chest radiography. Bilateral perihiler peribronchial infiltration was noted in 78.1% of patients (n=82), hyperinflation in 63.8% (n=67), atelectasis in 3.8% (n=4, segmental 50%, lobar 50%), and pulmonary consolidation in 16.2% [n=17; segmental 70.6% (n=12), lobar 29.4% (n=5)]. Hilar lymphadenopathy was noted in one patient in whom there was no pleural effusion, and subglottic airway narrowing in 12 of 14 in whom the croup symptom complex was present. The major radiologic findings of influenza virus infection were bilateral perihilar peribronchial infiltration and hyperinflation. In some patients, upper respiratory tract infection was combined with subgolttic airway narrowing. Atelectasis or pleural effusion was rare.

  15. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study.

    Science.gov (United States)

    Joguet, Guillaume; Mansuy, Jean-Michel; Matusali, Giulia; Hamdi, Safouane; Walschaerts, Marie; Pavili, Lynda; Guyomard, Stefanie; Prisant, Nadia; Lamarre, Pierre; Dejucq-Rainsford, Nathalie; Pasquier, Christophe; Bujan, Louis

    2017-11-01

    Evidence of human sexual transmission during Zika virus emergence is a matter of concern, particularly in procreation, but to date, kinetics of seminal shedding and the effects of infection on human reproductive function have not been described. To investigate the effects of Zika virus infection on semen and clearance of Zika virus from semen and body fluids, we aimed to study a cohort of Zika virus-infected men. This prospective observational study recruited men presenting with acute Zika virus infection at Pointe-à-Pitre University Hospital in Guadeloupe, French Caribbean, where a Zika virus outbreak occurred between April and November, 2016. Blood, urine, and semen were collected at days 7, 11, 20, 30, 60, 90, and 120 after symptom onset, and semen characteristics, such as total sperm count, sperm motility, vitality, and morphology, and reproductive hormone concentrations, such as testosterone, inhibin, follicle-stimulating hormone, and luteinising hormone, were assessed. At days 7, 11, and 20, semen was processed to isolate motile spermatozoa. Zika virus RNA was detected by RT-PCR using whole blood, serum, urine, seminal plasma, semen cells, and motile spermatozoa fractions. Zika virus was isolated from different sperm fractions on Vero E6 cultures. 15 male volunteers (mean age 35 years [SD 5; range 25-44) with acute Zika virus infection and positive Zika virus RNA detection in blood or urine were enrolled. Total sperm count was decreased from median 119 × 10 6 spermatozoa (IQR 22-234) at day 7 to 45·2 × 10 6 (16·5-89·6) at day 30 and 70 × 10 6 (28·5-81·4) at day 60, respectively, after Zika virus infection. Inhibin values increased from 93·5 pg/mL (IQR 55-162) at day 7 to 150 pg/mL (78-209) at day 120 when total sperm count recovered. In motile spermatozoa obtained after density gradient separation, Zika virus RNA was found in three of 14 patients at day 7, four of 15 at day 11, and four of 15 at day 20, and replication-competent virus was

  16. EPSTEIN-BARR VIRUS INFECTIONS – AVIDITY TEST FOR IgG ANTIBODIES

    Directory of Open Access Journals (Sweden)

    Katja Strašek

    2001-06-01

    Full Text Available Background. We wish to introduce specific IgG avidity test as a supplementary assay in serological screening for Epstein-Barr virus infection if the status of patient cannot be resolved from a single serum sample with routine testing.Methods. Avidity of IgG antibodies was determined in sera of 57 patients with different stage of Epstein-Barr virus infection. Enzyme-immuno assay was used with a short incubation of 6-molar urea included in the procedure. Urea should remove low avidity antibodies. Avidity was expressed as the avidity index. Avidity testing with commercial kit was done as well.Results. Low avidity index was found for IgG antibodies of acute phase sera and high for those of past infection, recent infection and reactivation of endogenic virus.Conclusions. Avidity test for IgG antibodies might be supplementary assay to prove acute infection but also to resolve some other clinical states related to Epstein-Barr virus.

  17. Epstein-Barr virus infection and nasopharyngeal carcinoma.

    Science.gov (United States)

    Tsao, Sai Wah; Tsang, Chi Man; Lo, Kwok Wai

    2017-10-19

    Epstein-Barr virus (EBV) is associated with multiple types of human cancer, including lymphoid and epithelial cancers. The closest association with EBV infection is seen in undifferentiated nasopharyngeal carcinoma (NPC), which is endemic in the southern Chinese population. A strong association between NPC risk and the HLA locus at chromosome 6p has been identified, indicating a link between the presentation of EBV antigens to host immune cells and NPC risk. EBV infection in NPC is clonal in origin, strongly suggesting that NPC develops from the clonal expansion of a single EBV-infected cell. In epithelial cells, the default program of EBV infection is lytic replication. However, latent infection is the predominant mode of EBV infection in NPC. The establishment of latent EBV infection in pre-invasive nasopharyngeal epithelium is believed to be an early stage of NPC pathogenesis. Recent genomic study of NPC has identified multiple somatic mutations in the upstream negative regulators of NF-κB signalling. Dysregulated NF-κB signalling may contribute to the establishment of latent EBV infection in NPC. Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Author(s).

  18. Zika Virus Infection and Prolonged Viremia in Whole-Blood Specimens.

    Science.gov (United States)

    Mansuy, Jean Michel; Mengelle, Catherine; Pasquier, Christophe; Chapuy-Regaud, Sabine; Delobel, Pierre; Martin-Blondel, Guillaume; Izopet, Jacques

    2017-05-01

    We tested whole-blood and plasma samples from immunocompetent patients who had had benign Zika virus infections and found that Zika virus RNA persisted in whole blood substantially longer than in plasma. This finding may have implications for diagnosis of acute symptomatic and asymptomatic infections and for testing of blood donations.

  19. An autochthonous sexually transmitted Zika virus infection in Italy 2016.

    Science.gov (United States)

    Grossi, Paolo Antonio; Percivalle, Elena; Campanini, Giulia; Sarasini, Antonella; Premoli, Marta; Zavattoni, Maurizio; Girello, Alessia; Dalla Gasperina, Daniela; Balsamo, Maria Luisa; Baldanti, Fausto; Rovida, Francesca

    2018-01-01

    We describe two cases of Zika virus infection involving an Italian patient returning from the Dominican Republic and his wife, who remained in Italy and had not travelled to Zika virus endemic areas in the previous months. The infection was transmitted through unprotected sexual intercourse after the man's return to Italy.

  20. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Stephanie Jemielity

    2013-03-01

    Full Text Available Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4 specifically bind phosphatidylserine (PS. TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  1. Transcriptome analysis of feline infectious peritonitis virus infection.

    Science.gov (United States)

    Mehrbod, Parvaneh; Harun, Mohammad Syamsul Reza; Shuid, Ahmad Naqib; Omar, Abdul Rahman

    2015-01-01

    Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV). There are no effective vaccines or treatment available, and the virus virulence determinants and pathogenesis are not fully understood. Here, we describe the sequencing of RNA extracted from Crandell Rees Feline Kidney (CRFK) cells infected with FIPV using the Illumina next-generation sequencing approach. Bioinformatics analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench is used to map both control and infected cells. Kal's Z test statistical analysis is used to analyze the differentially expressed genes from the infected CRFK cells. In addition, RT-qPCR analysis is used for further transcriptional profiling of selected genes in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diagnosed cats.

  2. Prevalence of occult hepatitis C virus infection in the Iranian patients with human immunodeficiency virus infection.

    Science.gov (United States)

    Bokharaei-Salim, Farah; Keyvani, Hossein; Esghaei, Maryam; Zare-Karizi, Shohreh; Dermenaki-Farahani, Sahar-Sadat; Hesami-Zadeh, Khashayar; Fakhim, Shahin

    2016-11-01

    Occult hepatitis C virus (HCV) infection is a new form of chronic HCV infection described by the presence of the genomic HCV-RNA in liver biopsy and/or peripheral blood mononuclear cell (PBMC) samples, and undetectable levels or absence of HCV-RNA and in the absence or presence of anti HCV antibodies in the plasma specimens. The aim of the present study was to evaluate the occurrence of occult HCV infection (OCI) among Iranian subjects infected with human immunodeficiency virus (HIV) using RT-nested PCR. From March 2014 until April 2015, 109 Iranian patients with established HIV infection were enrolled in this cross-sectional study. After extraction of viral RNA from the plasma and PBMC samples, HCV-RNA status was examined by RT-nested PCR using primers from the 5'-NTR. HCV genotyping was conducted using RFLP analysis. For the confirmation of HCV genotyping by RFLP method, the PCR products were sequenced. Of the 109 patients, 50 were positive for antibodies against HCV. The HCV-RNA was detected in PBMC specimens in 6 (10.2%) out of the total 59 patients negative for anti-HCV Abs and undetectable plasma HCV-RNA and also from 4 (8.0%) out of the total 50 patients positive for anti-HCV Abs and undetectable plasma HCV-RNA. HCV genotyping analysis showed that 6 (60.0%) patients were infected with HCV subtype 3a, 3 (30.0%) were infected with HCV subtype 1a and 1 (10.0%) patient was infected with HCV subtype 1b. This study revealed the incidence of OCI (9.2%) in HIV-infected Iranian patients. Hence, designing prospective studies focusing on the detection of OCI in these patients would provide more information. J. Med. Virol. 88:1960-1966, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA on SIV-infected Chinese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Binhua Ling

    Full Text Available Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM treated with intensive combination antiretroviral therapy (cART and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA.SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations.Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters.The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  4. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  5. Epidemiology of Feline Foamy Virus and Feline Immunodeficiency Virus Infections in Domestic and Feral Cats: a Seroepidemiological Study

    Science.gov (United States)

    Winkler, I. G.; Löchelt, M.; Flower, R. L. P.

    1999-01-01

    Although foamy viruses (Spumaviruses) have repeatedly been isolated from both healthy and diseased cats, cattle, and primates, the primary mode of transmission of those common viruses remains undefined. A database of the feline foamy virus (FeFV) and feline immunodeficiency virus (FIV) antibody status, age, and sex of 389 domestic cats presented to veterinarians was assembled. A similar database for 66 feral (wild) cats was also assembled. That FeFV antibody status reflects infection was validated by PCR. Both FeFV and FIV infection rates were found to gradually increase with age, and over 70% of cats older than 9 years were seropositive for FeFV. In domestic cats, the prevalence of FeFV infection was similar in both sexes. In feral cats, FeFV infection was more prevalent in female cats than in male cats. Although both FeFV and FIV have been reported to be transmitted by biting, the patterns of infection observed are more consistent with an interpretation that transmission of these two retroviruses is not the same. The prevalence of FIV infection is highest in nondesexed male cats, the animals most likely to display aggressive behavior. The gradual increase in the proportion of FeFV-infected animals is consistent with transmission of foamy viruses by intimate social contact between animals and less commonly by aggressive behavior. PMID:10449463

  6. West Nile virus meningitis in a patient with human immunodeficiency virus type 1 infection

    Directory of Open Access Journals (Sweden)

    D. Pilalas

    2017-09-01

    Full Text Available The emergence of West Nile virus lineage 2 in central Macedonia, Greece, in 2010 resulted in large outbreaks for 5 consecutive years. We report a case of viral meningitis in an individual infected with human immunodeficiency virus type 1, which preceded the recognition of the outbreak and was confirmed retrospectively as West Nile virus neuroinvasive disease.

  7. THE CHANGING CLINICAL PERFORMANCE OF DENGUE VIRUS INFECTION IN THE YEAR 2009

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2012-01-01

    Full Text Available Background: Dengue (DEN virus, the most important arthropod-borne human pathogen, represents a serious public health threat. DEN virus is transmitted to humans by the bite of the domestic mosquito, Aedes aegypti, and circulates in nature as four distinct serological types DEN-1 to 4. The aim of Study: To identify Dengue Virus Serotype I which showed mild clinical performance in five years before and afterward showed severe clinical performance. Material and Method: Prospective and analytic observational study had been done in Dr. Soetomo Hospital and the ethical clearance was conduct on January 01, 2009. The population of this research is all cases of dengue virus infection. Diagnosis were done based on WHO 1997. All of these cases were examined for IgM & IgG anti Dengue Virus and then were followed by PCR examination to identify Dengue Virus serotype. Result and Discussion: DEN 2 was predominant virus serotype with produced a spectrum clinical illness from asymptomatic, mild illness to classic dengue fever (DF to the most severe form of illness (DHF. But DEN 1 usually showed mild illness. Helen at al (2009–2010 epidemiologic study of Dengue Virus Infection in Health Centre Surabaya and Mother and Child Health Soerya Sidoarjo found many cases of Dengue Hemorrhagic Fever were caused by DEN 1 Genotype IV. Amor (2009 study in Dr. Soetomo Hospital found DEN 1 showed severe clinical performance of primary Dengue Virus Infection as Dengue Shock Syndrome two cases and one unusual case. Conclusion: The epidemiologic study of Dengue Virus Infection in Surabaya and Sidoarjo; in the year 2009 found changing predominant Dengue Virus Serotype from Dengue Virus II to Dengue Virus 1 Genotype IV which showed a severe clinical performance coincident with primary infection.

  8. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  9. Herpes Simplex Virus Infection Mimicking Bullous Disease in an Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Anne L.Y. Lecluse

    2010-06-01

    Full Text Available Immunodeficient patients are at risk of developing extended or atypical herpes simplex virus infections, which can be easily misdiagnosed. We present the case of a 79-year-old, treatment-induced (oral corticosteroid, immunocompromised female with an extensive atypical herpes simplex virus infection. This patient presented with multiple erosions and vesicles on the trunk with a subacute onset. The clinical differential diagnosis was herpes simplex infection, herpes zoster infection, pemphigus vulgaris or bullous pemphigoid. Due to the atypical clinical presentation and negative Tzanck test, suspicion of viral infection was low. High-dose steroid treatment was initiated. Subsequent histopathology, however, showed a herpes simplex virus infection. After discontinuing steroid treatment and initiating antiviral treatment, the patient recovered within a week. Emphasis must be placed on the importance of clinical awareness of extended and clinically atypical herpes simplex infections in immunocompromised patients. A negative Tzanck test does not rule out the possibility of a herpes infection.

  10. Herpes simplex virus and cytomegalovirus co-infection presenting as exuberant genital ulcer in a woman infected with human immunodeficiency virus.

    Science.gov (United States)

    Gouveia, A I; Borges-Costa, J; Soares-Almeida, L; Sacramento-Marques, M; Kutzner, H

    2014-12-01

    In patients infected with human immunodeficiency virus (HIV), genital herpes can result in severe and atypical clinical presentations, and can become resistant to aciclovir treatment. Rarely, these manifestations may represent concurrent herpes simplex virus (HSV) with other agents. We report a 41-year-old black woman with HIV who presented with extensive and painful ulceration of the genitalia. Histological examination of a biopsy sample was suggestive of herpetic infection, and intravenous aciclovir was started, but produced only partial improvement. PCR was performed on the biopsy sample, and both HSV and cytomegalovirus (CMV) DNA was detected. Oral valganciclovir was started with therapeutic success. CMV infection is common in patients infected with HIV, but its presence in mucocutaneous lesions is rarely reported. This case exemplifies the difficulties of diagnosis of genital ulcers in patients infected with HIV. The presence of exuberant and persistent HSV genital ulcers in patients with HIV should also raise suspicions of the presence of co-infection with other organisms such as CMV. © 2014 British Association of Dermatologists.

  11. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    Sato, Yoshiko; Yoshioka, Kenichi; Suzuki, Chie; Awashima, Satoshi; Hosaka, Yasuhiro; Yewdell, Jonathan; Kuroda, Kazumichi

    2003-01-01

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  12. Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears

    Directory of Open Access Journals (Sweden)

    Jonathan J. Miner

    2016-09-01

    Full Text Available Zika virus (ZIKV is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl−/−, Mertk−/−, and Axl−/−Mertk−/− double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye.

  13. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  14. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    International Nuclear Information System (INIS)

    Kakoki, Katsura; Kamiyama, Haruka; Izumida, Mai; Yashima, Yuka; Hayashi, Hideki; Yamamoto, Naoki; Matsuyama, Toshifumi; Igawa, Tsukasa; Sakai, Hideki; Kubo, Yoshinao

    2014-01-01

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV

  15. Hepatitis C virus infection in Ghana: time for action is now | Tachi ...

    African Journals Online (AJOL)

    Chronic hepatitis C virus (HCV) infection is a blood borne infection just like hepatitis B virus (HBV) and Human Immunodeficiency Virus (HIV) with a significant global health impact. Since the discovery of the HCV, several developments including a better understanding of the clinical epidemiology, availability of diagnostics ...

  16. Virus and Infections 2010 - BIT's first world congress.

    Science.gov (United States)

    Garkavenko, Olga

    2010-10-01

    The World Congress of Virus and Infections, held in Busan, South Korea, included topics reviewing the field of zoonoses. This conference report highlights selected presentations on surveillance, epidemiology and measures for the control and prevention of zoonotic diseases. Topics discussed include human factors influencing zoonoses, the molecular epidemiology of Crimean-Congo hemorrhagic fever, the emerging Nipah virus, and the re-emergence of cowpox virus.

  17. Outbreak of hepatitis C virus infection associated with narcotics diversion by an hepatitis C virus-infected surgical technician.

    Science.gov (United States)

    Warner, Amy E; Schaefer, Melissa K; Patel, Priti R; Drobeniuc, Jan; Xia, Guoliang; Lin, Yulin; Khudyakov, Yury; Vonderwahl, Candace W; Miller, Lisa; Thompson, Nicola D

    2015-01-01

    Drug diversion by health care personnel poses a risk for serious patient harm. Public health identified 2 patients diagnosed with acute hepatitis C virus (HCV) infection who shared a common link with a hospital. Further investigation implicated a drug-diverting, HCV-infected surgical technician who was subsequently employed at an ambulatory surgical center. Patients at the 2 facilities were offered testing for HCV infection if they were potentially exposed. Serum from the surgical technician and patients testing positive for HCV but without evidence of infection before their surgical procedure was further tested to determine HCV genotype and quasi-species sequences. Parenteral medication handling practices at the 2 facilities were evaluated. The 2 facilities notified 5970 patients of their possible exposure to HCV, 88% of whom were tested and had results reported to the state public health departments. Eighteen patients had HCV highly related to the surgical technician's virus. The surgical technician gained unauthorized access to fentanyl owing to limitations in procedures for securing controlled substances. Public health surveillance identified an outbreak of HCV infection due to an infected health care provider engaged in diversion of injectable narcotics. The investigation highlights the value of public health surveillance in identifying HCV outbreaks and uncovering a method of drug diversion and its impacts on patients. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  18. Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDv in the infected on-farm earthen manure storages (EMS

    Directory of Open Access Journals (Sweden)

    Hein Min Tun

    2016-03-01

    Full Text Available In recent years, porcine epidemic diarrhea virus (PEDv has caused major epidemics, which has been a burden to North America's swine industry. Low infectious dose and high viability in the environment are major challenges in eradicating this virus. To further understand the survivability and infectivity of PEDv in the infected manure, we performed longitudinal monitoring in two open earthen manure storages (EMSs; previously referred to as lagoon from two different infected swine farms identified in the province of Manitoba, Canada. Our study revealed that PEDv could survive up to nine months in the infected EMS after the initial outbreak in the farm. The viral load varied among different layers of the EMS with an average of 1.1 × 105 copies/ml of EMS, independent of EMS temperature and pH. In both studied EMSs, the evidence of viral replication was observed through increased viral load in the later weeks of the samplings while there was no new influx of infected manure into the EMSs, which was suggestive of presence of potential alternative hosts for PEDv within the EMSs. Decreasing infectivity of virus over time irrespective of increased viral load suggested the possibility of PEDv evolution within the EMS and perhaps in the new host that negatively impacted virus infectivity. Viral load in the top layer of the EMS was low and mostly non-infective suggesting that environmental factors, such as UV and sunlight, could diminish the replicability and infectivity of the virus. Thus, frequent agitation of the EMS that could expose virus to UV and sunlight might be a potential strategy for reduction of PEDv load and infectivity in the infected EMSs.

  19. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  20. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  1. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  2. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  3. Experimental Oral Herpes Simplex Virus-1 (HSV-1 Co-infection in Simian Immunodeficiency Virus (SIV-Infected Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Meropi Aravantinou

    2017-12-01

    Full Text Available Herpes simplex virus 1 and 2 (HSV-1/2 similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.

  4. Flow cytometric monitoring of influenza A virus infection in MDCK cells during vaccine production

    Directory of Open Access Journals (Sweden)

    Reichl Udo

    2008-04-01

    Full Text Available Abstract Background In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields. Results In this study, fluorescein-labelled monoclonal antibodies against influenza A virus matrix protein 1 and nucleoprotein were used for monitoring the infection status of adherent Madin-Darby canine kidney cells from bioreactor samples. Monoclonal antibody binding was shown for influenza A virus strains of different subtypes (H1N1, H1N2, H3N8 and host specificity (human, equine, swine. At high multiplicity of infection in a bioreactor, the onset of viral protein accumulation in adherent cells on microcarriers was detected at about 2 to 4 h post infection by flow cytometry. In contrast, a significant increase in titre by hemagglutination assay was detected at the earliest 4 to 6 h post infection. Conclusion It is shown that flow cytometry is a sensitive and robust method for the monitoring of viral infection in fixed cells from bioreactor samples. Therefore, it is a valuable addition to other detection methods of influenza virus infection such as immunotitration and RNA hybridisation. Thousands of individual cells are measured per sample. Thus, the presented method is believed to be quite independent of the concentration of infected cells (multiplicity of infection and total cell concentration in bioreactors. This allows to perform detailed studies on factors relevant for optimization of virus yields in cell cultures. The method could also be used for process

  5. Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection.

    Science.gov (United States)

    Sousa, Anastácio Q; Cavalcante, Diane I M; Franco, Luciano M; Araújo, Fernanda M C; Sousa, Emília T; Valença-Junior, José Telmo; Rolim, Dionne B; Melo, Maria E L; Sindeaux, Pedro D T; Araújo, Marialva T F; Pearson, Richard D; Wilson, Mary E; Pompeu, Margarida M L

    2017-07-01

    Postmortem examination of 7 neonates with congenital Zika virus infection in Brazil revealed microcephaly, ventriculomegaly, dystrophic calcifications, and severe cortical neuronal depletion in all and arthrogryposis in 6. Other findings were leptomeningeal and brain parenchymal inflammation and pulmonary hypoplasia and lymphocytic infiltration in liver and lungs. Findings confirmed virus neurotropism and multiple organ infection.

  6. Exosome RNA Released by Hepatocytes Regulates Innate Immune Responses to Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Takahisa Kouwaki

    2016-08-01

    Full Text Available The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from extracellular vesicles markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in extracellular vesicles and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.

  7. Zika virus infection and its emerging trends in Southeast Asia

    Institute of Scientific and Technical Information of China (English)

    Ahmad Ruzain Salehuddin; Haszianaliza Haslan; Norshalizah Mamikutty; Nurul Hannim Zaidun; Mohamad Fairuz Azmi; Mohamad Mu'izuddin Senin; Syed Baharom Syed Ahmad Fuad; Zar Chi Thent

    2017-01-01

    Zika virus is a mosquito-borne flavivirus that represents a public health emergency at the ongoing epidemic. Previously, this rare virus was limited to sporadic cases in Africa and Asia until its emergence in Brazil, South America in 2015, where it rapidly spread throughout the world. Recently, a high number of cases were reported in Singapore and other Southeast Asia countries. A combination of factors explains the current Zika virus outbreak although it is highly likely that the changes in the climate and high frequency of travelling contribute to the spread of Aedes vector carrying the Zika virus mainly to the tropical climate countries such as the Southeast Asia. The Zika virus is known to cause mild clinical symptoms similar to those of dengue and chikungunya and transmitted by different species of Aedes mosquitoes. However, neurological complications such as Guillain-Barré syndrome in adults, and congenital anomalies, including microcephaly in babies born to infected mothers, raised a serious concern. Currently, there is no specific antiviral treatment or vaccine available for Zika virus infection. Therefore, international public health response is primarily focused on preventing infection, particularly in pregnant women, and on providing up-to-date recommendations to reduce the risk of non-vector transmission of Zika virus.

  8. Progress and Problems in Understanding and Managing Primary Epstein-Barr Virus Infections

    Science.gov (United States)

    Odumade, Oludare A.; Hogquist, Kristin A.; Balfour, Henry H.

    2011-01-01

    Summary: Epstein-Barr virus (EBV) is a gammaherpesvirus that infects a large fraction of the human population. Primary infection is often asymptomatic but results in lifelong infection, which is kept in check by the host immune system. In some cases, primary infection can result in infectious mononucleosis. Furthermore, when host-virus balance is not achieved, the virus can drive potentially lethal lymphoproliferation and lymphomagenesis. In this review, we describe the biology of EBV and the host immune response. We review the diagnosis of EBV infection and discuss the characteristics and pathogenesis of infectious mononucleosis. These topics are approached in the context of developing therapeutic and preventative strategies. PMID:21233512

  9. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus

    Science.gov (United States)

    Nalca, Aysegul; Rossi, Franco D.; Miller, Lynn J.; Wiley, Michael R.; Perez-Sautu, Unai; Washington, Samuel C.; Norris, Sarah L.; Wollen-Roberts, Suzanne E.; Shamblin, Joshua D.; Kimmel, Adrienne E.; Bloomfield, Holly A.; Valdez, Stephanie M.; Sprague, Thomas R.; Principe, Lucia M.; Bellanca, Stephanie A.; Cinkovich, Stephanie S.; Lugo-Roman, Luis; Cazares, Lisa H.; Pratt, William D.; Palacios, Gustavo F.; Bavari, Sina; Pitt, M. Louise; Nasar, Farooq

    2017-01-01

    Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present. PMID:28548637

  10. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus.

    Science.gov (United States)

    Haddow, Andrew D; Nalca, Aysegul; Rossi, Franco D; Miller, Lynn J; Wiley, Michael R; Perez-Sautu, Unai; Washington, Samuel C; Norris, Sarah L; Wollen-Roberts, Suzanne E; Shamblin, Joshua D; Kimmel, Adrienne E; Bloomfield, Holly A; Valdez, Stephanie M; Sprague, Thomas R; Principe, Lucia M; Bellanca, Stephanie A; Cinkovich, Stephanie S; Lugo-Roman, Luis; Cazares, Lisa H; Pratt, William D; Palacios, Gustavo F; Bavari, Sina; Pitt, M Louise; Nasar, Farooq

    2017-08-01

    Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.

  11. [Contemporary threat of influenza virus infection].

    Science.gov (United States)

    Płusa, Tadeusz

    2010-01-01

    Swine-origine H1N1 influenza virus (S-OIV) caused a great mobilization of health medical service over the world. Now it is well known that a vaccine against novel virus is expected as a key point in that battle. In the situation when recommended treatment with neuraminidase inhibitors is not sufficient to control influenza A/H1N1 viral infection the quick and precisely diagnostic procedures should be applied to save and protect our patients.

  12. Phenotypic and functional analysis of CD1a+ dendritic cells from cats chronically infected with feline immunodeficiency virus.

    Science.gov (United States)

    Zhang, Lin; Reckling, Stacie; Dean, Gregg A

    2015-10-01

    Numerous studies suggest dendritic cell (DC) dysfunction is central to the dysregulated immune response during HIV infection; however, in vivo studies are lacking. In the present study we used feline immunodeficiency virus (FIV) infection of cats as a model for HIV-1 infection to assess the maturation and function of dendritic cells, in vivo and in vitro. We compared CD1a+ DC migration, surface phenotype, endocytosis, mixed leukocyte reaction (MLR) and regulatory T cell (Treg) phenotype induction by CD1a+ cells isolated from lymph nodes of FIV-infected and control cats. Results showed that resident CD1a+ DC in lymph nodes of chronically FIV-infected cats are phenotypically mature, can stimulate normal primary T cell proliferation, override Treg suppression and do not skew toward Treg induction. In contrast, FIV infection had deleterious effects on antigen presentation and migratory capacity of CD1a+ cells in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  14. A model of immunomodulatory for dengue infection mm

    Science.gov (United States)

    Zulfa, Annisa; Handayani, Dewi; Nuraini, Nuning

    2018-03-01

    An immunomodulatory model for dengue infection is constructed in this paper. This study focuses on T-cell compartments and B cells that are immune cells involved in the dengue infection process. Dengue virus-infected monocyte cells release interferons to signal T-cells to activate B-cells and produce antibodies. Immunomodulator acts as a treatment control and aims to increase the numbers of antibodies so it is expected to reduce the number of infected monocyte cells by dengue virus. Numerical simulation shows that the greater the rate of f (t) the immune cells will be stimulated to suppress the number of infected cells.

  15. Background review for diagnostic test development for Zika virus infection.

    Science.gov (United States)

    Charrel, Rémi N; Leparc-Goffart, Isabelle; Pas, Suzan; de Lamballerie, Xavier; Koopmans, Marion; Reusken, Chantal

    2016-08-01

    To review the state of knowledge about diagnostic testing for Zika virus infection and identify areas of research needed to address the current gaps in knowledge. We made a non-systematic review of the published literature about Zika virus and supplemented this with information from commercial diagnostic test kits and personal communications with researchers in European preparedness networks. The review covered current knowledge about the geographical spread, pathogen characteristics, life cycle and infection kinetics of the virus. The available molecular and serological tests and biosafety issues are described and discussed in the context of the current outbreak strain. We identified the following areas of research to address current knowledge gaps: (i) an urgent assessment of the laboratory capacity and capability of countries to detect Zika virus; (ii) rapid and extensive field validation of the available molecular and serological tests in areas with and without Zika virus transmission, with a focus on pregnant women; (iii) monitoring the genomic diversity of circulating Zika virus strains; (iv) prospective studies into the virus infection kinetics, focusing on diagnostic sampling (specimen types, combinations and timings); and (v) developing external quality assessments for molecular and serological testing, including differential diagnosis for similar viruses and symptom clusters. The availability of reagents for diagnostic development (virus strains and antigens, quantified viral ribonucleic acid) needs to be facilitated. An international laboratory response is needed, including preparation of protocols for prospective studies to address the most pressing information needs.

  16. «I Am Legend»: comparison of the fictional virus infection and Rabies virus

    Directory of Open Access Journals (Sweden)

    José Francisco CAMACHO AGUILERA

    2016-04-01

    Full Text Available Using the movie I am legend (2007 by, the rabies virus infection is reviewed in this article, given its strong resemblance to the fictional disease created in this film caused by the virus Krippin. A review of history, virus characteristics, viral transmission, clinical manifestations, diagnostics, mortality, treatment and prevention, are presented and are contrasted with the film.

  17. Seroepidemiology of Asymptomatic Dengue Virus Infection in Jeddah, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ghazi A. Jamjoom

    2016-01-01

    Full Text Available Background Although virologically confirmed dengue fever has been recognized in Jeddah, Saudi Arabia, since 1994, causing yearly outbreaks, no proper seroepidemiologic studies on dengue virus have been conducted in this region. Such studies can define the extent of infection by this virus and estimate the proportion that may result in disease. The aim of this study was to measure the seroprevalence of past dengue virus infection in healthy Saudi nationals from different areas in the city of Jeddah and to investigate demographic and environmental factors that may increase exposure to infection. Methods Sera were collected from 1984 Saudi subjects attending primary health care centers in six districts of Jeddah. These included general patients of various ages seeking routine vaccinations, antenatal care or treatment of different illnesses excluding fever or suspected dengue. A number of blood donors were also tested. Serum samples were tested by enzyme immunoassay (EIA for IgG antibodies to dengue viruses 1, 2, 3, 4. A questionnaire was completed for each patient recording various anthropometric data and factors that may indicate possible risk of exposure to mosquito bites and dengue infection. Patients with missing data and those who reported a history of dengue fever were excluded from analysis, resulting in a sample of 1939 patients to be analyzed. Results The overall prevalence of dengue virus infection as measured by anti-dengue IgG antibodies from asymptomatic residents in Jeddah was 47.8% (927/1939 and 37% (68/184 in blood donors. Infection mostly did not result in recognizable disease, as only 19 of 1956 subjects with complete information (0.1% reported having dengue fever in the past. Anti dengue seropositivity increased with age and was higher in males than females and in residents of communal housing and multistory buildings than in villas. One of the six districts showed significant increase in exposure rate as compared to the others

  18. Baicalin is an inhibitor of subgroup J avian leukosis virus infection.

    Science.gov (United States)

    Qian, Kun; Kong, Zheng-Ru; Zhang, Jie; Cheng, Xiao-Wei; Wu, Zong-Yi; Gu, Cheng-Xi; Shao, Hong-Xia; Qin, Ai-Jian

    2018-03-15

    Avian leukosis virus subgroup J (ALV-J) can cause great economic losses to the poultry industry worldwide. Baicalin, one of the flavonoids present in S.baicalensis Georgi, has been shown to have antiviral activities. To investigate whether baicalin has antiviral effects on the infection of ALV-J in DF-1 cells, the cells were treated with baicalin at different time points. We found that baicalin could inhibit viral mRNA, protein levels and overall virus infection in a dose- and time-dependent manner using a variety of assays. Baicalin specifically targeted virus internalization and reduced the infectivity of ALV-J particles, but had no effect on the levels of major ALV-J receptor and virus binding to DF-1 cells. Collectively, these results suggest that baicalin might have potential to be developed as a novel antiviral agent for ALV-J infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  20. Selective receptor expression restricts Nipah virus infection of endothelial cells

    Directory of Open Access Journals (Sweden)

    Diederich Sandra

    2008-11-01

    Full Text Available Abstract Nipah virus (NiV is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2 or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections.

  1. Viral Infection in Renal Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Jovana Cukuranovic

    2012-01-01

    Full Text Available Viruses are among the most common causes of opportunistic infection after transplantation. The risk for viral infection is a function of the specific virus encountered, the intensity of immune suppression used to prevent graft rejection, and other host factors governing susceptibility. Although cytomegalovirus is the most common opportunistic pathogen seen in transplant recipients, numerous other viruses have also affected outcomes. In some cases, preventive measures such as pretransplant screening, prophylactic antiviral therapy, or posttransplant viral monitoring may limit the impact of these infections. Recent advances in laboratory monitoring and antiviral therapy have improved outcomes. Studies of viral latency, reactivation, and the cellular effects of viral infection will provide clues for future strategies in prevention and treatment of viral infections. This paper will summarize the major viral infections seen following transplant and discuss strategies for prevention and management of these potential pathogens.

  2. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    Directory of Open Access Journals (Sweden)

    Massimo Amadori

    2017-04-01

    Full Text Available The current circulating swine influenza virus (IV subtypes in Europe (H1N1, H1N2, and H3N2 are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system.

  3. Ultraviolet-irradiated urocanic acid suppresses delayed-type hypersensitivity to herpes simplex virus in mice

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.; Simpson, T.J.

    1986-01-01

    Ultraviolet radiation is known to induce a transient defect in epidermal antigen presentation which leads to the generation of antigen-specific suppression of the delayed-type hypersensitivity (DTH) response. The putative receptor in skin for the primary event in UV-suppression is urocanic acid (UCA) which may then interact locally, or systemically, with antigen presenting cells or initiate a cascade of events resulting in suppression. We present the first direct evidence that UCA, when irradiated with a dose (96 mJ/cm2) of UVB radiation known to suppress the DTH response to herpes simplex virus, type 1 (HSV-1) in mice, can induce suppression following epidermal application or s.c. injection of the irradiated substance. This suppression is transferable with nylon wool-passed spleen cells

  4. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes.

    Directory of Open Access Journals (Sweden)

    Cristian Cillóniz

    2009-10-01

    Full Text Available The enormous toll on human life during the 1918-1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1beta, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage.

  5. Why Zika virus infection has become a public health concern?

    Directory of Open Access Journals (Sweden)

    Hui-Lan Chen

    2016-04-01

    Full Text Available Prior to 2015, Zika Virus (ZIKV outbreaks had occurred in areas of Africa, Southeast Asia, and the Pacific Islands. Although a causal relationship between Zika infection during pregnancy and microcephaly is strongly suspected, such a connection has not yet been scientifically proven. In May 2015, the outbreak of ZIKV infection in Brazil led to reports of syndrome and pregnant women giving birth to babies with birth defects and poor pregnancy outcomes; the Pan American Health Organization (PAHO issued an alert regarding the first confirmed ZIKV infection in Brazil. Currently, ZIKV outbreaks are ongoing and it will be difficult to predict how the virus will spread over time. ZIKV is transmitted to humans primarily through the bite of infected mosquitos, Aedes aegypti and Aedes albopictus. These mosquitoes are the principle vectors of dengue, and ZIKV disease generally is reported to include symptoms associated with acute febrile illnesses that clinically resembles dengue fever. The laboratory diagnosis can be performed by using reverse-transcriptase polymerase chain reaction (RT-PCR on serum, viral nucleic acid and virus-specific immunoglobulin M. There is currently no vaccine and antiviral treatment available for ZIKV infection, and the only way to prevent congenital ZIKV infection is to prevent maternal infection. In February 2016, the Taiwan Centers for Disease Control (Taiwan CDC activated ZIKV as a Category V Notifiable Infectious Disease similar to Ebola virus disease and MERS.

  6. Why Zika virus infection has become a public health concern?

    Science.gov (United States)

    Chen, Hui-Lan; Tang, Ren-Bin

    2016-04-01

    Prior to 2015, Zika Virus (ZIKV) outbreaks had occurred in areas of Africa, Southeast Asia, and the Pacific Islands. Although a causal relationship between Zika infection during pregnancy and microcephaly is strongly suspected, such a connection has not yet been scientifically proven. In May 2015, the outbreak of ZIKV infection in Brazil led to reports of syndrome and pregnant women giving birth to babies with birth defects and poor pregnancy outcomes; the Pan American Health Organization (PAHO) issued an alert regarding the first confirmed ZIKV infection in Brazil. Currently, ZIKV outbreaks are ongoing and it will be difficult to predict how the virus will spread over time. ZIKV is transmitted to humans primarily through the bite of infected mosquitos, Aedes aegypti and Aedes albopictus. These mosquitoes are the principle vectors of dengue, and ZIKV disease generally is reported to include symptoms associated with acute febrile illnesses that clinically resembles dengue fever. The laboratory diagnosis can be performed by using reverse-transcriptase polymerase chain reaction (RT-PCR) on serum, viral nucleic acid and virus-specific immunoglobulin M. There is currently no vaccine and antiviral treatment available for ZIKV infection, and the only way to prevent congenital ZIKV infection is to prevent maternal infection. In February 2016, the Taiwan Centers for Disease Control (Taiwan CDC) activated ZIKV as a Category V Notifiable Infectious Disease similar to Ebola virus disease and MERS. Copyright © 2016. Published by Elsevier Taiwan LLC.

  7. [Zika virus infection in pregnancy].

    Science.gov (United States)

    Varjasi, Gabriella; Póka, Róbert

    2017-04-01

    The Zika virus is a flavivirus spread by mosquitoes. Its primary vectors are the Aedes aegypti and the Aedes albopictus. Before 2007 it sporadically caused benign morbidity. Since 2015, it started spreading "explosively" in America, especially in Brazil. In August 2016 they reported cases from New York and Poland, too. Most of the infections don't produce any symptoms, but can cause grave complications. The most important lesion is microcephalia that forms in fetuses. Microcephalia's most serious consequence is mental retardation, which puts great burden on both the family and the society. The viral infection increases the incidence of Guillain-Barré syndrome. This is an acute autoimmune disease which causes demyelination and, in the worst cases, it can also be fatal. Yet we do not possess adequate and specific vaccination nor antiviral therapy, although, since July 2016, the effectiveness of a DNA based vaccine is being tested on humans. More than half of the world's population lives in areas contaminated by infected mosquitoes so there is a great need for the development of an effective method against the vector mosquitoes. Sadly, even the vector control strategies aren't effective enough to push back the epidemic. Pregnant or fertile women must take the highest precautions against mosquito bites, especially if they travel to regions ravaged by the epidemic. The safest solution would be to postpone both the trip and the childbearing. In Europe, the vectors aren't spread enough to cause major threat, except maybe the warmer regions bordered by the Mediterranean Sea. However, it is possible that in the near future other viruses spread by Aedes mosquitoes could appear. Naturally, the travellers and immigrants, who came from endemic regions can also contribute to the spread of the epidemic. Thanks to the changes in global weather, there were reported findings of mosquitoes of the Aedes albopictus species in Hungary, which are slowly invading the continent, although

  8. Central Nervous System Effects of Intrauterine Zika Virus Infection: A Pictorial Review.

    Science.gov (United States)

    Ribeiro, Bianca Guedes; Werner, Heron; Lopes, Flávia P P L; Hygino da Cruz, L Celso; Fazecas, Tatiana M; Daltro, Pedro A N; Nogueira, Renata A

    2017-10-01

    Relatively few agents have been associated with congenital infections involving the brain. One such agent is the Zika virus, which has caused several outbreaks worldwide and has spread in the Americas since 2015. The Zika virus is an arbovirus transmitted by infected female mosquito vectors, such as the Aedes aegypti mosquito. This virus has been commonly associated with congenital infections of the central nervous system and has greatly increased the rates of microcephaly. Ultrasonography (US) remains the method of choice for fetal evaluation of congenital Zika virus infection. For improved assessment of the extent of the lesions, US should be complemented by magnetic resonance (MR) imaging. Postnatal computed tomography and MR imaging can also unveil additional findings of central nervous system involvement, such as microcephaly with malformation of cortical development, ventriculomegaly, and multifocal calcifications in the cortical-subcortical junction, along with associated cortical atrophy. The calcifications may be punctate, dystrophic, linear, or coarse and may follow a predominantly bandlike distribution. A small anterior fontanelle with prematurely closed sutures is also observed with Zika virus infection. In this review, the prenatal and postnatal neurologic imaging findings of congenital Zika virus infection are covered. Radiologists must be aware of this challenging entity and have knowledge of the various patterns that may be depicted with each imaging modality and the main differential diagnosis of the disease. As in other neurologic infections, serial imaging is able to help demonstrate the progression of the findings. © RSNA, 2017.

  9. Impact of aging on neurocognitive performance in previously antiretroviral-naive HIV-infected individuals on their first suppressive regimen.

    Science.gov (United States)

    Coban, Hamza; Robertson, Kevin; Smurzynski, Marlene; Krishnan, Supriya; Wu, Kunling; Bosch, Ronald J; Collier, Ann C; Ellis, Ronald J

    2017-07-17

    Despite treatment with virologically suppressive antiretroviral therapy (ART), neurocognitive impairment may persist or develop de novo in aging HIV-infected individuals. We evaluated advancing age as a predictor of neurocognitive impairment in a large cohort of previously ART-naive individuals on long-term ART. The AIDS Clinical Trials Group Longitudinal Linked Randomized Trials was a prospective cohort study of HIV-infected individuals originally enrolled in randomized ART trials. This analysis examined neurocognitive outcomes at least 2 years after ART initiation. All participants underwent annual neurocognitive testing consisting of Trail making A and B, the wechsler adult intelligence scale-revised Digit Symbol and Hopkins Verbal Learning Tests. Uni and multivariable repeated measures regression models evaluated factors associated with neurocognitive performance. Predictors at parent study entry (ART naive) included entry demographics, smoking, injection drug use, hepatitis B surface antigen, hepatitis C virus serostatus, history of stroke, ART regimen type, pre-ART nadir CD4 cell count, and plasma viral load and as well as time-updated plasma viral load and CD4 cell count. The cohort comprised 3313 individuals with median pre-ART age of 38 years, 20% women; 36% Black, non-Hispanic; 22% Hispanic. Virologic suppression was maintained at 91% of follow-up visits. Neurocognitive performance improved with years of ART. After adjusting for the expected effects of age using norms from HIV-negative individuals, the odds of neurocognitive impairment at follow-up visits among the HIV infected increased by nearly 20% for each decade of advancing age. Despite continued virologic suppression and neurocognitive improvement in the cohort as a whole, older individuals were more likely to have neurocognitive impairment than younger individuals.

  10. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  11. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection.

    Directory of Open Access Journals (Sweden)

    Henry J McSorley

    Full Text Available We present immunological data from two clinical trials where the effect of experimental human hookworm (Necator americanus infection on the pathology of celiac disease was evaluated. We found that basal production of Interferon- (IFN-γ and Interleukin- (IL-17A from duodenal biopsy culture was suppressed in hookworm-infected participants compared to uninfected controls. Increased levels of CD4+CD25+Foxp3+ cells in the circulation and mucosa are associated with active celiac disease. We show that this accumulation also occurs during a short-term (1 week oral gluten challenge, and that hookworm infection suppressed the increase of circulating CD4+CD25+Foxp3+ cells during this challenge period. When duodenal biopsies from hookworm-infected participants were restimulated with the immunodominant gliadin peptide QE65, robust production of IL-2, IFN-γ and IL-17A was detected, even prior to gluten challenge while participants were strictly adhering to a gluten-free diet. Intriguingly, IL-5 was produced only after hookworm infection in response to QE65. Thus we hypothesise that hookworm-induced TH2 and IL-10 cross-regulation of the TH1/TH17 inflammatory response may be responsible for the suppression of these responses during experimental hookworm infection.

  12. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans.

    Directory of Open Access Journals (Sweden)

    Ilhem Messaoudi

    2009-11-01

    Full Text Available Simian varicella virus (SVV, the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV. Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.

  13. Molecular Biology and Infection of Hepatitis E Virus

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2016-09-01

    Full Text Available Hepatitis E virus (HEV is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotype 3 and 4 are zoonotic, whereas those from genotype 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.

  14. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Wu, Xiaodong; Qi, Xian; Liang, Mifang; Li, Chuan; Cardona, Carol J; Li, Dexin; Xing, Zheng

    2014-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses. © FASEB.

  15. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection.

    Science.gov (United States)

    Schwartz, David A

    2017-06-01

    Attention is increasingly focused on the potential mechanism(s) for Zika virus infection to be transmitted from an infected mother to her fetus. This communication addresses current evidence for the role of the placenta in vertical transmission of the Zika virus. Placentas from second and third trimester fetuses with confirmed intrauterine Zika virus infection were examined with routine staining to determine the spectrum of pathologic changes. In addition, immunohistochemical staining for macrophages and nuclear proliferation antigens was performed. Viral localization was identified using RNA hybridization. These observations were combined with the recent published results of placental pathology to increase the strength of the pathology data. Results were correlated with published data from experimental studies of Zika virus infection in placental cells and chorionic villous explants. Placentas from fetuses with congenital Zika virus infection are concordant in not having viral-induced placental inflammation. Special stains reveal proliferation and prominent hyperplasia of placental stromal macrophages, termed Hofbauer cells, in the chorionic villi of infected placentas. Zika virus infection is present in Hofbauer cells from second and third trimester placentas. Experimental studies and placentae from infected fetuses reveal that the spectrum of placental cell types infected with the Zika virus is broader during the first trimester than later in gestation. Inflammatory abnormalities of the placenta are not a component of vertical transmission of the Zika virus. The major placental response in second and third trimester transplacental Zika virus infection is proliferation and hyperplasia of Hofbauer cells, which also demonstrate viral infection.

  16. THE POSSIBLE COLLISIONS IN VIRUS INFECTION IMMUNODIAGNOSTICS AND VACCINATION

    Directory of Open Access Journals (Sweden)

    E. P. Kharchenko

    2016-01-01

    Full Text Available Antibodies (Ab, especially natural, display multiple specificity not only due to intrinsic conformational dynamics. With computational analysis the distribution of identical and homologous peptides has been studied in surface proteins from RNA and DNA viruses of widely distributed infections. It was established that each virus protein shared the fragments homologous to other virus proteins that allowed to propose the existence of the peptide continuum of the protein relationship (PCPR. Possible manifestations of PCPR are multiple reactivity and autoreactivity in Ab and therefore it is not possible to consider the immune methods of virus identification as high reliable because of crossing interactions. The PCPR excludes the existence of 100% specificity in immune tests for virus identification. Immunodiagnostic collisions may occur either in identification of virus itself or identification of Ab to viruses. Also PCPR may be responsible for heterologous immunity and consequently the infection associated with severe pathology. The comparative analysis of peptide relationship of H1N1 influenza virus nucleoprotein and human proteins found out, beyond early described its common motif with human hypocretin receptor 2, peptides homologous to those in melanotonin and glutamate receptors and three ion channels. It allows to propose that the sleep disorder narcolepsy associated with Pandemrix vaccination (an adjuvanted, influenza pandemic vaccine and also with infection by influenza virus during the 2009 A(H1N1 influenza pandemic may be determined not only by Ab to the peptide motif common to influenza nucleoprotein and hypocretin receptor but also Ab to melanotonin and glutamate receptors and ion channels. Decreasing and even avoiding risks of complications from vaccination may be feasible by means of a computer analysis of vaccine proteins for the occurrence of epitopes homologous to the human protein those and particularly by an analysis of Ab profiles

  17. Efficacy of Vesicular Stomatitis Virus-Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona.

    Science.gov (United States)

    Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz

    2016-10-15

    The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Fracture risk in hepatitis C virus infected persons

    DEFF Research Database (Denmark)

    Hansen, Ann-Brit Eg; Omland, Lars Haukali; Krarup, Henrik

    2014-01-01

    BACKGROUND & AIMS: The association between Hepatitis C virus (HCV)-infection and fracture risk is not well characterized. We compared fracture risk between HCV-seropositive (HCV-exposed) patients and the general population and between patients with cleared and chronic HCV-infection. METHODS...

  19. Comparative Infection Progress Analysis of Lettuce big-vein virus and Mirafiori lettuce virus in Lettuce Crops by Developed Molecular Diagnosis Techniques.

    Science.gov (United States)

    Navarro, Jose A; Botella, Francisco; Maruhenda, Antonio; Sastre, Pedro; Sánchez-Pina, M Amelia; Pallas, Vicente

    2004-05-01

    ABSTRACT Nonisotopic molecular dot blot hybridization technique and multiplex reverse transcription-polymerase chain reaction assay for the specific detection of Lettuce big-vein virus (LBVV) and Mirafiori lettuce virus (MiLV) in lettuce tissue were developed. Both procedures were suitable for the specific detection of both viruses in a range of naturally infected lettuce plants from various Spanish production areas and seven different cultivars. The study of the distribution of both viruses in the plant revealed that the highest concentration of LBVV and MiLV occurred in roots and old leaves, respectively. LBVV infection progress in a lettuce production area was faster than that observed for MiLV. In spite of different rates of virus infection progress, most lettuce plants became infected with both viruses about 100 days posttransplant. The appearance of both viruses in lettuce crops was preceded by a peak in the concentration of resting spores and zoosporangia of the fungus vector Olpidium brassicae in lettuce roots.

  20. Vaccinia Virus Infections in a Martial Arts Gym

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses an outbreak of vaccinia virus in Maryland in 2008. Christine Hughes, a health scientist with the Poxvirus and Rabies Branch at CDC, and co-author of a paper in the April 2011 issue of CDC's journal, discusses vaccinia virus infections in a martial arts gym.

  1. Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation.

    Science.gov (United States)

    Uchida, Leo; Urata, Shuzo; Ulanday, Gianne Eduard L; Takamatsu, Yuki; Yasuda, Jiro; Morita, Kouichi; Hayasaka, Daisuke

    2016-02-10

    Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.

  2. Altered plasma concentrations of sex hormones in cats infected by feline immunodeficiency virus or feline leukemia virus.

    Science.gov (United States)

    Tejerizo, G; Doménech, A; Illera, J-C; Silván, G; Gómez-Lucía, E

    2012-02-01

    Gender differences may affect human immunodeficiency virus (HIV) infection in humans and may be related to fluctuations in sex hormone concentration. The different percentage of male and female cats observed to be infected by feline leukemia virus (FeLV) or feline immunodeficiency virus (FIV) has been traditionally explained through the transmission mechanisms of both viruses. However, sexual hormones may also play a role in this different distribution. To study this possibility, 17β-estradiol, progesterone, testosterone, and dehydroepiandrosterone (DHEA) concentrations were analyzed using a competitive enzyme immunoassay in the plasma of 258 cats naturally infected by FIV (FIV(+)), FeLV (FeLV(+)), or FeLV and FIV (F(-)F(+)) or negative for both viruses, including both sick and clinically healthy animals. Results indicated that the concentrations of 17β-estradiol and testosterone were significantly higher in animals infected with FIV or FeLV (P < 0.05) than in negative cats. Plasma concentrations of DHEA in cats infected by either retrovirus were lower than in negative animals (P < 0.05), and F(-)F(+) cats had significantly lower plasma values than monoinfected cats (P < 0.05). No significant differences were detected in the plasma concentration of progesterone of the four groups. No relevant differences were detected in the hormone concentrations between animal genders, except that FIV(+) females had higher DHEA concentrations than the corresponding males (P < 0.05). In addition, no differences were observed in the hormone concentrations between retrovirus-infected and noninfected animals with and without clinical signs. These results suggest that FIV and FeLV infections are associated with an important deregulation of steroids, possibly from early in the infection process, which might have decisive consequences for disease progression. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Four viruses infecting figs in Western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amal Y. ALDHEBIANI

    2015-12-01

    Full Text Available Many diseases are compromising fig production in Saudi Arabia and in particular those caused by viruses. RT-PCR assays were conducted on 80 samples collected from four fig-growing provinces in the West Mecca region of Saudi Arabia, including the Fatima, Khulais, Rabigh and Alshifa valleys. Samples consisted of leaf tissues taken from caprifig and common fig trees. The presence of Fig mosaic virus (FMV, Fig leaf mottle-associated virus 1 (FLMaV-1, Fig leaf mottle-associated virus 2 (FLMaV-2 and Fig mild mottle-associated virus (FMMaV was assessed from the samples. RT-PCR results showed that all four viruses were present in the surveyed areas with different proportions of infection. Incidence was 69% of samples, with a peak of 80%, from the Alshifa and Fatima valleys, 60% from Rabigh and 55% from Khulais valley. FLMaV-1 was the prevailing virus (55% of samples, followed by FMV (34%, whereas FLMaV-2 (11% of samples and FMMaV (6% were less common. Most of the mosaic symptoms observed in surveyed fig orchards occurred with the presence of FMV. However, many other symptoms remained unexplained because of the arduous task of determining the involvement of other fig-infecting viruses with mosaic disease. This is the first report of FMMaV and FLMaV-2 in Saudi Arabia, and of FMV and FLMaV-1 in western Saudi Arabia. The virus status of this crop is probably compromised and a sanitation programme is required to produce healthy plant material in Saudi Arabia.

  4. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  5. Drug repurposing of minocycline against dengue virus infection.

    Science.gov (United States)

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-09

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Infection cycle of Artichoke Italian latent virus in tobacco plants: meristem invasion and recovery from disease symptoms.

    Directory of Open Access Journals (Sweden)

    Elisa Santovito

    Full Text Available Nepoviral infections induce recovery in fully expanded leaves but persist in shoot apical meristem (SAM by a largely unknown mechanism. The dynamics of infection of a grapevine isolate of Artichoke Italian latent virus (AILV-V, genus Nepovirus in tobacco plants, including colonization of SAM, symptom induction and subsequent recovery of mature leaves from symptoms, were characterized. AILV-V moved from the inoculated leaves systemically and invaded SAM in 7 days post-inoculation (dpi, remaining detectable in SAM at least up to 40 dpi. The new top leaves recovered from viral symptoms earliest at 21 dpi. Accumulation of viral RNA to a threshold level was required to trigger the overexpression of RDR6 and DCL4. Consequently, accumulation of viral RNA decreased in the systemically infected leaves, reaching the lowest concentration in the 3rd and 4th leaves at 23 dpi, which was concomitant with recovery of the younger, upper leaves from disease symptoms. No evidence of virus replication was found in the recovered leaves, but they contained infectious virus particles and were protected against re-inoculation with AILV-V. In this study we also showed that AILV-V did not suppress initiation or maintenance of RNA silencing in transgenic plants, but was able to interfere with the cell-to-cell movement of the RNA silencing signal. Our results suggest that AILV-V entrance in SAM and activation of RNA silencing may be distinct processes since the latter is triggered in fully expanded leaves by the accumulation of viral RNA above a threshold level rather than by virus entrance in SAM.

  7. Combination ledipasvir-sofosbuvir for the treatment of chronic hepatitis C virus infection: a review and clinical perspective

    Directory of Open Access Journals (Sweden)

    Nkuize M

    2016-06-01

    Full Text Available Marcel Nkuize,1 Thomas Sersté,1,2 Michel Buset,1 Jean-Pierre Mulkay11Department of Gastroenterology and Hepatology, Saint-Pierre University Hospital, 2Department of Gastroenterology, Pancreatology and Hepatology, Hôpital Academique Erasme, Université Libre de Bruxelles, Brussels, Belgium Abstract: Chronic hepatitis C treatment has continued to evolve, and interferon-free, oral treatment with direct-acting antiviral agents is the current standard of care. Recently, a new treatment, which is a combination of two direct-acting antiviral agents, ledipasvir 90 mg (anti-NS5A and sofosbuvir 400 mg (anti-NS5B, has been approved in the US and the European Union for the treatment of chronic hepatitis C viral infection. In Phase III trials among chronic hepatitis C virus genotype 1 monoinfected (treatment-naïve, treatment-experienced, and with advanced liver disease or posttransplant patients and HIV–hepatitis C virus coinfected patients, the ledipasvir-sofosbuvir fixed-dose combination is associated with a higher rate of sustained virologic response at 12 weeks after therapy has ceased. According to preliminary data, the ledipasvir-sofosbuvir combination also may be effective against hepatitis C genotype 4 virus infection. The ledipasvir-sofosbuvir combination taken orally is generally well-tolerated. Moreover, the combination treatment may suppress the effect of predictive factors of chronic hepatitis C that have historically been known to be associated with treatment failure. Thus, the fixed-dose single-tablet combination of ledipasvir-sofosbuvir offers a new era for the effective treatment of a variety of patients suffering from chronic hepatitis C virus infection.Keywords: ledipasvir, liver disease, ethnicity, DAA, HIV

  8. Transmission potential of Zika virus infection in the South Pacific

    Directory of Open Access Journals (Sweden)

    Hiroshi Nishiura

    2016-04-01

    Conclusions: The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya.

  9. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    Science.gov (United States)

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  10. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  11. Zika virus infection spread through saliva – a truth or myth?

    Directory of Open Access Journals (Sweden)

    Walter Luiz SIQUEIRA

    2016-01-01

    Full Text Available Abstract In this Point-of-view article we highlighted some features related to saliva and virus infection, in special for zika virus. In addition, we pointed out the potential oral problems caused by a microcephaly originated by a zika virus infection. In the end the, we demonstrated the importance of a more comprehensive exploration of saliva and their components as a fluid for diagnostic and therapeutic approaches on oral and systemic diseases.

  12. Full Viral Suppression, Low-Level Viremia, and Quantifiable Plasma HIV-RNA at the End of Pregnancy in HIV-Infected Women on Antiretroviral Treatment.

    Science.gov (United States)

    Baroncelli, Silvia; Pirillo, Maria F; Tamburrini, Enrica; Guaraldi, Giovanni; Pinnetti, Carmela; Degli Antoni, Anna; Galluzzo, Clementina M; Stentarelli, Chiara; Amici, Roberta; Floridia, Marco

    2015-07-01

    There is limited information on full viral suppression and low-level HIV-RNA viremia in HIV-infected women at the end of pregnancy. We investigated HIV-RNA levels close to delivery in women on antiretroviral treatment in order to define rates of complete suppression, low-level viremia, and quantifiable HIV-RNA, exploring as potential determinants some clinical and viroimmunological variables. Plasma samples from a national study in Italy, collected between 2003 and 2012, were used. According to plasma HIV-RNA levels, three groups were defined: full suppression (target not detected), low-level viremia (target detected but HIV-RNA (≥37 copies/ml). Multivariable logistic regression was used to define determinants of full viral suppression and of quantifiable HIV-RNA. Among 107 women evaluated at a median gestational age of 35 weeks, 90 (84.1%) had HIV-RNA HIV-RNA was 109 copies/ml (IQR 46-251), with only one case showing resistance (mutation M184V; rate: 9.1%). In multivariable analyses, women with higher baseline HIV-RNA levels and with hepatitis C virus (HCV) coinfection were significantly more likely to have quantifiable HIV-RNA in late pregnancy. Full viral suppression was significantly more likely with nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens and significantly less likely with higher HIV-RNA in early pregnancy. No cases of HIV transmission occurred. In conclusion, HIV-infected pregnant women showed a high rate of viral suppression and a low resistance rate before delivery. In most cases no target HIV-RNA was detected in plasma, suggesting a low risk of subsequent virological rebound and development of resistance. Women with high levels of HIV-RNA in early pregnancy and those who have concomitant HCV infection should be considered at higher risk of having quantifiable HIV-RNA at the end of pregnancy.

  13. Does virus-bacteria coinfection increase the clinical severity of acute respiratory infection?

    Science.gov (United States)

    Damasio, Guilherme A C; Pereira, Luciane A; Moreira, Suzana D R; Duarte dos Santos, Claudia N; Dalla-Costa, Libera M; Raboni, Sonia M

    2015-09-01

    This retrospective cohort study investigated the presence of bacteria in respiratory secretions of patients hospitalized with acute respiratory infections and analyzed the impact of viral and bacterial coinfection on severity and the mortality rate. A total of 169 patients with acute respiratory infections were included, viruses and bacteria in respiratory samples were detected using molecular methods. Among all samples, 73.3% and 59.7% were positive for viruses and bacteria, respectively; 45% contained both virus and bacteria. Bacterial coinfection was more frequent in patients infected by community respiratory viruses than influenza A H1N1pdm (83.3% vs. 40.6%). The most frequently bacteria detected were Streptococcus pneumoniae and Haemophilus influenzae. Both species were co-detected in 54 patients and identified alone in 22 and 21 patients, respectively. Overall, there were no significant differences in the period of hospitalization, severity, or mortality rate between patients infected with respiratory viruses alone and those coinfected by viruses and bacteria. The detection of mixed respiratory pathogens is frequent in hospitalized patients with acute respiratory infections, but its impact on the clinical outcome does not appear substantial. However, it should be noted that most of the patients received broad-spectrum antibiotic therapy, which may have contributed to this favorable outcome. © 2015 Wiley Periodicals, Inc.

  14. Chayote mosaic virus, a New Tymovirus Infecting Cucurbitaceae.

    Science.gov (United States)

    Bernal, J J; Jiménez, I; Moreno, M; Hord, M; Rivera, C; Koenig, R; Rodríguez-Cerezo, E

    2000-10-01

    ABSTRACT Chayote mosaic virus (ChMV) is a putative tymovirus isolated from chayote crops in Costa Rica. ChMV was characterized at the host range, serological, and molecular levels. ChMV was transmitted mechanically and induced disease symptoms mainly in Cucurbitaceae hosts. Asymptomatic infections were detected in other host families. Serologically, ChMV is related to the Andean potato latent virus (APLV) and the Eggplant mosaic virus (EMV), both members of the genus Tymovirus infecting solanaceous hosts in the Caribbean Basin and South America. The sequence of the genomic RNA of ChMV was determined and its genetic organization was typical of tymoviruses. Comparisons with other tymoviral sequences showed that ChMV was a new member of the genus Tymovirus. The phylogenetic analyses of the coat protein gene were consistent with serological comparisons and positioned ChMV within a cluster of tymoviruses infecting mainly cucurbit or solanaceous hosts, including APLV and EMV. Phylogenetic analyses of the replicase protein gene confirmed the close relationship of ChMV and EMV. Our results suggest that ChMV is related to two tymoviruses (APLV and EMV) of proximal geographical provenance but with different natural host ranges. ChMV is the first cucurbit-infecting tymovirus to be fully characterized at the genomic level.

  15. Induction of suppression of delayed type hypersensitivity to herpes simplex virus by epidermal cells exposed to UV-irradiated urocanic acid in vivo

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.P.

    1987-01-01

    Urocanic acid (UCA), the putative photoreceptor for ultraviolet radiation (UV)-induced suppression, undergoes a UV-dependent trans to cis isomerisation. Epidermal cells from mice painted with UCA, containing a known proportion of the cis-isomer, generate suppression of the delayed type hypersensitivity response to herpes simplex virus type 1 (HSV-1) when transferred to naive syngeneic recipients at the same time and site as infection with HSV-1. One T suppressor cell subset, of phenotype (Thy1+, L3T4+, Ly2-), is induced by the cis-UCA modified epidermal cell transfer. Flow cytometric analysis of the epidermal cells from skin treated with UV or cis-UCA indicates an overall reduction from normal in the number of cells expressing MHC Class II antigens, but no alteration in the number expressing I-J antigens

  16. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    International Nuclear Information System (INIS)

    Orba, Yasuko; Sunden, Yuji; Suzuki, Tadaki; Nagashima, Kazuo; Kimura, Takashi; Tanaka, Shinya; Sawa, Hirofumi

    2008-01-01

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)

  17. Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears.

    Science.gov (United States)

    Miner, Jonathan J; Sene, Abdoulaye; Richner, Justin M; Smith, Amber M; Santeford, Andrea; Ban, Norimitsu; Weger-Lucarelli, James; Manzella, Francesca; Rückert, Claudia; Govero, Jennifer; Noguchi, Kevin K; Ebel, Gregory D; Diamond, Michael S; Apte, Rajendra S

    2016-09-20

    Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Central nervous system manifestations of HIV infection in children

    International Nuclear Information System (INIS)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur; Toorn, Ronald van

    2009-01-01

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  19. Central nervous system manifestations of HIV infection in children

    Energy Technology Data Exchange (ETDEWEB)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur [University of Stellenbosch, Department of Radiology, Tygerberg Academic Hospital, Cape Town (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Tygerberg Academic Hospital, Cape Town (South Africa)

    2009-06-15

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  20. Virus load in chimpanzees infected with human immunodeficiency virus type 1: effect of pre-exposure vaccination

    NARCIS (Netherlands)

    ten Haaft, P.; Cornelissen, M.; Goudsmit, J.; Koornstra, W.; Dubbes, R.; Niphuis, H.; Peeters, M.; Thiriart, C.; Bruck, C.; Heeney, J. L.

    1995-01-01

    Many reports indicate that a long-term asymptomatic state following human immunodeficiency virus type 1 (HIV-1) infection is associated with a low amount of circulating virus. To evaluate the possible effect of stabilizing a low virus load by non-sterilizing pre-exposure vaccination, a quantitative

  1. Controlled human infection models for vaccine development: Zika virus debate.

    Science.gov (United States)

    Gopichandran, Vijayaprasad

    2018-01-01

    An ethics panel, convened by the National Institute of Health and other research bodies in the USA, disallowed researchers from the Johns Hopkins University and University of Vermont from performing controlled human infection of healthy volunteers to develop a vaccine against Zika virus infection. The members published their ethical analysis and recommendations in February 2017. They have elaborated on the risks posed by human challenge with Zika virus to the volunteers and other uninvolved third parties and have systematically analysed the social value of such a human challenge experiment. They have also posited some mandatory ethical requirements which should be met before allowing the infection of healthy volunteers with the Zika virus. This commentary elaborates on the debate on the ethics of the human challenge model for the development of a Zika virus vaccine and the role of systematic ethical analysis in protecting the interests of research participants. It further analyses the importance of this debate to the development of a Zika vaccine in India.

  2. Human immunodeficiency virus infection presenting as a fatal case ...

    African Journals Online (AJOL)

    MJP

    2015-06-25

    Jun 25, 2015 ... original work is properly cited. Human immunodeficiency virus infection presenting as a fatal ... of neurological symptoms by an infection (upper respiratory tract infection or diarrhea), in a smaller proportion of .... cerebrospinal fluid findings of albumino-cytology dissociation.[6]. However, albumino-cytology.

  3. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  4. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  5. Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection

    OpenAIRE

    Warfield, Kelly L.; Perkins, Jeremy G.; Swenson, Dana L.; Deal, Emily M.; Bosio, Catharine M.; Aman, M. Javad; Yokoyama, Wayne M.; Young, Howard A.; Bavari, Sina

    2004-01-01

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1–3 d before Ebola virus infection rapidly induced protective immunity. VLP injectio...

  6. Transmission potential of Zika virus infection in the South Pacific.

    Science.gov (United States)

    Nishiura, Hiroshi; Kinoshita, Ryo; Mizumoto, Kenji; Yasuda, Yohei; Nah, Kyeongah

    2016-04-01

    Zika virus has spread internationally through countries in the South Pacific and Americas. The present study aimed to estimate the basic reproduction number, R0, of Zika virus infection as a measurement of the transmission potential, reanalyzing past epidemic data from the South Pacific. Incidence data from two epidemics, one on Yap Island, Federal State of Micronesia in 2007 and the other in French Polynesia in 2013-2014, were reanalyzed. R0 of Zika virus infection was estimated from the early exponential growth rate of these two epidemics. The maximum likelihood estimate (MLE) of R0 for the Yap Island epidemic was in the order of 4.3-5.8 with broad uncertainty bounds due to the small sample size of confirmed and probable cases. The MLE of R0 for French Polynesia based on syndromic data ranged from 1.8 to 2.0 with narrow uncertainty bounds. The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Congenital Abnormalities: Consequence of Maternal Zika Virus Infection: A Narrative Review.

    Science.gov (United States)

    Hassan, Fatima I; Niaz, Kamal; Maqbool, Faheem; Khan, Fazlullah; Abdollahi, Mohammad

    2017-01-01

    Zika virus (ZIKV) is a deadly flavivirus that has spread from Africa to Asia and European countries. The virus is associated with other viruses in the same genus or family, transmitted by the same mosquito species with known history of fatality. A sudden increase in the rate of infection from ZIKV has made it a global health concern, which necessitates close symptom monitoring, enhancing treatment options, and vaccine production. This paper reviewed current reports on birth defects associated with ZIKV, mode of transmission, body fluids containing the virus, diagnosis, possible preventive measures or treatments, and vaccine development. Google scholar was used as the major search engine for research and review articles, up to July, 2016. Search terms such as "ZIKV", "ZIKV infection", "ZIKV serotypes", "treatment of ZIKV infection", "co-infection with zika virus", "flavivirus", "microcephaly and zika", "birth defects and Zika", as well as "ZIKV vaccine" were used. ZIKV has been detected in several body fluids such as saliva, semen, blood, and amniotic fluid. This reveals the possibility of sexual and mother to child transmission. The ability of the virus to cross the placental barrier and the blood brain barrier (BBB) has been associated with birth defects such as microcephaly, ocular defects, and Guillian Barre syndrome (GBS). Preventive measures can reduce the spread and risk of the infection. Available treatments only target symptoms while vaccines are still under development. Birth defects are associated with ZIKV infection in pregnant women; hence the need for development of standard treatments, employment of strict preventive measures and development of effective vaccines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

    Science.gov (United States)

    Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S

    2017-11-01

    The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

  9. Cyclophilin B facilitates the replication of Orf virus.

    Science.gov (United States)

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  10. Dendritic cells during Epstein Barr virus infection

    Directory of Open Access Journals (Sweden)

    Christian eMunz

    2014-06-01

    Full Text Available Epstein Barr virus (EBV causes persistent infection in more than 90% of the human adult population and is associated with 2% of all tumors in humans. This -herpesvirus infects primarily human B and epithelial cells, but has been reported to be sensed by dendritic cells (DCs during primary infection. These activated DCs are thought to contribute to innate restriction of EBV infection and initiate EBV specific adaptive immune responses via cross-priming. The respective evidence and their potential importance for EBV specific vaccine development will be discussed in this review.

  11. Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection

    International Nuclear Information System (INIS)

    Mahanty, Siddhartha; Gupta, Manisha; Paragas, Jason; Bray, Mike; Ahmed, Rafi; Rollin, Pierre E.

    2003-01-01

    A mouse-adapted strain of Ebola Zaire virus produces a fatal infection when BALB/cj mice are infected intraperitoneally (ip) but subcutaneous (sc) infection with the same virus fails to produce illness and confers long-term protection from lethal ip rechallenge. To identify immune correlates of protection in this model, we compared viral replication and cytokine/chemokine responses to Ebola virus in mice infected ip (10 PFU/mouse), or sc (100 PFU/mouse) and sc 'immune' mice rechallenged ip (10 6 PFU/mouse) at several time points postinfection (pi). Ebola viral antigens were detected in the serum, liver, spleen, and kidneys of ip-infected mice by day 2 pi, increasing up to day 6. Sc-infected mice and immune mice rechallenged ip had no detectable viral antigens until day 6 pi, when low levels of viral antigens were detected in the livers of sc-infected mice only. TNF-α and MCP-1 were detected earlier and at significantly higher levels in the serum and tissues of ip-infected mice than in sc-infected or immune mice challenged ip. In contrast, high levels of IFN-α and IFN-γ were found in tissues within 2 days after challenge in sc-infected and immune mice but not in ip-infected mice. Mice became resistant to ip challenge within 48 h of sc infection, coinciding with the rise in tissue IFN-α levels. In this model of Ebola virus infection, the nonlethal sc route of infection is associated with an attenuated inflammatory response and early production of antiviral cytokines, particularly IFN-α, as compared with lethal ip infection

  12. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    International Nuclear Information System (INIS)

    Rottier, P.

    1980-01-01

    Some aspects of cowpea mosaic virus (CPMV) multiplication in cowpea mesophyll protoplasts were studied. The detection and characterization of proteins whose synthesis is induced or is stimulated upon virus infection was performed with the aid of radioactive labelling. (Auth.)

  13. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    Science.gov (United States)

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  14. Viral Infections in Pregnancy: A Focus on Ebola Virus.

    Science.gov (United States)

    Olgun, Nicole S

    2018-01-30

    During gestation, the immune response of the placenta to viruses and other pathogens plays an important role in determining a pregnant woman's vulnerability toward infectious diseases. Located at the maternal- fetal interface, trophoblast cells serve to minimize the spread of viruses between the host and developing fetus through an intricate system of innate antiviral immune signaling. Adverse pregnancy outcomes, ranging from learning disabilities to preterm birth and fetal death, are all documented results of a viral breach in the placental barrier. Viral infections during pregnancy can also be spread through blood and vaginal secretions, and during the post-natal period, via breast milk. Thus, even in the absence of vertical transmission of viral infection to the fetus, maternal health can still be compromised and threaten the pregnancy. The most common viral DNA isolates found in gestation are adenovirus, cytomegalovirus, and enterovirus. However, with the recent pandemic of Ebola virus, and the first documented case of a neonate to survive due to experimental therapies in 2017, it is becoming increasingly apparent that the changing roles and impacts of viral infection during pregnancy needs to be better understood, while strategies to minimize adverse pregnancy outcomes need to be identified. This review focuses on the adverse impacts of viral infection during gestation, with an emphasis on Ebola virus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Hepatitis A virus infection - shifting epidemiology

    International Nuclear Information System (INIS)

    Tariq, W.Z.; Hussain, A.B.; Hussain, T.; Anwar, M.; Ghani, E.; Asad-Ullah

    2006-01-01

    Objective of the Study: To determine the age distribution in HAV infection and seasonal variations in the prevalence of acute viral hepatitis caused by hepatitis A virus. Study Design: A descriptive study. Place and Duration: The study was carried out on the patients reporting at Virology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, for determination of hepatitis A virus (HAV) IgM antibody, from July 2003 to June 2004. Patients and Methods: Altogether 626 patients with clinical suspicion of hepatitis A virus infection were referred to AFIP Rawalpindi for this test. Blood samples were collected and sera were separated and transferred to plastic aliquots that were stored at -20 deg. C in a retrievable fashion until utilized in testing. The testing for ant-HAY IgM was carried out with the help of a commercial Enzyme Linked Immunosorbent Assay (ELISA) using reagent kits of Dias Orin (Germany) for HAV IgM antibodies. Results: The HAV IgM positive rate was 40.57% (252/626). Those tested included the sporadic cases as well as the patients from outbreak in two schools of Nowshera cantonment. The age of patients testing positive for HAV IgM, ranged from 03 to 27 years. There was a statistically significant seasonal difference in rate of positivity in different months of the calendar year. An outbreak of HAV infection was seen in the children of two neighboring schools of a cantonment, in which 44 children in different classes developed clinical jaundice. Conclusion: HAV infection occurs in a significant proportion of young people with a clinical suspicion of HAV infection. There is a changing trend of developing hepatitis a in the age beyond 18 years and in outbreaks, which was not there in our patients previously due to universal immunity found against HAV by the age of 18. It was because of chances of consumption of polluted food. (author)

  16. The Prevalence of Human Immunodeficiency Virus Infection among ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Agboghoroma et al. HIV Infection Diagnosed in Women in Labour. African Journal of Reproductive Health September 2015; 19 (3):137. ORIGINAL RESEARCH ARTICLE. The Prevalence of Human Immunodeficiency Virus Infection among. Pregnant Women in Labour with Unknown Status and those with. Negative status ...

  17. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana.

    Science.gov (United States)

    Kwofie, Theophilus B; Anane, Yaw A; Nkrumah, Bernard; Annan, Augustina; Nguah, Samuel B; Owusu, Michael

    2012-04-10

    Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2%) were positive for one or more viruses. Respiratory Syncytial Virus (RSV) was detected in 18(14.1%, 95%CI: 8.5% to 21.3%) patients followed by Adenoviruses (AdV) in 13(10.2%, 95%CI: 5.5% to 16.7%), Parainfluenza (PIV type: 1, 2, 3) in 4(3.1%, 95%CI: 0.9% to 7.8%) and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3). Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36) of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  18. Durable Viral Suppression and Transmission Risk Potential Among Persons With Diagnosed HIV Infection: United States, 2012-2013.

    Science.gov (United States)

    Crepaz, Nicole; Tang, Tian; Marks, Gary; Mugavero, Michael J; Espinoza, Lorena; Hall, H Irene

    2016-10-01

    We examined durable viral suppression, cumulative viral load (VL) burden, and transmission risk potential among human immunodeficiency virus (HIV)-diagnosed persons in care. Using data from the National HIV Surveillance System from 17 jurisdictions with complete reporting of VL test results, we determined the percentage of persons in HIV care who achieved durable viral suppression (all VL results suppression. The remaining 38% had high VL burden (geometric mean of viremia copy-years, 7261) and spent an average of 438 days, 316 days, and 215 days (60%, 43.2%, and 29.5% of the 2-year period) above 200, 1500, and 10 000 copies/mL. Women, blacks/African Americans, Hispanics/Latinos, persons with HIV infection attributed to transmission other than male-to-male sexual contact, younger age groups, and persons with gaps in care had higher viral burden and transmission risk potential. Two-thirds of persons in HIV care had durable viral suppression during a 2-year period. One-third had high VL burden and spent substantial time above VL levels with increased risk of onward transmission. More intervention efforts are needed to improve retention in care and medication adherence so that more persons in HIV care achieve durable viral suppression. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  20. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Jéssica Barreto Lopes Silva

    Full Text Available Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

  1. Transcriptome markers of viral persistence in naturally-infected andes virus (bunyaviridae seropositive long-tailed pygmy rice rats.

    Directory of Open Access Journals (Sweden)

    Corey L Campbell

    Full Text Available Long-tailed pygmy rice rats (Oligoryzomys longicaudatus are principal reservoir hosts of Andes virus (ANDV (Bunyaviridae, which causes most hantavirus cardiopulmonary syndrome cases in the Americas. To develop tools for the study of the ANDV-host interactions, we used RNA-Seq to generate a de novo transcriptome assembly. Splenic RNA from five rice rats captured in Chile, three of which were ANDV-infected, was used to generate an assembly of 66,173 annotated transcripts, including noncoding RNAs. Phylogenetic analysis of selected predicted proteins showed similarities to those of the North American deer mouse (Peromyscus maniculatus, the principal reservoir of Sin Nombre virus (SNV. One of the infected rice rats had about 50-fold more viral burden than the others, suggesting acute infection, whereas the remaining two had levels consistent with persistence. Differential expression analysis revealed distinct signatures among the infected rodents. The differences could be due to 1 variations in viral load, 2 dimorphic or reproductive differences in splenic homing of immune cells, or 3 factors of unknown etiology. In the two persistently infected rice rats, suppression of the JAK-STAT pathway at Stat5b and Ccnot1, elevation of Casp1, RIG-I pathway factors Ppp1cc and Mff, and increased FC receptor-like transcripts occurred. Caspase-1 and Stat5b activation pathways have been shown to stimulate T helper follicular cell (TFH development in other species. These data are also consistent with reports suggestive of TFH stimulation in deer mice experimentally infected with hantaviruses. In the remaining acutely infected rice rat, the apoptotic pathway marker Cox6a1 was elevated, and putative anti-viral factors Abcb1a, Fam46c, Spp1, Rxra, Rxrb, Trmp2 and Trim58 were modulated. Transcripts for preproenkephalin (Prenk were reduced, which may be predictive of an increased T cell activation threshold. Taken together, this transcriptome dataset will permit rigorous

  2. Autoimmune Neurological Conditions Associated With Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Yeny Acosta-Ampudia

    2018-04-01

    Full Text Available Zika virus (ZIKV is an emerging flavivirus rapidly spreading throughout the tropical Americas. Aedes mosquitoes is the principal way of transmission of the virus to humans. ZIKV can be spread by transplacental, perinatal, and body fluids. ZIKV infection is often asymptomatic and those with symptoms present minor illness after 3 to 12 days of incubation, characterized by a mild and self-limiting disease with low-grade fever, conjunctivitis, widespread pruritic maculopapular rash, arthralgia and myalgia. ZIKV has been linked to a number of central and peripheral nervous system injuries such as Guillain-Barré syndrome (GBS, transverse myelitis (TM, meningoencephalitis, ophthalmological manifestations, and other neurological complications. Nevertheless, mechanisms of host-pathogen neuro-immune interactions remain incompletely elucidated. This review provides a critical discussion about the possible mechanisms underlying the development of autoimmune neurological conditions associated with Zika virus infection.

  3. A novel highly reproducible and lethal nonhuman primate model for orthopox virus infection.

    Directory of Open Access Journals (Sweden)

    Marit Kramski

    Full Text Available The intentional re-introduction of Variola virus (VARV, the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV and Monkeypox virus (MPXV cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus.A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1-3 days after onset of symptoms, even when very low infectious viral doses of 5x10(2 pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed.We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID(50 (minimal monkey infectious dose 50% of 8.3x10(2 pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis.

  4. Torque Teno Virus in HIV-infected transgender in Surakarta, Indonesia

    Science.gov (United States)

    Hartono; Agung Prasetyo, Afiono; Fanani, Mohammad

    2018-05-01

    Torque Teno Virus (TTV) is a circular single-stranded DNA virus that may co-infected with human immunodeficiency virus (HIV), especially in the high-risk community e.g. the transgender performing high-riskbehavior. TTV shows an increased viremia in HIV patients and maybe influence the HIV clinical progression. Blood samples collected from transgender performing high-riskbehavior in Surakarta were tested by serological and molecular assays to detect the presence of HIV infection. The blood samples with HIV positive status were then tested by a nested polymerase chain reaction (PCR) to detect the presentation of TTV DNA. The amplified PCR products were molecularly cloned and subjected to sequence analysis. TTV DNA was detected in 40.0% HIV-positive samples. The molecular characterization revealed that the most prevalent was genogroup 3, followed by genogroup 2 and 1, respectively. TTV was detected in HIV-infected transgender performing high-riskbehavior in Surakarta with high infection rate.

  5. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    Directory of Open Access Journals (Sweden)

    Adriano de Oliveira Torres Carrasco

    2016-03-01

    Full Text Available Abstract This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia and chickens (Gallus gallus in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota, developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  6. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals.

    Directory of Open Access Journals (Sweden)

    Misako Yoneda

    Full Text Available Nipah virus (NiV P gene encodes P protein and three accessory proteins (V, C and W. It has been reported that all four P gene products have IFN antagonist activity when the proteins were transiently expressed. However, the role of those accessory proteins in natural infection with NiV remains unknown. We generated recombinant NiVs lacking V, C or W protein, rNiV(V-, rNiV(C-, and rNiV(W-, respectively, to analyze the functions of these proteins in infected cells and the implications in in vivo pathogenicity. All the recombinants grew well in cell culture, although the maximum titers of rNiV(V- and rNiV(C- were lower than the other recombinants. The rNiV(V-, rNiV(C- and rNiV(W- suppressed the IFN response as well as the parental rNiV, thereby indicating that the lack of each accessory protein does not significantly affect the inhibition of IFN signaling in infected cells. In experimentally infected golden hamsters, rNiV(V- and rNiV(C- but not the rNiV(W- virus showed a significant reduction in virulence. These results suggest that V and C proteins play key roles in NiV pathogenicity, and the roles are independent of their IFN-antagonist activity. This is the first report that identifies the molecular determinants of NiV in pathogenicity in vivo.

  7. Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection

    Directory of Open Access Journals (Sweden)

    Alison W. Ashbrook

    2016-05-01

    Full Text Available Chikungunya virus (CHIKV is a reemerging alphavirus that has caused epidemics of fever, arthralgia, and rash worldwide. There are currently no licensed vaccines or antiviral therapies available for the prevention or treatment of CHIKV disease. We conducted a high-throughput, chemical compound screen that identified digoxin, a cardiac glycoside that blocks the sodium-potassium ATPase, as a potent inhibitor of CHIKV infection. Treatment of human cells with digoxin or a related cardiac glycoside, ouabain, resulted in a dose-dependent decrease in infection by CHIKV. Inhibition by digoxin was cell type-specific, as digoxin treatment of either murine or mosquito cells did not diminish CHIKV infection. Digoxin displayed antiviral activity against other alphaviruses, including Ross River virus and Sindbis virus, as well as mammalian reovirus and vesicular stomatitis virus. The digoxin-mediated block to CHIKV and reovirus infection occurred at one or more postentry steps, as digoxin inhibition was not bypassed by fusion of CHIKV at the plasma membrane or infection with cell surface-penetrating reovirus entry intermediates. Selection of digoxin-resistant CHIKV variants identified multiple mutations in the nonstructural proteins required for replication complex formation and synthesis of viral RNA. These data suggest a role for the sodium-potassium ATPase in promoting postentry steps of CHIKV replication and provide rationale for modulation of this pathway as a broad-spectrum antiviral strategy.

  8. Hunting in the rainforest and mayaro virus infection: An emerging alphavirus in Ecuador

    Directory of Open Access Journals (Sweden)

    Ricardo O Izurieta

    2011-01-01

    Full Text Available Objectives: The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. Materials and Methods: The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Results: Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46% than among subjects born in other areas (2%. Conclusions: Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs.

  9. Hunting in the Rainforest and Mayaro Virus Infection: An emerging Alphavirus in Ecuador.

    Science.gov (United States)

    Izurieta, Ricardo O; Macaluso, Maurizio; Watts, Douglas M; Tesh, Robert B; Guerra, Bolivar; Cruz, Ligia M; Galwankar, Sagar; Vermund, Sten H

    2011-10-01

    The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46%) than among subjects born in other areas (2%). Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs.

  10. Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada.

    Science.gov (United States)

    Little, Susan; Sears, William; Lachtara, Jessica; Bienzle, Dorothee

    2009-06-01

    The purposes of this study were to determine the seroprevalence of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) infection among cats in Canada and to identify risk factors for seropositivity. Signalment, lifestyle factors, and test results for FeLV antigen and FIV antibody were analyzed for 11 144 cats from the 10 Canadian provinces. Seroprevalence for FIV antibody was 4.3% and seroprevalence for FeLV antigen was 3.4%. Fifty-eight cats (0.5%) were seropositive for both viruses. Seroprevalence varied geographically. Factors such as age, gender, health status, and lifestyle were significantly associated with risk of FeLV and FIV seropositivity. The results suggest that cats in Canada are at risk of retrovirus infection and support current recommendations that the retrovirus status of all cats should be known.

  11. Understanding Oxidative Stress in Aedes during Chikungunya and Dengue Virus Infections Using Integromics Analysis

    Directory of Open Access Journals (Sweden)

    Jatin Shrinet

    2018-06-01

    Full Text Available Arboviral infection causes dysregulation of cascade of events involving numerous biomolecules affecting fitness of mosquito to combat virus. In response of the viral infection mosquito’s defense mechanism get initiated. Oxidative stress is among the first host responses triggered by the vector. Significant number of information is available showing changes in the transcripts and/or proteins upon Chikungunya virus and Dengue virus mono-infections and as co-infections. In the present study, we collected different -omics data available in the public database along with the data generated in our laboratory related to mono-infections or co-infections of these viruses. We analyzed the data and classified them into their respective pathways to study the role of oxidative stress in combating arboviral infection in Aedes mosquito. The analysis revealed that the oxidative stress related pathways functions in harmonized manner.

  12. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – China ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  13. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys.

    Directory of Open Access Journals (Sweden)

    Wendelien B Oswald

    2007-01-01

    Full Text Available Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.

  14. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    Science.gov (United States)

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  15. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    Science.gov (United States)

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-06-01

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea

    Science.gov (United States)

    Pietilä, Maija K.; Laurinmäki, Pasi; Russell, Daniel A.; Ko, Ching-Chung; Jacobs-Sera, Deborah; Butcher, Sarah J.

    2013-01-01

    Extremophilic archaea, both hyperthermophiles and halophiles, dominate in habitats where rather harsh conditions are encountered. Like all other organisms, archaeal cells are susceptible to viral infections, and to date, about 100 archaeal viruses have been described. Among them, there are extraordinary virion morphologies as well as the common head-tailed viruses. Although approximately half of the isolated archaeal viruses belong to the latter group, no three-dimensional virion structures of these head-tailed viruses are available. Thus, rigorous comparisons with bacteriophages are not yet warranted. In the present study, we determined the genome sequences of two of such viruses of halophiles and solved their capsid structures by cryo-electron microscopy and three-dimensional image reconstruction. We show that these viruses are inactivated, yet remain intact, at low salinity and that their infectivity is regained when high salinity is restored. This enabled us to determine their three-dimensional capsid structures at low salinity to a ∼10-Å resolution. The genetic and structural data showed that both viruses belong to the same T-number class, but one of them has enlarged its capsid to accommodate a larger genome than typically associated with a T=7 capsid by inserting an additional protein into the capsid lattice. PMID:23283946

  17. Schmallenberg virus experimental infection of sheep

    DEFF Research Database (Denmark)

    Wernike, Kerstin; Hoffmann, Bernd; Bréard, Emmanuel

    2013-01-01

    production and diarrhoea for a few days. However, the knowledge about clinical signs and pathogenesis in adult sheep is limited.In the present study, adult sheep of European domestic breeds were inoculated with SBV either as cell culture grown virus or as virus with no history of passage in cell cultures...... 3–5 days by real-time RT-PCR. In total, 13 out of 30 inoculated sheep became RNAemic, with the highest viral load in animals inoculated with virus from low cell culture passaged or the animal passaged material. Contact animals remained negative throughout the study. One RNAemic sheep showed...... results in subclinical infection, transient RNAemia and a specific antibody response. Maintenance of viral RNA in the lymphoreticular system is observed for an extended period....

  18. Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling

    Science.gov (United States)

    Wang, Wei; Ma, Wanbiao

    2018-06-01

    The nuclear protein high-mobility group box 1 (HMGB1) can have an active role in deoxyribonucleic acid (DNA) organization and the regulation of transcription. Based on the new findings from a recent experimental study, the blocking effect on HCV infection by HMGB1 released from virus-infected cells is investigated using a diffusive model for viral infection dynamics. In the model, the diffusion of the virus depends not only on its concentration gradient, but also on the concentration of HMGB1. The basic reproduction number, threshold dynamics, stability properties of the steady states, travelling wave solutions, and spreading speed for the proposed model are studied. We show that the HMGB1-induced blocking of HCV infection slows the spread of virus compared with random diffusion only. Numerically, it is shown that a high concentration of HMGB1 can block the spread of virus and this confirms, not only qualitatively but also quantitatively, the experimental result.

  19. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  20. Serum High-Mobility-Group Box 1 as a Biomarker and a Therapeutic Target during Respiratory Virus Infections.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Boukhvalova, Marina S; Vogel, Stefanie N; Blanco, Jorge C G

    2018-03-13

    Host-derived "danger-associated molecular patterns" (DAMPs) contribute to innate immune responses and serve as markers of disease progression and severity for inflammatory and infectious diseases. There is accumulating evidence that generation of DAMPs such as oxidized phospholipids and high-mobility-group box 1 (HMGB1) during influenza virus infection leads to acute lung injury (ALI). Treatment of influenza virus-infected mice and cotton rats with the Toll-like receptor 4 (TLR4) antagonist Eritoran blocked DAMP accumulation and ameliorated influenza virus-induced ALI. However, changes in systemic HMGB1 kinetics during the course of influenza virus infection in animal models and humans have yet to establish an association of HMGB1 release with influenza virus infection. To this end, we used the cotton rat model that is permissive to nonadapted strains of influenza A and B viruses, respiratory syncytial virus (RSV), and human rhinoviruses (HRVs). Serum HMGB1 levels were measured by an enzyme-linked immunosorbent assay (ELISA) prior to infection until day 14 or 18 post-infection. Infection with either influenza A or B virus resulted in a robust increase in serum HMGB1 levels that decreased by days 14 to 18. Inoculation with the live attenuated vaccine FluMist resulted in HMGB1 levels that were significantly lower than those with infection with live influenza viruses. RSV and HRVs showed profiles of serum HMGB1 induction that were consistent with their replication and degree of lung pathology in cotton rats. We further showed that therapeutic treatment with Eritoran of cotton rats infected with influenza B virus significantly blunted serum HMGB1 levels and improved lung pathology, without inhibiting virus replication. These findings support the use of drugs that block HMGB1 to combat influenza virus-induced ALI. IMPORTANCE Influenza virus is a common infectious agent causing serious seasonal epidemics, and there is urgent need to develop an alternative treatment

  1. Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis.

    Science.gov (United States)

    Terry, Anne; Kilbey, Anna; Naseer, Asif; Levy, Laura S; Ahmad, Shamim; Watts, Ciorsdaidh; Mackay, Nancy; Cameron, Ewan; Wilson, Sam; Neil, James C

    2017-03-01

    The human genome displays a rich fossil record of past gammaretrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro Feline leukemia viruses (FeLVs) rank high on this list, but neither domestic nor workplace exposure has been associated with detectable serological responses. Nonspecific inactivation of gammaretroviruses by serum factors appears insufficient to explain these observations. To investigate further, we explored the susceptibilities of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines but was also a feature of nontransformed keratinocytes and lung fibroblasts. Cells of hematopoietic origin were generally less permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in nonpermissive cells. FeLV-B was subject to G→A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in nonpermissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV. IMPORTANCE Domestic exposure to gammaretroviruses such as feline leukemia viruses (FeLVs) occurs worldwide, but the basis of human resistance to infection remains incompletely understood. The potential threat is evident from the human genome sequence, which reveals many past epidemics of gammaretrovirus infection, and from recent cross-species jumps of gammaretroviruses from rodents to primates and marsupials. This study examined resistance to infection at the cellular level with the most

  2. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    International Nuclear Information System (INIS)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.; Notkins, A.L.; Straus, S.E.

    1987-01-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation

  3. Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Katrin Hartmann

    2015-12-01

    Full Text Available Feline immunodeficiency virus (FIV is one of the most common infectious agents affecting cats worldwide .FIV and human immunodeficiency virus (HIV share many properties: both are lifelong persistent lentiviruses that are similar genetically and morphologically and both viruses propagate in T-lymphocytes, macrophages, and neural cells. Experimentally infected cats have measurable immune suppression, which sometimes progresses to an acquired immunodeficiency syndrome. A transient initial state of infection is followed by a long latent stage with low virus replication and absence of clinical signs. In the terminal stage, both viruses can cause severe immunosuppression. Thus, FIV infection in cats has become an important natural model for studying HIV infection in humans, especially for evaluation of antiviral compounds. Of particular importance for chemotherapeutic studies is the close similarity between the reverse transcriptase (RT of FIV and HIV, which results in high in vitro susceptibility of FIV to many RT-targeted antiviral compounds used in the treatment of HIV-infected patients. Thus, the aim of this article is to provide an up-to-date review of studies on antiviral treatment of FIV, focusing on commercially available compounds for human or animal use.

  4. Respiratory syncytial virus infection facilitates acute colonization of Pseudomonas aeruginosa in mice

    DEFF Research Database (Denmark)

    de Vrankrijker, Angélica M M; Wolfs, Tom F W; Ciofu, Oana

    2009-01-01

    virus infections in facilitating colonization and infection with P. aeruginosa. A study was undertaken to determine whether respiratory syncytial virus (RSV) infection could facilitate the initiation of an acute infection with P. aeruginosa in vivo. Balb/c mice were infected intranasally with P......Pseudomonas aeruginosa causes opportunistic infections in immunocompromised individuals and patients ventilated mechanically and is the major pathogen in patients with cystic fibrosis, in which it causes chronic infections. Epidemiological, in vitro and animal data suggest a role for respiratory....... These results suggest that RSV can facilitate the initiation of acute P. aeruginosa infection without the RSV infection being clinically apparent. This could have implications for treatment strategies to prevent opportunistic P. aeruginosa lung infection....

  5. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2006-01-01

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  6. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana

    Directory of Open Access Journals (Sweden)

    Kwofie Theophilus B

    2012-04-01

    Full Text Available Abstract Background Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Method Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Results Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2% were positive for one or more viruses. Respiratory Syncytial Virus (RSV was detected in 18(14.1%, 95%CI: 8.5% to 21.3% patients followed by Adenoviruses (AdV in 13(10.2%, 95%CI: 5.5% to 16.7%, Parainfluenza (PIV type: 1, 2, 3 in 4(3.1%, 95%CI: 0.9% to 7.8% and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3. Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36 of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. Conclusion The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  7. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection.

    Science.gov (United States)

    Du, Taofeng; Shi, Yunpeng; Xiao, Shuqi; Li, Na; Zhao, Qin; Zhang, Angke; Nan, Yuchen; Mu, Yang; Sun, Yani; Wu, Chunyan; Zhang, Hongtao; Zhou, En-Min

    2017-10-10

    Porcine reproductive and respiratory syndrome virus (PRRSV) could lead to pandemic diseases and huge financial losses to the swine industry worldwide. Curcumin, a natural compound, has been reported to serve as an entry inhibitor of hepatitis C virus, chikungunya virus and vesicular stomatitis virus. In this study, we investigated the potential effect of curcumin on early stages of PRRSV infection. Curcumin inhibited infection of Marc-145 cells and porcine alveolar macrophages (PAMs) by four different genotype 2 PRRSV strains, but had no effect on the levels of major PRRSV receptor proteins on Marc-145 cells and PAMs or on PRRSV binding to Marc-145 cells. However, curcumin did block two steps of the PRRSV infection process: virus internalization and virus-mediated cell fusion. Our results suggested that an inhibition of genotype 2 PRRSV infection by curcumin is virus strain-independent, and mainly inhibited by virus internalization and cell fusion mediated by virus. Collectively, these results demonstrate that curcumin holds promise as a new anti-PRRSV drug.

  8. A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

    Directory of Open Access Journals (Sweden)

    Erik A. Karlsson

    2017-09-01

    Full Text Available Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.

  9. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Science.gov (United States)

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  10. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Science.gov (United States)

    Ramirez-Carvajal, Lisbeth; Pauszek, Steven J; Ahmed, Zaheer; Farooq, Umer; Naeem, Khalid; Shabman, Reed S; Stockwell, Timothy B; Rodriguez, Luis L

    2018-01-01

    Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  11. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Directory of Open Access Journals (Sweden)

    Lisbeth Ramirez-Carvajal

    Full Text Available Foot-and-mouth disease (FMD is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  12. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  13. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  14. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    Science.gov (United States)

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including

  15. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection.

    Science.gov (United States)

    Ertl, Reinhard; Klein, Dieter

    2014-03-19

    Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.

  16. Efficiency of clinorotation usage on virus-infected seed potatoes for its improvement

    Science.gov (United States)

    Mishchenko, Ivan; Nechitailo, Galina S.; Dunich, Alina; Mishchenko, Anatoliy; Boiko, Anatolii

    Potato crop as a food staple takes a fourth place in the world by impotence after wheat, maize, and rice. Under present-day conditions, the role of this crop will invariably grow up, as fighting hunger is a number one problem in the 21st century. Planting material quality is very important for profitable potato production, and this quality is determined by the absence of disease-including organisms in tubers. Viral diseases cause much damage to crop production. Planting material tubers infected with viruses are an important source of the primary inoculum and infection is transferred in a mechanical way. Without effective methods of viral disease control, the losses of yield are considerable, as well as potato quality determination, so the obtaining of virus free planting material is a primary task for the planting material producers. During the last decades, the progress in potato viral disease control is connected with tissue culture research activities, as a result of which it became possible to obtain virus -free tabers from the varieties formerly completely infected. The use of meristem-tip culture for the obtaining of virus free plants has been based on the assumption that viruses were not able to penetrate the meristem tissues of the buds. Later on, it was found out that viruses penetrated into the meristems but the remediation of plants occurs in the process of tissue culture in vitro. Up to date hypotheses of remediation from the viruses occurring in the process of in vitro culture show that an interrelation in the system “virus - host plant” is affected by many factors, but some intensive redox processes take place in the meristems, creating an environment in which viral replication becomes suppressed. An important part in phytoviral pathogenesis is played by abiotic environmental factors. Gravity is a necessary condition for the growth and spatial orientation of plants, whereas the disturbances of g-vector change the structure of plant organism, its

  17. Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus

    Science.gov (United States)

    Mota, Bruno E. F.; Gallardo-Romero, Nadia; Trindade, Giliane; Keckler, M. Shannon; Karem, Kevin; Carroll, Darin; Campos, Marco A.; Vieira, Leda Q.; da Fonseca, Flávio G.; Ferreira, Paulo C. P.; Bonjardim, Cláudio A.; Damon, Inger K.; Kroon, Erna G.

    2011-01-01

    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1 −/−) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1 −/− with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1 −/−, and passive transfer of WT T cells to Rag1 −/− animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify

  18. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Borst, M.; Niphuis, H.; Balzarini, J.; Neu, H.; Schellekens, H.; Clercq, H. de; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice.

  19. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  20. Loss of Anti-Viral Immunity by Infection with a Virus Encoding a Cross-Reactive Pathogenic Epitope

    OpenAIRE

    Chen, Alex T.; Cornberg, Markus; Gras, Stephanie; Guillonneau, Carole; Rossjohn, Jamie; Trees, Andrew; Emonet, Sebastien; de la Torre, Juan C.; Welsh, Raymond M.; Selin, Liisa K.

    2012-01-01

    Author Summary The purpose of vaccination against viruses is to induce strong neutralizing antibody responses that inactivate viruses on contact and strong T cell responses that attack and kill virus-infected cells. Some viruses, however, like HIV and hepatitis C virus, are only weakly controlled by neutralizing antibody, so T cell immunity is very important for control of these infections. T cells recognize small virus-encoded peptides, called epitopes, presented on the surface of infected c...

  1. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  2. Protective Effect of Dietary Xylitol on Influenza A Virus Infection

    Science.gov (United States)

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases. PMID:24392148

  3. Protective effect of dietary xylitol on influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Sun Young Yin

    Full Text Available Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1. We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases.

  4. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  5. Severity of viral coinfection in hospitalized infants with respiratory syncytial virus infection.

    Science.gov (United States)

    De Paulis, Milena; Gilio, Alfredo Elias; Ferraro, Alexandre Archanjo; Ferronato, Angela Esposito; do Sacramento, Patrícia Rossi; Botosso, Viviane Fongaro; Oliveira, Danielle Bruna Leal de; Marinheiro, Juliana Cristina; Hársi, Charlotte Marianna; Durigon, Edison Luiz; Vieira, Sandra Elisabete

    2011-01-01

    To compare the severity of single respiratory syncytial virus (RSV) infections with that of coinfections. A historical cohort was studied, including hospitalized infants with acute RSV infection. Nasopharyngeal aspirate samples were collected from all patients to detect eight respiratory viruses using molecular biology techniques. The following outcomes were analyzed: duration of hospitalization and of oxygen therapy, intensive care unit admission and need of mechanical ventilation. Results were adjusted for confounding factors (prematurity, age and breastfeeding). A hundred and seventy six infants with bronchiolitis and/or pneumonia were included in the study. Their median age was 4.5 months. A hundred and twenty one had single RSV infection and 55 had coinfections (24 RSV + adenovirus, 16 RSV + human metapneumovirus and 15 other less frequent viral associations). The four severity outcomes under study were similar in the group with single RSV infection and in the coinfection groups, independently of what virus was associated with RSV. Virus coinfections do not seem to affect the prognosis of hospitalized infants with acute RSV infection.

  6. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2016-02-15

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.

  7. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    OpenAIRE

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31...

  8. Experimental infection of Artibeus intermedius with a vampire bat rabies virus.

    Science.gov (United States)

    Obregón-Morales, Cirani; Aguilar-Setién, Álvaro; Perea Martínez, Leonardo; Galvez-Romero, Guillermo; Martínez-Martínez, Flor Olivia; Aréchiga-Ceballos, Nidia

    2017-06-01

    Experimental infection of Artibeus intermedius, the great fruit-eating bat, was performed with vampire bat rabies isolates. Bats (n=35) were captured in the wild and quarantined prior to experimental infection. No rabies antibodies were detected by rapid fluorescent focus inhibition test (RFFIT) prior to infection. Three doses of rabies virus (RV) and three different routes of infection were used. One out of 35 bats died without showing any clinical signs at day 14 and was positive for rabies. None of the 34 other bats showed clinical signs for rabies, but high antibody titers were detected post-inoculation, suggesting either innate immune response to the vampire bat rabies virus or possible pre-exposure to RV and inoculation leading to a booster effect. Rabies virus was detected by hemi-nested RT-PCR (hnRT-PCR) in the brain (n=3), stomach (n=1) of bats that were negative by immunofluorescence and that survived rabies infection. The bat that died on day 14 was positive by hnRT-PCR on the brain, heart and liver. These results suggest that either previous non-lethal exposure to RV or natural low susceptibility to vampire bat viruses somehow protected Artibeus intermedius from clinical rabies infection leading to a marginal lethality effect on this bats species population in the wild. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    James R Bowen

    2017-02-01

    Full Text Available Zika virus (ZIKV is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target.

  10. The effect of antiretroviral intensification with dolutegravir on residual virus replication in HIV-infected individuals: a randomised, placebo-controlled, double-blind trial.

    Science.gov (United States)

    Rasmussen, Thomas A; McMahon, James H; Chang, J Judy; Audsley, Jennifer; Rhodes, Ajantha; Tennakoon, Surekha; Dantanarayana, Ashanti; Spelman, Tim; Schmidt, Tina; Kent, Stephen J; Morcilla, Vincent; Palmer, Sarah; Elliott, Julian H; Lewin, Sharon R

    2018-04-06

    Whether ongoing virus replication occurs in HIV-infected individuals on antiretroviral therapy (ART) is unclear; therefore, whether residual virus replication is a barrier to achieving a cure for HIV is also unknown. We aimed to establish whether ART intensification with dolutegravir would reveal or affect residual virus replication in HIV-infected individuals on suppressive treatment. In this randomised, placebo-controlled, double-blind trial, we enrolled HIV-infected adults (aged 18 years and older) receiving combination ART (at least three agents) for at least 3 years from the Alfred Hospital and Melbourne Sexual Health Centre, Melbourne, VIC, Australia. Eligible participants had fewer than 50 copies per mL HIV-1 plasma RNA for more than 3 years and fewer than 20 copies per mL at screening and two CD4 counts higher than 350 cells per μL in the previous 24 months including screening. Participants were randomly assigned (1:1) to receive 50 mg oral dolutegravir or placebo once a day for 56 days in addition to background ART. Follow-up was done at days 1, 3, 7, 14, 28, 56, and 84. The primary outcome was the change from baseline in frequency of 2-long terminal repeat (2-LTR) circles in peripheral blood CD4 cells at day 7. This trial is registered with ClinicalTrials.gov, number NCT02500446. Between Sept 21, 2015, and Sept 19, 2016, 46 individuals were screened for inclusion. 40 were eligible for inclusion and were randomly assigned to the dolutegravir (n=21) or placebo group (n=19). All enrolled participants completed the study procedures and no individuals were lost to follow up. All participants were on suppressive ART with 12% receiving protease inhibitors and the others non-nucleoside reverse transcriptase inhibitors. Median 2-LTR circles fold-change from baseline to day 7 was -0·17 (IQR -0·90 to 0·90) in the dolutegravir group and -0·26 (-1·00 to 1·17) in the placebo group (p=0·17). The addition of dolutegravir to pre-existing ART regimens was safe and

  11. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    Science.gov (United States)

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  12. Neonatal respiratory syncytial virus infection: role of transplacentally and breast milk-acquired antibodies.

    OpenAIRE

    Wong, D T; Ogra, P L

    1986-01-01

    The effect of transplacentally and breast milk-acquired antibodies on respiratory syncytial virus infection was studied in neonatal and 2-month-old cotton rats. Adult female rats infected intranasally with live virus regularly produced virus-specific antibodies in the serum, colostrum, and breast milk. By using foster feeding techniques, we showed that both transplacentally and breast milk-acquired antibodies were effective in reducing the replication of respiratory syncytial virus in the lun...

  13. Antiviral immunity following smallpox virus infection: a case-control study.

    Science.gov (United States)

    Hammarlund, Erika; Lewis, Matthew W; Hanifin, Jon M; Mori, Motomi; Koudelka, Caroline W; Slifka, Mark K

    2010-12-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.

  14. Antiviral Immunity following Smallpox Virus Infection: a Case-Control Study▿

    Science.gov (United States)

    Hammarlund, Erika; Lewis, Matthew W.; Hanifin, Jon M.; Mori, Motomi; Koudelka, Caroline W.; Slifka, Mark K.

    2010-01-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4+ and CD8+ T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases. PMID:20926574

  15. Zika Virus Infection Among U.S. Pregnant Travelers - August 2015-February 2016.

    Science.gov (United States)

    Meaney-Delman, Dana; Hills, Susan L; Williams, Charnetta; Galang, Romeo R; Iyengar, Preetha; Hennenfent, Andrew K; Rabe, Ingrid B; Panella, Amanda; Oduyebo, Titilope; Honein, Margaret A; Zaki, Sherif; Lindsey, Nicole; Lehman, Jennifer A; Kwit, Natalie; Bertolli, Jeanne; Ellington, Sascha; Igbinosa, Irogue; Minta, Anna A; Petersen, Emily E; Mead, Paul; Rasmussen, Sonja A; Jamieson, Denise J

    2016-03-04

    After reports of microcephaly and other adverse pregnancy outcomes in infants of mothers infected with Zika virus during pregnancy, CDC issued a travel alert on January 15, 2016, advising pregnant women to consider postponing travel to areas with active transmission of Zika virus. On January 19, CDC released interim guidelines for U.S. health care providers caring for pregnant women with travel to an affected area, and an update was released on February 5. As of February 17, CDC had received reports of nine pregnant travelers with laboratory-confirmed Zika virus disease; 10 additional reports of Zika virus disease among pregnant women are currently under investigation. No Zika virus-related hospitalizations or deaths among pregnant women were reported. Pregnancy outcomes among the nine confirmed cases included two early pregnancy losses, two elective terminations, and three live births (two apparently healthy infants and one infant with severe microcephaly); two pregnancies (approximately 18 weeks' and 34 weeks' gestation) are continuing without known complications. Confirmed cases of Zika virus infection were reported among women who had traveled to one or more of the following nine areas with ongoing local transmission of Zika virus: American Samoa, Brazil, El Salvador, Guatemala, Haiti, Honduras, Mexico, Puerto Rico, and Samoa. This report summarizes findings from the nine women with confirmed Zika virus infection during pregnancy, including case reports for four women with various clinical outcomes. U.S. health care providers caring for pregnant women with possible Zika virus exposure during pregnancy should follow CDC guidelines for patient evaluation and management. Zika virus disease is a nationally notifiable condition. CDC has developed a voluntary registry to collect information about U.S. pregnant women with confirmed Zika virus infection and their infants. Information about the registry is in preparation and will be available on the CDC website.

  16. Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases

    Science.gov (United States)

    Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi

    2013-01-01

    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886

  17. Emerging Zika virus infection:What should we know?

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is a new emerging viral disease that becomes the present public health threat. At present, this infection can be seen in several countries. The clinical presentation of this infection is a dengue-like illness. Nevertheless, the new information shows that the disease can be sexually transmitted and transplacentally transmitted. In addition, the recent evidence from the recent epidemic in South America shows that the infection in pregnancy can cause neonatal neurological defect. In this short review, the author summarizes and presents interesting data on clinical features of this new emerging infection.

  18. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  19. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Rottier, P.

    1980-01-01

    In contrast to the situation concerning bacterial and, to a lesser extent, animal RNA viruses, little is known about the biochemical processes occurring in plant cells due to plant RNA virus infection. Such processes are difficult to study using intact plants or leaves. Great effort has

  20. Immune barriers of Ebola virus infection.

    Science.gov (United States)

    McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César

    2018-02-01

    Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Molecular Responses to the Zika Virus in Mosquitoes

    Directory of Open Access Journals (Sweden)

    Catalina Alfonso-Parra

    2018-05-01

    Full Text Available The Zika virus (ZIKV, originally discovered in 1947, did not become a major concern until the virus swept across the Pacific and into the Americas in the last decade, bringing with it news of neurological complications and birth defects in ZIKV affected areas. This prompted researchers to dissect the molecular interactions between ZIKV and the mosquito vector in an attempt to better understand not only the changes that occur upon infection, but to also identify molecules that may potentially enhance or suppress a mosquito’s ability to become infected and/or transmit the virus. Here, we review what is currently known regarding ZIKV-mosquito molecular interactions, focusing on ZIKV infection of Aedes aegypti and Aedes albopictus, the primary species implicated in transmitting ZIKV during the recent outbreaks.

  2. Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection.

    Science.gov (United States)

    Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Ichiko, Yurie; Sakai-Tagawa, Yuko; Noda, Takeshi; Hasegawa, Hideki; Kawaoka, Yoshihiro

    2018-02-15

    Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies. IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses. Copyright © 2018 American Society for Microbiology.

  3. Multiple Epstein-Barr virus infections in healthy individuals

    Science.gov (United States)

    Walling, Dennis M.; Brown, Abigail L.; Etienne, Wiguins; Keitel, Wendy A.; Ling, Paul D.; Butel, J. S. (Principal Investigator)

    2003-01-01

    We employed a newly developed genotyping technique with direct representational detection of LMP-1 gene sequences to study the molecular epidemiology of Epstein-Barr virus (EBV) infection in healthy individuals. Infections with up to five different EBV genotypes were found in two of nine individuals studied. These results support the hypothesis that multiple EBV infections of healthy individuals are common. The implications for the development of an EBV vaccine are discussed.

  4. The role of infections and coinfections with newly identified and emerging respiratory viruses in children

    Directory of Open Access Journals (Sweden)

    Debiaggi Maurizia

    2012-10-01

    Full Text Available Abstract Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV, influenza A and B viruses, parainfluenza viruses (PIVs, adenovirus, rhinovirus (HRV, have repeatedly been detected in acute lower respiratory tract infections (LRTI in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV, coronaviruses NL63 (HcoV-NL63 and HKU1 (HcoV-HKU1, human Bocavirus (HBoV, new enterovirus (HEV, parechovirus (HpeV and rhinovirus (HRV strains, polyomaviruses WU (WUPyV and KI (KIPyV and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

  5. Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma.

    Science.gov (United States)

    Jacobson, Blake A; Sadiq, Ahad A; Tang, Shaogeng; Jay-Dixon, Joe; Patel, Manish R; Drees, Jeremy; Sorenson, Brent S; Russell, Stephen J; Kratzke, Robert A

    2017-09-08

    Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.

  6. HoBi-like virus challenge of pregnant cows that had previously given birth to calves persistently infected with bovine viral diarrhea virus

    Science.gov (United States)

    The ability of bovine viral diarrhea viruses (BVDV) to establish persistent infection (PI) following fetal infection is central to keeping these viruses circulating. Similarly, an emerging species of pestivirus, HoBi-like viruses, is also able to establish PIs. Dams that are not PI, but carrying PI ...

  7. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée; Choumet, Valérie

    2017-08-04

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti . The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.

  8. Suppressive Effects of the Site 1 Protease (S1P Inhibitor, PF-429242, on Dengue Virus Propagation

    Directory of Open Access Journals (Sweden)

    Leo Uchida

    2016-02-01

    Full Text Available Dengue virus (DENV infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs, which are activated by serine protease, site 1 protease (S1P. Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.

  9. [Reactivation of herpes zoster infection by varicella-zoster virus].

    Science.gov (United States)

    Cvjetković, D; Jovanović, J; Hrnjaković-Cvjetković, I; Brkić, S; Bogdanović, M

    1999-01-01

    There has been considerable interest in varicella-zoster virus in the middle of the twentieth century. Virus isolation in 1958 had made it possible to find out the complete DNA sequence of the varicella-zoster virus. Molecular identify of the causative agents of varicella and shingles had been proved. ETIOPATHOGENESIS AND HISTOPATHOLOGY: Varicella-zoster virus is a member of the Herpesviridae family. After primary infection which results in varicella, the virus becomes latent in the cerebral or posterior root ganglia. Some of these individuals develop shingles after several decades because of virus reactivation. It is caused by decline of cellular immune response. Circumstances such as old age, hard work, using of steroids or malignancies contribute to the appearance of shingles. Histopathological findings include degenerative changes of epithelial cells such as ballooning, multinucleated giant cells and eosinophilic intranuclear inclusions. Shingles occur sporadically, mainly among the elderly who have had varicella. There is no seasonal appearance of shingles. Individuals suffering from shingles may be sometimes contagious for susceptible children because of enormous amount of virus particles in vesicle fluid. Clinically, shingles is characterized at first by pain or discomfort in involved dermatome, usually without constitutional symptoms. Local edema and erythema appear before developing of rash. Maculopapular and vesicular rash evolves into crusts. The most commonly involved ganglia are: lumbar, thoracic, sacral posterior root ganglia, then geniculate ganglion of the VIIth cranial nerve and the trigeminal ganglion. The most common complication, postherpetic neuralgia, may last for as long as two or three weeks, sometimes even one year or more. Other complications that may be seen in shingles, but more rarely, are ocular (keratitis, iridocyclitis, secondary glaucoma, loss of sight), neurological (various motor neuropathies, encephalitis, Guillain-Barre syndrome

  10. Different virus-derived siRNAs profiles between leaves and fruits in Cucumber green mottle mosaic virus-infected Lagenaria siceraria

    Directory of Open Access Journals (Sweden)

    Junmin Li

    2016-11-01

    Full Text Available RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs playing roles in host antiviral defence are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of virus-derived small interfering RNAs (vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2,058 or 22-nt (3,996 were identified but only six (21-nt and one (22-nt positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5’-terminal and 3’-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.

  11. Comparison of Detection of Bovine Virus Diarrhea Virus Antigen in Various Types of Tissue and Fluid Samples Collected from Persistently Infected Cattle

    Science.gov (United States)

    Bovine viral diarrhea viruses are economically important pathogens of cattle. Most new infections are acquired from animals persistently infected with the virus. Surveillance programs rely on skin biopsies for detection of persistently infected cattle. The purpose of this study was to compare ant...

  12. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A

    1995-01-01

    This article examines the role of VLA-4 in directing lymphocytes to sites of viral infection using the murine lymphocytic choriomeningitis virus infection (LCMV) as the model system. This virus by itself induces little or no inflammation, but in most mouse/virus strain combinations a potent T cell...... response is induced, which is associated with marked CD8+ cell-mediated inflammation. Two expressions of LCMV-induced inflammation were studied: meningitis induced by intracerebral infection and adoptive transfer of virus-specific delayed-type hypersensitivity. Our previous studies have shown that LCMV...

  13. Inhibition of human T cell leukemia virus type 2 replication by the suppressive action of class II transactivator and nuclear factor Y.

    Science.gov (United States)

    Tosi, Giovanna; Pilotti, Elisabetta; Mortara, Lorenzo; De Lerma Barbaro, Andrea; Casoli, Claudio; Accolla, Roberto S

    2006-08-22

    The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells.

  14. GB Virus C (GBV-C Infection in Hepatitis C Virus (HCV Seropositive Women with or at Risk for HIV Infection.

    Directory of Open Access Journals (Sweden)

    Jason T Blackard

    Full Text Available GB virus C (GBV-C may have a beneficial impact on HIV disease progression; however, the epidemiologic characteristics of this virus are not well characterized. Behavioral factors and gender may lead to differential rates of GBV-C infection; yet, studies have rarely addressed GBV-C infections in women or racial/ethnic minorities. Therefore, we evaluated GBV-C RNA prevalence and genotype distribution in a large prospective study of high-risk women in the US.438 hepatitis C virus (HCV seropositive women, including 306 HIV-infected and 132 HIV-uninfected women, from the HIV Epidemiologic Research Study were evaluated for GBV-C RNA. 347 (79.2% women were GBV-C RNA negative, while 91 (20.8% were GBV-C RNA positive. GBV-C positive women were younger than GBV-C negative women. Among 306 HIV-infected women, 70 (22.9% women were HIV/GBV-C co-infected. Among HIV-infected women, the only significant difference between GBV-negative and GBV-positive women was age (mean 38.4 vs. 35.1 years; p<0.001. Median baseline CD4 cell counts and plasma HIV RNA levels were similar. The GBV-C genotypes were 1 (n = 31; 44.3%, 2 (n = 36; 51.4%, and 3 (n = 3; 4.3%. The distribution of GBV-C genotypes in co-infected women differed significantly by race/ethnicity. However, median CD4 cell counts and log10 HIV RNA levels did not differ by GBV-C genotype. GBV-C incidence was 2.7% over a median follow-up of 2.9 (IQR: 1.5, 4.9 years, while GBV-C clearance was 35.7% over a median follow-up of 2.44 (1.4, 3.5 years. 4 women switched genotypes.Age, injection drug use, a history of sex for money or drugs, and number of recent male sex partners were associated with GBV-C infection among all women in this analysis. However, CD4 cell count and HIV viral load of HIV/HCV/GBV-C co-infected women were not different although race was associated with GBV-C genotype.

  15. Past Life and Future Effects—How Heterologous Infections Alter Immunity to Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Aisha Souquette

    2018-05-01

    Full Text Available Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.

  16. 75 FR 55797 - Draft Guidance for Industry on Chronic Hepatitis C Virus Infection: Developing Direct-Acting...

    Science.gov (United States)

    2010-09-14

    ...] Draft Guidance for Industry on Chronic Hepatitis C Virus Infection: Developing Direct-Acting Antiviral... entitled ``Chronic Hepatitis C Virus Infection: Developing Direct-Acting Antiviral Agents for Treatment... announcing the availability of a draft guidance for industry entitled ``Chronic Hepatitis C Virus Infection...

  17. Hepatitis A virus infection: Epidemiology and genetic diversity

    Directory of Open Access Journals (Sweden)

    Báez Triana, Paula Andrea

    2015-04-01

    Full Text Available Hepatitis A virus infection is a global public health problem. The virus has a wide range of distribution and it is the main cause of acute hepatitis transmitted by the enteric route in Latin America. The viral particle is stable under environmental conditions and conserves its infectivity for several weeks, enabling its transmission by contaminated water and food. Worldwide, different epidemiological patterns have been identified, which may change over time by modification of social and economic variables in the population such as vaccination and the improvement of hygiene and primary health conditions. This leaves new populations susceptible to infection. In Latin America the circulation of genotype I and subgenotypes A and B has been described, but more research is needed to provide the knowledge needed to manage the prevention and control plans for the worldwide reduction of the prevalence of infection. For this paper, a literature review was performed on the SciELO, PubMed and ScienceDirect databases under the search terms "Hepatitis A", "Epidemiology," "Seroprevalence" and "Infection." From the results obtained, only papers published in English and Spanish to describe epidemiological and molecular studies of interest in Latin America were included.

  18. Hepatitis B and C virus infections and liver function in AIDS patients ...

    African Journals Online (AJOL)

    Background: Impaired liver function tests and co-infection with hepatitis viruses in AIDS patients are common in western countries. Objective: To assess liver function and prevalence of co-infection with hepatitis B and hepatitis C viruses in AIDS patients at Chris Hani Baragwanath Hospital. Design: A prospective study.

  19. Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2016-01-01

    Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay. PMID:28018942

  20. Experimental Andes virus infection in deer mice: characteristics of infection and clearance in a heterologous rodent host.

    Directory of Open Access Journals (Sweden)

    Jessica R Spengler

    Full Text Available New World hantaviruses can cause hantavirus cardiopulmonary syndrome with high mortality in humans. Distinct virus species are hosted by specific rodent reservoirs, which also serve as the vectors. Although regional spillover has been documented, it is unknown whether rodent reservoirs are competent for infection by hantaviruses that are geographically separated, and known to have related, but distinct rodent reservoir hosts. We show that Andes virus (ANDV of South America, carried by the long tailed pygmy rice rat (Oligoryzomys longicaudatus, infects and replicates in vitro and in vivo in the deer mouse (Peromyscus maniculatus, the reservoir host of Sin Nombre virus (SNV, found in North America. In experimentally infected deer mice, viral RNA was detected in the blood, lung, heart and spleen, but virus was cleared by 56 days post inoculation (dpi. All of the inoculated deer mice mounted a humoral immune response by 14 dpi, and produced measurable amounts of neutralizing antibodies by 21 dpi. An up-regulation of Ccl3, Ccl4, Ccl5, and Tgfb, a strong CD4⁺ T-cell response, and down-regulation of Il17, Il21 and Il23 occurred during infection. Infection was transient with an absence of clinical signs or histopathological changes. This is the first evidence that ANDV asymptomatically infects, and is immunogenic in deer mice, a non-natural host species of ANDV. Comparing the immune response in this model to that of the immune response in the natural hosts upon infection with their co-adapted hantaviruses may help clarify the mechanisms governing persistent infection in the natural hosts of hantaviruses.