WorldWideScience

Sample records for suppresses neuron-specific gene

  1. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jambaldorj, Jamiyansuren [Department of Pharmacology, Institute of Health Biosciences, Graduate School, The University of Tokushima, Tokushima 770-8503 (Japan); Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Makino, Satoshi, E-mail: smakino@genetix-h.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192 (Japan); Munkhbat, Batmunkh [Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Tamiya, Gen [Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  2. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hidehito Kuroyanagi

    Full Text Available An enormous number of alternative pre-mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a-4c and 7a-7b, of the Caenorhabditis elegans uncoordinated (unc-32 gene, encoding the a subunit of V0 complex of vacuolar-type H(+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA-binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA-binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive

  3. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles

    Directory of Open Access Journals (Sweden)

    Kong Lingxin

    2008-04-01

    Full Text Available Abstract Background Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1 particles that contain chimeric glycoprotein C (gC – glial cell line-derived neurotrophic factor (GDNF or brain-derived neurotrophic factor (BDNF proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. Results Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific

  4. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.

  5. Validating serum S100B and neuron-specific enolase as biomarkers for the human brain - a combined serum, gene expression and MRI study.

    Directory of Open Access Journals (Sweden)

    Daniel-Paolo Streitbürger

    Full Text Available INTRODUCTION: Former studies have investigated the potential of serum biomarkers for diseases affecting the human brain. In particular the glial protein S100B, a neuro- and gliotrophin inducing plasticity, seems to be involved in the pathogenesis and treatment of psychiatric diseases such as major depression and schizophrenia. Neuron-specific enolase (NSE is a specific serum marker for neuronal damage. However, the specificity of these biomarkers for cell type and brain region has not been investigated in vivo until now. METHODS: We acquired two magnetic resonance imaging parameters sensitive to changes in gray and white matter (T(1-weighted/diffusion tensor imaging and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, we analyzed whole brain gene expressions of S100B in another male cohort of three subjects using the Allen Brain Atlas. Furthermore, a female post mortal brain was investigated using double immunofluorescence labelling with oligodendrocyte markers. RESULTS: We show that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity - the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. CONCLUSION: Our data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. Our study is the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. Our results

  6. Validating Serum S100B and Neuron-Specific Enolase as Biomarkers for the Human Brain – A Combined Serum, Gene Expression and MRI Study

    Science.gov (United States)

    Streitbürger, Daniel-Paolo; Arelin, Katrin; Kratzsch, Jürgen; Thiery, Joachim; Steiner, Johann; Villringer, Arno

    2012-01-01

    Introduction Former studies have investigated the potential of serum biomarkers for diseases affecting the human brain. In particular the glial protein S100B, a neuro- and gliotrophin inducing plasticity, seems to be involved in the pathogenesis and treatment of psychiatric diseases such as major depression and schizophrenia. Neuron-specific enolase (NSE) is a specific serum marker for neuronal damage. However, the specificity of these biomarkers for cell type and brain region has not been investigated in vivo until now. Methods We acquired two magnetic resonance imaging parameters sensitive to changes in gray and white matter (T1-weighted/diffusion tensor imaging) and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, we analyzed whole brain gene expressions of S100B in another male cohort of three subjects using the Allen Brain Atlas. Furthermore, a female post mortal brain was investigated using double immunofluorescence labelling with oligodendrocyte markers. Results We show that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity – the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. Conclusion Our data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. Our study is the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. Our results open a new perspective

  7. Neuron-specific knockdown of the Drosophila fat induces reduction of life span, deficient locomotive ability, shortening of motoneuron terminal branches and defects in axonal targeting.

    Science.gov (United States)

    Nakamura, Aya; Tanaka, Ryo; Morishita, Kazushige; Yoshida, Hideki; Higuchi, Yujiro; Takashima, Hiroshi; Yamaguchi, Masamitsu

    2017-07-01

    Mutations in FAT4 gene, one of the human FAT family genes, have been identified in Van Maldergem syndrome (VMS) and Hennekam lymphangiectasia-lymphedema syndrome (HS). The FAT4 gene encodes a large protein with extracellular cadherin repeats, EGF-like domains and Laminin G-like domains. FAT4 plays a role in tumor suppression and planar cell polarity. Drosophila contains a human FAT4 homologue, fat. Drosophila fat has been mainly studied with Drosophila eye and wing systems. Here, we specially knocked down Drosophila fat in nerve system. Neuron-specific knockdown of fat shortened the life span and induced the defect in locomotive abilities of adult flies. In consistent with these phenotypes, defects in synapse structure at neuromuscular junction were observed in neuron-specific fat-knockdown flies. In addition, aberrations in axonal targeting of photoreceptor neuron in third-instar larvae were also observed, suggesting that fat involves in axonal targeting. Taken together, the results indicate that Drosophila fat plays an essential role in formation and/or maintenance of neuron. Both VMS and HS show mental retardation and neuronal defects. We therefore consider that these two rare human diseases could possibly be caused by the defect in FAT4 function in neuronal cells. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  8. Neuron-specific RNA interference using lentiviral vectors

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup; Marion, Ingrid van; Hasholt, Lis

    2009-01-01

    demonstrate robust knockdown of green fluorescent protein using lentiviral vectors driving RNAi from the ubiquitously-expressing promoter of the cytomegalovirus (CMV) and, in addition, we show for the first time neuron-specific knockdown in the brain using a neuron-specific promoter. Furthermore, we show...... that the expression pattern of the presumed ubiquitously-expressing CMV promoter changes over time from being expressed initially in neurons and glial cells to being expressed almost exclusively in neurons in later stages. CONCLUSIONS: In the present study, we developed vectors for cell-specific RNAi for use...

  9. Antisense-induced suppression of taxoid 14β- hydroxylase gene ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... the 11(12)-diene might be directed to the production of useful C-13 oxygenated taxoids such as Taxol. Here, we reported a general method for adjusting regulation of the taxoid pathway and provide evidence for the suppression of taxoid 14β-hydroxylase gene expression in transgenic Taxus × media cell ...

  10. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    Science.gov (United States)

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  11. Identification of formaldehyde-responsive genes by suppression subtractive hybridization

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Young-Ae; Na, Tae-Young; Kim, Sung-Hye; Shin, Young Kee; Lee, Byung-Hoon; Shin, Ho-Sang; Lee, Mi-Ock

    2008-01-01

    Formaldehyde is frequently used in indoor household and occupational environments. Inhalation of formaldehyde invokes an inflammatory response, including a variety of allergic signs and symptoms. Therefore, formaldehyde has been considered as the most prevalent cause of sick building syndrome, which has become a major social problem, especially in developing urban areas. Further formaldehyde is classified as a genotoxicant in the respiratory tract of rats and humans. To better understand the molecular mechanisms involved in formaldehyde intoxication, we sought differentially regulated genes by formaldehyde exposure to Hs 680.Tr human trachea cells, using polymerase chain reaction (PCR)-based suppression subtractive hybridization. We identified 27 different formaldehyde-inducible genes, including those coding for the major histocompatibility complex, class IA, calcyclin, glutathione S-transferase pi, mouse double minute 2 (MDM2), platelet-derived growth factor receptor alpha, and which are known to be associated with cell proliferation and differentiation, immunity and inflammation, and detoxification. Induction of these genes by formaldehyde treatment was confirmed by reverse transcription PCR and western blot analysis. Further, the expression of calcyclin, glutathione S-transferase pi, PDGFRA and MDM2 were significantly induced in the tracheal epithelium of Sprague Dawley rats after formaldehyde inhalation. Our results suggest that the elevated levels of these genes may be associated with the formaldehyde-induced toxicity, and that they deserve evaluation as potential biomarkers for formaldehyde intoxication

  12. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  13. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene.

    Directory of Open Access Journals (Sweden)

    Lauren Snider

    2010-10-01

    Full Text Available Each unit of the D4Z4 macrosatellite repeat contains a retrotransposed gene encoding the DUX4 double-homeobox transcription factor. Facioscapulohumeral dystrophy (FSHD is caused by deletion of a subset of the D4Z4 units in the subtelomeric region of chromosome 4. Although it has been reported that the deletion of D4Z4 units induces the pathological expression of DUX4 mRNA, the association of DUX4 mRNA expression with FSHD has not been rigorously investigated, nor has any human tissue been identified that normally expresses DUX4 mRNA or protein. We show that FSHD muscle expresses a different splice form of DUX4 mRNA compared to control muscle. Control muscle produces low amounts of a splice form of DUX4 encoding only the amino-terminal portion of DUX4. FSHD muscle produces low amounts of a DUX4 mRNA that encodes the full-length DUX4 protein. The low abundance of full-length DUX4 mRNA in FSHD muscle cells represents a small subset of nuclei producing a relatively high abundance of DUX4 mRNA and protein. In contrast to control skeletal muscle and most other somatic tissues, full-length DUX4 transcript and protein is expressed at relatively abundant levels in human testis, most likely in the germ-line cells. Induced pluripotent (iPS cells also express full-length DUX4 and differentiation of control iPS cells to embryoid bodies suppresses expression of full-length DUX4, whereas expression of full-length DUX4 persists in differentiated FSHD iPS cells. Together, these findings indicate that full-length DUX4 is normally expressed at specific developmental stages and is suppressed in most somatic tissues. The contraction of the D4Z4 repeat in FSHD results in a less efficient suppression of the full-length DUX4 mRNA in skeletal muscle cells. Therefore, FSHD represents the first human disease to be associated with the incomplete developmental silencing of a retrogene array normally expressed early in development.

  14. [Blood neuronal specific enolase in newborns with perinatal asphyxia].

    Science.gov (United States)

    Verdú Pérez, A; Falero, M P; Arroyos, A; Estévez, F; Félix, V; López, Y; Pantoja, A; Ureta, A

    Neuron-specific enolase (NSE) is a sensitive marker of brain injury after hypoxia or ischemia. There are few studies about its usefulness in asphyctic newborns. To study the correlation between blood NSE levels and neurological outcome in newborns with hypoxic ischemic encephalopathy. We have determined the blood values of NSE by radioimmunoassay in 25 asphyctic term-newborns with clinical encephalopathy (of mild, moderate and severe degree) and in 22 healthy term newborns (control group). Blood samples were obtained between 24 and 72 hours after birth in all neonates. Surviving infants were followed for a variable time (median: 3.5 years; range: 1-6) and the neurological status was determined. NSE levels in the group of asphyctic neonates who died or developed neurological sequelae (n= 6; mean: 116.4 ng/ml; range: 42-226) were significantly higher than NSE values in the group of asphyctic neonates who were neurologically normal at follow-up (n= 19; mean: 21.3 ng/ml; range: 7.4-40), with p< 0.001. There were not differences between NSE values in the group of asphyctic neonates who developed neurologically normal and the control group (mean: 7.6 ng/ml; range: 10.3-28.3). Sensitivity and specificity of blood NSE as predictor of poor outcome were, respectively, 100% and 78%. The combined specificity for blood NSE together with a moderate/severe encephalopathy was 95%. The presence of elevated NSE values in blood after perinatal asphyxia can be a sensitive indicator of conspicuous brain damage. The combined information provided by the severity of the encephalopathy together with the blood NSE values have shown a high predictive value for neurological outcome.

  15. A regulatory code for neuron-specific odor receptor expression.

    Directory of Open Access Journals (Sweden)

    Anandasankar Ray

    2008-05-01

    Full Text Available Olfactory receptor neurons (ORNs must select-from a large repertoire-which odor receptors to express. In Drosophila, most ORNs express one of 60 Or genes, and most Or genes are expressed in a single ORN class in a process that produces a stereotyped receptor-to-neuron map. The construction of this map poses a problem of receptor gene regulation that is remarkable in its dimension and about which little is known. By using a phylogenetic approach and the genome sequences of 12 Drosophila species, we systematically identified regulatory elements that are evolutionarily conserved and specific for individual Or genes of the maxillary palp. Genetic analysis of these elements supports a model in which each receptor gene contains a zip code, consisting of elements that act positively to promote expression in a subset of ORN classes, and elements that restrict expression to a single ORN class. We identified a transcription factor, Scalloped, that mediates repression. Some elements are used in other chemosensory organs, and some are conserved upstream of axon-guidance genes. Surprisingly, the odor response spectra and organization of maxillary palp ORNs have been extremely well-conserved for tens of millions of years, even though the amino acid sequences of the receptors are not highly conserved. These results, taken together, define the logic by which individual ORNs in the maxillary palp select which odor receptors to express.

  16. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Science.gov (United States)

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  17. Serum Levels of Neuron-Specific Enolase in Children With Diabetic Ketoacidosis.

    Science.gov (United States)

    Hamed, Sherifa; Metwalley, Kotb Abbass; Farghaly, Hekma Saad; Sherief, Tahra

    2017-04-01

    Neuron-specific enolase is a sensitive marker of neuronal damage in various neurologic disorders. This study aimed to measure serum neuron-specific enolase levels at different time points and severities of diabetic ketoacidosis. This study included 90 children (age 9.2 ± 3.4 years) with diabetic ketoacidosis. Neuron-specific enolase was measured at 3 time points (baseline and after 12 and 24 hours of starting treatment). Among patients, 74.4% had diagnosis of new diabetes, 60% had Glasgow Coma Scale score diabetic ketoacidosis. Compared with controls (n = 30), children with diabetic ketoacidosis had higher neuron-specific enolase levels at the 3 time points ( P = .0001). In multiple regression analysis, the factors associated with higher neuron-specific enolase levels were younger age, higher glucose, lower pH, and bicarbonate values. This study indicates that serum neuron-specific enolase is elevated in diabetic ketoacidosis and correlated with the severity of hyperglycemia, ketosis, and acidosis. This study indicates that diabetic ketoacidosis may cause neuronal injury from which the patients recovered partially but not completely.

  18. Suppression of Arabidopsis genes by terminator-less transgene constructs

    Science.gov (United States)

    Transgene-mediated gene silencing is an important biotechnological and research tool. There are several RNAi-mediated techniques available for silencing genes in plants. The basis of all these techniques is to generate double stranded RNA precursors in the cell, which are recognized by the cellula...

  19. Antisense-induced suppression of taxoid 14β- hydroxylase gene ...

    African Journals Online (AJOL)

    Following the construction of an antisense RNA expression vector of 14OH from Taxus chinensis, the antisense 14OH cDNA (as14OH) was introduced into TM3 cells by Agrobacterium tumefaciens-mediated transformation. Southern blot analysis of hygromycin phosphotransferase gene (HYG) revealed that this selection ...

  20. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Transcriptome analysis of Carica papaya embryogenic callus upon De-etiolated 1 (DET1 gene suppression

    Directory of Open Access Journals (Sweden)

    Diyana Jamaluddin

    2017-06-01

    Full Text Available Papaya is considered to be one of the most nutritional fruits. It is rich in vitamins, carotenoids, flavonoids and other phytonutrient which function as antioxidant in our body [1]. Previous studies revealed that the suppression of a negative regulator gene in photomorphogenesis, De-etiolated 1 (DET1 can improve the phytonutrient in tomato and canola without affecting the fruit quality [2,3]. This report contains the experimental data on high-throughput 3′ mRNA sequencing of transformed papaya callus upon DET1 gene suppression.

  2. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  3. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke

    NARCIS (Netherlands)

    Stevens, H; Jakobs, C; de Jager, AEJ; Cunningham, RT; Korf, J

    Background After stroke, brain-specific proteins (including neurone-specific enolase) leak into the blood. The question addressed in the present study was whether N-acetyl-aspartate (amino acid derivative localized in cerebral neurones) could also serve as a peripheral marker of ischaemic damage.

  5. Increased serum neuron specific enolase concentrations in patients with hyperglycemic cortical ischemic stroke

    NARCIS (Netherlands)

    Elting, JW; De Keyser, J; Sulter, G.

    1998-01-01

    A detrimental effect of hyperglycemia in ischemic brain has been demonstrated in laboratory experiments and it has been found that hyperglycemia in ischemic stroke is a predictor of poor outcome. We determined serum neuron specific enolase (NSE) concentrations in 41 consecutive patients with a

  6. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy.

    Science.gov (United States)

    Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun

    2013-03-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  7. Adipose genes down-regulated during experimental endotoxemia are also suppressed in obesity.

    Science.gov (United States)

    Shah, Rachana; Hinkle, Christine C; Haris, Lalarukh; Shah, Rhia; Mehta, Nehal N; Putt, Mary E; Reilly, Muredach P

    2012-11-01

    Adipose inflammation is a crucial link between obesity and its metabolic complications. Human experimental endotoxemia is a controlled model for the study of inflammatory cardiometabolic responses in vivo. We hypothesized that adipose genes down-regulated during endotoxemia would approximate changes observed with obesity-related inflammation and reveal novel candidates in cardiometabolic disease. Healthy volunteers (n = 14) underwent a 3 ng/kg endotoxin challenge; adipose biopsies were taken at 0, 4, 12, and 24 h for mRNA microarray. A priority list of highly down-regulated and biologically relevant genes was validated by RT-PCR in an independent sample of adipose from healthy subjects (n = 7) undergoing a subclinical 0.6 ng/kg endotoxemia protocol. Expression of validated genes was screened in adipose of lean and severely obese individuals (n = 11 per group), and cellular source was probed in cultured adipocytes and macrophages. Endotoxemia (3 ng/kg) suppressed expression of 353 genes (to endotoxemia revealed suppression of genes involved in cell development and differentiation. A majority of candidates were also suppressed in endogenous human obesity, suggesting a potential pathophysiological role in human obesity-related adipose inflammation.

  8. Transgenic Suppression of AGAMOUS Genes in Apple Reduces Fertility and Increases Floral Attractiveness.

    Science.gov (United States)

    Klocko, Amy L; Borejsza-Wysocka, Ewa; Brunner, Amy M; Shevchenko, Olga; Aldwinckle, Herb; Strauss, Steven H

    2016-01-01

    We investigated the ability of RNA interference (RNAi) directed against two co-orthologs of AGAMOUS (AG) from Malus domestica (domestic apple, MdAG) to reduce the risks of invasiveness and provide genetic containment of transgenes, while also promoting the attractiveness of flowers for ornamental usage. Suppression of two MdAG-like genes, MdMADS15 and MdMADS22, led to the production of trees with highly showy, polypetalous flowers. These "double-flowers" had strongly reduced expression of both MdAG-like genes. Members of the two other clades within in the MdAG subfamily showed mild to moderate differences in gene expression, or were unchanged, with the level of suppression approximately proportional to the level of sequence identity between the gene analyzed and the RNAi fragment. The double-flowers also exhibited reduced male and female fertility, had few viable pollen grains, a decreased number of stigmas, and produced few viable seeds after cross-pollination. Despite these floral alterations, RNAi-AG trees with double-flowers set full-sized fruit. Suppression or mutation of apple AG-like genes appears to be a promising method for combining genetic containment with improved floral attractiveness.

  9. Transgenic Suppression of AGAMOUS Genes in Apple Reduces Fertility and Increases Floral Attractiveness.

    Directory of Open Access Journals (Sweden)

    Amy L Klocko

    Full Text Available We investigated the ability of RNA interference (RNAi directed against two co-orthologs of AGAMOUS (AG from Malus domestica (domestic apple, MdAG to reduce the risks of invasiveness and provide genetic containment of transgenes, while also promoting the attractiveness of flowers for ornamental usage. Suppression of two MdAG-like genes, MdMADS15 and MdMADS22, led to the production of trees with highly showy, polypetalous flowers. These "double-flowers" had strongly reduced expression of both MdAG-like genes. Members of the two other clades within in the MdAG subfamily showed mild to moderate differences in gene expression, or were unchanged, with the level of suppression approximately proportional to the level of sequence identity between the gene analyzed and the RNAi fragment. The double-flowers also exhibited reduced male and female fertility, had few viable pollen grains, a decreased number of stigmas, and produced few viable seeds after cross-pollination. Despite these floral alterations, RNAi-AG trees with double-flowers set full-sized fruit. Suppression or mutation of apple AG-like genes appears to be a promising method for combining genetic containment with improved floral attractiveness.

  10. Identification of Genes Associated with Morphology in Aspergillus Niger by Using Suppression Subtractive Hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Mao, Xingxue; Magnuson, Jon K.; Lasure, Linda L.

    2004-04-01

    The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors including the concentration of manganese (Mn2+). Upon increasing the Mn2+ concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. Molecular mechanisms through which Mn2+ exerts effects on morphology and citric acid production in A. niger have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn2+. Fifteen genes were differentially expressed when A. niger was grown in media containing 1000 ppb Mn2+ (filamentous form) and seven genes in 10 ppb Mn2+ (pelleted form). Of the fifteen filamentous-associated genes, seven are novel and eight share 47-100% identity to genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All ten genes with deduced functions are either involved in amino acid metabolism/protein catabolism or cell regulatory processes. Northern-blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn2+. Steady-state mRNA levels of six selected filamentous associated genes remained high during five days of culture in a filamentous state and low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filamentous-associated clone, Brsa-25 was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at higher concentrations of Mn2+ than could be tolerated by the parent strain. The results suggest the involvement of the newly isolated genes in regulation of A. niger morphology.

  11. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.

    Science.gov (United States)

    Sui, Guangchao; Soohoo, Christina; Affar, El Bachir; Gay, Frédérique; Shi, Yujiang; Forrester, William C; Shi, Yang

    2002-04-16

    Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms including plants, Caenorhabditis elegans, and Drosophila. The discovery that synthetic double-stranded, 21-nt small interfering RNA triggers gene-specific silencing in mammalian cells has further expanded the utility of RNAi into mammalian systems. Here we report a technology that allows synthesis of small interfering RNAs from DNA templates in vivo to efficiently inhibit endogenous gene expression. Significantly, we were able to use this approach to demonstrate, in multiple cell lines, robust inhibition of several endogenous genes of diverse functions. These findings highlight the general utility of this DNA vector-based RNAi technology in suppressing gene expression in mammalian cells.

  13. [Screening of differentially expressed genes in human renal cell carcinoma using suppression subtractive hybridization].

    Science.gov (United States)

    Wang, Ying; Chen, Wei; Li, Xu

    2008-01-01

    To suppress COL1A1 and COL3A1 gene expressions in human skin fibroblasts (HSFs) by means of RNA interference (RNAi). SSH was performed in two directions to isolate the differentially expressed genes between human a RCC cell line RLC-310 and a normal renal cell line HK-2 (ATCC). The cDNAs obtained from the final nested PCR were directly inserted into T/A cloning vector to establish a subtractive cDNA library of specifically or highly expressed genes in RCC. Reverse Northern dot blotting was performed to screen the truly differentially expressed genes, and 200 positive genes were randomly selected for sequencing. The two-directional subtractive libraries contained more than 1200 clones, and 213 positive clones were obtained using reverse Northern blotting. Sequence analysis of these clones identified 144 differentially expressed genes, including 67 up-regulated and 77 down-regulated genes, in which 14 novel ESTs and 21 functionally unknown genes were found. Cluster analysis indicated the involvement of the sequenced genes in cell growth, cell adhesion and apoptosis. Reliable subtractive cDNA libraries of human RCC have been constructed successfully with SSH. The identification of the gene expression profile in RCC may help clarify the mechanism of tumorigenesis and development of RCC, and also sheds light on new targets for prevention, diagnosis and therapy of this malignancy.

  14. Plasma neuronal specific enolase: a potential stage diagnostic marker in human African trypanosomiasis.

    Science.gov (United States)

    Sternberg, Jeremy M; Mitchell, Julia A

    2014-07-01

    This study was carried out to determine the potential of neuronal specific enolase (NSE) as a stage diagnostic marker in human African trypanosomiasis. Plasma and cerebrospinal fluid were obtained from a cohort of Trypanosoma brucei rhodesiense-infected patients and non-infected controls. Neuronal specific enolase concentrations were measured by ELISA and analysed in relation to diagnosis and disease-stage data. Plasma NSE concentration was significantly increased in late-stage patients (median 21 ng/ml), compared to the control (median 11 ng/ml), but not in early-stage patients (median 5.3 ng/ml). Cerebrospinal fluid NSE concentration did not vary between stages. Plasma NSE is a potential stage diagnostic in this cohort and merits further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program.

    Science.gov (United States)

    Shao, Mengle; Ishibashi, Jeff; Kusminski, Christine M; Wang, Qiong A; Hepler, Chelsea; Vishvanath, Lavanya; MacPherson, Karen A; Spurgin, Stephen B; Sun, Kai; Holland, William L; Seale, Patrick; Gupta, Rana K

    2016-06-14

    The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintaining white adipocyte identity through suppression of the thermogenic gene program. Zfp423 expression is enriched in white versus brown adipocytes and suppressed upon cold exposure. Doxycycline-inducible inactivation of Zfp423 in mature adipocytes, combined with β-adrenergic stimulation, triggers a conversion of differentiated adiponectin-expressing inguinal and gonadal adipocytes into beige-like adipocytes; this reprogramming event is sufficient to prevent and reverse diet-induced obesity and insulin resistance. Mechanistically, Zfp423 acts in adipocytes to inhibit the activity of Ebf2 and suppress Prdm16 activation. These data identify Zfp423 as a molecular brake on adipocyte thermogenesis and suggest a therapeutic strategy to unlock the thermogenic potential of white adipocytes in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A Digital Signal Processing Method for Gene Prediction with Improved Noise Suppression

    Directory of Open Access Journals (Sweden)

    Carreira Alex

    2004-01-01

    Full Text Available It has been observed that the protein-coding regions of DNA sequences exhibit period-three behaviour, which can be exploited to predict the location of coding regions within genes. Previously, discrete Fourier transform (DFT and digital filter-based methods have been used for the identification of coding regions. However, these methods do not significantly suppress the noncoding regions in the DNA spectrum at . Consequently, a noncoding region may inadvertently be identified as a coding region. This paper introduces a new technique (a single digital filter operation followed by a quadratic window operation that suppresses nearly all of the noncoding regions. The proposed method therefore improves the likelihood of correctly identifying coding regions in such genes.

  17. Histamine suppresses gene expression and synthesis of tumor necrosis factor alpha via histamine H2 receptors

    OpenAIRE

    1991-01-01

    Histamine and tumor necrosis factor alpha (TNF-alpha) can each contribute to the pathogenesis of allergic reactions and chronic inflammatory diseases. We now report the effect of histamine on gene expression and total cellular synthesis of TNF-alpha. Lipopolysaccharide (LPS)-induced synthesis of TNF-alpha in peripheral blood mononuclear cells (PBMC) from 18 healthy donors was suppressed by histamine concentrations from 10(-6) to 10(-4) M, levels comparable with those measured in tissues after...

  18. [Analysis of Phenotypic Manifestation of peanut Gene Expression Suppression by RNAi in Drosophila Oogenesis].

    Science.gov (United States)

    Akhmetova, K A; Dorogova, C N; Chesnokov, I N; Fedorova, S A

    2015-09-01

    The peanut gene functions in Drosophila melanogaster oogenesis were studied. It was demonstrated that the suppression of peanut expression by RNA interference in the ovary follicular cells results in the violation of oocyte polarization, anomalous cytokinesis in the chorion cells, and violation of the chromatin condensation in follicular cells. No oogenesis violations were observed in females with decreased peanut gene expression or an absence of the Pnut protein in the ovary generative cells. However, embryos produced by such females had a decreased survival rate caused by two death peaks.

  19. Ozone responsive genes in Medicago truncatula: analysis by suppression subtraction hybridization.

    Science.gov (United States)

    Puckette, Michael; Peal, Lila; Steele, Jarrod; Tang, Yuhong; Mahalingam, Ramamurthy

    2009-08-15

    Acute ozone is a model abiotic elicitor of oxidative stress in plants. In order to identify genes that are important for conferring ozone resistance or sensitivity we used two accessions of Medicago truncatula with contrasting responses to this oxidant. We used suppression subtraction hybridization (SSH) to identify genes differentially expressed in ozone-sensitive Jemalong and ozone-resistant JE154 following exposure to 300 nLL(-1) of ozone for 6h. Following differential screening of more than 2500 clones from four subtraction libraries, more than 800 clones were selected for sequencing. Sequence analysis of these clones identified 239 unique contigs. Fifteen novel genes of unknown functions were identified. A majority of the ozone responsive genes identified in this study were present in the Medicago truncatula EST collections. Genes induced in JE154 were associated with adaptive responses to stress, while in Jemalong, the gene ontologies for oxidative stress, cell growth, and translation were enriched. A meta-analysis of ozone responsive genes using the Genvestigator program indicated enrichment of ABA and auxin responsive genes in JE154, while cytokinin response genes were induced in Jemalong. In resistant JE154, down regulation of photosynthesis-related genes and up regulation of genes responding to low nitrate leads us to speculate that lowering carbon-nitrogen balance may be an important resource allocation strategy for overcoming oxidative stress. Temporal profiles of select genes using real-time PCR analysis showed that most of the genes in Jemalong were induced at the later time points and is consistent with our earlier microarray studies. Inability to mount an early active transcriptional reprogramming in Jemalong may be the cause for an inefficient defense response that in turn leads to severe oxidative stress and culminates in cell death.

  20. Suppression of polygalacturonase gene expression in the phytopathogenic fungus Ophiostoma novo-ulmi by RNA interference.

    Science.gov (United States)

    Carneiro, Joyce S; de la Bastide, Paul Y; Chabot, Meghan; Lerch, Lindsey; Hintz, William E

    2010-05-01

    The fungal pathogen, Ophiostomo novo-ulmi, has been responsible for the rapid decline of American elm (Ulmus americana) across North America and remains a serious threat to surviving elm populations. The production of pectinolytic polygalacturonase enzymes has been implicated as a virulence factor for many fungal pathogens, including O. novo-ulmi. Previous work has shown that the targeted disruption of the endopolygalacturonase gene locus epg1 of O. novo-ulmi reduced, but did not eliminate pectinase activity. In the present study, we evaluated the use of RNA interference (RNAi) as a method of suppressing expression of the epg1 locus in O. novo-ulmi and compared its efficiency to the gene disruption method. While there was a reduction in epg1-specific mRNA transcripts and in the amount of polygalacturonase enzyme secreted for both methods of gene regulation, neither method completely suppressed the expression of pectinase activity. There was, however, a significantly greater reduction in both transcript levels and secreted enzyme observed for some of the RNAi transformants. As the first demonstration of RNAi in O. novo-ulmi, this method of gene regulation shows promise in future studies of gene expression and pathogenicity. Copyright 2010 Elsevier Inc. All rights reserved.

  1. The retinoblastoma gene family in cell cycle regulation and suppression of tumorigenesis.

    Science.gov (United States)

    Dannenberg, Jan-Hermen; te Riele, Hein P J

    2006-01-01

    Since its discovery in 1986, as the first tumor suppressor gene, the retinoblastoma gene (Rb) has been extensively studied. Numerous biochemical and genetic studies have elucidated in great detail the function of the Rb gene and placed it at the heart of the molecular machinery controlling the cell cycle. As more insight was gained into the genetic events required for oncogenic transformation, it became clear that the retinoblastoma gene is connected to biochemical pathways that are dysfunctional in virtually all tumor types. Besides regulating the E2F transcription factors, pRb is involved in numerous biological processes such as apoptosis, DNA repair, chromatin modification, and differentiation. Further complexity was added to the system with the discovery of p107 and p130, two close homologs of Rb. Although the three family members share similar functions, it is becoming clear that these proteins also have unique functions in differentiation and regulation of transcription. In contrast to Rb, p107 and p130 are rarely found inactivated in human tumors. Yet, evidence is accumulating that these proteins are part of a "tumor-surveillance" mechanism and can suppress tumorigenesis. Here we provide an overview of the knowledge obtained from studies involving the retinoblastoma gene family with particular focus on its role in suppressing tumorigenesis.

  2. Regulation of Na(+)/K(+)-ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2014-02-01

    A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Medusa: a novel gene drive system for confined suppression of insect populations.

    Directory of Open Access Journals (Sweden)

    John M Marshall

    Full Text Available Gene drive systems provide novel opportunities for insect population suppression by driving genes that confer a fitness cost into pest or disease vector populations; however regulatory issues arise when genes are capable of spreading across international borders. Gene drive systems displaying threshold properties provide a solution since they can be confined to local populations and eliminated through dilution with wild-types. We propose a novel, threshold-dependent gene drive system, Medusa, capable of inducing a local and reversible population crash. Medusa consists of four components--two on the X chromosome, and two on the Y chromosome. A maternally-expressed, X-linked toxin and a zygotically-expressed, Y-linked antidote results in suppression of the female population and selection for the presence of the transgene-bearing Y because only male offspring of Medusa-bearing females are protected from the effects of the toxin. At the same time, the combination of a zygotically-expressed, Y-linked toxin and a zygotically-expressed, X-linked antidote selects for the transgene-bearing X in the presence of the transgene-bearing Y. Together these chromosomes create a balanced lethal system that spreads while selecting against females when present above a certain threshold frequency. Simple population dynamic models show that an all-male release of Medusa males, carried out over six generations, is expected to induce a population crash within 12 generations for modest release sizes on the order of the wild population size. Re-invasion of non-transgenic insects into a suppressed population can result in a population rebound; however this can be prevented through regular releases of modest numbers of Medusa males. Finally, we outline how Medusa could be engineered with currently available molecular tools.

  4. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  5. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    International Nuclear Information System (INIS)

    Sandhu, Navdeep; Vijayan, Mathilakath M.

    2011-01-01

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  6. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  7. Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1.

    Science.gov (United States)

    Gao, Wei-Wei; Tang, Hei-Man Vincent; Cheng, Yun; Chan, Ching-Ping; Chan, Chi-Ping; Jin, Dong-Yan

    2018-01-31

    CRTCs are a group of three transcriptional coactivators required for CREB-dependent transcription. CREB and CRTCs are critically involved in the regulation of various biological processes such as cell proliferation, metabolism, learning and memory. However, whether CRTC1 efficiently induces gluconeogenic gene expression and how CRTC1 is regulated by upstream kinase SIK1 remain to be understood. In this work, we demonstrated SIK1-induced phosphorylation, ubiquitination and degradation of CRTC1 in the context of the regulation of gluconeogenesis. CRTC1 protein was destabilized by SIK1 but not SIK2 or SIK3. This effect was likely mediated by phosphorylation at S155, S167, S188 and S346 residues of CRTC1 followed by K48-linked polyubiquitination and proteasomal degradation. Expression of gluconeogenic genes such as that coding for phosphoenolpyruvate carboxykinase was stimulated by CRTC1, but suppressed by SIK1. Depletion of CRTC1 protein also blocked forskolin-induced gluconeogenic gene expression, knockdown or pharmaceutical inhibition of SIK1 had the opposite effect. Finally, SIK1-induced ubiquitination of CRTC1 was mediated by RFWD2 ubiquitin ligase at a site not equivalent to K628 in CRTC2. Taken together, our work reveals a regulatory circuit in which SIK1 suppresses gluconeogenic gene transcription by inducing ubiquitination and degradation of CRTC1. Our findings have implications in the development of new antihyperglycemic agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Inverse agonistic activity of antihistamines and suppression of histamine H1 receptor gene expression.

    Science.gov (United States)

    Mizuguchi, Hiroyuki; Ono, Shohei; Hattori, Masashi; Fukui, Hiroyuki

    2012-01-01

    Histamine H(1) receptor (H1R) expression influences the severity of allergy symptoms. We examined the effect of inverse agonists on H1R gene expression. Two inverse agonists (carebastine and mepyramine), but not the neutral antagonist oxatomide, decreased inositol phosphate accumulation. The inverse agonists also decreased H1R gene expression and down-regulated H1R mRNA below basal expression, while basal H1R mRNA expression was maintained after oxatomide treatment. These results suggest that inverse agonists more potently alleviate allergy symptoms by not only inhibiting stimulus-induced up-regulation of H1R gene expression but also by suppressing basal histamine signaling through their inverse agonistic activity.

  9. Profiling of differentially expressed genes using suppression subtractive hybridization in an equine model of chronic asthma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Lavoie

    Full Text Available Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma.To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition.Eleven adult horses (6 heaves-affected and 5 controls were studied while horses with heaves were in clinical remission (Pasture, and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge. Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH, lung cDNAs of controls (Pasture and Challenge and asymptomatic heaves-affected horses (Pasture were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge. The differential expression of selected genes of interest was confirmed using quantitative PCR assay.Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways.Pathways representing new possible targets for anti-inflammatory and anti-remodeling therapies for asthma were identified. The findings of genes

  10. Release of erythropoietin and neuron-specific enolase after breath holding in competing free divers

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Jattu, T; Nielsen, Henrik

    2015-01-01

    , and troponin T. Venous blood samples were obtained from 17 competing free divers before and 3 h after sessions of static apnea and underwater swimming. The heart was evaluated by echocardiography. Static apnea for 293 ± 78 s (mean ± SD) and subsequent 88 ± 21 m underwater swimming increased plasma......Free diving is associated with extreme hypoxia. This study evaluated the combined effect of maximal static breath holding and underwater swimming on plasma biomarkers of tissue hypoxemia: erythropoietin, neuron-specific enolase and S100B, C-reactive protein, pro-atrial natriuretic peptide...

  11. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  12. S-100b and neuron-specific enolase in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Christiansen, Michael; Møller, Kirsten

    2001-01-01

    , the cerebral flux of S-100b and NSE was measured. We included 35 patients with FHF, 6 patients with acute on chronic liver disease (AOCLD), 13 patients with cirrhosis of the liver without hepatic encephalopathy, and 8 healthy subjects. Blood samples were obtained from catheters placed in the radial artery......Patients with fulminant hepatic failure (FHF) frequently develop cerebral edema and intracranial hypertension. The aim of this study was to evaluate circulating S-100b and neuron-specific enolase (NSE) levels as markers of neurological outcome in patients with FHF. In a subgroup of patients...

  13. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  14. Transgenic Suppression of AGAMOUS Genes in Apple Reduces Fertility and Increases Floral Attractiveness

    OpenAIRE

    Klocko, Amy L.; Borejsza-Wysocka, Ewa; Brunner, Amy M.; Shevchenko, Olga; Aldwinckle, Herb; Strauss, Steven H.

    2016-01-01

    We investigated the ability of RNA interference (RNAi) directed against two co-orthologs of AGAMOUS (AG) from Malus domestica (domestic apple, MdAG) to reduce the risks of invasiveness and provide genetic containment of transgenes, while also promoting the attractiveness of flowers for ornamental usage. Suppression of two MdAG-like genes, MdMADS15 and MdMADS22, led to the production of trees with highly showy, polypetalous flowers. These "double-flowers" had strongly reduced expression of bot...

  15. Correlative study between neuron-specific enolase and blood sugar level in ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Aparna Pandey

    2011-01-01

    Full Text Available Background: A study to investigate the level of the neurobiochemical marker, Neuron-Specific Enolase (NSE, at the time of admission and its correlation with the blood sugar level in ischemic stroke patients. Patients and Methods: We investigated 90 patients with complete stroke who were admitted to the Stroke Unit of the Department of Neurology at Sri Aurobindo Institute of Medical Sciences. NSE was measured with commercially available quantitative ′sandwich′ enzyme-linked immunosorbent assay kits obtained from R and D Systems. Hyperglycemia was defined as blood glucose concentration ≥ 7 mmol / L, and measured using the glucose oxidase method immediately. Results: Significantly increased NSE and lipid profile levels were found in ischemic stroke patients as compared to the control. Hyperglycemic ischemic stroke patients had increased levels of NSE, lipid profile, and National Institute of Health stroke scale scores (NIHSS score compared to normoglycemic ischemic stroke patients. In addition the serum NSE level of hyperglycemic stroke patients was also positively correlated with the blood sugar level (r = 0.734 P < 0.001. Conclusions: Hyperglycemia predicts an increased risk of poor outcome after ischemic stroke and it is reflected by a significantly increased level of Neuron-Specific Enolase.

  16. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization.

    Science.gov (United States)

    Deng, Chuan-liang; Wang, Ning-na; Li, Shu-fen; Dong, Tian-yu; Zhao, Xin-peng; Wang, Shao-jing; Gao, Wu-jun; Lu, Long-dou

    2015-09-01

    Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus.

  17. Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization.

    Science.gov (United States)

    Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen

    2015-01-01

    Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from 'Taishanzaoxia' apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in 'Taishanzaoxia'. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening.

  18. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    International Nuclear Information System (INIS)

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-01-01

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated β-galactosidase (SA-β-gal) activity. Using p53 -/- MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21 Cip1 accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  19. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  20. Celecoxib inhibits osteoblast maturation by suppressing the expression of Wnt target genes

    Directory of Open Access Journals (Sweden)

    Akihiro Nagano

    2017-01-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs have been shown to impair bone healing. We previously reported that in colon cancer cells, celecoxib, a COX-2-selective NSAID, inhibited the canonical Wnt/β-catenin signaling pathway. Since this pathway also plays an important role in osteoblast growth and differentiation, we examined the effect of celecoxib on maturation of osteoblast-like cell line MC3T3-E1. Celecoxib induced degradation of transcription factor 7-like 2, a key transcription factor of the canonical Wnt pathway. Subsequently, we analyzed the effect of celecoxib on two osteoblast differentiation markers; runt-related transcription factor 2 (RUNX2 and alkaline phosphatase (ALP, both of which are the products of the canonical Wnt pathway target genes. Celecoxib inhibited the expression of both RUNX2 and ALP by suppressing their promoter activity. Consistent with these observations, celecoxib also strongly inhibited osteoblast-mediated mineralization. These results suggest that celecoxib inhibits osteoblast maturation by suppressing Wnt target genes, and this could be the mechanism that NSAIDs inhibit bone formation and fracture healing.

  1. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    Science.gov (United States)

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  2. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Andrew P. Lieberman

    2014-05-01

    Full Text Available Spinal and bulbar muscular atrophy (SBMA is caused by the polyglutamine androgen receptor (polyQ-AR, a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  3. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  4. Suppression of tumorigenicity and metastatic potential of melanoma cells by transduction of interferon gene

    Directory of Open Access Journals (Sweden)

    Lykhova A. A.

    2014-01-01

    Full Text Available The aim of this study was to investigate an inhibitory effect of baculovirus-mediated transduction of the murine interferon-beta gene on mouse melanoma in vitro and in vivo. Methods. Studies were performed on B16 mouse melanoma (MM-4 cell line. Transduction, immunocytochemical and tumor cell biology approaches have been used in this study. Results. Transduction of MM-4 cells by the recombinant baculovirus with IFN-beta gene is accompanied by morphological changes of tumor cells, suppression of cell proliferation, significant inhibition of platting efficiency of cells and their colonies formation in semisolid agar. Moreover, transduction of melanoma MM-4 cells by the baculovirus IFN-transgene leads to inhibition of tumorigenicity and metastatic ability of the cells in vivo. The intravenous administration of recombinant baculovirus vector with IFN gene inhibits growth of metastases induced in the lungs of mice by intravenously injected tumor cells. Conclusions. Transduction of mouse melanoma cells by the recombinant baculovirus with murine IFN-beta gene inhibits their proliferative potential, tumorigenicity and metastatic activity.

  5. Identification of genes that are induced after cadmium exposure by suppression subtractive hybridization

    International Nuclear Information System (INIS)

    Shin, Hye-Jin; Park, Kun-Koo; Lee, Byeong-Hoon; Moon, Chang-Kyu; Lee, Mi-Ock

    2003-01-01

    The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity. For this purpose, we employed the polymerase chain reaction (PCR)-based suppression subtractive hybridization (SSH) technique. We identified 29 different cadmium-inducible genes in human peripheral blood mononuclear cells (PBMCs), such as macrophage migration inhibitory factor (MIF), lysophosphatidic acid acyltransferase-α, enolase-1α, VEGF, Bax, and neuron-derived orphan receptor-1 (Nor-1), which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription PCR. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung

  6. Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization

    Directory of Open Access Journals (Sweden)

    Bellés Xavier

    2009-04-01

    Full Text Available Abstract Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For

  7. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  8. Mapping of antigenic sites in human neuron-specific enolase by expression subcloning.

    Science.gov (United States)

    Quinn, G B; Reeves, I G; Day, I N

    1994-05-01

    Human serum neuron-specific enolase (NSE) is a marker of neurons and of small-cell carcinoma of the lung; improved immunoassays of NSE remain an important goal. Here, we used overlapping complementary DNA (cDNA) clones for reconstruction to express full-length recombinant NSE, and also to express a set of cloned subfragments through the prokaryotic expression vectors pUEX and pUBEX. Subfragments expressed as fusion proteins were used to characterize immunogenic and antigenic regions and epitopes and, expressed as affinity matrices, to derive purified, fractionated polyclonal antibodies. NSE epitope data can be visualized with yeast enolase-1 crystal structure coordinates: The two protein sequences align almost perfectly and are 61% identical. This approach demonstrates the complementarity of cDNA expression with techniques of polyclonal antiserum and monoclonal antibody production and with chemical peptide synthesis in the refinement of immunodiagnostic reagents.

  9. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains.

    Science.gov (United States)

    Shah, Jasmine M; Ramakrishnan, Anantha Maharasi; Singh, Amit Kumar; Ramachandran, Subalakshmi; Unniyampurath, Unnikrishnan; Jayshankar, Ajitha; Balasundaram, Nithya; Dhanapal, Shanmuhapreya; Hyde, Geoff; Baskar, Ramamurthy

    2015-08-26

    Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently

  10. WSSV-responsive gene expression under the influence of PmVRP15 suppression.

    Science.gov (United States)

    Tummamunkong, Phawida; Jaree, Phattarunda; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2018-01-01

    The viral responsive protein 15 from black tiger shrimp Penaeus monodon (PmVRP15), is highly up-regulated and produced in the hemocytes of shrimp with white spot syndrome virus (WSSV) infection. To investigate the differential expression of genes from P. monodon hemocytes that are involved in WSSV infection under the influence of PmVRP15 expression, suppression subtractive hybridization (SSH) of PmVRP15-silenced shrimp infected with WSSV was performed. The 189 cDNA clones of the forward library were generated by subtracting the cDNAs from WSSV-infected and PmVRP15 knockdown shrimp with cDNAs from WSSV-infected and GFP knockdown shrimp. For the opposite subtraction, the 176 cDNA clones in the reverse library was an alternative set of genes in WSSV-infected shrimp hemocytes in the presence of PmVRP15 expression. The abundant genes in forward SSH library had a defense/homeostasis of 26%, energy/metabolism of 23% and in the reverse SSH library a hypothetical protein with unknown function was found (30%). The differential expressed immune-related genes from each library were selected for expression analysis using qRT-PCR. All selected genes from the forward library showed high up-regulation in the WSSV-challenged PmVRP15 knockdown group as expected. Interestingly, PmHHAP, a hemocyte homeostasis associated protein, and granulin-like protein, a conserved growth factor, are extremely up-regulated in the absence of PmVRP15 expression in WSSV-infected shrimp. Only transcript level of transglutaminase II, that functions in regulating hematopoietic tissue differentiation and inhibits mature hemocyte production in shrimp, was obviously down-regulated as observed from SSH results. Taken together, our results suggest that PmVRP15 might have a function relevant to hemocyte homeostasis during WSSV infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation.

    Science.gov (United States)

    Fielding, Ceri A; Weekes, Michael P; Nobre, Luis V; Ruckova, Eva; Wilkie, Gavin S; Paulo, Joao A; Chang, Chiwen; Suárez, Nicolás M; Davies, James A; Antrobus, Robin; Stanton, Richard J; Aicheler, Rebecca J; Nichols, Hester; Vojtesek, Borek; Trowsdale, John; Davison, Andrew J; Gygi, Steven P; Tomasec, Peter; Lehner, Paul J; Wilkinson, Gavin W G

    2017-02-10

    The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation.

  12. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    Directory of Open Access Journals (Sweden)

    Emily L Landeen

    2016-07-01

    Full Text Available The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  13. Identification of cold responsive genes in Pacific white shrimp (Litopenaeus vannamei) by suppression subtractive hybridization.

    Science.gov (United States)

    Peng, Jinxia; Wei, Pinyuan; Chen, Xiuli; Zeng, Digang; Chen, Xiaohan

    2016-01-10

    The Pacific white shrimp (Litopenaeus vannamei) is one of the most widely cultured shrimp species in the world. Despite L. vannamei having tropical origins, it is being reared subtropically, with low temperature stress being one of the most severe threats to its growth, survival and distribution. To unravel the molecular basis of cold tolerance in L. vannamei, the suppression subtractive hybridization (SSH) platform was employed to identify cold responsive genes in the hepatopancreas of L. vannamei. Both forward and reverse cDNA libraries were constructed, followed by dot blot hybridization, cloning, sequence analysis and quantitative real-time PCR. These approaches identified 92 cold induced and 48 cold inhibited ESTs to give a total of 37 cold induced and 17 cold inhibited contigs. Some of the identified genes related to stress response or cell defense, such as tetraspanins (TSPANs), DEAD-box helicase, heat shock proteins (HSPs) and metallothionein (MT), which were more abundant in the forward SSH library than in the reverse SSH library. The most abundant Est was a tetraspanin-8 (TSPAN8) homolog dubbed LvTSPAN8. A multiple sequence alignment and transmembrane domain prediction was also performed for LvTSPAN8. LvTSPAN8 expression was also examined in the gills, muscle, heart and hepatopancreas following cold exposure and showed the highest expression levels in the hepatopancreas. Overall, this study was able to identify several known genes and novel genes via SSH that appear to be associated with cold stress and will help to provide further insights into the molecular mechanisms regulating cold tolerance in L. vannamei. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter.

    Science.gov (United States)

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P; Geller, Alfred I

    2007-05-04

    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an approximately 9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported approximately 90% glutamatergic neuron-specific expression. The GAD67 promoter supported approximately 90% GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine

  15. Suppression of the cell proliferation in stomach cancer cells by the ZNRD1 gene

    International Nuclear Information System (INIS)

    Hong Liu; Zhang Yumei; Liu Na; Liu Changjiang; Zhi Min; Pan Yanglin; Lan Mei; Sun Li; Fan Daiming

    2004-01-01

    Zinc ribbon domain-containing 1 (ZNRD1), a transcription-associated gene, was recently found to be downregulated in human gastric cancer tissues as compared to the matched adjacent nonneoplastic tissues. In this study, we constructed the siRNA eukaryotic expression vectors of ZNRD1 and transfected them into normal gastric epithelial cells (GES-1). We also introduced the ZNRD1 gene into gastric cancer cells that do (SGC7901) and do not (AGS) express ZNRD1 endogenously. GES-1 cells stably transfected with the ZNRD1-RNAi were found to exhibit significantly quicker proliferation than empty vector transfectants. AGS cells stably transfected with the ZNRD1 cDNA exhibited significantly decreased growth rate as compared to control vector transfectants, whereas SGC7901 cells did not. Furthermore, ZNRD1 suppresses growth of AGS cells in soft agar and tumor formation in athymic nude mice. This study clearly demonstrates that ZNRD1 may play an important role in the control of human gastric cancer development by regulating cell proliferation. These results provide new insights into the function of ZNRD1 and further validate ZNRD1 as a potential therapeutic target in gastric cancer

  16. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  17. Cell type-specific suppression of mechanosensitive genes by audible sound stimulation.

    Science.gov (United States)

    Kumeta, Masahiro; Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H

    2018-01-01

    Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound.

  18. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    Science.gov (United States)

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  19. Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling.

    Science.gov (United States)

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen

    2017-10-10

    The worldwide prevalence of obesity is increasing at an alarming rate but treatment options remain limited. Despite initial success, weight loss by calorie restriction (CR) often fails because of rebound weight gain. Postdieting hyperphagia along with altered hypothalamic neuro-architecture appears to be one direct cause of this undesirable outcome. In response to calorie deficiency the circulating levels of the appetite-promoting hormone, acyl-ghrelin, rise sharply. We hypothesize that proper modulation of acyl-ghrelin and its receptor's sensitivity will favorably impact energy intake and reprogram the body weight set point. Here we applied viral gene transfer of the acyl-ghrelin hydrolyzing enzyme, butyrylcholinesterase (BChE), in a mouse model of diet-induced obesity. Our results confirmed that BChE overexpression decreased circulating acyl-ghrelin levels, suppressed CR-provoked ghrelin signaling, and restored central ghrelin sensitivity. In addition to maintaining healthy body weights, BChE treated mice had modest postdieting food intake and showed normal glucose homeostasis. Spontaneous activity and energy expenditure did not differ significantly between treated and untreated mice after body weight rebound, suggesting that BChE gene transfer did not alter energy expenditure in the long term. These findings indicate that combining BChE treatment with CR could be an effective approach in treating human obesity and aiding lifelong weight management.

  20. RKIP Suppresses Breast Cancer Metastasis to the Bone by Regulating Stroma-Associated Genes

    International Nuclear Information System (INIS)

    Bevilacqua, E.; Frankenberger, C.A.; Rosner, M.R.

    2012-01-01

    In the past decade cancer research has recognized the importance of tumor stroma interactions for the progression of primary tumors to an aggressive and invasive phenotype and for colonization of new organs in the context of metastasis. The dialogue between tumor cells and the surrounding stroma is a complex and dynamic phenomenon, as many cell types and soluble factors are involved. While the function of many of the players involved in this cross talk have been studied, the regulatory mechanisms and signaling pathways that control their expression have not been investigated in depth. By using a novel, interdisciplinary approach applied to the mechanism of action of the metastasis suppressor, Raf kinase inhibitory protein (RKIP), we identified a signaling pathway that suppresses invasion and metastasis through regulation of stroma-associated genes. Conceptually, the approach we developed uses a master regulator and expression arrays from breast cancer patients to formulate hypotheses based on clinical data. Experimental validation is followed by further bioinformatics analysis to establish the clinical significance of discoveries. Using RKIP as an example we show here that this multi-step approach can be used to identify gene regulatory mechanisms that affect tumor-stroma interactions that in turn influence metastasis to the bone or other organs

  1. Mms Sensitivity of All Amino Acid-Requiring Mutants in Aspergillus and Its Suppression by Mutations in a Single Gene

    OpenAIRE

    Käfer, Etta

    1987-01-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regula...

  2. Serum neuron specific enolase - a novel indicator for neuropsychiatric systemic lupus erythematosus?

    Science.gov (United States)

    Hawro, T; Bogucki, A; Krupińska-Kun, M; Maurer, M; Woźniacka, A

    2015-12-01

    Neuropsychiatric (NP) lupus, a common manifestation of systemic lupus erythematosus (SLE), is still insufficiently understood, in part, because of the lack of specific biomarkers. Neuron specific enolase (NSE), an important neuronal glycolytic enzyme, shows increased serum levels following acute brain injury, and decreased serum levels in several chronic disorders of the nervous system, including multi infarct dementia, multiple sclerosis and depression. The aim of the study was to evaluate serum NSE levels in SLE patients with and without nervous system involvement, and in healthy controls, and to assess the correlation of NSE serum levels of patients with neuropsychiatric systemic lupus erythematosus (NPSLE) with clinical parameters. The study comprised 47 SLE patients and 28 controls. SLE activity was assessed using the Systemic Lupus Activity Measure (SLAM). A neurologist and a psychiatrist examined all patients. NP involvement was diagnosed according to strict NPSLE criteria proposed by Ainiala and coworkers, as modification to American College of Rheumatology (ACR) nomenclature and case definitions. NSE serum levels were determined by use of an immunoassay. Mean NSE serum concentrations in patients with NPSLE were significantly lower than in non-NPSLE patients (6.3 ± 2.6 µg/L vs. 9.7 ± 3.3 µg/L, p manifestations diagnosed (-0.37; p = 0.001). Decreased serum concentrations of NSE may reflect chronic neuronal damage with declined metabolism of the nervous tissue in patients with NPSLE. © The Author(s) 2015.

  3. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  4. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  5. Ethylene and 1-methylcyclopropene differentially regulate gene expression during onion sprout suppression.

    Science.gov (United States)

    Cools, Katherine; Chope, Gemma A; Hammond, John P; Thompson, Andrew J; Terry, Leon A

    2011-07-01

    Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L(-1) ethylene or 1 μL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.

  6. Ethylene and 1-Methylcyclopropene Differentially Regulate Gene Expression during Onion Sprout Suppression1[W][OA

    Science.gov (United States)

    Cools, Katherine; Chope, Gemma A.; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2011-01-01

    Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L−1 ethylene or 1 μL L−1 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L−1) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene. PMID:21593215

  7. Dynamic telomerase gene suppression via network effects of GSK3 inhibition.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2009-07-01

    Full Text Available Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression.In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3'-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFkappaB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc.Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting.

  8. Screening and identification of lung cancer metastasis-related genes by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Jiewei; Zhong, Xiaorong; Li, Juan; Liu, Baoxing; Guo, Shanxian; Chen, Jun; Tan, Qingwei; Wang, Qin; Ma, Wei; Wu, Zhihao; Wang, Haisu; Hou, Mei; Zhang, Hong-Tao; Zhou, Qinghua

    2012-08-01

      Lung cancer metastasis is a complicated process in which multiple stages and multiple genes are involved. There is an urgent need to use new molecular biology techniques to get more systematic information and have a general idea of the molecular events that take place in lung cancer metastasis. The object of this study was to construct the subtracted cDNA libraries of different metastatic potential lung cancer cell lines, NL9980 and L9981, which were established and screened from human lung large cell carcinoma cell line, WCQH-9801.   The forward and reverse subtracted cDNA libraries were constructed in the large cell lung cancer cell lines NL9980 and L9981 with the same heredity background but different metastatic potential, by suppression subtractive hybridization (SSH). The positive clones were preliminarily screened by blue-white colony and precisely identified by PCR. The forward and reverse subtracted libraries were screened and identified by dot blot so as to obtain the clones corresponding to gene segments with differential expression. DNA sequencing was performed to analyze the sequences of differential expression segments, which were then searched and compared using the Basic Local Alignment Search Tool from The National Center for Biotechnology Information NCBI BLAST tools. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blotting were performed to confirm the differential expressed genes both on RNA and protein levels.   The forward and reverse subtracted cDNA libraries of the different large cell lung cancer cell lines with metastatic potential were successfully constructed. With blue-white colony and dot blot, 307 positive clones in the forward subtracted library and 78 positive clones in the reverse subtracted library were obtained. Fifty-five clones were successfully sequenced in the forward subtracted library while 31 clones were successfully sequenced in the reverse subtracted library. One new

  9. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Cannabidivarin (CBDV suppresses pentylenetetrazole (PTZ-induced increases in epilepsy-related gene expression

    Directory of Open Access Journals (Sweden)

    Naoki Amada

    2013-11-01

    Full Text Available To date, anticonvulsant effects of the plant cannabinoid, cannabidivarin (CBDV, have been reported in several animal models of seizure. However, these behaviourally observed anticonvulsant effects have not been confirmed at the molecular level. To examine changes to epilepsy-related gene expression following chemical convulsant treatment and their subsequent control by phytocannabinoid administration, we behaviourally evaluated effects of CBDV (400 mg/kg, p.o. on acute, pentylenetetrazole (PTZ: 95 mg/kg, i.p.-induced seizures, quantified expression levels of several epilepsy-related genes (Fos, Casp 3, Ccl3, Ccl4, Npy, Arc, Penk, Camk2a, Bdnf and Egr1 by qPCR using hippocampal, neocortical and prefrontal cortical tissue samples before examining correlations between expression changes and seizure severity. PTZ treatment alone produced generalised seizures (median: 5.00 and significantly increased expression of Fos, Egr1, Arc, Ccl4 and Bdnf. Consistent with previous findings, CBDV significantly decreased PTZ-induced seizure severity (median: 3.25 and increased latency to the first sign of seizure. Furthermore, there were correlations between reductions of seizure severity and mRNA expression of Fos, Egr1, Arc, Ccl4 and Bdnf in the majority of brain regions in the CBDV+PTZ treated group. When CBDV treated animals were grouped into CBDV responders (criterion: seizure severity ≤3.25 and non-responders (criterion: seizure severity >3.25, PTZ-induced increases of Fos, Egr1, Arc, Ccl4 and Bdnf expression were suppressed in CBDV responders. These results provide the first molecular confirmation of behaviourally observed effects of the non-psychoactive, anticonvulsant cannabinoid, CBDV, upon chemically-induced seizures and serve to underscore its suitability for clinical development.

  11. Neuron-specific enolase is a useful maker of neuroendocrine origin in pheochromocytoma cell culture

    International Nuclear Information System (INIS)

    Abelin, N.; Dahia, P.L.M.; Martin, R.; Kato, S.; Toledo, S.P.A.

    1994-01-01

    Neuron-specific enolase (NSE) has been used as a marker for neuroendocrine tumors either in immunocytochemical studies or in serum measurements. In this paper NSE levels were determined in cultured pheochromocytoma cells to test whether it is also a useful marker in cell culture of tumors derived from neuroendocrine system. Cultured pheochromocytoma cells came from a primary explant and were grown in RPMI supplemented with 20% fetal calf serum, 100 μg/mL ampicillin and 100 μ/mL streptomycin. NSE was measured in culture medium and cell homogenates. Samples from different pheochromocytoma cultures were analyzed and compared to normal cultured fibroblast cells derived from human skin. NSE was measured by a commercially available radioimmunoassay kit. NSE levels were higher in cell homogenates as compared to those in culture medium, reaching levels as high as 6-fold in the former in TE cell line (26.46 ng/mL and 4.39 ng/mL, respectively). Serial measurements in culture medium from TE cell line evidenced decreasing values in subsequential subcultures (from 9.24 ng/mL during primary explant to 1.7 ng/mL in the tenth subculture). In cultured normal fibroblasts, NSE levels in cultured media were definitely lower than those obtained from pheochromocytoma cultures. These preliminary data suggest that NSE may be a useful marker of neuroendocrine derived tumors, such as pheochromocytoma, in culture. Thus, the simplicity and availability of NSE radioimmunoassay provides an alternative to catecholamine measurement to better characterize pheochromocytoma cell lines in culture, with the advantage of faster result at lower costs. (author). 18 refs, 2 tabs

  12. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke.

    Science.gov (United States)

    Zaheer, Sana; Beg, Mujahid; Rizvi, Imran; Islam, Najmul; Ullah, Ekram; Akhtar, Nishat

    2013-10-01

    The use of biomarkers to predict stroke prognosis is gaining particular attention nowadays. Neuron specific enolase (NSE), which is a dimeric isoenzyme of the glycolytic enzyme enolase and is found mainly in the neurons is one such biomarker. This study was carried out on patients of acute ischemic stroke with the aims to determine the correlation between NSE levels on the day of admission with infarct volume, stroke severity, and functional neurological outcome on day 30. Seventy five patients of acute ischemic stroke admitted in the Department of Medicine were included in the study. Levels of NSE were determined on day 1 using the human NSE ELISA kit (Alpha Diagnostic International Texas 78244, USA). Volume of infarct was measured by computed tomography (CT) scan using the preinstalled software Syngo (version A40A) of Siemen's medical solutions (Forchheim, Germany). Stroke severity at admission was assessed using Glasgow coma scale (GCS) and functional neurological outcome was assessed using modified Rankin scale (mRS) on day 30. Statistical analysis was performed using the SPSS software for windows version 15.0 (SPSS). A positive correlation was found between concentration of NSE on day 1 and infarct volume determined by CT scan (r = 0.955, P < 0.001). A strong negative correlation was found between GCS at presentation and concentration of NSE on day 1 (r = -0.806, P < 0.001). There was a positive correlation between NSE levels at day 1 and functional neurological outcome assessed by mRS at day 30 (r = 0.744, P < 0.001). Serum levels of NSE in first few days of ischemic stroke can serve as a useful marker to predict stroke severity and early functional outcome. However, larger studies with serial estimation of NSE are needed to establish these observations more firmly.

  13. The relationship between neuron-specific enolase and prognosis of patients with acute traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Yun-yang LIU

    2015-03-01

    Full Text Available Objective To investigate the relationship between neuron-specific enolase (NSE levels in serum and cerebrospinal fluid (CSF of patients with acute traumatic brain injury (TBI and the prognosis of TBI patients.  Methods A total of 89 patients with acute TBI were divided into light, medium, heavy and severe TBI groups based on admission Glasgow Coma Scale (GCS score. Serum NSE expression levels were detected in all cases and NSE levels in CSF were detected in 18 cases within 12 h after TBI. The expression levels of serum NSE in 20 normal people, except cases of lung disease and nervous system damage, were detected as a control group. Results Compared with the control group, serum NSE expression levels of patients in each TBI group were elevated (P < 0.05, for all, and the NSE levels in severe and heavy TBI groups were higher than that in medium and light groups (P < 0.05, for all. The serum NSE expression levels of patients with cerebral contusion were higher than that of patients with diffuse axonal injury (DAI, P = 0.025, subdural hematoma (P = 0.031 and epidural hematoma (P = 0.021. Serum NSE expression levels were negatively correlated with GCS score (rs = - 0.327, P = 0.024 and Glasgow Outcome Scale (GOS score (rs = - 0.252, P = 0.049. The NSE expression levels of CSF in severe and heavy TBI patients were higher than that of serum (P = 0.039, 0.031.  Conclusions NSE expression changes can be evaluated as an auxiliary indicator in reflecting the degree of acute TBI, typing diagnosis and prognostic evaluation, and NSE levels of CSF is more sensitive than that of serum. DOI: 10.3969/j.issn.1672-6731.2015.03.013

  14. Identification of genes involved in interactions between Biomphalaria glabrata and Schistosoma mansoni by suppression subtractive hybridization.

    Science.gov (United States)

    Lockyer, Anne E; Spinks, Jennifer; Noble, Leslie R; Rollinson, David; Jones, Catherine S

    2007-01-01

    Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, a medically important schistosome. In order to identify transcripts involved in snail-schistosome interactions, subtractive cDNA libraries were prepared, using suppression subtractive hybridization (SSH) between a parasite-exposed schistosome-resistant and a susceptible strain of B. glabrata, and also between schistosome-exposed and unexposed snails from the resistant snail line. Separate libraries were made from both haemocytes and the haemopoietic organ. Subtraction was performed in both directions enriching for cDNAs differentially expressed between parasite-exposed resistant and susceptible samples and up or down-regulated in the resistant line after challenge. The resulting eight libraries were screened and eight genes, differentially expressed between the haemocytes of resistant and susceptible snail strains, were identified and confirmed with reverse transcriptase PCR, including two transcripts expected to be involved in the stress response mechanism for regulating the damaging oxidative burst pathways involved in cytotoxic killing of the parasite: the iron-storage and immunoregulatory molecule, ferritin, and HtrA2, a serine protease involved in the cellular stress response. Transcripts with elevated levels in the resistant strain, had the same expression patterns in the subtracted libraries and unsubtracted controls; higher levels in exposed resistant snails compared to susceptible ones and down-regulated in exposed compared with unexposed resistant snails. Differential expression of two of the transcripts with no known function from the susceptible strain, was independently confirmed in a repeat exposure experiment.

  15. Profiling of oxygen-modulated gene expression in early human placenta by systematic sequencing of suppressive subtractive hybridization products.

    Science.gov (United States)

    Mondon, Françoise; Mignot, Thérèse-Marie; Rebourcet, Régis; Jammes, Hélène; Danan, Jean-Louis; Ferré, Françoise; Vaiman, Daniel

    2005-06-16

    Villi from first-trimester human placenta were exposed to oxygen concentrations of either 2 or 20% during 3 h to construct two reciprocally subtracted libraries using the suppressive subtractive hybridization (SSH) methodology. After cloning, sequencing, and gene identification, the genes (1,071 clones corresponding to 822 different sequences) were classified according to 1) the subtracted library from which they originated and 2) within 58 groups of gene functions. We then developed a logarithm of the odds (LOD) test to identify a possible excess of genes in each group. We show that genes involved in angiogenesis are significantly overrepresented in the "hypoxic" condition (2% O2), whereas apoptotic genes are overrepresented in the "normoxic" condition (20% O2). Furthermore, we observed an excess of kinases relative to phosphatases and an excess of genes involved in proliferation over genes involved in cell growth in the hypoxic condition. To validate our results, we used quantitative RT-PCR to analyze the set of eight genes involved in angiogenesis on six independent placentas. Finally, we studied the distribution of gene clusters on human chromosomes to check whether their chromosomal distribution was random or not. We observed on human chromosome 11 a clear clustering of genes regulated similarly by O2 tension, and we also discovered indications that such clustering exists on chromosomes 6 and 12.

  16. Overcoming evolved resistance to population-suppressing homing-based gene drives

    OpenAIRE

    Marshall, John M.; Buchman, Anna; S?nchez C., H?ctor M.; Akbari, Omar S.

    2017-01-01

    The recent development of a CRISPR-Cas9-based homing system for the suppression of Anopheles gambiae is encouraging; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele g...

  17. Conserved RXLR Effector Genes of Phytophthora infestans Expressed at the Early Stage of Potato Infection Are Suppressive to Host Defense

    Directory of Open Access Journals (Sweden)

    Junliang Yin

    2017-12-01

    Full Text Available Late blight has been the most devastating potato disease worldwide. The causal agent, Phytophthora infestans, is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance. Among numerous effector genes, the class of RXLR effector genes is well-known in mediating host genotype-specific resistance. We therefore performed deep sequencing of five genetically diverse P. infestans strains using in planta materials infected with zoospores (12 h post inoculation and focused on the identification of RXLR effector genes that are conserved in coding sequences, are highly expressed in early stages of plant infection, and have defense suppression activities. In all, 245 RXLR effector genes were expressed in five transcriptomes, with 108 being co-expressed in all five strains, 47 of them comparatively highly expressed. Taking sequence polymorphism into consideration, 18 candidate core RXLR effectors that were conserved in sequence and with higher in planta expression levels were selected for further study. Agrobacterium tumefaciens-mediated transient expression of the selected effector genes in Nicotiana benthamiana and potato demonstrated their potential virulence function, as shown by suppression of PAMP-triggered immunity (PTI or/and effector-triggered immunity (ETI. The identified collection of core RXLR effectors will be useful in the search for potential durable late blight resistance genes. Analysis of 10 known Avr RXLR genes revealed that the resistance genes R2, Rpi-blb2, Rpi-vnt1, Rpi-Smira1, and Rpi-Smira2 may be effective in potato cultivars. Analysis of 8 SFI (Suppressor of early Flg22-induced Immune response RXLR effector genes showed that SFI2, SFI3, and SFI4 were highly expressed in all examined strains, suggesting their potentially important function in early stages of pathogen infection.

  18. Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men.

    Science.gov (United States)

    Benedict, Christian; Cedernaes, Jonathan; Giedraitis, Vilmantas; Nilsson, Emil K; Hogenkamp, Pleunie S; Vågesjö, Evelina; Massena, Sara; Pettersson, Ulrika; Christoffersson, Gustaf; Phillipson, Mia; Broman, Jan-Erik; Lannfelt, Lars; Zetterberg, Henrik; Schiöth, Helgi B

    2014-01-01

    To investigate whether total sleep deprivation (TSD) affects circulating concentrations of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in humans. These factors are usually found in the cytoplasm of neurons and glia cells. Increasing concentrations of these factors in blood may be therefore indicative for either neuronal damage, impaired blood brain barrier function, or both. In addition, amyloid β (Aβ) peptides 1-42 and 1-40 were measured in plasma to calculate their ratio. A reduced plasma ratio of Aβ peptides 1-42 to 1-40 is considered an indirect measure of increased deposition of Aβ 1-42 peptide in the brain. Subjects participated in two conditions (including either 8-h of nocturnal sleep [22:30-06:30] or TSD). Fasting blood samples were drawn before and after sleep interventions (19:30 and 07:30, respectively). Sleep laboratory. 15 healthy young men. TSD increased morning serum levels of NSE (P = 0.002) and S-100B (P = 0.02) by approximately 20%, compared with values obtained after a night of sleep. In contrast, the ratio of Aβ peptides 1-42 to 1-40 did not differ between the sleep interventions. Future studies in which both serum and cerebrospinal fluid are sampled after sleep loss should elucidate whether the increase in serum neuron-specific enolase and S100 calcium binding protein B is primarily caused by neuronal damage, impaired blood brain barrier function, or is just a consequence of increased gene expression in non-neuronal cells, such as leukocytes.

  19. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity.

    Science.gov (United States)

    Xu, Huibin; Wei, Yidong; Zhu, Yongsheng; Lian, Ling; Xie, Hongguang; Cai, Qiuhua; Chen, Qiushi; Lin, Zhongping; Wang, Zonghua; Xie, Huaan; Zhang, Jianfu

    2015-05-01

    Lipid peroxidation plays a major role in seed longevity and viability. In rice grains, lipid peroxidation is catalyzed by the enzyme lipoxygenase 3 (LOX3). Previous reports showed that grain from the rice variety DawDam in which the LOX3 gene was deleted had less stale flavour after grain storage than normal rice. The molecular mechanism by which LOX3 expression is regulated during endosperm development remains unclear. In this study, we expressed a LOX3 antisense construct in transgenic rice (Oryza sativa L.) plants to down-regulate LOX3 expression in rice endosperm. The transgenic plants exhibited a marked decrease in LOX mRNA levels, normal phenotypes and a normal life cycle. We showed that LOX3 activity and its ability to produce 9-hydroperoxyoctadecadienoic acid (9-HPOD) from linoleic acid were significantly lower in transgenic seeds than in wild-type seeds by measuring the ultraviolet absorption of 9-HPOD at 234 nm and by high-performance liquid chromatography. The suppression of LOX3 expression in rice endosperm increased grain storability. The germination rate of TS-91 (antisense LOX3 transgenic line) was much higher than the WT (29% higher after artificial ageing for 21 days, and 40% higher after natural ageing for 12 months). To our knowledge, this is the first report to demonstrate that decreased LOX3 expression can preserve rice grain quality during storage with no impact on grain yield, suggesting potential applications in agricultural production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Energy Technology Data Exchange (ETDEWEB)

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  1. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    International Nuclear Information System (INIS)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-01-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc + neurons at 1000 ppm and Fos + neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased

  2. Interleukin-1β Suppresses the Transporter Genes Ank and Ent1 Expression in Stromal Progenitor Cells Retaining Mineralization.

    Science.gov (United States)

    Ezura, Yoichi; Lin, Xin; Hatta, Arina; Izu, Yayoi; Noda, Masaki

    2016-08-01

    Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1β enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1). However, possible contribution of other related factors had not been investigated. Here, we investigated the expression of regulators of extracellular pyrophosphate and nucleosides including Enpp1, Nt5e, Ank, Enptds, and Ent1, examining various connective tissue stromal progenitor cells, including bone marrow stromal cells and synovium derived cells from mouse, or bone marrow MSCs from human. Consistent with previous studies, we observed characteristic suppression of the osteoblastic marker genes by IL-1β during the osteogenic culture for 20 days. In addition, we observed a reduced expression of the important transporter genes, Ank and Ent1, whereas the alteration in Enpp1 and Nt5e levels was not always consistent among the cell types. Our results suggest that IL-1β suppresses not only the osteoblastic but also the negative regulators of soft-tissue calcification, including Ank and Ent1 in stromal progenitor cells, which may contribute to the mechanisms of HO in various disorders.

  3. MMS sensitivity of all amino acid-requiring mutants in aspergillus and its suppression by mutations in a single gene.

    Science.gov (United States)

    Käfer, E

    1987-04-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regulation of amino acid biosynthesis than MMS uptake, since a variety of pathway interactions were clearly modified by smsA suppressors in the absence of MMS.

  4. Overcoming evolved resistance to population-suppressing homing-based gene drives.

    Science.gov (United States)

    Marshall, John M; Buchman, Anna; Sánchez C, Héctor M; Akbari, Omar S

    2017-06-19

    The recent development of a CRISPR-Cas9-based homing system for the suppression of Anopheles gambiae is encouraging; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size. Our results suggest that, to achieve meaningful population suppression, tolerable rates of resistance allele generation are orders of magnitude smaller than those observed for current designs for CRISPR-Cas9-based homing systems. To remedy this, we theoretically explore a homing system architecture in which guide RNAs (gRNAs) are multiplexed, increasing the effective homing rate and decreasing the effective resistant allele generation rate. Modeling results suggest that the size of the population that can be suppressed increases exponentially with the number of multiplexed gRNAs and that, with four multiplexed gRNAs, a mosquito species could potentially be suppressed on a continental scale. We also demonstrate successful proof-of-principle use of multiplexed ribozyme flanked gRNAs to induce mutations in vivo in Drosophila melanogaster - a strategy that could readily be adapted to engineer stable, homing-based drives in relevant organisms.

  5. Profiling of differentially expressed genes in roots of Robinia pseudoacacia during nodule development using suppressive subtractive hybridization.

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    Full Text Available BACKGROUND: Legume-rhizobium symbiosis is a complex process that is regulated in the host plant cell through gene expression network. Many nodulin genes that are upregulated during different stages of nodulation have been identified in leguminous herbs. However, no nodulin genes in woody legume trees, such as black locust (Robinia pseudoacacia, have yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: To identify the nodulin genes involved in R. pseudoacacia-Mesorhizobium amorphae CCNWGS0123 symbiosis, a suppressive subtractive hybridization approach was applied to reveal profiling of differentially expressed genes and two subtracted cDNA libraries each containing 600 clones were constructed. Then, 114 unigenes were identified from forward SSH library by differential screening and the putative functions of these translational products were classified into 13 categories. With a particular interest in regulatory genes, twenty-one upregulated genes encoding potential regulatory proteins were selected based on the result of reverse transcription-polymerase chain reaction (RT-PCR analysis. They included nine putative transcription genes, eight putative post-translational regulator genes and four membrane protein genes. The expression patterns of these genes were further analyzed by quantitative RT-PCR at different stages of nodule development. CONCLUSIONS: The data presented here offer the first insights into the molecular foundation underlying R. pseudoacacia-M. amorphae symbiosis. A number of regulatory genes screened in the present study revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational and post-translational that is likely essential to develop symbiosis. In addition, the possible roles of these genes in black locust nodulation are discussed.

  6. Profiling of Differentially Expressed Genes in Roots of Robinia pseudoacacia during Nodule Development Using Suppressive Subtractive Hybridization

    Science.gov (United States)

    Wang, Xinye; Liu, Sisi; Zhang, Feilong; Wei, Gehong

    2013-01-01

    Background Legume-rhizobium symbiosis is a complex process that is regulated in the host plant cell through gene expression network. Many nodulin genes that are upregulated during different stages of nodulation have been identified in leguminous herbs. However, no nodulin genes in woody legume trees, such as black locust (Robinia pseudoacacia), have yet been reported. Methodology/Principal findings To identify the nodulin genes involved in R. pseudoacacia-Mesorhizobium amorphae CCNWGS0123 symbiosis, a suppressive subtractive hybridization approach was applied to reveal profiling of differentially expressed genes and two subtracted cDNA libraries each containing 600 clones were constructed. Then, 114 unigenes were identified from forward SSH library by differential screening and the putative functions of these translational products were classified into 13 categories. With a particular interest in regulatory genes, twenty-one upregulated genes encoding potential regulatory proteins were selected based on the result of reverse transcription-polymerase chain reaction (RT-PCR) analysis. They included nine putative transcription genes, eight putative post-translational regulator genes and four membrane protein genes. The expression patterns of these genes were further analyzed by quantitative RT-PCR at different stages of nodule development. Conclusions The data presented here offer the first insights into the molecular foundation underlying R. pseudoacacia–M. amorphae symbiosis. A number of regulatory genes screened in the present study revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational and post-translational) that is likely essential to develop symbiosis. In addition, the possible roles of these genes in black locust nodulation are discussed. PMID:23776436

  7. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  8. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  9. Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Chen Chunliu

    2010-07-01

    Full Text Available Abstract Background Tapping panel dryness (TPD is one of the most serious threats to natural rubber production. Although a great deal of effort has been made to study TPD in rubber tree, the molecular mechanisms underlying TPD remain poorly understood. Identification and systematical analyses of the genes associated with TPD are the prerequisites for elucidating the molecular mechanisms involved in TPD. The present study is undertaken to generate information about the genes related to TPD in rubber tree. Results To identify the genes related to TPD in rubber tree, forward and reverse cDNA libraries from the latex of healthy and TPD trees were constructed using suppression subtractive hybridization (SSH method. Among the 1106 clones obtained from the two cDNA libraries, 822 clones showed differential expression in two libraries by reverse Northern blot analyses. Sequence analyses indicated that the 822 clones represented 237 unique genes; and most of them have not been reported to be associated with TPD in rubber tree. The expression patterns of 20 differentially expressed genes were further investigated to validate the SSH data by reverse transcription PCR (RT-PCR and real-time PCR analysis. According to the Gene Ontology convention, 237 unique genes were classified into 10 functional groups, such as stress/defense response, protein metabolism, transcription and post-transcription, rubber biosynthesis, etc. Among the genes with known function, the genes preferentially expressed were associated with stress/defense response in the reverse library, whereas metabolism and energy in the forward one. Conclusions The genes associated with TPD were identified by SSH method in this research. Systematic analyses of the genes related to TPD suggest that the production and scavenging of reactive oxygen species (ROS, ubiquitin proteasome pathway, programmed cell death and rubber biosynthesis might play important roles in TPD. Therefore, our results not only

  10. Construction and testing of a bacterial luciferase reporter gene system for in vivo measurement of nonsense suppression in Streptomyces.

    Science.gov (United States)

    Weiser, J; Buriánková, K; Kalachová, L; Branny, P; Pernodet, J L

    2006-01-01

    A reporter gene system, based on luciferase genes from Vibrio harvei, was constructed for measurement of translation nonsense suppression in Streptomyces. Using the site-directed mutagenesis the TCA codon in position 13 of the luxB gene was replaced by all of the three stop codons individually. By cloning of luxA and luxB genes under the control of strong constitutive Streptomyces promoter ermE* in plasmid pUWL201 we created Wluxl with the wild-type sequence and pWlux2, pWlux3 and pWlux4 plasmids containing TGA-, TAG- and TAA-stop codons, respectively. Streptomyces lividans TK 24 was transformed with the plasmids and the reporter system was tested by growth of the strain in the presence of streptomycin as a translation accuracy modulator. Streptomycin increased nonsense suppression on UAA nearly 10-fold and more than 20-fold on UAG. On the other hand, UGA, the most frequent stop signal in Streptomyces, the effect was negligible.

  11. MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wu

    2016-02-01

    Full Text Available MiR-200a has been reported to be able to suppress the epithelial-mesenchymal transition process in pancreatic cancer stem cells, suggesting that miR-200a could suppress the metastasis of pancreatic ductal adenocarcinoma (PDAC. However, its role in proliferation and metastasis of PDAC and the underlying mechanism by which miR-200a works in PDAC have not been elucidated. In our study, we for the first time identified that DEK gene is a direct downstream target of miR-200a. It was found that overexpression of miR-200a decreased DEK expression, suppressing the proliferation, migration, and invasion of PDAC cells. Meanwhile, knockdown of miR-200a can increase DEK level, promoting the proliferation, migration, and invasion of PDAC cells. Our study demonstrated that miR-200a suppresses the metastasis in pancreatic PDAC through downregulation of DEK, suggesting that miR-200a may be used as a novel potential marker in prediction of metastasis of PDAC.

  12. Selection of genes associated with variations in the Circle of Willis in gerbils using suppression subtractive hybridization.

    Directory of Open Access Journals (Sweden)

    Zhenkun Li

    Full Text Available Deformities in the Circle of Willis (CoW can significantly increase the risk of cerebrovascular disease in humans. However, the molecular mechanisms underlying these deformities have not been understood. Based on our previous studies, variations in the CoW of gerbils are hereditary. A normal CoW is observed in approximately 60% of gerbils, a percentage that also applies to humans. Thus, gerbil is an ideal experimental model for studying variations in the CoW. To study the mechanisms underlying these variations, we selected genes associated with different types of the CoW using suppression subtractive hybridization (SSH. After evaluating the efficiency of SSH using quantitative real-time polymerase chain reaction (qPCR on subtracted and unsubtracted cDNA and Southern blotting on SSH PCR products, 12 SSH libraries were established. We identified 4 genes (CST3, GNAS, GPx4 and PFN2 associated with variations in the CoW. These genes were identified with qPCR and Western blotting using 70 expressed sequence tags from the SSH libraries. Cloning and sequencing allowed us to demonstrate that the 4 genes were closely related to mouse genes. We may assume that these 4 genes play an important role in the development of variations in the CoW. This study provides a foundation for further research of genes related to development of variations in the CoW and the mechanisms of dysmorphosis of cerebral vessels.

  13. Selection of Genes Associated with Variations in the Circle of Willis in Gerbils Using Suppression Subtractive Hybridization

    Science.gov (United States)

    Li, Zhenkun; Huo, Xueyun; Zhang, Shuangyue; Lu, Jing; Li, Changlong; Guo, Meng; Fu, Rui; He, Zhengming; Du, Xiaoyan; Chen, Zhenwen

    2015-01-01

    Deformities in the Circle of Willis (CoW) can significantly increase the risk of cerebrovascular disease in humans. However, the molecular mechanisms underlying these deformities have not been understood. Based on our previous studies, variations in the CoW of gerbils are hereditary. A normal CoW is observed in approximately 60% of gerbils, a percentage that also applies to humans. Thus, gerbil is an ideal experimental model for studying variations in the CoW. To study the mechanisms underlying these variations, we selected genes associated with different types of the CoW using suppression subtractive hybridization (SSH). After evaluating the efficiency of SSH using quantitative real-time polymerase chain reaction (qPCR) on subtracted and unsubtracted cDNA and Southern blotting on SSH PCR products, 12 SSH libraries were established. We identified 4 genes (CST3, GNAS, GPx4 and PFN2) associated with variations in the CoW. These genes were identified with qPCR and Western blotting using 70 expressed sequence tags from the SSH libraries. Cloning and sequencing allowed us to demonstrate that the 4 genes were closely related to mouse genes. We may assume that these 4 genes play an important role in the development of variations in the CoW. This study provides a foundation for further research of genes related to development of variations in the CoW and the mechanisms of dysmorphosis of cerebral vessels. PMID:25973917

  14. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Valdiglesias Vanessa

    2012-01-01

    Full Text Available Abstract Background Okadaic acid (OA, a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h. A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure, excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.

  15. Regulation of gene expression by low levels of ultraviolet-B radiation in Pisum sativum: Isolation of novel genes by suppression subtractive hybridisation

    International Nuclear Information System (INIS)

    Sävenstrand, H.; Brosché, M.; Strid, A.

    2002-01-01

    Suppression subtractive hybridisation was used to isolate genes differentially regulated by low levels (UV-B BE,300 0.13 W m -2 ) of ultraviolet-B radiation (UV-B; 290–320 nm) in Pisum sativum. Six genes were regulated, two of which were novel. The mRNA levels for these two (PsTSDC and PsUOS1) were increased and depressed by UV-B treatment, respectively. Domains in the PsTSDC translation product was similar to TIR (Toll-Interleukin-1 receptor-similar) domains and a NB-ARC domain (nucleotide-binding domain in APAF-1, R gene products and CED-4). The PsUOS1 translation product was similar to an open reading frame in Arabidopsis. Genes encoding embryo-abundant protein (PsEMB) and S-adenosyl-l-methionine synthase (PsSAMS) were induced by UV-B, whereas the transcript levels for genes encoding sucrose transport protein (PsSUT) or ribulose-5-phosphate 3-epimerase (PsR5P3E) were decreased. These regulation patterns are novel, and the PsEMB and PsR5P3E sequences are reported for the first time. The stress-specificity of regulation of these genes were tested by ozone fumigation (100 ppb O 3 ). Qualitatively, the similarity of expression after both UV-B and ozone exposure suggests that, for these genes, similar stress-response pathways are in action. (author)

  16. Genome expression analysis by suppression subtractive hybridization identified overexpression of Humanin, a target gene in gastric cancer chemoresistance.

    Science.gov (United States)

    Mottaghi-Dastjerdi, Negar; Soltany-Rezaee-Rad, Mohammad; Sepehrizadeh, Zargham; Roshandel, Gholamreza; Ebrahimifard, Farzaneh; Setayesh, Neda

    2014-01-08

    In cancer cells, apoptosis is an important mechanism that influences the outcome of chemotherapy and the development of chemoresistance. To find the genes involved in chemoresistance and the development of gastric cancer, we used the suppression subtractive hybridization method to identify the genes that are overexpressed in gastric cancer tissues compared to normal gastric tissues. In the suppression subtractive hybridization library we constructed, the most highly overexpressed genes were humanin isoforms. Humanin is a recently identified endogenous peptide that has anti-apoptotic activity and has been selected for further study due to its potential role in the chemoresistance of gastric cancer. Upregulation of humanin isoforms was also observed in clinical samples by using quantitative real-time PCR. Among the studied isoforms, humanin isoform 3, with an expression level of 4.166 ± 1.44 fold, was the most overexpressed isoform in GC. The overexpression of humanin in gastric cancer suggests a role for chemoresistance and provides new insight into the biology of gastric cancer. We propose that humanin isoforms are novel targets for combating chemoresistance in gastric cancer.

  17. Immunoreactive neuron-specific enolase (NSE) is expressed in testicular carcinoma-in-situ

    DEFF Research Database (Denmark)

    Kang, J L; Rajpert-De Meyts, E; Skakkebaek, N E

    1996-01-01

    -seminomas, and a mixed germ cell tumour. As the co-existence of high NSE production and gene amplification of N-myc has been reported in some tumours, including germ cell tumours, the expression of the protein product of N-myc was also examined in this study, but only sporadic cases showed N-myc staining. These results...... are evidence against a relationship between NSE and N-myc in testicular germ cell tumours. The high expression of NSE in CIS and overt germ cell tumours may be due to the increased gene dosage effect associated with the overrepresentation of isochromosome 12p....

  18. Differences and Similarities of Soybean Defense-Related Genes Suppressed by Pathogenic and Symbiotic Bacteria

    Science.gov (United States)

    Bacterial effector proteins secreted through type III secretion systems (T3SS) play a crucial role in establishing plant and human diseases. Type III effectors have been shown to trigger defense responses when recognized by resistant plants, and to suppress defense responses in susceptible host plan...

  19. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas Toft

    2012-01-01

    We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y...

  20. Deoxyribonucleic acid initiation mutation dnaB252 is suppressed by elevated dnaC+ gene dosage.

    OpenAIRE

    Sclafani, R A; Wechsler, J A

    1981-01-01

    The Escherichia coli dnaB252 allele is the only dnaB mutation which confers a deoxyribonucleic acid initiation-defective phenotype on the cell. The presence of a multicopy hybrid plasmid containing the dnaC+ gene in a dnaB252 strain completely suppressed the temperature-sensitive phenotype. It is suggested that at high temperature the dnaB252 protein has a lowered affinity for dnaC protein, and that the formation of a dnaB-dnaC complex is mandatory for initiation.

  1. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Hatta, Mitsutoki; Naganuma, Kaori; Kato, Kenichi; Yamazaki, Jun

    2015-01-01

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  2. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan); Naganuma, Kaori [Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka (Japan); Kato, Kenichi; Yamazaki, Jun [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan)

    2015-12-04

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  3. Differential expression of genes identified by suppression subtractive hybridization in liver and adipose tissue of gerbils with diabetes

    Science.gov (United States)

    Li, Zhenkun; Li, Xiaohong; Guo, Meng; Lu, Jing; Wang, Ying; Chen, Zhenwen

    2018-01-01

    Objectives We aimed at identifying genes related to hereditary type 2 diabetes expressed in the liver and the adipose tissue of spontaneous diabetic gerbils using suppression subtractive hybridization (SSH) screening. Methods Two gerbil littermates, one with high and the other with normal blood glucose level, from our previously bred spontaneous diabetic gerbil strain were used in this study. To identify differentially expressed genes in the liver and the adipose tissue, mRNA from these tissues was extracted and SSH libraries were constructed for screening. After sequencing and BLAST analyzing, up or down-regulated genes possibly involved in metabolism and diabetes were selected, and their expression levels in diabetic gerbils and normal controls were analyzed using quantitative RT-PCR and Western blotting. Results A total of 4 SSH libraries were prepared from the liver and the adipose tissue of gerbils. There are 95 up or down-regulated genes were identified to be involved in metabolism, oxidoreduction, RNA binding, cell proliferation, and differentiation or other function. Expression of 17 genes most possibly associated with diabetes was analyzed and seven genes (Sardh, Slc39a7, Pfn1, Arg1, Cth, Sod1 and P4hb) in the liver and one gene (Fabp4) in the adipose tissue were identified that were significantly differentially expressed between diabetic gerbils and control animals. Conclusions We identified eight genes associated with type 2 diabetes from the liver and the adipose tissue of gerbils via SSH screening. These findings provide further insights into the molecular mechanisms of diabetes and imply the value of our spontaneous diabetic gerbil strain as a diabetes model. PMID:29394254

  4. Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Malayer Jerry R

    2003-02-01

    Full Text Available Abstract During late peri-implantation development, porcine conceptuses undergo a rapid (2–3 hrs morphological transformation from a 10 mm sphere to a thin filamentous form greater than 150 mm in length. Elongation of the conceptus is important for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. Genes involved with triggering this unique transition in conceptus development are not well defined. Objective of the present study was to utilize suppression subtractive hybridization (SSH to characterize the change in gene expression during conceptus transformation from spherical (8–9 mm to tubular (15–40 mm to early filamentous (>150 mm morphology. Spherical, tubular, and filamentous conceptuses were collected from pregnant gilts and subjected to SSH. Forward and reverse subtractions were performed to identify candidate genes differentially expressed during spherical to tubular and tubular to filamentous transition. A total of 384 transcripts were differentially screened to ensure unique expression. Of the transcripts screened, sequences were obtained for 142 that were confirmed to be differentially expressed among the various morphologies. Gene expression profiles during rapid trophoblastic elongation were generated for selected mRNAs using quantitative real-time PCR. During the transition from tubular to early filamentous conceptuses, s-adenosylhomocysteine hydrolase and heat shock cognate 70 kDa expression were significantly enhanced. A novel unknown gene was isolated and shown to be significantly up-regulated at the onset of rapid trophoblastic elongation and further enhanced in filamentous conceptuses.

  5. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells

    Directory of Open Access Journals (Sweden)

    Munir Shirin

    2004-01-01

    Full Text Available High throughput detection of differential expression of genes is an efficient means of identifying genes and pathways that may play a role in biological systems under certain experimental conditions. There exist a variety of approaches that could be used to identify groups of genes that change in expression in response to a particular stimulus or environment. We here describe the application of suppression subtractive hybridization (SSH coupled with cDNA microarray analysis for isolation and identification of chicken transcripts that change in expression on infection of host cells with a paramyxovirus. SSH was used for initial isolation of differentially expressed transcripts, a large-scale validation of which was accomplished by microarray analysis. The data reveals a large group of regulated genes constituting many biochemical pathways that could serve as targets for future investigations to explore their role in paramyxovirus pathogenesis. The detailed methods described herein could be useful and adaptable to any biological system for studying changes in gene expression.

  6. Identification of heavy metal pollutant tolerance-associated genes in Avicennia marina (Forsk.) by suppression subtractive hybridization.

    Science.gov (United States)

    Zhang, Jicheng; Yu, Jinfeng; Hong, Hualong; Liu, Jingchun; Lu, Haoliang; Yan, Chongling

    2017-06-15

    The halophytic Avicennia marina (Forsk.) is one of the pioneer mangroves along the south coast of China. It is an appropriate material for understanding molecular mechanisms of heavy metal tolerance in mangrove plants. A forward and a reverse cDNA library was constructed by PCR-based suppressive subtractive hybridization (SSH) to isolate these tolerance-associated genes from A. marina leaves. A total of 99 ESTs obtained from the forward and reverse libraries showed significant differential expressions. Twenty-nine genes selected by SSH were studied by real-time PCR in order to analyze their expression level. Most of these genes' expression increased in leaves under Cd stress, which suggests that these genes contribute to the heavy metal tolerance in A. marina. The diversity of these genes indicated that heavy metal stress resulted in a complex response in mangrove plants. This could prove a useful approach for further exploring the molecular mechanisms behind such heavy metal tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate

    OpenAIRE

    Xu, Xiao-Ming; Sansores-Garcia, Leticia; Chen, Xian-Ming; Matijevic-Aleksic, Nevenka; Du, Min; Wu, Kenneth K.

    1999-01-01

    The pharmacological action of salicylate cannot be explained by its inhibition of cyclooxygenase (COX) activity. In this report, the effects of aspirin and sodium salicylate on COX-2 expressions in human umbilical vein endothelial cells and foreskin fibroblasts were evaluated. Aspirin and sodium salicylate at therapeutic concentrations equipotently blocked COX-2 mRNA and protein levels induced by interleukin-1β and phorbol 12-myristate 13-acetate. The suppressing effect was more pronounced in...

  8. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  9. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization.

    Science.gov (United States)

    Liang, Yuanxue; Yuan, Yijun; Liu, Tao; Mao, Wei; Zheng, Yusheng; Li, Dongdong

    2014-08-02

    Coconut (Cocos nucifera L.) is one of the world's most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as high as 66.6%. Based on

  10. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  11. Identification of differential expression of genes in hepatocellular carcinoma by suppression subtractive hybridization combined cDNA microarray.

    Science.gov (United States)

    Liu, Yuefang; Zhu, Xiaojing; Zhu, Jin; Liao, Shibing; Tang, Qi; Liu, Kaikun; Guan, Xiaohong; Zhang, Jianping; Feng, Zhenqing

    2007-10-01

    The genetic background of hepatocellular carcinoma (HCC) has yet to be completely understood. Here, we describe the application of suppression subtractive hybridization (SSH) coupled with cDNA microarray analysis for the isolation and identification of differential expression of genes in HCC. Twenty-six known genes were validated as up-regulated and 19 known genes as down-regulated in HCC. The known genes identified were found to have diverse functions. In addition to the overexpression of AFP, these genes (increased in the presence of HCC) are involved in many processes, such as transcription and protein biosynthesis (HNRPDL, PABPC1, POLR2K, SRP9, SNRPA, and six ribosomal protein genes including RPL8, RPL14, RPL41, RPS5, RPS17, RPS24), the metabolism of lipids and proteins (FADS1, ApoA-II, ApoM, FTL), cell proliferation (Syndecan-2, and Annexin A2), and signal transduction (LRRC28 and FMR1). Additionally, a glutathione-binding protein involved in the detoxification of methylglyoxal known as GLO1 and an enzyme which increases the formation of prostaglandin E(2) known as PLA2G10 were up-regulated in HCC. Among the underexpressed genes discovered in HCC, most were responsible for liver-synthesized proteins (fibrinogen, complement species, amyloid, albumin, haptoglobin, hemopexin and orosomucoid). The enzyme implicated in the biotransformation of CYP family members (LOC644587) was decreased. The genes coding enzymes ADH1C, ALDH6A1, ALDOB, Arginase and CES1 were also found. Additionally, we isolated a zinc transporter (Zip14) and a function-unknown gene named ZBTB11 (Zinc finger and BTB domain containing 11) which were underexpressed, and seven expression sequence tags deregulated in HCC without significant homology reported in the public database. Essentially, by using SSH combined with a cDNA microarray we have identified a number of genes associated with HCC, most of which have not been previously reported. Further characterization of these differentially expressed

  12. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization

    Science.gov (United States)

    2014-01-01

    Background Coconut (Cocos nucifera L.) is one of the world’s most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. Results Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as

  13. Identification of four genes involved in suppression of the pre-mRNA ...

    Indian Academy of Sciences (India)

    Unknown

    Switching gene swi6, involved in repression of silent mating type loci in fission yeast, encodes a homology of chromatin associated proteins from Drosophila and mammals. Gene. 143, 139–143. Moreno S., Klar A. and Nurse P. 1991 Molecular genetic analysis of fission yeast: guide to yeast genetics and molecu- lar biology.

  14. [Construction of the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene.].

    Science.gov (United States)

    Ye, Sujuan; Feng, Zhihua; Zhu, Wen; Cai, Chunji; Li, Lu; Sun, Liya; Wan, Haisu; Ma, Li; Zhou, Qinghua

    2008-08-20

    It has been proven that nm23-H1 gene is an important metastaticsuppressed gene of lung cancer. In order to screen the differential expression genes related to nm23-H1 , we constructed the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene by suppression subtractive hybridization (SSH) in this study, which lay a solid foundation for further screening and cloning metastatic-related genes of nm23-H1. The forward and reverse suppression subtractive cDNA libraries were constructed in the human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene (L9981 and L9981-nm23-H1) by SSH method. The positive clones were preliminarily screened by bluewhite colony, and precisely identified by PCR. The suppression subtractive cDNA libraries were successfully constructed in the human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981). After the blue-white screening, about three hundred positive clones in the forward subtracted library and four hundred positive clones in the reverse subtracted library were obtained. Ramdom analysis of 96 clones in each library with colony PCR methods showed that 84 clones in the forward subtracted library and 83 clones in the reverse subtracted library contained (300-750) bp inserts. SSH is proved to be an efficient tool for differential expression gene cloning. The forward and reverse suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981) are successfully constructed by SSH and T/A cloning technology. The expression of nm23-H1 gene in the human large cell lung cancer cell lines may affect the differential expression of some metastatic-related genes.

  15. Orexin gene transfer into the amygdala suppresses both spontaneous and emotion-induced cataplexy in orexin-knockout mice.

    Science.gov (United States)

    Liu, Meng; Blanco-Centurion, Carlos; Konadhode, Roda Rani; Luan, Liju; Shiromani, Priyattam J

    2016-03-01

    Narcolepsy is a chronic sleep disorder linked to the loss of orexin-producing neurons in the hypothalamus. Cataplexy, a sudden loss of muscle tone during waking, is an important distinguishing symptom of narcolepsy and it is often triggered by strong emotions. The neural circuit underlying cataplexy attacks is not known, but is likely to involve the amygdala, a region implicated in regulating emotions. In mice models of narcolepsy, transfer of the orexin gene into surrogate neurons has been successful in ameliorating narcoleptic symptoms. However, it is not known whether this method also blocks cataplexy triggered by strong emotions. To examine this possibility, the gene encoding mouse prepro-orexin was transferred into amygdala neurons of orexin-knockout (KO) mice (rAAV-orexin; n = 8). Orexin-KO mice that did not receive gene transfer (no-rAAV; n = 7) or received only the reporter gene (rAAV-GFP; n = 7) served as controls. Three weeks later, the animal's sleep and behaviour were recorded at night (no-odour control night), followed by another recording at night in the presence of predator odour (odour night). Orexin-KO mice given the orexin gene transfer into surrogate amygdala neurons had significantly less spontaneous bouts of cataplexy, and predator odour did not induce cataplexy compared with control mice. Moreover, the mice with orexin gene transfer were awake more during the odour night. These results demonstrate that orexin gene transfer into amygdala neurons can suppress both spontaneous and emotion-induced cataplexy attacks in narcoleptic mice. It suggests that manipulating amygdala pathways is a potential strategy for treating cataplexy in narcolepsy. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin

    2014-08-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  17. Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus.

    Science.gov (United States)

    Dios, S; Poisa-Beiro, L; Figueras, A; Novoa, B

    2007-03-01

    Despite of the impact that viruses have on aquatic organisms, relatively little is known on how fish fight against these infections. In this work, the brain gene expression pattern of sea bream (Sparus aurata) in response to nodavirus infection was investigated. We used the suppression subtractive hybridization (SSH) method to generate a subtracted cDNA library enriched with gene transcripts differentially expressed after 1 day post-infection. Some of the ESTs from the infected tissues fell in gene categories related to stress and immune responses. For the reverse library (ESTs expressed in controls compared with infected tissues) the most abundant transcripts were of ribosomal and mitochondrial nature. Several ESTs potentially induced by virus exposure were selected for in vivo expression studies. We observed a clear difference in expression between infected and control samples for two candidate genes, ubiquitin conjugating enzyme 7 interacting protein, which seems to play an important role in apoptosis and the interferon induced protein with helicase C domain 1 (mda-5) that contributes to apoptosis and regulates the type I IFN production, a key molecule of the antiviral innate response in most organisms.

  18. Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge.

    Science.gov (United States)

    He, Nanhai; Liu, Haipeng; Xu, Xun

    2004-08-01

    Penaeus japonicus were injected with a heat-killed microorganism suspension and 291 randomly selected cDNA fragments generated by suppression subtractive hybridization (SSH) were sequenced. A total of 71 cDNA clones corresponding to 25 genes were found to have enhanced expression, of which eight are found for the first time in shrimp. The most abundant gene in the subtractive library was Kunitz-type protease inhibitor, clearly indicating this protease inhibitor in the response. A number of genes encoding signaling molecules, such as Ras-related nuclear protein (Ran), growth factor receptor bound protein (Grb), TGF-beta receptor interacting protein, integrin binding protein and interferon receptor bound protein were found for the first time in the shrimp, and they may be involved in the regulation of the host defense against the injected microbes. Furthermore, cDNAs of chaperonin, proteasome, antioxidant as well as genes associated with actin reorganization, which may be necessary for phagocytosis and encapsulation, were also expressed at a higher level after the challenge. These results may facilitate the understanding of shrimp immune responses.

  19. Suppression of gluconeogenic gene expression by LSD1-mediated histone demethylation.

    Directory of Open Access Journals (Sweden)

    Dongning Pan

    Full Text Available Aberrant gluconeogenic gene expression is associated with diabetes, glycogen storage disease, and liver cancer. However, little is known how these genes are regulated at the chromatin level. In this study, we investigated in HepG2 cells whether histone demethylation is a potential mechanism. We found that knockdown or pharmacological inhibition of histone demethylase LSD1 causes remarkable transcription activation of two gluconeogenic genes, FBP1 and G6Pase, and consequently leads to increased de novo glucose synthesis and decreased intracellular glycogen content. Mechanistically, LSD1 occupies the promoters of FBP1 and G6Pase, and modulates their H3K4 dimethylation levels. Thus, our work identifies an epigenetic pathway directly governing gluconeogenic gene expression, which might have important implications in metabolic physiology and diseases.

  20. Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2014-11-01

    Conclusions: We successfully constructed an SSH cDNA library in peanut roots and identified several drought-related genes. Our results serve as a foundation for future studies into the elucidation of the drought stress response mechanisms of peanut.

  1. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  2. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  3. Gene expression of the concentration-sensitive sodium channel is suppressed in lipopolysaccharide-induced acute lung injury in mice.

    Science.gov (United States)

    Hagiwara, Teruki; Yoshida, Shigeru; Hidaka, Yuji

    2017-04-01

    The concentration-sensitive sodium channel (Na C ) is expressed in alveolar type II epithelial cells and pulmonary microvascular endothelial cells in mouse lungs. We recently reported that Na C contributes to amiloride-insensitive sodium transport in mouse lungs (Respiratory Physiology & Neurobiology, 2016). However, details regarding its physiological role in the lung remain unknown. To examine whether Na C is involved in alveolar fluid clearance during an acute lung injury (ALI), we analyzed the relationship between Na C gene expression in the lung and the development of pulmonary edema in lipopolysaccharide (LPS)-induced ALI mice. LPS-induced ALI mice were prepared by the intratracheal administration of LPS. Bronchoalveolar lavage (BAL) neutrophils and lung water content (LWCs) were used as a marker of ALI and pulmonary edema, respectively. Na C protein production in the lung was detected by immunoblotting and immunofluorescence. The gene expressions of Na C and the epithelial sodium channel (ENaC) of LPS-induced ALI mice were examined by quantitative RT-PCR over a time course of 14 days. The BAL neutrophil count increased until day 2 after LPS administration and had nearly recovered by day 6. LWCs in LPS-induced mice gradually increased until day 8 and had recovered by day 14. The expression of the Na C protein in the lungs of LPS-induced mice dramatically decreased from day 2 to day 6, but recovered by day 8. The mRNA expression of Na C decreased in the lung, as well as those for α-, β-, and γ-ENaC during ALI. Thus, Na C expression is suppressed during the development stage of pulmonary edema and then recovers in the convalescent phase. Our results suggest that suppression of the gene expression of Na C is involved in the development of pulmonary edema in ALI.

  4. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus.

    Science.gov (United States)

    Yordy, Brian; Iijima, Norifumi; Huttner, Anita; Leib, David; Iwasaki, Akiko

    2012-09-13

    Type I interferons (IFNs) are considered to be the universal mechanism by which viral infections are controlled. However, many IFN-stimulated genes (ISGs) rely on antiviral pathways that are toxic to host cells, which may be detrimental in nonrenewable cell types, such as neurons. We show that dorsal root ganglionic (DRG) neurons produced little type I IFNs in response to infection with a neurotropic virus, herpes simplex type 1 (HSV-1). Further, type I IFN treatment failed to completely block HSV-1 replication or to induce IFN-primed cell death in neurons. We found that DRG neurons required autophagy to limit HSV-1 replication both in vivo and in vitro. In contrast, mucosal epithelial cells and other mitotic cells responded robustly to type I IFNs and did not require autophagy to control viral replication. These findings reveal a fundamental difference in the innate antiviral strategies employed by neurons and mitotic cells to control HSV-1 infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded...... to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...

  6. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  7. siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model.

    Science.gov (United States)

    Imamura, Osamu; Okada, Hiroaki; Takashima, Yuuki; Zhang, Danqing; Kobayashi, Toshiyuki; Hino, Okio

    2008-09-18

    Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice.

  8. Isolation and Expression Analysis of Novel Silicon Absorption Gene from Roots of Mangrove (Rhizophora apiculata via Suppression Subtractive Hybridization

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2014-01-01

    Full Text Available Silicon (Si is the second most abundant element in soil after oxygen. It is not an essential element for plant growth and formation but plays an important role in increasing plant tolerance towards different kinds of abiotic and biotic stresses. The molecular mechanism of Si absorption and accumulation may differ between plants, such as monocotyledons and dicotyledons. Silicon absorption and accumulation in mangrove plants are affected indirectly by some proteins rich in serine and proline amino acids. The expression level of the genes responsible for Si absorption varies in different parts of plants. In this study, Si is mainly observed in the epidermal roots’ cell walls of mangrove plants compared to other parts. The present work was carried out to discover further information on Si stress responsive genes in Rhizophora apiculata, using the suppression subtractive hybridization technique. To construct the cDNA library, two-month-old seedlings were exposed to 0.5, 1, and 1.5 mM SiO2 for 15 hrs and for 1 to 6 days resulting in a total of 360 high quality ESTs gained. Further examination by RT-PCR and real-time qRT-PCR showed the expression of a candidate gene of serine-rich protein.

  9. [Gene expression profiling by suppression subtractive hybridization (SSH): a example for its application to the study of lymphomas].

    Science.gov (United States)

    Villalva, C; Trempat, P; Zenou, R C; Delsol, G; Brousset, P

    2001-03-01

    Suppression subtractive hybridization (SSH) was used to isolate genes that were differentially expressed in anaplastic lymphoma kinase (ALK)-positive and ALK-negative anaplastic large cell lymphoma. In addition, this approach was applied to Hodgkin's disease cases with different clinical outcomes. SSH combines a normalization step that equalizes the abundance of cDNAs within the sequences to be tested and a subtraction step that excludes the common sequences between the target and the control. In a model system, the SSH technique enriches for rare sequences up to 5,000-fold in one round. We have isolated several genes whose expression varied significantly with regard to the tumour subtypes. There were different genes with known or unknown functions. We aim to compare the results of the SSH approach with those obtained with high density filters. In a near future, we would like to design DNA chips specific of each pathology that could be used for clinical purposes (evaluation of prognosis and therapeutic response).

  10. Analysis of gene expression by ESTs from suppression subtractive hybridization library in Chenopodium album L. under salt stress.

    Science.gov (United States)

    Gu, Lili; Xu, Dongsheng; You, Tianyu; Li, Xiuming; Yao, Shixiang; Chen, Shasha; Zhao, Juan; Lan, Haiyan; Zhang, Fuchun

    2011-11-01

    To identify genes expression in Chenopodium album exposed to NaCl stress and screen ESTs related to salt stress, a subtractive suppression hybridization (SSH) library of C. album under salt stress was constructed in the present study. Random EST sequencing produced 825 high-quality ESTs with GenBank ID GE746311-GE747007, which had 301 bp of average size and were clustered into 88 contigs and 550 singletons. They were classified into 12 categories according to their function annotations. 635 ESTs (76.97%) showed similarities to gene sequences in the non-redundancy database, while 190 ESTs (23.03%) showed low or no similarities. The transcriptional profiles of 56 ESTs randomly selected from 347 unknown or novel ESTs of SSH library under varying NaCl concentration and at different time points were analyzed. The results indicated that a high proportion of tested ESTs were activated by salt stress. Four in 56 ESTs responded to NaCl were also enhanced in expression level when exposed to ABA and PEG stresses. The above four ESTs were validated by northern blotting which was consistent with the results of RT-PCR. The results suggested that genes corresponded to these ESTs might be involved in stress response or regulation. The complete sequences and detailed function of these ESTs need to be further studied.

  11. Suppression of plant resistance gene-based immunity by a fungal effector

    NARCIS (Netherlands)

    Houterman, P.M.; Cornelissen, B.J.C.; Rep, M.

    2008-01-01

    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted

  12. Expression of the rat protamine 2 gene is suppressed at the level of transcription and translation

    Energy Technology Data Exchange (ETDEWEB)

    Bunick, D.; Hecht, N.B. (Tufts Univ., Medford, MA (United States)); Balhorn, R.; Stanker, L.H. (Lawrence Livermore National Lab., CA (United States))

    1990-05-01

    The authors have compared the rat protamine 2 gene sequence (rP2) to that of the mouse protamine 2 (mP2) gene. The sequence encompasses 435 nucleotides of the coding region which includes an intron of 120 nucleotides, 461 nucleotides 5{prime} to the coding sequence and 181 bases 3{prime} to it. In the mouse the protamine 2 gene is abundantly transcribed and translated. The mP2 protein is initially synthesized as a precursor and then proteolytically processed to yield the mature protein. In contrast, in the rat, protamine 2 transcripts are present at 2-5% that found in the mouse and the mature protein has never been detected in spermatozoa. Analyses of total sperm basic nuclear proteins extracted from epididymal sperm using a monoclonal antibody specific for protamine 2 suggest that the rat P2 mRNA is translated in vivo but is not properly processed. These results suggest that the lowered transcription rate and altered processing sites of the rat protamine 2 gene are likely to contribute to the lack of protamine 2 in rat spermatozoa.

  13. Identification of Differentially Expressed Genes in Metastatic and Non-Metastatic Nasopharyngeal Carcinoma Cells by Suppression Subtractive Hybridization

    Directory of Open Access Journals (Sweden)

    Xu-Yu Yang

    2005-01-01

    Full Text Available Background & Objective: Nasopharyngeal carcinoma (NPC is an epithelial neoplasm with high occurrence rates in southern China. The disease often metastasizes to regional lymphnodes at a very early stage. Local recurrences and metastasis occur frequently in patients with NPC and are a leading cause of death, despite improvements on treatment modalities. The molecular mechanism underlying the metastasis of nasopharyngeal carcinoma remains poorly understood, however, and requires additional elucidation. The aim of this study was to explore possible NPC gene candidates that may play key roles in NPC metastasis. Methods: Subtractive suppression hybridization (SSH was performed to isolate differentially expressed clones between the metastatic 5-8F and non-metastatic 6-10B nasopharyngeal carcinoma cell lines. Differentially expressed clones were screened and confirmed by reverse Northern blotting. The sequences of cDNA fragments were subsequently analyzed and compared to known sequences in Genbank. Results & Discussion: The SSH library contained thousands of positive clones. Random analysis of 300 clones by PCR demonstrated that 269 clones contained inserted fragments. Reverse Northern blot confirmed that 20 out of 192 clones examined were significantly up-regulated in the 5-8F cell line. Among these 20 clones, 16 were previously identified genes (flotilin-2, ezrin, pim-3, fli-1, mel, neugrin, znf216, ASB1, raly, UBE2A, keratin6A, TMED7, EIF3S9, FTL, two ribosomal proteins RPL21 and RPL16, two were predicted genes (c9orf74 and MDS006, and two sequences shared no homology with known genes listed in GenBank and may represent novel genes. The proposed functions of the genes identified in this study include cell signal transduction, cell survival, transcription regulation, cell mobility, protein synthesis, and DNA damage repair. Flotillin-2, fli-1, pim-3 and ezrin have previously been reported to be associated with tumor metastasis and progression. The

  14. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    Science.gov (United States)

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa. Copyright © 2016 the American Physiological Society.

  15. Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis.

    Science.gov (United States)

    Kato, Shota; Soshino, Mika; Takaichi, Shinichi; Ishikawa, Takahiro; Nagata, Noriko; Asahina, Masashi; Shinomura, Tomoko

    2017-07-17

    Photosynthetic organisms utilize carotenoids for photoprotection as well as light harvesting. Our previous study revealed that high-intensity light increases the expression of the gene for phytoene synthase (EgcrtB) in Euglena gracilis (a unicellular phytoflagellate), the encoded enzyme catalyzes the first committed step of the carotenoid biosynthesis pathway. To examine carotenoid synthesis of E. gracilis in response to light stress, we analyzed carotenoid species and content in cells grown under various light intensities. In addition, we investigated the effect of suppressing EgcrtB with RNA interference (RNAi) on growth and carotenoid content. After cultivation for 7 days under continuous light at 920 μmol m -2  s -1 , β-carotene, diadinoxanthin (Ddx), and diatoxanthin (Dtx) content in cells was significantly increased compared with standard light intensity (55 μmol m -2  s -1 ). The high-intensity light (920 μmol m -2  s -1 ) increased the pool size of diadinoxanthin cycle pigments (i.e., Ddx + Dtx) by 1.2-fold and the Dtx/Ddx ratio from 0.05 (control) to 0.09. In contrast, the higher-intensity light treatment caused a 58% decrease in chlorophyll (a + b) content and diminished the number of thylakoid membranes in chloroplasts by approximately half compared with control cells, suggesting that the high-intensity light-induced accumulation of carotenoids is associated with an increase in both the number and size of lipid globules in chloroplasts and the cytoplasm. Transient suppression of EgcrtB in this alga by RNAi resulted in significant decreases in cell number, chlorophyll, and total major carotenoid content by 82, 82 and 86%, respectively, relative to non-electroporated cells. Furthermore, suppression of EgcrtB decreased the number of chloroplasts and thylakoid membranes and increased the Dtx/Ddx ratio by 1.6-fold under continuous illumination even at the standard light intensity, indicating that blocking carotenoid synthesis increased the

  16. Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Katherine A. McCulloch

    2017-07-01

    Full Text Available Acetylcholine (ACh receptors (AChR regulate neural circuit activity in multiple contexts. In humans, mutations in ionotropic acetylcholine receptor (iAChR genes can cause neurological disorders, including myasthenia gravis and epilepsy. In Caenorhabditis elegans, iAChRs play multiple roles in the locomotor circuit. The cholinergic motor neurons express an ACR-2-containing pentameric AChR (ACR-2R comprised of ACR-2, ACR-3, ACR-12, UNC-38, and UNC-63 subunits. A gain-of-function mutation in the non-α subunit gene acr-2 [acr-2(gf] causes defective locomotion as well as spontaneous convulsions. Previous studies of genetic suppressors of acr-2(gf have provided insights into ACR-2R composition and assembly. Here, to further understand how the ACR-2R regulates neuronal activity, we expanded the suppressor screen for acr-2(gf-induced convulsions. The majority of these suppressor mutations affect genes that play critical roles in synaptic transmission, including two novel mutations in the vesicular ACh transporter unc-17. In addition, we identified a role for a conserved major facilitator superfamily domain (MFSD protein, mfsd-6, in regulating neural circuit activity. We further defined a role for the sphingosine (SPH kinase (Sphk sphk-1 in cholinergic neuron activity, independent of previously known signaling pathways. Overall, the genes identified in our study suggest that optimal modulation of synaptic activity is balanced by the differential activities of multiple pathways, and the novel alleles provide valuable reagents to further dissect neuronal mechanisms regulating the locomotor circuit.

  17. Resveratrol Suppresses PAI-1 Gene Expression in a Human In Vitro Model of Inflamed Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ivana Zagotta

    2013-01-01

    Full Text Available Increased plasminogen activator inhibitor-1 (PAI-1 levels are associated with a number of pathophysiological complications; among them is obesity. Resveratrol was proposed to improve obesity-related health problems, but the effect of resveratrol on PAI-1 gene expression in obesity is not completely understood. In this study, we used SGBS adipocytes and a model of human adipose tissue inflammation to examine the effects of resveratrol on the production of PAI-1. Treatment of SGBS adipocytes with resveratrol reduced PAI-1 mRNA and protein in a time- and concentration-dependent manner. Further experiments showed that obesity-associated inflammatory conditions lead to the upregulation of PAI-1 gene expression which was antagonized by resveratrol. Although signaling via PI3K, Sirt1, AMPK, ROS, and Nrf2 appeared to play a significant role in the modulation of PAI-1 gene expression under noninflammatory conditions, those signaling components were not involved in mediating the resveratrol effects on PAI-1 production under inflammatory conditions. Instead, we demonstrate that the resveratrol effects on PAI-1 induction under inflammatory conditions were mediated via inhibition of the NFκB pathway. Together, resveratrol can act as NFκB inhibitor in adipocytes and thus the subsequently reduced PAI-1 expression in inflamed adipose tissue might provide a new insight towards novel treatment options of obesity.

  18. Conditional immune-gene suppression of honeybees parasitized by Varroa mites

    Science.gov (United States)

    Gregory, Pamela G.; Evans, Jay D.; Rinderer, Thomas; de Guzman, Lilia

    2005-01-01

    The ectoparasitic mite, Varroa destructor, is the most destructive parasite of managed honeybee colonies worldwide. Since V. destructor transfers pathogens to honeybees, it may be adaptive for bees to respond to mite infestation by upregulating their immune responses. Mites, however, may overcome the host's immune responses by suppressing them, which could facilitate the mite's ability to feed on hemolymph. A humoral immune response of bees parasitized by V. destructor may be detected by studying the expression levels of antibacterial peptides, such as abaecin and defensin, known to be immune-responsive. Expression levels for these two antibacterial peptides changed non-linearly with respect to the number of mites parasitizing honeybee pupae. Bees exposed to low or moderate number of mites had fewer immune-related transcripts than pupae that were never parasitized or pupae with high mite loads. Although many of the pupae tested indicated the presence of bacteria, no correlation with mite numbers or immune-response levels existed. All bees tested negative for acute paralysis and Kashmir bee viruses known to be vectored by V. destructor. PMID:16299597

  19. Construction of the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene

    Directory of Open Access Journals (Sweden)

    Sujuan YE

    2008-08-01

    Full Text Available Background and objective It has been proven that nm23-H1 gene is an important metastatic-suppressed gene of lung cancer. In order to screen the differential expression genes related to nm23-H1, we constructed the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene by suppression subtractive hybridization (SSH in this study, which lay a solid foundation for further screening and cloning metastatic-related genes of nm23-H1. Methods The forward and reverse suppression subtractive cDNA libraries were constructed in the human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene (L9981 and L9981-nm23-H1 by SSH method. The positive clones were preliminarily screened by blue-white colony, and precisely identified by PCR. Results The suppression subtractive cDNA libraries were successfully constructed in the human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981. After the blue-white screening, about three hundred positive clones in the forward subtracted library and four hundred positive clones in the reverse subtracted library were obtained. Ramdom analysis of 96 clones in each library with colony PCR methods showed that 84 clones in the forward subtracted library and 83 clones in the reverse subtracted library contained (300-750 bp inserts. Conclusion SSH is proved to be an efficient tool for differential expression gene cloning. The forward and reverse suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981 are successfully constructed by SSH and T/A cloning technology. The expression of nm23-H1 gene in the human large cell lung cancer cell lines may affect the differential expression of some metastatic-related genes.

  20. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome

    Directory of Open Access Journals (Sweden)

    Kahori Shimizu

    2014-01-01

    Full Text Available Leaky expression of adenovirus (Ad genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.

  1. Consuming a Western diet for two weeks suppresses fetal genes in mouse hearts.

    Science.gov (United States)

    Medford, Heidi M; Cox, Emily J; Miller, Lindsey E; Marsh, Susan A

    2014-04-15

    Diets high in sugar and saturated fat (Western diet) contribute to obesity and pathophysiology of metabolic syndrome. A common physiological response to obesity is hypertension, which induces cardiac remodeling and hypertrophy. Hypertrophy is regulated at the level of chromatin by repressor element 1-silencing transcription factor (REST), and pathological hypertrophy is associated with reexpression of a fetal cardiac gene program. Reactivation of fetal genes is commonly observed in hypertension-induced hypertrophy; however, this response is blunted in diabetic hearts, partially due to upregulation of the posttranslational modification O-linked-β-N-acetylglucosamine (O-GlcNAc) to proteins by O-GlcNAc transferase (OGT). OGT and O-GlcNAc are found in chromatin-modifying complexes, but it is unknown whether they play a role in Western diet-induced hypertrophic remodeling. Therefore, we investigated the interactions between O-GlcNAc, OGT, and the fetal gene-regulating transcription factor complex REST/mammalian switch-independent 3A/histone deacetylase (HDAC). Five-week-old male C57BL/6 mice were fed a Western (n = 12) or control diet (n = 12) for 2 wk to examine the early hypertrophic response. Western diet-fed mice exhibited fasting hyperglycemia and increased body weight (P Western blot analysis showed that HDAC protein levels were not different between groups; however, relative to controls, Western diet hearts showed increased REST and decreased ANP and skeletal α-actin. Transcript levels of HDAC2 and cardiac α-actin were decreased in Western diet hearts. These data suggest that REST coordinates regulation of diet-induced hypertrophy at the level of chromatin.

  2. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis.

    Science.gov (United States)

    Kim, Ji H; Gupta, Subash C; Park, Byoungduck; Yadav, Vivek R; Aggarwal, Bharat B

    2012-03-01

    The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max).

    Science.gov (United States)

    Tang, Xiaofei; Su, Tao; Han, Mei; Wei, Lai; Wang, Weiwei; Yu, Zhiyuan; Xue, Yongguo; Wei, Hongbin; Du, Yejie; Greiner, Steffen; Rausch, Thomas; Liu, Lijun

    2017-01-01

    Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.

  4. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    Science.gov (United States)

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value apple trees to abiotic and biotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia.

    Directory of Open Access Journals (Sweden)

    Milena Saqui-Salces

    Full Text Available Chronic inflammation in the stomach can lead to gastric cancer. We previously reported that gastrin-deficient (Gast⁻/⁻ mice develop bacterial overgrowth, inflammatory infiltrate, increased Il-1β expression, antral hyperplasia and eventually antral tumors. Since Hedgehog (Hh signaling is active in gastric cancers but its role in precursor lesions is poorly understood, we examined the role of inflammation and Hh signaling in antral hyperplasia. LacZ reporter mice for Sonic hedgehog (Shh, Gli1, and Gli2 expression bred onto the Gast⁻/⁻ background revealed reduced Shh and Gli1 expression in the antra compared to wild type controls (WT. Gli2 expression in the Gast⁻/⁻ corpus was unchanged. However in the hyperplastic Gast⁻/⁻ antra, Gli2 expression increased in both the mesenchyme and epithelium, whereas expression in WT mice remained exclusively mesenchymal. These observations suggested that Gli2 is differentially regulated in the hyperplastic Gast⁻/⁻ antrum versus the corpus and by a Shh ligand-independent mechanism. Moreover, the proinflammatory cytokines Il-1β and Il-11, which promote gastric epithelial proliferation, were increased in the Gast⁻/⁻ stomach along with Infγ. To test if inflammation could account for elevated epithelial Gli2 expression in the Gast⁻/⁻ antra, the human gastric cell line AGS was treated with IL-1β and was found to increase GLI2 but decrease GLI1 levels. IL-1β also repressed human GAST gene expression. Indeed, GLI2 but not GLI1 or GLI3 expression repressed gastrin luciferase reporter activity by ∼50 percent. Moreover, chromatin immunoprecipitation of GLI2 in AGS cells confirmed that GLI2 directly binds to the GAST promoter. Using a mouse model of constitutively active epithelial GLI2 expression, we found that activated GLI2 repressed Gast expression but induced Il-1β gene expression and proliferation in the gastric antrum, along with a reduction of the number of G-cells. In summary

  6. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A suppressed during prolonged physical inactivity (sitting

    Directory of Open Access Journals (Sweden)

    Zderic Theodore W

    2012-10-01

    Full Text Available Abstract Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A, a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions

  7. Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Karras, Jenna R.; Paisie, Carolyn A.; Huebner, Kay, E-mail: kay.huebner@osumc.edu [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210 (United States)

    2014-06-04

    The fragile FHIT gene, encompassing the chromosomal fragile site FRA3B, is an early target of DNA damage in precancerous cells. While vulnerable to DNA damage itself, FHIT protein expression is essential to protect from DNA damage-induced cancer initiation and progression by modulating genome stability, oxidative stress and levels of accumulating DNA damage. Thus, FHIT, whose expression is lost or reduced in many human cancers, is a tumor suppressor and genome caretaker whose loss initiates genome instability in preneoplastic lesions. Ongoing studies are seeking more detailed understanding of the role of FHIT in the cellular response to oxidative damage. This review discusses the relationship between FHIT, reactive oxygen species production, and DNA damage in the context of cancer initiation and progression.

  8. Endogenous calcitonin gene-related peptide suppresses ischemic brain injuries and progression of cognitive decline.

    Science.gov (United States)

    Zhai, Liuyu; Sakurai, Takayuki; Kamiyoshi, Akiko; Ichikawa-Shindo, Yuka; Kawate, Hisaka; Tanaka, Megumu; Xian, Xian; Hirabayashi, Kazutaka; Dai, Kun; Cui, Nanqi; Tanimura, Keiya; Liu, Teng; Wei, Yangxuan; Tanaka, Masaaki; Tomiyama, Haruka; Yamauchi, Akihiro; Igarashi, Kyoko; Shindo, Takayuki

    2018-04-01

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide and produced by alternative splicing of the transcript of the calcitonin/CGRP gene. Originally identified as a strong vasodilatory and hypotensive peptide, CGRP is now known to be a pleiotropic molecule distributed in various organs, including the brain. In this study, we used CGRP knockout mice (CGRP-/-) to examine the actions of endogenous CGRP during cerebral ischemia. To induce acute and chronic cerebral ischemia, mice were subjected to middle cerebral artery occlusion (MCAO) and bilateral common carotid artery stenosis (BCAS). In the cerebral cortex of wild-type mice, CGRP expression was upregulated after acute infarction. In CGRP-/- subjected to MCAO or BCAS, recovery of cerebral blood flow was slower and exhibited more extensive neuronal cell death. Expression of the inflammatory cytokines was higher in CGRP-/- than wild type in the acute phase of ischemia. Pathological analysis during the chronic phase revealed more extensive neuronal cell loss and demyelination and higher levels of oxidative stress in CGRP-/- than wild-type. CGRP-/- also showed less compensatory capillary growth. In an eight-arm radial maze test, CGRP-/- exhibited poorer reference memory than wild-type. On the other hand, CGRP administration promoted cerebral blood flow recovery after cerebral ischemia. We also found that CGRP directly inhibited the cell death of primary cortical neurons. These results indicate endogenous CGRP is protective against ischemia-induced neuronal cell injury. CGRP could, thus, be a novel candidate for use in the treatment of both cerebral ischemia and progression of cognitive decline.

  9. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis.

    Science.gov (United States)

    Zhang, Maolei; Huang, Nunu; Yang, Xuesong; Luo, Jingyan; Yan, Sheng; Xiao, Feizhe; Chen, Wenping; Gao, Xinya; Zhao, Kun; Zhou, Huangkai; Li, Ziqiang; Ming, Liu; Xie, Bo; Zhang, Nu

    2018-01-18

    Circular RNAs (circRNAs) are recognized as functional non-coding transcripts in eukaryotic cells. Recent evidence has indicated that even though circRNAs are generally expressed at low levels, they may be involved in many physiological or pathological processes, such as gene regulation, tissue development and carcinogenesis. Although the 'microRNA sponge' function is well characterized, most circRNAs do not contain perfect trapping sites for microRNAs, which suggests the possibility that circRNAs have functions that have not yet been defined. In this study, we show that a circRNA containing an open reading frame (ORF) driven by the internal ribosome entry site (IRES) can translate a functional protein. The circular form of the SNF2 histone linker PHD RING helicase (SHPRH) gene encodes a novel protein that we termed SHPRH-146aa. Circular SHPRH (circ-SHPRH) uses overlapping genetic codes to generate a 'UGA' stop codon, which results in the translation of the 17 kDa SHPRH-146aa. Both circ-SHPRH and SHPRH-146aa are abundantly expressed in normal human brains and are down-regulated in glioblastoma. The overexpression of SHPRH-146aa in U251 and U373 glioblastoma cells reduces their malignant behavior and tumorigenicity in vitro and in vivo. Mechanistically, SHPRH-146aa protects full-length SHPRH from degradation by the ubiquitin proteasome. Stabilized SHPRH sequentially ubiquitinates proliferating cell nuclear antigen (PCNA) as an E3 ligase, leading to inhibited cell proliferation and tumorigenicity. Our findings provide a novel perspective regarding circRNA function in physiological and pathological processes. Specifically, SHPRH-146aa generated from overlapping genetic codes of circ-SHPRH is a tumor suppressor in human glioblastoma.

  10. The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola.

    Directory of Open Access Journals (Sweden)

    Scott A C Godfrey

    2011-03-01

    Full Text Available Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1, which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1, revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state.

  11. Suppression subtractive hybridization (SSH) for isolation and characterization of genes related to testicular development in the giant tiger shrimp Penaeus monodon.

    Science.gov (United States)

    Leelatanawit, Rungnapa; Klinbunga, Sirawut; Aoki, Takashi; Hirono, Ikuo; Valyasevi, Rudd; Menasveta, Piamsak

    2008-11-30

    Suppression subtractive hybridization (SSH) cDNA libraries of the giant tiger shrimp, Penaeus monodon, were constructed. In total, 178 and 187 clones from the forward and reverse SSH libraries, respectively, of P. monodon were unidirectionally sequenced. From these, 37.1% and 53.5% Expressed Sequence Tags (ESTs) significantly matched known genes (E-value 0.05).

  12. An ancestral haplotype of the human PERIOD2 gene associates with reduced sensitivity to light-induced melatonin suppression.

    Directory of Open Access Journals (Sweden)

    Tokiho Akiyama

    Full Text Available Humans show various responses to the environmental stimulus in individual levels as "physiological variations." However, it has been unclear if these are caused by genetic variations. In this study, we examined the association between the physiological variation of response to light-stimulus and genetic polymorphisms. We collected physiological data from 43 subjects, including light-induced melatonin suppression, and performed haplotype analyses on the clock genes, PER2 and PER3, exhibiting geographical differentiation of allele frequencies. Among the haplotypes of PER3, no significant difference in light sensitivity was found. However, three common haplotypes of PER2 accounted for more than 96% of the chromosomes in subjects, and 1 of those 3 had a significantly low-sensitive response to light-stimulus (P < 0.05. The homozygote of the low-sensitive PER2 haplotype showed significantly lower percentages of melatonin suppression (P < 0.05, and the heterozygotes of the haplotypes varied their ratios, indicating that the physiological variation for light-sensitivity is evidently related to the PER2 polymorphism. Compared with global haplotype frequencies, the haplotype with a low-sensitive response was more frequent in Africans than in non-Africans, and came to the root in the phylogenetic tree, suggesting that the low light-sensitive haplotype is the ancestral type, whereas the other haplotypes with high sensitivity to light are the derived types. Hence, we speculate that the high light-sensitive haplotypes have spread throughout the world after the Out-of-Africa migration of modern humans.

  13. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1.

    Science.gov (United States)

    Yao, Jie; Qin, Li; Miao, Sen; Wang, Xiangshan; Wu, Xuejian

    2016-09-01

    There is increasing evidence that microRNAs (miRs) are implicated in tumor development and progression; however, their specific roles in osteosarcoma are not well understood. The aim of the present study was to investigate the role of miR-506 in the pathogenesis of osteosarcoma. The expression levels of miR-506 and astrocyte elevated gene-1 (AEG-1) mRNA were detected using quantitative polymerase chain reaction, and the protein levels of AEG-1, β-catenin, c-myc and cyclin D1 were determined using western blot analysis. The effects of miR-506 and AEG-1 on cell viability, colony forming ability and apoptosis were assessed using MTT assay, colony formation assay, and flow cytometry, respectively. Lucifer reporter assays were used to demonstrate whether AEG-1 is a direct target of miR-506. The present study identified that miR-506 was downregulated in osteosarcoma tissues and cells. Overexpression of miR-506 suppressed the proliferation and induced apoptosis in osteosarcoma cells in vitro and inhibited tumor formation in vivo . Overexpression of miR-506 significantly inhibited the luciferase activity of AEG-1 with a wild-type 3'-untranslated region, providing clear evidence that AEG-1 was a direct and functional downstream target of miR-506. Similar to the overexpression of miR-506, downregulation of AEG-1 lead to an inhibitory effect on osteosarcoma in vitro . Furthermore, overexpression of miR-506 or downregulation of AEG-1 inhibited the Wnt/β-catenin signaling pathway, and inhibition of this pathway by β-catenin small interfering RNA or CGP049090, a small molecule inhibitor, suppressed cell proliferation and induced apoptosis in vitro . Overall, the present data indicated that miR-506 functions as a tumor suppressor by targeting AEG-1 in osteosarcoma via the regulation of the Wnt/β-catenin signaling pathway.

  14. Temporal profile and clinical significance of serum neuron-specific enolase and S100 in ischemic and hemorrhagic stroke.

    Science.gov (United States)

    Brea, David; Sobrino, Tomás; Blanco, Miguel; Cristobo, Iván; Rodríguez-González, Raquel; Rodríguez-Yañez, Manuel; Moldes, Octavio; Agulla, Jesús; Leira, Rogelio; Castillo, José

    2009-01-01

    Neuron-specific enolase (NSE) and S100 protein are implicated in several brain injuries, including stroke. Our objective was to analyze the temporal profile and the clinical significance of NSE and S-100 in acute ischemic (IS) and intracerebral hemorrhage (ICH). We studied 224 patients with IS and 44 patients with ICH. Computerized tomography (CT) scans were performed to assess infarct volume. Stroke severity was evaluated using the National Institute of Health Stroke Scale (NIHSS), and functional outcome at 3 months with the modified Rankin Scale (mRS). Serum NSE and S100 protein were measured using an electrochemiluminescence-immunoassay. Peak values were found at 72 h for NSE and at 24 h for S100 in IS. For ICH, peak values were found at 24 h for both NSE and S100. At these time intervals S100 and NSE correlated with the NIHSS score and were independently associated with poor outcome. High serum NSE and S100 are associated with poor outcome in IS, and high serum NSE is associated with poor outcome in ICH. These findings suggest the potential utility of NSE and S100 as prognostic markers for acute stroke.

  15. Dual Immunomagnetic Nanobeads-Based Lateral Flow Test Strip for Simultaneous Quantitative Detection of Carcinoembryonic Antigen and Neuron Specific Enolase

    Science.gov (United States)

    Lu, Wenting; Wang, Kan; Xiao, Kun; Qin, Weijian; Hou, Yafei; Xu, Hao; Yan, Xinyu; Chen, Yanrong; Cui, Daxiang; He, Jinghua

    2017-01-01

    A novel immunomagnetic nanobeads -based lateral flow test strip was developed for the simultaneous quantitative detection of neuron specific enolase (NSE) and carcinoembryonic antigen (CEA), which are sensitive and specific in the clinical diagnosis of small cell lung cancer. Using this nanoscale method, high saturation magnetization, carboxyl-modified magnetic nanobeads were successfully synthesized. To obtain the immunomagnetic probes, a covalent bioconjugation of the magnetic nanobeads with the antibody of NSE and CEA was carried out. The detection area contained test line 1 and test line 2 which captured the immune complexes sensitively and formed sandwich complexes. In this assay, cross-reactivity results were negative and both NSE and CEA were detected simultaneously with no obvious influence on each other. The magnetic signal intensity of the nitrocellulose membrane was measured by a magnetic assay reader. For quantitative analysis, the calculated limit of detection was 0.094 ng/mL for NSE and 0.045 ng/mL for CEA. One hundred thirty clinical samples were used to validate the test strip which exhibited high sensitivity and specificity. This dual lateral flow test strip not only provided an easy, rapid, simultaneous quantitative detection strategy for NSE and CEA, but may also be valuable in automated and portable diagnostic applications. PMID:28186176

  16. Label-free electrochemical immunoassay for neuron specific enolase based on 3D macroporous reduced graphene oxide/polyaniline film.

    Science.gov (United States)

    Zhang, Qi; Li, Xiaoyan; Qian, Chunhua; Dou, Li; Cui, Feng; Chen, Xiaojun

    2018-01-01

    The content of neuron specific enolase (NSE) in serum is considered to be an essential indicator of small cell lung cancer (SCLC). Here, a novel label-free electrochemical immunoassay for the detection of NSE based on the three dimensionally macroporous reduced graphene oxide/polyaniline (3DM rGO/PANI) film has been proposed. The 3DM rGO/PANI film was constructed by electrochemical co-deposition of GO and aniline into the interspaces of a sacrificial silica opal template modified Au slice. During the co-deposition, GO was successfully reduced by aniline and PANI could be deposited on the surfaces of rGO sheets. The ratio of rGO and PANI in the composite was also optimized to achieve the maximum electrochemical performance. The 3DM rGO/PANI composite provided larger specific surface area for the antibody immobilization, exhibited enhanced conductivity for electron transfer, and more important was that PANI acted as the electroactive probe for indicating the NSE concentration. Under the optimal conditions, a linear current response of PANI to NSE concentration was obtained over 0.5 pg mL -1 -10.0 ng mL -1 with a detection limit of 0.1 pg mL -1 . Moreover, the immunosensor showed excellent selectivity, good stability, satisfactory reproducibility and regeneration, and was employed to detect NSE in clinical serum specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer.

    Science.gov (United States)

    Mansoori, Behzad; Mohammadi, Ali; Hashemzadeh, Shahriar; Shirjang, Solmaz; Baradaran, Ali; Asadi, Milad; Doustvandi, Mohammad Amin; Baradaran, Behzad

    2017-09-01

    Breast cancer has a high prevalence among women worldwide. Tumor invasion and metastasis still remains an open issue that causes most of the therapeutic failures and remains the prime cause of patient mortality. Hence, there is an unmet need to develop the most effective therapeutic approach with the lowest side effects and highest cytotoxicity that will effectively arrest or eradicate metastasis. An MTT assay and scratch test were used to assess the cytotoxicity and migration effects of Urtica dioica on the breast cancer cells. The QRT-PCR was used to study the expression levels of miR-21, MMP1, MMP9, MMP13, CXCR4, vimentin, and E-cadherin. The results of gene expression in tumoral groups confirmed the overexpression of miR-21, MMP1, MMP9, MMP13, vimentin, and CXCR4, and the lower expression of E-cadherin compared to control groups (PUrtica dioica significantly inhibited breast cancer cell proliferation. Moreover, findings from the scratch assay exhibited the inhibitory effects of Urtica dioica on the migration of breast cancer cell lines. Urtica dioica extract could inhibit cancer cell migration by regulating miR-21, MMP1, MMP9, MMP13, vimentin, CXCR4, and E-Cadherin. Moreover, our findings demonstrated that the extract could decrease miR-21 expression, which substantially lessens the overexpressed MMP1, MMP9, MMP13, vimentin, and CXCR4 and increases E-cadherin in the tumoral group. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  19. Early detection of response in small cell bronchogenic carcinoma by changes in serum concentrations of creatine kinase, neuron specific enolase, calcitonin, ACTH, serotonin and gastrin releasing peptide

    DEFF Research Database (Denmark)

    Bork, E; Hansen, M; Urdal, P

    1988-01-01

    Creatine kinase (CK-BB), neuron specific enolase (NSE), ACTH, calcitonin, serotonin and gastrin releasing peptide (GRP) were measured in serum or plasma before and immediately after initiation of treatment in patients with small cell lung cancer (SCC). Pretherapeutic elevated concentrations of CK...

  20. Changes in the distribution of the neuron-specific B-50, neurofilament protein and glial fibrillary acidic proteins following an unilateral mesencephalic lesion in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Oestreicher, A.B.; Devay, P.; Isaacson, R.L.

    1988-01-01

    Following a unilateral electrolytic lesion in the ventral rat mesencephalon, changes in the immunocytochemical distribution of the neuron-specific B-50, neurofilament (NF) protein and glial fibrillary acidic (GFAP) proteins were studied around the lesion after 0, 3, 10 and 28 days. At all recovery

  1. Suppression of the SOX2 Neural Effector Gene by PRDM1 Promotes Human Germ Cell Fate in Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    I-Ying Lin

    2014-02-01

    Full Text Available The mechanisms of transcriptional regulation underlying human primordial germ cell (PGC differentiation are largely unknown. The transcriptional repressor Prdm1/Blimp-1 is known to play a critical role in controlling germ cell specification in mice. Here, we show that PRDM1 is expressed in developing human gonads and contributes to the determination of germline versus neural fate in early development. We show that knockdown of PRDM1 in human embryonic stem cells (hESCs impairs germline potential and upregulates neural genes. Conversely, ectopic expression of PRDM1 in hESCs promotes the generation of cells that exhibit phenotypic and transcriptomic features of early PGCs. Furthermore, PRDM1 suppresses transcription of SOX2. Overexpression of SOX2 in hESCs under conditions favoring germline differentiation skews cell fate from the germline to the neural lineage. Collectively, our results demonstrate that PRDM1 serves as a molecular switch to modulate the divergence of neural or germline fates through repression of SOX2 during human development.

  2. Suppression subtractive hybridization (SSH) combined with bioinformatics method: an integrated functional annotation approach for analysis of differentially expressed immune-genes in insects.

    Science.gov (United States)

    Badapanda, Chandan

    2013-01-01

    The suppression subtractive hybridization (SSH) approach, a PCR based approach which amplifies differentially expressed cDNAs (complementary DNAs), while simultaneously suppressing amplification of common cDNAs, was employed to identify immuneinducible genes in insects. This technique has been used as a suitable tool for experimental identification of novel genes in eukaryotes as well as prokaryotes; whose genomes have been sequenced, or the species whose genomes have yet to be sequenced. In this article, I have proposed a method for in silico functional characterization of immune-inducible genes from insects. Apart from immune-inducible genes from insects, this method can be applied for the analysis of genes from other species, starting from bacteria to plants and animals. This article is provided with a background of SSH-based method taking specific examples from innate immune-inducible genes in insects, and subsequently a bioinformatics pipeline is proposed for functional characterization of newly sequenced genes. The proposed workflow presented here, can also be applied for any newly sequenced species generated from Next Generation Sequencing (NGS) platforms.

  3. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  4. Diagnostic utility of neuron specific enolase (NSE) in serum and pleural fluids from patients with lung cancer and tuberculosis

    International Nuclear Information System (INIS)

    Alam, J.M.; Baig, J.A.; Asghar, S.S.; Mahmood, S.R.; Ansari, M.A.; Jamil, S.

    2010-01-01

    Several past and recent investigations have focused on the determination of tumor markers in pleural fluids to assess their Usefulness as less invasive replacement method of diagnosis. In this regard, few studies have dealt with the determination of the tumor marker, neuron specific enolase (NSE), in pleural fluids of patients suffering from both benign and malignant diseases such as non small cell lung carcinoma( NSCLC), small cell lung carcinoma( SCLC) and tuberculosis. Therefore, the present study was undertaken to establish the diagnostic utility of NSE in malignant condition by assessing levels in serum and pleural fluids of patients with lung cancer and by comparing it with a benign pulmonary disease of tuberculosis. Pleural fluids were obtained from 22 patients with carcinomatous pleurisy due to SCLC, 11 patients with carcinomatous pleurisy due to non-small cell lung cancer, and 30 patients with tuberculosis pleurisy for comparison purpose. Determination of NSE levels was performed by ECL technology according to the manufacturer's instructions. NSE levels of pleural fluids from SCLC patients were significantly elevated( P<0.0001) when compared with pleural fluids from NSCLC and tuberculosis patients. Moreover, pleural fluids of all 30 tuberculosis patients and 11 NSCLC patients showed moderate significance ( P< O.05 and P < 0.01, respectively) when compared with each other. In addition, cumulative results of NSE levels from SCLC and NSCLC combined also showed high significance (P<0.001) as compared to pleural fluids of tuberculosis patients and moderate significance (P<0.01) when compared with serum levels of both malignant and benign groups. It is concluded that determination of NSE levels in pleural fluids of lung cancer patients noted to be an effective diagnostic tool to differentiate carcinomatous pleurisy due to SCLC from those occurring due to NSCLC and tuberculosis. Further studies with larger group of patients are under progress to further establish

  5. Research of the serum level of neuron-specific enolase in children with various types of seizure

    Directory of Open Access Journals (Sweden)

    WANG Chun

    2012-10-01

    Full Text Available Objective To explore the relevance between the level changes of serum neuron-specific enolase (NSE and neuronal damage in various seizure types of children with epilepsy. Methods According to the classification criteria of seizure types formulated by International League Against Epilepsy (ILAE in 1981, 190 children with epilepsy were enrolled including tonic-clonic seizure group (41 cases, tonic seizure group (34 cases, clonic seizure group (22 cases, myoclonic seizure group (12 cases, atonic seizure group (17 cases, absence seizure group (22 cases, simple partial seizure group (21 cases and complex partial seizure group (21 cases, and 64 healthy children were enrolled as control group. The long-range vedio-electroencephalogram (VEEG was operated and the blood samples were collected from these cases within 72 h after their seizures. Results The serum NSE levels of epileptic children were significantly higher than control group (P = 0.000. Among these seizure groups, serum NSE in myoclonic seizure group [(32.42 ± 6.62 ng/ml] was significantly higher than the other types, except for tonic-clonic seizure group (P = 0.062. There was no significant difference among the other types (P > 0.05, for all. According to rank correlation analysis, there was positive corrlation between serum NSE levels and VEEG abnormal intensity (rs = 0.613, P = 0.000. Conclusion The serum NSE were markedly increased in children with epilepsy after seizures, suggesting that a certain degree of neuronal damage may result from seizures; the higher NSE levels were, the more serious neuronal damage caused by epileptiform discharges was. The serum NSE levels in myoclonic seizure group and tonic-clonic seizure group were significantly higher than other seizure types, indicating the two kinds of seizures may result in greater neuronal damage.

  6. Sustained, neuron-specific IKK/NF-κB activation generates a selective neuroinflammatory response promoting local neurodegeneration with aging.

    Science.gov (United States)

    Maqbool, Ayesha; Lattke, Michael; Wirth, Thomas; Baumann, Bernd

    2013-10-12

    Increasing evidence indicates that neuroinflammation is a critical factor contributing to the progression of various neurodegenerative diseases. The IKK/NF-κB signalling system is a central regulator of inflammation, but it also affects neuronal survival and differentiation. A complex interplay between different CNS resident cells and infiltrating immune cells, which produce and respond to various inflammatory mediators, determines whether neuroinflammation is beneficial or detrimental. The IKK/NF-κB system is involved in both production of and responses to these mediators, although the precise contribution depends on the cell type as well as the cellular context, and is only partially understood. Here we investigated the specific contribution of neuronal IKK/NF-κB signalling on the regulation of neuroinflammatory processes and its consequences. To address this issue, we established and analysed a conditional gain-of-function mouse model that expresses a constitutively active allele of IKK2 in principal forebrain neurons (IKK2nCA). Proinflammatory gene and growth factor expression, histopathology, microgliosis, astrogliosis, immune cell infiltration and spatial learning were assessed at different timepoints after persistent canonical IKK2/NF-κB activation. In contrast to other cell types and organ systems, chronic IKK2/NF-κB signalling in forebrain neurons of adult IKK2nCA animals did not cause a full-blown inflammatory response including infiltration of immune cells. Instead, we found a selective inflammatory response in the dentate gyrus characterized by astrogliosis, microgliosis and Tnf-α upregulation. Furthermore, downregulation of the neurotrophic factor Bdnf correlated with a selective and progressive atrophy of the dentate gyrus and a decline in hippocampus-dependent spatial learning. Neuronal degeneration was associated with increased Fluoro-jade staining, but lacked activation of apoptosis. Remarkably, neuronal loss could be partially reversed when

  7. Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity.

    Science.gov (United States)

    Freeman, Jackie; Lovegrove, Alison; Wilkinson, Mark David; Saulnier, Luc; Shewry, Peter Robert; Mitchell, Rowan Andrew Craig

    2016-01-01

    Arabinoxylan (AX) is the dominant component within wheat (Triticum aestivum L.) endosperm cell walls, accounting for 70% of the polysaccharide. The viscosity of aqueous extracts from wheat grain is a key trait influencing the processing for various end uses, and this is largely determined by the properties of endosperm AX. We have previously shown dramatic effects on endosperm AX in transgenic wheat by down-regulating either TaGT43_2 or TaGT47_2 genes (orthologues to IRX9 and IRX10 in Arabidopsis, respectively) implicated in AX chain extension and the TaXAT1 gene responsible for monosubstitution by 3-linked arabinose. Here, we use these transgenic lines to investigate the relationship between amounts of AX in soluble and insoluble fractions, the chain-length distribution of these measured by intrinsic viscosity and the overall effect on extract viscosity. In transgenic lines expressing either the TaGT43_2 or TaGT47_2 RNAi transgenes, the intrinsic viscosities of water-extractable (WE-AX) and of a water-insoluble alkaline-extracted fraction (AE-AX) were decreased by between 10% and 50% compared to control lines. In TaXAT1 RNAi lines, there was a 15% decrease in intrinsic viscosity of WE-AX but no consistent effect on that of AE-AX. All transgenic lines showed decreases in extract viscosity with larger effects in TaGT43_2 and TaGT47_2 RNAi lines (by up to sixfold) than in TaXAT1 RNAi lines (by twofold). These effects were explained by the decreases in amount and chain length of WE-AX, with decreases in amount having the greater influence. Extract viscosity from wheat grain can therefore be greatly decreased by suppression of single gene targets. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  9. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines.

    Science.gov (United States)

    Hao, Lingyun; Johnson, Kameka; Cursino, Luciana; Mowery, Patricia; Burr, Thomas J

    2017-06-01

    Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H 2 O 2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression of anammox and denitrification in the oxygen minimum zone off northern Chile

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo

    2014-01-01

    UNLABELLED: A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2...... at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fiftypercent inhibition of N2 and N2O production by denitrification....... This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription...

  11. Clinical study of Gene-Eden-VIR/Novirin in genital herpes: suppressive treatment safely decreases the duration of outbreaks in both severe and mild cases.

    Science.gov (United States)

    Polansky, Hanan; Itzkovitz, Edan; Javaherian, Adrian

    2016-12-01

    We conducted a clinical study that tested the effect of suppressive treatment with the botanical product Gene-Eden-VIR/Novirin on genital herpes. Our previous paper showed that the treatment decreased the number of genital herpes outbreaks without any side effects. It also showed that the clinical effects of Gene-Eden-VIR/Novirin are mostly better than those reported in the studies that tested acyclovir, valacyclovir, and famciclovir. The current paper reports the effect of suppressive treatment with Gene-Eden-VIR/Novirin on the duration of outbreaks, in severe and mild genital herpes cases. The framework was a retrospective chart review. The population included 137 participants. The treatment was 1-4 capsules per day. The duration of treatment was 2-48 months. The study included three controls: baseline, no-treatment, and dose-response. The treatment decreased the duration of outbreaks in 87 % of participants and decreased the mean duration of outbreaks from 8.77 days and 6.7 days in the control groups to 2.87 days in the treatment group (P genital herpes outbreaks, in both severe and mild cases, without any side effects. Based on the results reported in this and our previous paper, we recommend suppressive treatment with Gene-Eden-VIR/Novirin as a natural alternative to both suppressive and episodic treatments with current drugs, in both severe and mild genital herpes cases. Trial registration ClinicalTrials.gov NCT02715752 Registered 17 March 2016 Retrospectively Registered.

  12. G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells

    International Nuclear Information System (INIS)

    Wu, Chang-Chieh; Tsai, Fu-Ming; Shyu, Rong-Yaun; Tsai, Ya-Ming; Wang, Chun-Hua; Jiang, Shun-Yuan

    2011-01-01

    Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells. TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses. Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression. Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and

  13. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons

    Science.gov (United States)

    Nadeau, H.; Lester, H. A.

    2002-01-01

    The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na(+) channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1-2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na(+) channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K(+) currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic "silencer" and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.

  14. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH).

    Science.gov (United States)

    Schulze Gronover, Christian; Schorn, Corinna; Tudzynski, Bettina

    2004-05-01

    The Galpha subunit BCG1 plays an important role during the infection of host plants by Botrytis cinerea. Delta bcg1 mutants are able to conidiate, penetrate host leaves, and produce small primary lesions. However, in contrast to the wild type, the mutants completely stop invasion of plant tissue at this stage; secondary lesions have never been observed. Suppression subtractive hybridization (SSH) was used to identify fungal genes whose expression on the host plant is specifically affected in bcg1 mutants. Among the 22 differentially expressed genes, we found those which were predicted to encode proteases, enzymes involved in secondary metabolism, and others encoding cell wall-degrading enzymes. All these genes are highly expressed during infection in the wild type but not in the mutant. However, the genes are expressed in both the wild type and the mutant under certain conditions in vitro. Most of the BCG1-controlled genes are still expressed in adenylate cyclase (bac) mutants in planta, suggesting that BCG1 is involved in at least one additional signaling cascade in addition to the cAMP-depending pathway. In a second SSH approach, 1,500 clones were screened for those that are specifically induced by the wild type during the infection of bean leaves. Of the 22 BCG1-controlled genes, 11 also were found in the in planta SSH library. Therefore, SSH technology can be successfully applied to identify target genes of signaling pathways and differentially expressed genes in planta.

  15. Identification of genes expressed in response to yellow head virus infection in the black tiger shrimp, Penaeus monodon, by suppression subtractive hybridization.

    Science.gov (United States)

    Prapavorarat, Adisak; Pongsomboon, Siriporn; Tassanakajon, Anchalee

    2010-06-01

    Suppression subtractive hybridization (SSH) was employed to identify yellow head virus (YHV)-responsive genes from the hemocytes of the black tiger shrimp, Penaeus monodon. Two SSH cDNA libraries were constructed to identify viral responsive genes in the early (24I) and late (48/72I) phases of YHV infection. From 240 randomly selected clones from each library, 155 and 30 non-redundant transcripts were obtained for the early and late libraries, respectively. From these clones, 72 and 16, respectively, corresponded to known genes (E-values SSH library, but not in 48/72I SSH library implying that these immune molecules participate in viral defense immunity in the early phase of YHV infection whereas their expressions were suppressed in the late phase of infection. Novel YHV-responsive genes were uncovered from these SSH libraries including caspases, histidine triad nucleotide-binding protein 2, Rab11, beta-integrin, tetraspanin, prostaglandin E synthase, transglutaminase, Kazal-type serine proteinase inhibitor and antimicrobial peptides. Among these YHV-responsive genes, several have been previously reported to participate in defense against white-spot syndrome virus (WSSV) implying that YHV infection in shrimp induces similar host immune responses as observed during WSSV infection. The expression of four apparently upregulated immune-related genes identified from the two SSH libraries, anti-lipopolysaccharide factor isoform 6 (ALFPm6), crustin isoform 1 (crustinPm1), transglutaminase and Kazal-type serine proteinase inhibitor isoform 2 (SPIPm2), was evaluated by real-time RT-PCR to reveal differential expression in response to YHV infection at 6, 24, 48 and 72 h post-infection. The results confirmed their differential expression and upregulation, and thus verified the success of the SSHs and the likely involvement of these genes in shrimp antiviral mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Exposure of Tg.AC transgenic mice to benzene suppresses hematopoietic progenitor cells and alters gene expression in critical signaling pathways

    International Nuclear Information System (INIS)

    Nwosu, Veronica C.; Kissling, Grace E.; Trempus, Carol S.; Honeycutt, Hayden; French, John E.

    2004-01-01

    The effects of acute benzene (BZ) exposure on hematopoietic progenitor cells (HPCs) derived from bone marrow cells were studied using homozygous male v-Ha-ras Tg.AC mice at 8-10 weeks of age. The mice were given 0.02% BZ in their drinking water for 28 days with the dose rate estimated to be 34 mg benzene/kg BW/day. Analysis of cultured HPCs indicated that BZ suppressed the proliferation of the multilineage colony forming unit-granulocyte, erythrocyte, macrophage, megakaryocyte (CFU-GEMM); colony forming unit-granulocyte, macrophage (CFU-GM); and blast forming unit erythrocyte/colony forming unit erythrocyte (BFUE/CFUE). A gene expression profile was generated using nylon arrays spotted with 23 cDNAs involved in selected signal pathways involved in cell distress, inflammation, DNA damage, cell cycle arrest, and apoptosis. Of the 23 marker genes, 6 (bax, c-fos, E124, hsf1, ikBa, and p57) were significantly (Mann-Whitney U tests, P < 0.05) overexpressed in BZ-exposed mice. Two genes (c-myc and IL-2) approached significance (at P = 0.053). The pattern of gene expression was consistent with BZ toxicity and the suppression of HPCs

  17. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Science.gov (United States)

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differential gene expression in gall midge susceptible rice genotypes revealed by suppressive subtraction hybridization (SSH) cDNA libraries and microarray analysis.

    Science.gov (United States)

    Rawat, Nidhi; Neeraja, Chiruvuri Naga; Nair, Suresh; Bentur, Jagadish S

    2012-12-01

    A major pest of rice, the Asian rice gall midge (Orseolia oryzae Wood-Mason), causes significant yield losses in the rice growing regions throughout Asia. Feeding by the larvae induces susceptible plants to produce nutritive tissue to support growth and development. In order to identify molecular signatures during compatible interactions, genome wide transcriptional profiling was performed using SSH library and microarray technology. Results revealed up-regulation of genes related to primary metabolism, nutrient relocation, cell organization and DNA synthesis. Concomitantly, defense, secondary metabolism and signaling genes were suppressed. Further, real-time PCR validation of a selected set of 20 genes, in three susceptible rice varieties (TN1, Kavya and Suraksha) during the interaction with the respective virulent gall midge biotypes, also revealed variation in gene expression in Kavya as compared to TN1 and Suraksha. These studies showed that virulent insects induced the plants to step up metabolism and transport nutrients to their feeding site and suppressed defense responses. But Kavya rice mounted an elevated defense response during early hours of virulent gall midge infestation, which was over-powered later, resulting in host plant susceptibility.

  19. Production of human growth hormone in transgenic rice seeds: co-introduction of RNA interference cassette for suppressing the gene expression of endogenous storage proteins.

    Science.gov (United States)

    Shigemitsu, Takanari; Ozaki, Shinji; Saito, Yuhi; Kuroda, Masaharu; Morita, Shigeto; Satoh, Shigeru; Masumura, Takehiro

    2012-03-01

    Rice seeds are potentially useful hosts for the production of pharmaceutical proteins. However, low yields of recombinant proteins have been observed in many cases because recombinant proteins compete with endogenous storage proteins. Therefore, we attempt to suppress endogenous seed storage proteins by RNA interference (RNAi) to develop rice seeds as a more efficient protein expression system. In this study, human growth hormone (hGH) was expressed in transgenic rice seeds using an endosperm-specific promoter from a 10 kDa rice prolamin gene. In addition, an RNAi cassette for reduction of endogenous storage protein expressions was inserted into the hGH expression construct. Using this system, the expression levels of 13 kDa prolamin and glutelin were effectively suppressed and hGH polypeptides accumulated to 470 μg/g dry weight at the maximum level in transgenic rice seeds. These results suggest that the suppression of endogenous protein gene expression by RNAi could be of great utility for increasing transgene products.

  20. Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1.

    Science.gov (United States)

    Renault, T; Faury, N; Barbosa-Solomieu, V; Moreau, K

    2011-07-01

    Virus-induced genes were identified using suppression subtractive hybridisation (SSH) from Pacific cupped oyster, Crassostrea gigas, haemocytes challenged by OsHV-1. A total of 304 clones from SSH forward library were sequenced. Among these sequences, some homologues corresponded to (i) immune related genes (macrophage express protein, IK cytokine, interferon-induced protein 44 or multicopper oxidase), (ii) apoptosis related genes (Bcl-2) and (iii) cell signalling and virus receptor genes (glypican). Molecular characterization and phylogenic analysis of 3 immune-related genes (macrophage expressed protein, multicopper oxidase and immunoglobulin domain cell adhesion molecule) were performed. Finally, quantitative PCR revealed significant changes in the expression of immune related genes (multicopper oxidase, macrophage expressed protein, myeloid differentiation factor 88 and interferon-induced protein 44) in oysters experimentally challenged with OsHV-1. These findings provide a first basis for studying the role of innate immunity in response to viruses in bivalves and identified genes may serve as markers of interest in breeding programs in order to obtain selected oysters presenting OsHV-1 resistance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Exploring suppression subtractive hybridization (SSH) for discriminating Lactococcus lactis ssp. cremoris SK11 and ATCC 19257 in mixed culture based on the expression of strain-specific genes.

    Science.gov (United States)

    Ndoye, B; Lessard, M-H; LaPointe, G; Roy, D

    2011-02-01

    An approach based on quantitative reverse transcriptase PCR (RT-qPCR) was developed for monitoring two strains of lactococci in co-culture in milk by measuring the expression of specific genes identified by suppression subtractive hybridization (SSH). SSH was used to identify strain-specific genes of Lactococcus lactis ssp. cremoris SK11 and ATCC 19257. RT-qPCR was then employed to validate gene specificity and compare the expression of selected specific genes (glycosyltransferase and amidase genes for L. lactis ssp. cremoris ATCC 19257 and a hypothetical protein for SK11) identified by SSH. The time profile of changes in gene expression relative to ldh transcription differed between pure and mixed cultures as well as between media. At the stationary phase, gene expression of mixed cultures in GM17 attained the highest proportion of ldh transcription while mixed cultures in milk peaked at the postexponential phase. Strain ratios expressed as RNA proportion appear to favour SK11 in GM17 medium, while ATCC 19257 dominated in milk co-cultures. This approach was useful to determine the contribution of strain SK11 in relation to strain ATCC 19257 during co-culture in milk compared to rich medium. The ability to track the metabolic contribution of each lactococcal strain during fermentation of milk or cheese ripening will extend our understanding of the impact of process parameters on the production performance of strains. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  2. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage.

    Science.gov (United States)

    Tchetina, Elena V; Markova, Galina A; Poole, A Robin; Zukor, David J; Antoniou, John; Makarov, Sergey A; Kuzin, Aleksandr N

    2016-01-01

    This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1-50  μ M). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10-50  μ M DFO. PCR analysis of 7 OA patient cartilages revealed that 10  μ M DFO suppressed expression of MMP-1, MMP-13, IL-1 β , and TNF α and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1 α , and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  3. Suppression subtractive hybridization library construction and identification of epidermal bladder cell related genes in the common ice plant, Mesembryanthemum crystallinum L.

    Directory of Open Access Journals (Sweden)

    Siranet Roeurn

    2016-10-01

    Full Text Available Mesembryanthemum crystallinum L., a halophytic species, displays modified trichomes, epidermal bladder cells (EBC, on the surfaces of its aerial organs. EBCs serve to sequester excessive salt from underlying metabolically active tissues. To elucidate the molecular determinants governing EBC development in the common ice plant, we constructed a cDNA-based suppression subtractive hybridization library and identified genes differentially expressed between the wild-type and the EBC-less mutant. After hybridization, 38 clones were obtained. Among them, 24 clones had homology with plant genes of known functions, whose roles might not be directly related to EBC-morphology, while 14 clones were homologous to genes of unknown functions. After confirmation by northern blot analysis, 12 out of 14 clones of unknown functions were chosen for semi-quantitative RT-PCR analysis, and the results revealed that three clones designated as MW3, MW21, and MW31 preferentially expressed in the EBC-less mutant, whereas the other two designated as WM10 and WM28 preferentially expressed in the wild type. Among these genes, the expression of a putative jasmonate-induced gene, designated as WM28 was completely suppressed in the EBC-mutant. In addition, the deletion of C-box cis-acting element was found in the promoter region of WM28 in the EBC-less mutant. Overexpression of WM28 in Arabidopsis resulted in increased trichome number due to the upregulation of key trichome-related genes GLABRA1 (GL1, and GLABRA3 (GL3. These results demonstrate that WM28 can be an important factor responsible for EBC formation, and also suggest the similarity of developmental mechanism between trichome in Arabidopsis and EBC in common ice plant.

  4. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available This study reports the effects of the iron chelator deferoxamine (DFO on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM. Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA, AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  5. Robust Thyroid Gene Expression and Radioiodine Uptake Induced by Simultaneous Suppression of BRAF V600E and Histone Deacetylase in Thyroid Cancer Cells

    Science.gov (United States)

    Cheng, Weiwei; Liu, Rengyun; Zhu, Guangwu; Wang, Hui

    2016-01-01

    Context: Use of BRAF V600E inhibitors to restore thyroid iodide-handling gene expression and radioactive iodine (RAI) avidity is an attractive therapeutic strategy for RAI-refractory thyroid cancer, but recent initial clinical responses were modest. Given histone deacetylation at the sodium/iodide symporter promoter by histone deacetylase (HDAC) as a mechanism, simultaneously targeting BRAF V600E and HDAC could be a more effective strategy. Objectives: The objective of the study was to test whether suppressing both BRAF V600E and HDAC could more effectively induce thyroid gene expression and RAI uptake in thyroid cancer cells. Research Design: We tested the BRAF V600E inhibitor PLX4032 (vemurafenib) and the HDAC inhibitor SAHA (vorinostat), two major anticancer drugs currently approved for clinical use, in inducing thyroid gene expression and RAI uptake in thyroid cancer cells. Results: PLX4032 alone induced a modest expression of thyroid genes and RAI uptake preferentially in thyroid cancer cells harboring BRAF V600E. SAHA showed an effect in a genetic-independent manner in all the cells. A robust synergistic effect on thyroid gene expression and RAI uptake was observed in BRAF V600E-positive thyroid cancer cells when the two inhibitors were simultaneously used. This was dramatically enhanced further by TSH; triple combination of PLX4032, SAHA, and TSH showed the most robust effect on thyroid gene expression and RAI uptake in cells harboring BRAF V600E. Abundant sodium/iodide symporter protein expression in thyroid cancer cells under these conditions was confirmed by immunofluorescent microscopy. Conclusions: Simultaneously suppressing BRAF V600E and HDAC, particularly when cotreated with TSH, induced a far more robust expression of thyroid genes and RAI uptake in thyroid cancer cells than suppressing BRAF V600E alone. Triple combination of PLX4032, SAHA, and TSH is a specific robust regimen to restore RAI avidity in RAI-refractory BRAF V600E-positive thyroid

  6. Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization.

    Science.gov (United States)

    Ballester, M; Castelló, A; Peiró, R; Argente, M J; Santacreu, M A; Folch, J M

    2013-06-01

    Suppressive subtractive hybridization libraries from oviduct at 62 h post-mating of two lines of rabbits divergently selected for uterine capacity were generated to identify differentially expressed genes. A total of 438 singletons and 126 contigs were obtained by cluster assembly and sequence alignment of 704 expressed sequence tags (ESTs), of which 54% showed homology to known proteins of the non-redundant NCBI databases. Differential screening by dot blot validated 71 ESTs, of which 47 showed similarity to known genes. Transcripts of genes were functionally annotated in the molecular function and the biological process gene ontology categories using the BLAST2GO software and were assigned to reproductive developmental process, immune response, amino acid metabolism and degradation, response to stress and apoptosis terms. Finally, three interesting genes, PGR, HSD17B4 and ERO1L, were identified as overexpressed in the low line using RT-qPCR. Our study provides a list of candidate genes that can be useful to understanding the molecular mechanisms underlying the phenotypic differences observed in early embryo survival and development traits. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  7. Suppression of resistance to Erysiphe graminis f.sp. hordei conferred by the mlo5 barley powdery mildew resistance gene

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Carver, T.L.W.; Zeyen, R.J.

    1997-01-01

    . Additional suppression of mlo5 penetration resistance against the avirulent E. graminis isolate was achieved by using DDG, mannose, or glucose in combination with the phenylalanine ammonia lyase inhibitor alpha-aminooxy-beta-phenylpropionic acid (AOPP). A mlo virulent isolate of E. graminis was also tested...

  8. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  9. Early detection of response in small cell bronchogenic carcinoma by changes in serum concentrations of creatine kinase, neuron specific enolase, calcitonin, ACTH, serotonin and gastrin releasing peptide

    DEFF Research Database (Denmark)

    Bork, E; Hansen, M; Urdal, P

    1988-01-01

    determined within 4-8 weeks. The results indicate that serum CK-BB and NSE are potential markers for SCC at the time of diagnosis and that changes in the concentrations during the first course of cytostatic therapy are promising as biochemical tests for early detection of response to chemotherapy.......Creatine kinase (CK-BB), neuron specific enolase (NSE), ACTH, calcitonin, serotonin and gastrin releasing peptide (GRP) were measured in serum or plasma before and immediately after initiation of treatment in patients with small cell lung cancer (SCC). Pretherapeutic elevated concentrations of CK...

  10. The biomarkers neuron-specific enolase and S100b measured the day following admission for severe accidental hypothermia have high predictive values for poor outcome

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Kjaergaard, Jesper; Kjærgaard, Benedict

    2017-01-01

    AIM: The aim of the present study was to assess the ability of the biomarkers neuron-specific enolase (NSE) and S100 calcium-binding protein b (S100b) to predict mortality and poor neurologic outcome after 30days in patients admitted with severe accidental hypothermia. METHODS: Consecutive patients...... was analyzed for NSE and S100b. Follow-up was conducted after 30days and poor neurologic outcome was defined as a Cerebral Performance Category (CPC) score of 3-5. The predictive value of NSE and S100b was assessed as the area under the receiver-operating characteristics curve (AUC). RESULTS: A total of 34...

  11. [Differentially expressed genes identified in the main olfactory epithelium of mice with deficiency of adenylate cyclase 3 by using suppression subtractive hybridization approach].

    Science.gov (United States)

    Zhenlong, Cao; Jiangye, Hao; Yanfen, Zhou; Zhe, Zhang; Zhihua, Ni; Yuanxiang, Hu; Weili, Liu; Yongchao, Li; Daniel, R Storm; Runlin, Z Ma; Zhenshan, Wang

    2014-06-01

    Adenylate cyclase 3 (AC3) is one of the major players in the olfactory signaling within the main olfactory epithelium (MOE) of mice. However, we are not ascertained whether deficiency of AC3 will lead to the differential expression of related genes in the MOE. Forward and reverse subtractive libraries were constructed by suppression subtractive hybridization (SSH) approach, with MOEs from AC3(-/-) and AC3(+/+) mice. These two libraries were primarily screened by Dot blot, differential expressed clones were sequenced and analyzed by bioinformatics, and differential expressed genes were verified by qRT-PCR. A total of 386 differentially expressed clones were picked out after Dot blot. The DNA sequences of 80 clones randomly selected were determined, and 62 clones were identified by blasting in GenBank. We found that 24 up-regulated clones were corresponded to genes of kcnk3, mapk7, megf11, and 38 down-regulated clones were corresponded to tmem88b, c-mip, skp1a, mlycd, etc. Their functions were annotated with Gene Ontology (GO) and found to be mainly focused on molecular binding, cell cycle, processes of biology and cells. Five genes (kcnk3, c-mip, mlycd, tmem88b and trappc5) were verified by qRT-PCR with individuals of AC3(+/+) and AC3(-/-) mice. The data indicate that kcnk3 gene is up-regulated significantly, increasing 1.27 folds compared to control mice, whereas c-mip, mlycd, tmem88b and trappc5 are down-regulated significantly, decreasing 20%, 7%, 32% and 29% compared to the AC3(+/+)mice. The functions of these genes are closely related with K(+) channels, cell differentiation, metabolism of fats, membrane transportation, and so on. It is tempting to speculate that these genes might work together with AC3 to orchestrate the olfactory transduction signaling in the MOE.

  12. Dienogest, a synthetic progestin, inhibits the proliferation of immortalized human endometrial epithelial cells with suppression of cyclin D1 gene expression.

    Science.gov (United States)

    Shimizu, Yutaka; Takeuchi, Takashi; Mita, Shizuka; Mizuguchi, Kiyoshi; Kiyono, Tohru; Inoue, Masaki; Kyo, Satoru

    2009-10-01

    Dienogest is a specific progesterone receptor agonist with potent oral endometrial activity and is used in the treatment of endometriosis. In this study, we examined the direct effects of dienogest on the proliferation of human endometrial epithelial cells using an immortalized cell line. 5-Bromo-2'-deoxyuridine incorporation into the cells was inhibited by dienogest and by progesterone (P(4)) in dose-dependent fashion at concentrations of 10(-8) mol/l or higher. To identify the target genes of dienogest and P(4), we screened the expression of 84 genes related to cell cycle regulation by real-time polymerase chain reaction after 6 h of treatment at a concentration of 10(-7) mol/l. Results showed that only cyclin D1 expression was significantly down-regulated, although expression of the other genes did not significantly change after dienogest or P(4) treatment compared with the control. In a time-course study during the first 24 h after drug treatment, dienogest and P(4) each produced a lasting decrease in the expression of cyclin D1 mRNA, followed by a decrease in cyclin E1 mRNA but not an increase in the expression of cell cycle inhibitor genes (p21, p27 and p53). These findings suggest that dienogest directly inhibits the proliferation of human endometrial epithelial cells with suppression of cyclin D1 gene expression.

  13. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  14. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-07-01

    Full Text Available Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs. The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.

  15. Suppression of leaf feeding and oviposition of phytophagous ladybird beetles (Coleoptera: Coccinellidae) by chitinase gene-transformed phylloplane bacteria and their specific bacteriophages entrapped in alginate gel beads.

    Science.gov (United States)

    Otsu, Yasunari; Mori, Hirofumi; Komuta, Kenji; Shimizu, Hiroyuki; Nogawa, Souta; Matsuda, Yoshinori; Nonomura, Teruo; Sakuratani, Yasuyuki; Tosa, Yukio; Mayama, Shigeyuki; Toyoda, Hideyoshi

    2003-06-01

    The chitinase gene-transformed strain KPM-007E/chi of Enterobacter cloacae was vitally entrapped in sodium alginate gel beads with its specific virulent bacteriophage EcP-01 to provide a new method for microbially digesting chitinous peritrophic membranes of phytophagous ladybird beetles Epilachna vigintioctopunctata. First, chitinase SH1 from a gram-positive bacterium Kurthia zopfii was overproduced by Escherichia coli cells and purified by affinity column chromatography. The purified enzyme effectively digested peritrophic membranes dissected from the ladybird beetles to expose epithelial tissues beneath the peritrophic membrane, and the beetles that had ingested chitinase after submergence in chitinase solution had considerably reduced their feeding on tomato leaves. KPM-007E/chi, entrapped in the alginate beads, released the chitinase. More chitinase was released when KPM-007E/chi was present with their specific virulent bacteriophage EcP-01 in the beads because of lysis of bacterial cells infected with the bacteriophages. This chitinase release from the microbial beads (containing KPM-007E/chi and EcP-01) was sufficient to digest the peritrophic membrane as well as to suppress feeding of bead-sprayed tomato leaves by the ladybird beetles. A daily supply of tomato leaves treated with the microbial beads considerably suppressed leaf feeding and oviposition by the ladybird beetles, suggesting a possible application of chitinase-secreting bacteria for suppressing herbivorous insect pests.

  16. Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes

    DEFF Research Database (Denmark)

    Schepeler, T; Holm, A; Halvey, P

    2012-01-01

    Aberrant activation of the Wnt signaling pathway is causally involved in the formation of most colorectal cancers (CRCs). Although detailed knowledge exists regarding Wnt-regulated protein-coding genes, much less is known about the possible involvement of non-coding RNAs. Here we used TaqMan Array...... as inferred from expression microarray and ChIP-chip data. A module of miRNAs induced by abrogated Wnt signaling in vitro was downregulated in two independent series of human primary CRCs (n=76) relative to normal adjacent mucosa (n=34). Several of these miRNAs (miR-145, miR-126, miR-30e-3p and miR-139-5p......RNAs are upregulated as a consequence of forced attenuation of Wnt signaling in CRC cells, and some of these miRNAs inhibit cell growth with concomitant suppression of several growth-stimulatory cancer-related genes....

  17. Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep

    Directory of Open Access Journals (Sweden)

    Burny Arsène

    2007-07-01

    Full Text Available Abstract Background During malignant progression, tumor cells need to acquire novel characteristics that lead to uncontrolled growth and reduced immunogenicity. In the Bovine Leukemia Virus-induced ovine leukemia model, silencing of viral gene expression has been proposed as a mechanism leading to immune evasion. However, whether proviral expression in tumors is completely suppressed in vivo was not conclusively demonstrated. Therefore, we studied viral expression in two selected experimentally-infected sheep, the virus or the disease of which had features that made it possible to distinguish tumor cells from their nontransformed counterparts. Results In the first animal, we observed the emergence of a genetically modified provirus simultaneously with leukemia onset. We found a Tax-mutated (TaxK303 replication-deficient provirus in the malignant B-cell clone while functional provirus (TaxE303 had been consistently monitored over the 17-month aleukemic period. In the second case, both non-transformed and transformed BLV-infected cells were present at the same time, but at distinct sites. While there was potentially-active provirus in the non-leukemic blood B-cell population, as demonstrated by ex-vivo culture and injection into naïve sheep, virus expression was completely suppressed in the malignant B-cells isolated from the lymphoid tumors despite the absence of genetic alterations in the proviral genome. These observations suggest that silencing of viral genes, including the oncoprotein Tax, is associated with tumor onset. Conclusion Our findings suggest that silencing is critical for tumor progression and identify two distinct mechanisms-genetic and epigenetic-involved in the complete suppression of virus and Tax expression. We demonstrate that, in contrast to systems that require sustained oncogene expression, the major viral transforming protein Tax can be turned-off without reversing the transformed phenotype. We propose that suppression

  18. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Directory of Open Access Journals (Sweden)

    Yiming Liu

    2016-10-01

    Full Text Available Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transfor-mation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium sup¬plemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of Agrobacterium tumefaciens in the plant tissue culture process. We generated a mutant Agrobacterium tumefaciens strain GV2260 (recA-SacB/R that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcrip¬tion factor.

  19. Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression: role of chelatable iron.

    Science.gov (United States)

    Hickok, Jason R; Sahni, Sumit; Mikhed, Yuliya; Bonini, Marcelo G; Thomas, Douglas D

    2011-12-02

    N-Myc downstream-regulated gene 1 (NDRG1) is a ubiquitous cellular protein that is up-regulated under a multitude of stress and growth-regulatory conditions. Although the exact cellular functions of this protein have not been elucidated, mutations in this gene or aberrant expression of this protein have been linked to both tumor suppressive and oncogenic phenotypes. Previous reports have demonstrated that NDRG1 is strongly up-regulated by chemical iron chelators and hypoxia, yet its regulation by the free radical nitric oxide ((•)NO) has never been demonstrated. Herein, we examine the chemical biology that confers NDRG1 responsiveness at the mRNA and protein levels to (•)NO. We demonstrate that the interaction of (•)NO with the chelatable iron pool (CIP) and the appearance of dinitrosyliron complexes (DNIC) are key determinants. Using HCC 1806 triple negative breast cancer cells, we find that NDRG1 is up-regulated by physiological (•)NO concentrations in a dose- and time-dependant manner. Tumor cell migration was suppressed by NDRG1 expression and we excluded the involvement of HIF-1α, sGC, N-Myc, and c-Myc as upstream regulatory targets of (•)NO. Augmenting the chelatable iron pool abolished (•)NO-mediated NDRG1 expression and the associated phenotypic effects. These data, in summary, reveal a link between (•)NO, chelatable iron, and regulation of NDRG1 expression and signaling in tumor cells.

  20. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    Science.gov (United States)

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  1. Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L. Leaves under Chilling Stress.

    Directory of Open Access Journals (Sweden)

    Wei-Li Guo

    Full Text Available Low temperature is one of the major factors limiting pepper (Capsicum annuum L. production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68% showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32% showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress.

  2. Pregnancy Suppresses the Daily Rhythmicity of Core Body Temperature and Adipose Metabolic Gene Expression in the Mouse.

    Science.gov (United States)

    Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J

    2016-09-01

    Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.

  3. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis.

    Science.gov (United States)

    Fan, Qing-Jie; Yan, Feng-Xia; Qiao, Guang; Zhang, Bing-Xue; Wen, Xiao-Peng

    2014-01-01

    Drought is one of the most severe threats to the growth, development and yield of plant. In order to unravel the molecular basis underlying the high tolerance of pitaya (Hylocereus undatus) to drought stress, suppression subtractive hybridization (SSH) and cDNA microarray approaches were firstly combined to identify the potential important or novel genes involved in the plant responses to drought stress. The forward (drought over drought-free) and reverse (drought-free over drought) suppression subtractive cDNA libraries were constructed using in vitro shoots of cultivar 'Zihonglong' exposed to drought stress and drought-free (control). A total of 2112 clones, among which half were from either forward or reverse SSH library, were randomly picked up to construct a pitaya cDNA microarray. Microarray analysis was carried out to verify the expression fluctuations of this set of clones upon drought treatment compared with the controls. A total of 309 expressed sequence tags (ESTs), 153 from forward library and 156 from reverse library, were obtained, and 138 unique ESTs were identified after sequencing by clustering and blast analyses, which included genes that had been previously reported as responsive to water stress as well as some functionally unknown genes. Thirty six genes were mapped to 47 KEGG pathways, including carbohydrate metabolism, lipid metabolism, energy metabolism, nucleotide metabolism, and amino acid metabolism of pitaya. Expression analysis of the selected ESTs by reverse transcriptase polymerase chain reaction (RT-PCR) corroborated the results of differential screening. Moreover, time-course expression patterns of these selected ESTs further confirmed that they were closely responsive to drought treatment. Among the differentially expressed genes (DEGs), many are related to stress tolerances including drought tolerance. Thereby, the mechanism of drought tolerance of this pitaya genotype is a very complex physiological and biochemical process, in

  4. SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae.

    OpenAIRE

    Neigeborn, L; Celenza, J L; Carlson, M

    1987-01-01

    Dominant and recessive mutations at the SSN20 locus were previously isolated as extragenic suppressors of mutations in three genes (SNF2, SNF5, and SNF6) that are required in trans to derepress invertase expression. All ssn20 alleles cause recessive, temperature-sensitive lethality. In this study we cloned the SSN20 gene, identified a 4.6-kilobase poly(A)-containing RNA, and showed that disruption of the gene is lethal in a haploid cell. Genetic mapping of SSN20 to a locus on chromosome VII 1...

  5. Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR.

    Science.gov (United States)

    Feng, Lifang; Miao, Wei; Wu, Yuxuan

    2007-02-15

    Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T. thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system.

  6. Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

    Directory of Open Access Journals (Sweden)

    Kelli Anderson

    Full Text Available Many microarray and suppression subtractive hybridization (SSH studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones, the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

  7. Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars.

    Science.gov (United States)

    Huang, Baifei; Xin, Junliang; Yang, Zhongyi; Zhou, Yihui; Yuan, Jiangang; Gong, Yulian

    2009-10-14

    The abilities to accumulate cadmium (Cd) are different among cultivars (cv.) in many species. The characteristic of Cd concentration among cultivars is heritable and is probably controlled by genes, but rather limited information about the relevant genes in vegetable crops has been published. In the present study, a suppression subtractive hybridization (SSH) approach was used to identify genes induced by Cd in two water spinach (an important vegetable in southern China) cultivars that differ in Cd accumulation in their edible parts. The two cultivars were cv. Qiangkunqinggu (QK), a low Cd accumulative cultivar and cv. Taiwan 308 (TW), a high Cd accumulative cultivar. In the construction of QK and TW libraries, the plants without Cd treatment were taken as drivers and the plants exposed to 6 mg L(-1) Cd for 24 h as testers. Four hundred clones were sequenced, and 164 nonrepeated sequences (112 from the QK library and 52 from the TW library) were assigned to being functional genes or proteins. A tremendous difference in Cd-induced gene expressions between the two libraries was observed. In the QK library, genes implicated in disease/defense comprised one of the largest sets (20.6%), whereas the proportion was only 8.8% in the TW library. An MT3 gene (Q5), a wound inductive gene (Q22), an antioxidation relevant gene (Q34), a lectin gene (Q45), an f-box family protein gene (Q319), a 20S proteasome subunit gene (T17), a multidrug resistance associated protein gene (T156), and a cationic amino acid transporter gene (T218) were selected to compare semiquantitatively their expression between cv. QK and cv. TW using the RT-PCR method, and obvious differences were detected. The relationships between the identified differences in the expressions of the genes and the Cd accumulation of the two cultivars were discussed, and it was concluded that the SSH approach is useful for finding the difference in expression of Cd-induced gene even at the cultivar level and is applicable

  8. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    Science.gov (United States)

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  9. The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain.

    Science.gov (United States)

    Wang, Zhe; Shen, Yan

    2017-03-01

    The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.

  10. Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize.

    Directory of Open Access Journals (Sweden)

    Yong Hu

    Full Text Available Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase. The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective.

  11. Global gene expression profiling reveals a suppressed immune response pathway associated with 3q amplification in squamous carcinoma of the lung

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2015-09-01

    Full Text Available Chromosome 3q26–28 is a critical region of genomic amplification in non-small cell lung cancer (NSCLC, particularly lung squamous cell carcinomas (SCCs. No molecular therapeutic target has shown clinical utility for SCC, in contrast with adenocarcinomas of the lung. To identify novel candidate drivers in this region, we performed both Array Comparative Genomic Hybridization (array CGH, Agilent Human Genome CGH 244A oligo-microarrays and Gene Expression Microarray (Agilent Human Gene Expression 4 × 44 K microarray on 24 untreated lung SCC specimens. Using our previously published integrative genomics approach, we identified 12 top amplified driver genes within this region that are highly correlated and overexpressed in lung SCC. We further demonstrated one of the 12 top amplified driver Fragile X mental retardation-related protein 1 (FXR1 as a novel cancer gene in NSCLC and FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota ( PRKCI and epithelial cell transforming 2 (ECT2 within the same amplicon in lung cancer cell. Here we report that immune response pathways are significantly suppressed in lung SCC and negatively associated with 3q driver gene expression, implying a potential role of 3q drivers in cancer immune-surveillance. In light of the attractive immunotherapy strategy using blockade of negative regulators of T cell function for multiple human cancer including lung SCC, our findings may provide a rationale for targeting 3q drivers in combination of immunotherapies for human tumors harboring the 3q amplicon. The data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE40089.

  12. Identification of differentially expressed genes in American cockroach ovaries and testes by suppression subtractive hybridization and the prediction of its miRNAs.

    Science.gov (United States)

    Chen, Wan; Jiang, Guo-Fang; Sun, Shu-Hong; Lu, Yong; Ma, Fei; Li, Bin

    2013-11-01

    Studies on the cockroach have contributed to our understanding of several important developmental processes, especially those that can be easily studied in the embryo. However, our knowledge on late events such as gonad differentiation in the cockroach is still limited. The major aim of the present study was to identify sex-specific genes between adult female and male Periplaneta americana. Two cDNA libraries were constructed using the suppression subtractive hybridization method; a total of 433 and 599 unique sequences were obtained from the forward library and the reverse library, respectively, by cluster assembly, and sequence alignment of 1,032 expressed sequence tags. The analysis of the differentially expressed gene functions allowed these genes to be categorized into three groups: biological process, molecular function, and cellular component. The differentially expressed genes were suggested to be related to the development of the gonads of P. americana. Twelve differentially expressed genes were randomly selected and verified using relative quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, by adopting a range of filtering criteria, we predicted two potential microRNA sequences for P. americana, pam-miR100-3p and pam-miR7. To confirm the expression of potential microRNAs (miRNAs) in American cockroach, a qRT-PCR approach was also employed. The data presented here offer the insights into the molecular foundation of sex differences in American cockroach, and the first report for the miRNAs in this species. In addition, the results can be used as a reference for unraveling candidate genes associated with the sex and reproduction of cockroaches.

  13. A stress-enhanced model for discovery of disease-modifying gene: Ece1-suppresses the toxicity of α-synuclein A30P.

    Science.gov (United States)

    Chen, Alex Yen-Yu; Tully, Tim

    2018-03-07

    Parkinson's disease (PD) is a progressive motor neurodegenerative disorder, characterized by a selective loss of dopaminergic neurons in the substantia nigra. The complexity of disease etiology includes both genetic and environmental factors. No effective drug that can modify disease progression and protect dopamine neurons from degeneration is presently available. Human α-Synuclein A30P (A30P) is a mutant gene identified in early onset PD and showed to result selective dopamine neuron loss in transgenic A30P flies and mice. Paraquat (PQ) is an herbicide and an oxidative stress generator, linked to sporadic PD. We hypothesized that vital PD modifier genes are conserved across species and would show unique transcriptional changes to oxidative stress in animals expressing a PD-associated gene, such as A30P. We also hypothesized that manipulation of PD modifier genes would provide neuroprotection across species. To identify disease modifier genes, we performed two independently-duplicated experiments of microarray, capturing genome-wide transcriptional changes in A30P flies, chronically fed with PQ-contaminated food. We hypothesized that the best time point of identifying a disease modifier gene is at time when flies showed maximal combined toxicity of A30P transgene and PQ treatment during an early stage of disease and that effective disease modifiers gene are those showing transcriptional changes to oxidative stress in A30P expressing and not in wild type animals. Fly Neprilysin3 (Nep3) is one identified gene that is highly conserved. Its mouse and human homolog is endothelin-converting enzyme-1 (Ece1). To investigate the neuroprotective effect of Ece1, we used NS1 cells and mouse midbrain neurons expressing A30P, treated with or without PQ. We found that ECE1 expression protected against A30P toxicity on cell viability, on neurite outgrowth and ameliorated A30P accumulation in vitro. Expression of ECE1 in vivo suppressed dopamine neuron loss and alleviated the

  14. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2016-04-01

    Full Text Available Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription.

  15. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats.

    Science.gov (United States)

    Mizuguchi, Hiroyuki; Das, Asish K; Maeyama, Kazutaka; Dev, Shrabanti; Shahriar, Masum; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2016-04-01

    Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R) or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC) mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI)-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice

    Directory of Open Access Journals (Sweden)

    Tan L

    2017-04-01

    Full Text Available Lunmei Tan,1 Sen Han,2 Shizhen Ding,2 Weiming Xiao,3,4 Yanbing Ding,3 Li Qian,2,4 Chenming Wang,1,5 Weijuan Gong1–5 1Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 2Department of Immunology, School of Medicine, 3Department of Gastroenterology, The Second Clinical Medical College, 4Department of Integrated Chinese and Western Medicine, School of Medicine, 5Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China Abstract: Nanoparticles can be loaded with exogenous DNA for the potential expression of cytokines with immune-stimulatory function. NKG2D identifies major histocompatibility complex class I chain-related protein in human and retinoic acid early induced transcript-1 in mouse, which acts as tumor-associated antigens. Biologic agents based on interleukin 21 (IL-21 have displayed antitumor activities through lymphocyte activation. The NKG2D–IL-21 fusion protein theoretically identifies tumor cells through NKG2D moiety and activates T cells through IL-21 moiety. In this study, double-gene fragments that encode the extracellular domains of NKG2D and IL-21 genes were connected and then inserted into the pcDNA3.1(– plasmid. PcDNA3.1–dsNKG2D–IL-21 plasmid nanoparticles based on chitosan were generated. Tumor cells pretransfected with dsNKG2D–IL-21 gene nanoparticles can activate natural killer (NK and CD8+ T cells in vitro. Serum IL-21 levels were enhanced in mice intramuscularly injected with the gene nanoparticles. DsNKG2D–IL-21 gene nanoparticles accumulated in tumor tissues after being intravenously injected for ~4–24 h. Treatment of dsNKG2D–IL-21 gene nanoparticles also retarded tumor growth and elongated the life span of tumor-bearing mice by activating NK and T cells in vivo. Thus, the dsNKG2D–IL-21 gene nanoparticles exerted efficient antitumor activities and would be potentially used for tumor therapy. Keywords: NKG2

  17. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    Science.gov (United States)

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Point mutation in the NF2 gene of HEI-193 human schwannoma cells results in the expression of a merlin isoform with attenuated growth suppressive activity

    Energy Technology Data Exchange (ETDEWEB)

    Lepont, Pierig; Stickney, John T.; Foster, Lauren A.; Meng, Jin-Jun; Hennigan, Robert F. [Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Ip, Wallace [Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States)], E-mail: wallace.ip@uc.edu

    2008-01-01

    Neurofibromatosis type 2 (NF2) is a genetic disorder characterized by the formation of bilateral schwannomas of the eighth cranial nerve. Although the protein product of the NF2 gene (merlin) is a classical tumor suppressor, the mechanism by which merlin suppresses cell proliferation is not fully understood. The availability of isolated tumor cells would facilitate a better understanding of the molecular function of merlin, but primary schwannoma cells obtained from patients grow slowly and do not yield adequate numbers for biochemical analysis. In this study, we have examined the NF2 mutation in HEI-193 cells, an immortalized cell line derived from the schwannoma of an NF2 patient. Previous work showed that the NF2 mutation in HEI-193 cells causes a splicing defect in the NF2 transcript. We have confirmed this result and further identified the resultant protein product as an isoform of merlin previously designated as isoform 3. The level of isoform 3 proteins in HEI-193 cells is comparable to the levels of merlin isoforms 1 and 2 in normal human Schwann cells and several other immortalized cell lines. In contrast to many mutant forms of merlin, isoform 3 is as resistant to proteasomal degradation as isoforms 1 and 2 and can interact with each of these isoforms in vivo. Cell proliferation assays showed that, in NF2{sup -/-} mouse embryonic fibroblasts, exogenously expressed merlin isoform 3 does exhibit growth suppressive activity although it is significantly lower than that of identically expressed merlin isoform 1. These results indicate that, although HEI-193 cells have undetectable levels of merlin isoforms 1 and 2, they are, in fact, not a merlin-null model because they express the moderately active growth suppressive merlin isoform 3.

  19. Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray

    Directory of Open Access Journals (Sweden)

    Qiu Wen-Ming

    2012-08-01

    Full Text Available Abstract Background Seedlessness is an important agronomic trait for citrus, and male sterility (MS is one main cause of seedless citrus fruit. However, the molecular mechanism of citrus seedlessness remained not well explored. Results An integrative strategy combining suppression subtractive hybridization (SSH library with cDNA microarray was employed to study the underlying mechanism of seedlessness of a Ponkan mandarin seedless mutant (Citrus reticulata Blanco. Screening with custom microarray, a total of 279 differentially expressed clones were identified, and 133 unigenes (43 contigs and 90 singletons were obtained after sequencing. Gene Ontology (GO distribution based on biological process suggested that the majority of differential genes are involved in metabolic process and respond to stimulus and regulation of biology process; based on molecular function they function as DNA/RNA binding or have catalytic activity and oxidoreductase activity. A gene encoding male sterility-like protein was highly up-regulated in the seedless mutant compared with the wild type, while several transcription factors (TFs such as AP2/EREBP, MYB, WRKY, NAC and C2C2-GATA zinc-finger domain TFs were down-regulated. Conclusion Our research highlighted some candidate pathways that participated in the citrus male gametophyte development and could be beneficial for seedless citrus breeding in the future.

  20. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Qiyin Zhou

    Full Text Available The phenotypic manifestation of mitochondrial DNA (mtDNA mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein, which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS in mitochondria, but also ensured the growth of the mss1(PR mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  1. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  2. Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia an tobacco

    NARCIS (Netherlands)

    Kater, M.M.; Franken, J.; Aelst, van A.; Angenent, G.C.

    2000-01-01

    Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the

  3. Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia and tobacco.

    Science.gov (United States)

    Kater, M M; Franken, J; van Aelst, A; Angenent, G C

    2000-08-01

    Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the ovule outer integument. Both these functions indicate a role for SUP in cell proliferation. To study the function of the Arabidopsis SUP gene in more detail, we over-expressed the SUP gene in petunia and tobacco in a tissue-specific manner. The petunia FLORAL BINDING PROTEIN 1 (FBP1) gene promoter was used to restrict the expression of SUP to petals and stamens. The development of petals and stamens was severely affected in both petunia and tobacco plants over-expressing SUP. Petals remained small and did not unfold, resulting in closed flowers. Stamen filaments were thin and very short. Detailed analysis of these floral organs from the petunia transformants showed that cell expansion was dramatically reduced without affecting cell division. These results reveal a novel activity for SUP as a regulator of cell expansion.

  4. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells.

    Science.gov (United States)

    Taylor, Jackson; Pereyra, Andrea; Zhang, Tan; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Kuan, Pei-Fen; Delbono, Osvaldo

    2014-06-23

    Voltage-gated calcium channel (Cav) β subunits are auxiliary subunits to Cavs. Recent reports show Cavβ subunits may enter the nucleus and suggest a role in transcriptional regulation, but the physiological relevance of this localization remains unclear. We sought to define the nuclear function of Cavβ in muscle progenitor cells (MPCs). We found that Cavβ1a is expressed in proliferating MPCs, before expression of the calcium conducting subunit Cav1.1, and enters the nucleus. Loss of Cavβ1a expression impaired MPC expansion in vitro and in vivo and caused widespread changes in global gene expression, including up-regulation of myogenin. Additionally, we found that Cavβ1a localizes to the promoter region of a number of genes, preferentially at noncanonical (NC) E-box sites. Cavβ1a binds to a region of the Myog promoter containing an NC E-box, suggesting a mechanism for inhibition of myogenin gene expression. This work indicates that Cavβ1a acts as a Cav-independent regulator of gene expression in MPCs, and is required for their normal expansion during myogenic development. © 2014 Taylor et al.

  5. Construction and Testing of a Bacterial Luciferase Reporter Gene System for in Vivo Measurement of Nonsense Suppression in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Buriánková, Karolína; Kalachová, Ladislava; Branny, Pavel; Pernodet, J.-L.

    2006-01-01

    Roč. 51, č. 1 (2006), s. 62-64 ISSN 0015-5632 R&D Projects: GA ČR GA310/03/0292 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces * reporter gene system Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  6. Identification of growth phenotype-related genes in Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization

    NARCIS (Netherlands)

    Biesebeke, R. te; Levin, A.; Sagt, C.; Bartels, J.; Goosen, T.; Ram, A.; Hondel, C. van den; Punt, P.

    2005-01-01

    Aspergillus oryzae requires polarized growth for colonization of solid substrates, and this growth phenotype differs from that seen in liquid medium. Various experimental approaches were used to identify genes that are differentially expressed when A. oryzae is grown on wheat kernels and in a

  7. The level of neuron-specific enolase and S-100 protein in the cerebrospinal fluid of patients with acute bacterial meningitis

    Directory of Open Access Journals (Sweden)

    A. V. Sokhan

    2016-08-01

    Full Text Available Aim. To evaluate the diagnostic and prognostic role of neuron-specific enolase (NSE and S-100 protein levels in cerebrospinal fluid (CSF of patients with acute bacterial meningitis in the course of the disease. Materials and Methods. 54 cases of acute bacterial meningitis were analyzed, among them – 26 with pneumococcal and 28 with meningococcal etiology. Patients were divided into groups depending on the severity and etiology of disease. In addition to routine laboratory methods, we analyzed the CSF levels of S-100 protein and NSE at admission and after 10 – 12 days of treatment. 12 patients with acute respiratory infections and meningism were examined as a comparison group. Results. In all patients with acute bacterial meningitis CSF NSE and protein S-100 levels were significantly higher than in the control group (P <0,05. CSF neuro specific proteins level was in direct dependence on severity of the disease, and in patients with severe disease was significantly higher than in patients with moderate severity and in the control group (P <0,01. After 10 – 12 days of treatment, the level of the NSE and S-100 protein decreased, but in severe cases was still higher than in the control group (P <0,05. Conclusions. Increased cerebrospinal fluid NSE and S – 100 protein levels shows the presence and value of neurons and glial cells damage in patients with acute bacterial meningitis. CSF S-100 protein and neuron-specific enolase levels help to determine the severity of neurons destruction and glial cells in patients with acute bacterial meningitis. Level of neurospecific protein is in direct proportion to the severity of the disease and is the highest in patients with severe cases (P<0,05. It confirms the diagnostic and prognostic value of CSF neurospecific protein determination in patients with bacterial meningitis.

  8. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    Directory of Open Access Journals (Sweden)

    Killick Kate E

    2011-12-01

    Full Text Available Abstract Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB, a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001, while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002. Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE between the infected and control animal groups (adjusted P-value threshold ≤ 0.05; with the number of gene transcripts showing decreased relative expression (1,563 exceeding those displaying increased relative expression (1,397. Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This

  9. Relation of polymorphism C1236T and C3435T in ABCB1 gene with bone marrow suppression in chemotherapy-treated breast cancer patients

    Science.gov (United States)

    Syarifah, S.; Hamdi, T.; Widyawati, T.; Sari, M. I.; Anggraini, D. R.

    2018-03-01

    ABCB1 is agene that encoded P-glycoprotein (P-gp), a transmembrane active efflux pump for a variety of carcinogens and cytostatics.ABCB1 polymorphisms C1236T and C3435T contribute to the variability oftherapeutic outcome and side effects.The present study was conducted to investigatethe relation of C1236T and C3435T polymorphisms in ABCB1 gene with bone marrow suppression in breast cancer patients treated withchemotherapy72 Indonesian womens isolated DNA sampleswere amplified using the PCR method. The analysis process of ABCB1 C1236T and C3435T polymorphism was by using thePCR-RFLP method. The frequencies of ABCB1 C1236T genotype for homozygous CC,heterozygous CT and variant TT was 11(15.28%), 42(58.33%), 19(26.39%), respectively. No associationwas between ABCB1 C1236T and C3435T polymorphisms in both individually and haplotypes with bone marrow suppression event (p > 0.05). There was no specific deviation of allele and genotype frequency from Hardy-Weinberg Equilibrium. There was a linkage between heterozygous CT-heterozygous CT in position 1236 and 3435 within 25 people (35%).

  10. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells

    Directory of Open Access Journals (Sweden)

    Liang Gao

    2011-01-01

    Full Text Available Abstract The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide (PLGA-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

  11. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    Full Text Available Ting Yu,1,* Bei Xu,1,* Lili He,2 Shan Xia,3 Yan Chen,1 Jun Zeng,1 Yongmei Liu,1 Shuangzhi Li,1 Xiaoyue Tan,4 Ke Ren,1 Shaohua Yao,1 Xiangrong Song1 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 2College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, 3Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, 4Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%, probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on

  12. Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype

    Directory of Open Access Journals (Sweden)

    Kavithalakshmi Sataranatarajan

    2015-08-01

    Full Text Available Our previous studies showed that adult (8 month mice lacking CuZn-superoxide dismutase (CuZnSOD, Sod1KO mice have neuromuscular changes resulting in dramatic accelerated muscle atrophy and weakness that mimics age-related sarcopenia. We have further shown that loss of CuZnSOD targeted to skeletal muscle alone results in only mild weakness and no muscle atrophy. In this study, we targeted deletion of CuZnSOD specifically to neurons (nSod1KO mice and determined the effect on muscle mass and weakness. The nSod1KO mice show a significant loss of CuZnSOD activity and protein level in brain and spinal cord but not in muscle tissue. The masses of the gastrocnemius, tibialis anterior and extensor digitorum longus (EDL muscles were not reduced in nSod1KO compared to wild type mice, even at 20 months of age, although the quadriceps and soleus muscles showed small but statistically significant reductions in mass in the nSod1KO mice. Maximum isometric specific force was reduced by 8–10% in the gastrocnemius and EDL muscle of nSod1KO mice, while soleus was not affected. Muscle mitochondrial ROS generation and oxidative stress measured by levels of reactive oxygen/nitrogen species (RONS regulatory enzymes, protein nitration and F2-isoprostane levels were not increased in muscle from the nSod1KO mice. Although we did not find evidence of denervation in the nSod1KO mice, neuromuscular junction morphology was altered and the expression of genes associated with denervation acetylcholine receptor subunit alpha (AChRα, the transcription factor, Runx1 and GADD45α was increased, supporting a role for neuronal loss of CuZnSOD initiating alterations at the neuromuscular junction. These results and our previous studies support the concept that CuZnSOD deficits in either the motor neuron or muscle alone are not sufficient to initiate a full sarcopenic phenotype and that deficits in both tissues are required to recapitulate the loss of muscle observed in Sod1KO mice.

  13. Tobacco streak virus (strain dahlia) suppresses post-transcriptional gene silencing of flavone synthase II in black dahlia cultivars and causes a drastic flower color change.

    Science.gov (United States)

    Deguchi, Ayumi; Tatsuzawa, Fumi; Hosokawa, Munetaka; Doi, Motoaki; Ohno, Sho

    2015-09-01

    Tobacco streak virus suppressed post-transcriptional gene silencing and caused a flower color change in black dahlias, which supported the role of cyanidin-based anthocyanins for black flower appearance. Black flower color of dahlia (Dahlia variabilis) has been attributed, in part, to the high accumulation of cyanidin-based anthocyanins that occurs when flavone synthesis is reduced because of post-transcriptional gene silencing (PTGS) of flavone synthase II (DvFNS). There are also purple-flowering plants that have emerged from a black cultivar 'Kokucho'. We report that the purple color is not caused by a mutation, as previously thought, but by infection with tobacco streak virus (TSVdahlia), which suppresses the PTGS of DvFNS. When TSVdahlia was eliminated from the purple-flowering 'Kokucho' by leaf primordia-free shoot apical meristem culture, the resulting flowers were black. TSVdahlia-infected purple flowers had lower numbers of siRNAs to DvFNS than black flowers, suggesting that TSVdahlia has a silencing suppressor. The graft inoculation of other black cultivars with TSVdahlia altered their flower color drastically except for 'Fidalgo Blacky', a very deep black cultivar with the highest amount of cyanidin-based anthocyanins. The flowers of all six TSVdahlia-infected cultivars accumulated increased amounts of flavones and reduced amounts of cyanidin-based anthocyanins. 'Fidalgo Blacky' remained black despite the change in pigment accumulation, and the amounts of cyanidin-based anthocyanins in its TSVdahlia-infected plants were still higher than those of other cultivars. We propose that black flower color in dahlia is controlled by two different mechanisms that increase the amount of cyanidin-based anthocyanins: DvFNS PTGS-dependent and -independent mechanisms. If both mechanisms occur simultaneously, the flower color will be blacker than if only a single mechanism is active.

  14. Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: new candidate genes evidenced by a suppressive subtractive hybridization approach.

    Science.gov (United States)

    Bouchut, A; Coustau, C; Gourbal, B; Mitta, G

    2007-04-01

    In order to elucidate mechanisms underlying snail/echinostome compatibility, numerous molecular studies comparing transcripts and proteins of Biomphalaria glabrata susceptible or resistant to Echinostoma caproni were undertaken. These studies focused on plasma and haemocytes of the two strains and revealed that some transcripts and/or proteins were differentially expressed between strains. The aim of the present study was to develop a complementary transcriptomic approach by constructing subtractive libraries. This work revealed some candidate transcripts already identified in previous studies (calcium-binding proteins and glycolytic enzymes) as well as novel candidate transcripts that were differentially represented between strains of B. glabrata. Among these newly identified genes, we revealed several genes potentially involved in immune processes encoding proteases, protease inhibitors, a lectin, an aplysianin-like molecule, and cell adhesion molecules.

  15. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton.

    Science.gov (United States)

    Gao, Wei; Long, Lu; Xu, Li; Lindsey, Keith; Zhang, Xianlong; Zhu, Longfu

    2016-05-01

    Development of pathogen-resistant crops, such as fungus-resistant cotton, has significantly reduced chemical application and improved crop yield and quality. However, the mechanism of resistance to cotton pathogens such as Verticillium dahliae is still poorly understood. In this study, we characterized a cotton gene (HDTF1) that was isolated following transcriptome profiling during the resistance response of cotton to V. dahliae. HDTF1 putatively encodes a homeodomain transcription factor, and its expression was found to be down-regulated in cotton upon inoculation with V. dahliae and Botrytis cinerea. To characterise the involvement of HDTF1 in the response to these pathogens, we used virus-induced gene silencing (VIGS) to generate HDTF1-silenced cotton. VIGS reduction in HDTF1 expression significantly enhanced cotton plant resistance to both pathogens. HDTF1 silencing resulted in activation of jasmonic acid (JA)-mediated signaling and JA accumulation. However, the silenced plants were not altered in the accumulation of salicylic acid (SA) or the expression of marker genes associated with SA signaling. These results suggest that HDTF1 is a negative regulator of the JA pathway, and resistance to V. dahliae and B. cinerea can be engineered by activation of JA signaling. © 2015 Institute of Botany, Chinese Academy of Sciences.

  16. Suppression of HLA expression by lentivirus-mediated gene transfer of siRNA cassettes and in vivo chemoselection to enhance hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hacke, Katrin; Falahati, Rustom; Flebbe-Rehwaldt, Linda; Kasahara, Noriyuki; Gaensler, Karin M L

    2009-01-01

    Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation. The first approach is based on recent advances that make feasible targeted down-regulation of HLA expression. Suppression of HLA expression could help to overcome limitations imposed by extensive HLA polymorphisms that restrict the availability of suitable donors. Accordingly, we have recently investigated whether knockdown of HLA by RNA interference (RNAi) enables allogeneic cells to evade immune recognition. For efficient and stable delivery of short hairpin-type RNAi constructs (shRNA), we employed lentivirus-based gene transfer vectors that integrate into genomic DNA, thereby permanently modifying transduced donor cells. Lentivirus-mediated delivery of shRNA targeting pan-Class I and allele-specific HLA achieved efficient and dose-dependent reduction in surface expression of HLA in human cells, and enhanced resistance to allo-reactive T lymphocyte-mediated cytotoxicity, while avoiding non-MHC restricted killing. Complementary strategies for genetic engineering of HSC that would provide a selective advantage for transplanted donor cells and enable successful engraftment with less toxic preparative and immunosuppressive regimens would increase the numbers of individuals to whom HLA suppression therapy could be offered. Our second strategy is to provide a mechanism for in vivo selection of genetically modified HSC and other donor cells. We have

  17. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis.

    Science.gov (United States)

    Niu, Dongdong; Xia, Jing; Jiang, Chunhao; Qi, Beibei; Ling, Xiaoyu; Lin, Siyuan; Zhang, Weixiong; Guo, Jianhua; Jin, Hailing; Zhao, Hongwei

    2016-04-01

    Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance (ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here, by comparing small RNA profiles of Pseudomonas syringae pv. tomato (Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis microRNAs (miRNAs) that are differentially regulated by AR156 pretreatment. miR825 and miR825* are two miRNA generated from a single miRNA gene. Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. miR825 targets two ubiquitin-protein ligases, while miR825* targets toll-interleukin-like receptor (TIR)-nucleotide binding site (NBS) and leucine-rich repeat (LRR) type resistance (R) genes. The expression of these target genes negatively correlated with the expression of miR825 and miR825*. Moreover, transgenic plants showing reduced expression of miR825 and miR825* displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing miR825 and miR825* were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing miR825 and miR825* and activating the defense related genes they targeted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  18. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  19. Identification of differential genes by suppression subtractive hybridization: I. Preparation of subtracted cDNA or genomic DNA library.

    Science.gov (United States)

    Rebrikov, Denis V

    2008-07-01

    INTRODUCTIONSuppression subtractive hybridization (SSH) is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. This technique can be used to compare two mRNA populations and obtain cDNAs representing genes that are either overexpressed or exclusively expressed in one population as compared to another. It can also be used for comparison of genomic DNA populations. This protocol describes the preparation of a subtracted cDNA or genomic DNA library, and includes methods for cDNA synthesis, tester and driver DNA digestion, and adapter ligation.

  20. Trisomy of the Dscr1 gene suppresses early progression of pancreatic intraepithelial neoplasia driven by oncogenic Kras

    International Nuclear Information System (INIS)

    Lee, Jang Choon; Shin, Jimin; Baek, Kwan-Hyuck

    2013-01-01

    Highlights: •A single extra copy of Dscr1 restrains progression of PanIN-1A to PanIN-1B lesions. •Dscr1 trisomy attenuates calcineurin–NFAT pathway in neoplastic ductal epithelium. •Dscr1 trisomy leads to upregulation of p15 INK4b in neoplastic ductal epithelium. •A single extra copy of Dscr1 reduces epithelial proliferation in early PanIN lesions. •Dscr1 trisomy may protect Down syndrome individuals from pancreatic cancer. -- Abstract: Individuals with Down syndrome exhibit remarkably reduced incidence of most solid tumors including pancreatic cancer. Multiple mechanisms arising from the genetic complexity underlying Down syndrome has been suggested to contribute to such a broad cancer protection. In this study, utilizing a genetically engineered mouse model of pancreatic cancer, we demonstrate that trisomy of the Down syndrome critical region-1 (Dscr1), an endogenous calcineurin inhibitor localized on chromosome 21, suppresses the progression of pancreatic intraepithelial neoplasia-1A (PanIN-1A) to PanIN-1B lesions without affecting the initiation of PanIN lesions mediated by oncogenic Kras G12D . In addition, we show that Dscr1 trisomy attenuates nuclear localization of nuclear factor of activated T-cells (NFAT) accompanied by upregulation of the p15 Ink4b tumor suppressor and reduction of cell proliferation in early PanIN lesions. Our data suggest that attenuation of calcineurin–NFAT signaling in neoplastic pancreatic ductal epithelium by a single extra copy of Dscr1 is sufficient to inhibit the progression of early PanIN lesions driven by oncogenic Kras, and thus may be a potential mechanism underlying reduced incidence of pancreatic cancer in Down syndrome individuals

  1. Trisomy of the Dscr1 gene suppresses early progression of pancreatic intraepithelial neoplasia driven by oncogenic Kras

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Choon; Shin, Jimin; Baek, Kwan-Hyuck, E-mail: khbaek@skku.edu

    2013-10-11

    Highlights: •A single extra copy of Dscr1 restrains progression of PanIN-1A to PanIN-1B lesions. •Dscr1 trisomy attenuates calcineurin–NFAT pathway in neoplastic ductal epithelium. •Dscr1 trisomy leads to upregulation of p15{sup INK4b} in neoplastic ductal epithelium. •A single extra copy of Dscr1 reduces epithelial proliferation in early PanIN lesions. •Dscr1 trisomy may protect Down syndrome individuals from pancreatic cancer. -- Abstract: Individuals with Down syndrome exhibit remarkably reduced incidence of most solid tumors including pancreatic cancer. Multiple mechanisms arising from the genetic complexity underlying Down syndrome has been suggested to contribute to such a broad cancer protection. In this study, utilizing a genetically engineered mouse model of pancreatic cancer, we demonstrate that trisomy of the Down syndrome critical region-1 (Dscr1), an endogenous calcineurin inhibitor localized on chromosome 21, suppresses the progression of pancreatic intraepithelial neoplasia-1A (PanIN-1A) to PanIN-1B lesions without affecting the initiation of PanIN lesions mediated by oncogenic Kras{sup G12D}. In addition, we show that Dscr1 trisomy attenuates nuclear localization of nuclear factor of activated T-cells (NFAT) accompanied by upregulation of the p15{sup Ink4b} tumor suppressor and reduction of cell proliferation in early PanIN lesions. Our data suggest that attenuation of calcineurin–NFAT signaling in neoplastic pancreatic ductal epithelium by a single extra copy of Dscr1 is sufficient to inhibit the progression of early PanIN lesions driven by oncogenic Kras, and thus may be a potential mechanism underlying reduced incidence of pancreatic cancer in Down syndrome individuals.

  2. Recombinant adenovirus expressing ICP47 gene suppresses the ability of dendritic cells by restricting specific T cell responses.

    Science.gov (United States)

    Wang, Peng; Kan, Quancheng; Yu, Zujiang; Li, Ling; Zhang, Zhenxiang; Pan, Xue; Feng, Ting

    2013-04-01

    Adenoviral vectors have been demonstrated to be one of the most effective vehicles to deliver foreign DNA into dendritic cells (DCs). However, the response of host immune systems against foreign gene products is a major obstacle to successful gene therapy. Infected cell protein 47 (ICP47) inhibits MHC Ⅰ antigen presentation pathway by binding to host transporter associated with antigen presentation (TAP), and thereby attenuates of specific cytotoxic T lymphocytes (CTLs) responses and evades the host immune clearance. This subject was designed to construct a recombinant adenovirus expressing His-tag-ICP47 fusion protein to investigate further the role of ICP47 in the elimination of transgene expression. Consequently, a recombinant adenovirus expressing the His-tag-ICP47 fusion protein was successfully constructed and it had the abilities of attenuating the stimulatory capacity of DCs by reducing the proliferation of lymphocytes and cytokine production of perforin compared with those of the r-track group and the control group. Our observations provide the first evidence of the regulation mechanism of ICP47 on DC-based immunotherapy for long-term persistence. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2009-06-01

    Full Text Available Abstract Background Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH technique. Results Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. Conclusion The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes

  4. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization.

    Science.gov (United States)

    Sahu, Binod B; Shaw, Birendra P

    2009-06-05

    Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species) to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH) technique. Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes involved in a wide range of cellular functions was

  5. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish

    Directory of Open Access Journals (Sweden)

    Hasumura Takahiro

    2012-08-01

    Full Text Available Abstract Background Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO zebrafish. Methods Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily. Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. Results Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl, ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain, and PPARA (peroxisome proliferator-activated receptor alpha. GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b which inhibits leptin signaling. Conclusions The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.

  6. Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.

    Science.gov (United States)

    Lee, Hyun Jae; Park, Jin Sung; Yoon, Yong Pill; Shin, Ye Jin; Lee, Sang Kook; Kim, Yeong Shik; Hong, Jang-Hee; Son, Kun Ho; Lee, Choong Jae

    2015-05-15

    The root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. We investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. Confluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. (1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10(-5) M (p Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. [Construction of suppression subtractive hybridization cDNA library of half-blood males of Dermacentor silvarum and analysis of differentially expressed genes].

    Science.gov (United States)

    Liu, Qi; Wang, Wei-lin; Meng, Qing-feng; Xu, Zhan; Cui, Jie; Liu, Xin-xin; Wang, Wei-li

    2014-08-01

    To construct a suppression subtractive hybridization (SSH) cDNA library of half-blood males of Dermacentor silvarum, and analyze the differentially expressed genes. Total RNA was extracted from the half-blood males and unfed males of D. silvarum. cDNA was synthesized following the protocol of SMARTER cDNA synthesis kit. After Rsa I digestion, cDNA was ligated to adaptors. The cDNA from the half-blood males was used as the tester, and unfed males as the driver. The SSH library was constructed using TaKaRa PCR-select cDNA subtraction kit. Differentially expressed cDNAs were amplified by nested PCR, cloned into PMD-18T vector, transformed into E. coli DH5alpha, and the white-blue plaque selection was used to get the positive clones. The titer of SSH library and the recombination efficiency were calculated. Individual colonies were randomly selected from library. Subtractive efficiency of the subtracted cDNA library was examined by reverse Northern blotting and RT-PCR. Positive clones with differentially expressed genes were sequenced. Homology comparison and function prediction were performed by Blastn and Blastx. The bands of double-stranded cDNAs from half-blood males and unfed males of D. silvarum were dispersed and longer than 500 bp. After Rsa I digestion, the ds cDNA-fragments were 100-1000 bp. The ligation reaction efficiency of adaptor was more than 25%. Nested PCR showed that the bands of subtracted ds cDNA were gathered, ranging from 250 to 500 bp. The titer of SSH library was 700,000 pfu/ml, and the recombination efficiency was 88.5% (239/270). Reverse Northern hybridization revealed that the clones showed stronger signals in half-blood males cDNA probes than in unfed males cDNA probes. RT-PCR showed that among the eight random selected positive clones, 5 clones were up-expressed under half-blood condition. A total of 87 differentially expressed sequence tags (ESTs, 200-800 bp) were obtained from 115 positive clones. Among the 87 ESTs, 53 ESTs showed

  8. Suppression of human papillomavirus gene expression in vitro and in vivo by herpes simplex virus type 2 infection

    International Nuclear Information System (INIS)

    Fang, L.; Ward, M.G.; Welsh, P.A.; Budgeon, L.R.; Neely, E.B.; Howett, M.K.

    2003-01-01

    Recent epidemiological studies have found that women infected with both herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) type 16 or HPV-18 are at greater risk of developing cervical carcinoma compared to women infected with only one virus. However, it remains unclear if HSV-2 is a cofactor for cervical cancer or if HPV and HSV-2 interact in any way. We have studied the effect of HSV-2 infection on HPV-11 gene expression in an in vitro double-infection assay. HPV transcripts were down-regulated in response to HSV-2 infection. Two HSV-2 vhs mutants failed to reduce HPV-16 E1-circumflexE4 transcripts. We also studied the effect of HSV-2 infection on preexisting experimental papillomas in a vaginal epithelial xenograft model. Doubly infected grafts demonstrated papillomatous transformation and the classical cytopathic effect from HSV-2 infection. HPV and HSV DNA signals were mutually exclusive. These studies may have therapeutic applications for HPV infections and related neoplasms

  9. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression.

    Directory of Open Access Journals (Sweden)

    Shi-Xin Zhang

    Full Text Available The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.. The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree.

  10. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression.

    Science.gov (United States)

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree.

  11. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    Directory of Open Access Journals (Sweden)

    Pham PV

    2012-05-01

    Full Text Available Phuc Van Pham1, Ngoc Bich Vu1, Thuy Thanh Duong1, Tam Thanh Nguyen1, Nhung Hai Truong1, Nhan Lu Chinh Phan1, Tue Gia Vuong1, Viet Quoc Pham1, Hoang Minh Nguyen1, Kha The Nguyen1, Nhung Thi Nguyen1, Khue Gia Nguyen1, Lam Tan Khat1, Dong Van Le2, Kiet Dinh Truong1, Ngoc Kim Phan11Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City, 2Military Medical University, Ha Noi, VietnamBackground: Breast cancer stem cells with a CD44+CD24- phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24- breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment.Methods: Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24- cells. To track CD44+CD24- cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control.Results: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was

  12. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomi Hirako

    Full Text Available We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

  13. Neurovirulent flavivirus can be attenuated in mice by incorporation of neuron-specific microRNA recognition elements into viral genome.

    Science.gov (United States)

    Yen, Li-Chen; Lin, Yi-Ling; Sung, Hsiang-Hsuan; Liao, Jia-Teh; Tsao, Chang-Huei; Su, Chih-Mao; Lin, Chih-Kung; Liao, Ching-Len

    2013-12-02

    Engineering viruses by inserting microRNA (miRNA) recognition elements (MREs) into the 3'-untranslated region (3'-UTR) of viral RNA can efficiently restrict viral tissue tropism. We used the mosquito-borne Japanese encephalitis virus (JEV) to investigate whether endogenous neuron-specific microRNA-124 (miR-124) could be used to restrict viral neurotropism and, consequently, diminish the neurovirulence of JEV in mice. To recover a neuron-restricted JEV, we inserted 2 copies of a perfectly matched MRE specific to miR-124 into the 3'-UTR to create infectious JEV recombinant RP-124PT (rRP-124PT). The effect of rRP-124PT was attenuated in infected mice as compared with MRE mutant and parental strains, both of which were lethal to challenged mice. Immunization with rRP-124PT appeared to elicit full protective immunity against subsequent JEV lethal challenge. We found neurons of the central nervous system critical targets for infection by JEV, which directly causes lethal encephalitis. The silencing of JEV rRP-124PT in mice by miR-124 illustrates that endogenous miRNA can readily recognize and interact with the 3'-UTR of naturally occurring genomic/mRNAs lacking a polyadenylated tail. Inserting MREs into viral RNA may facilitate further study of flaviviral pathogenesis involving tissue tropism and suggest an additional layer of biosafety for the rational design of safe flavivirus vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Immunohistochemical localization of gastrin-releasing peptide, neuronal nitric oxide synthase and neurone-specific enolase in the uterus of the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Kumano, A; Sasaki, M; Budipitojo, T; Kitamura, N; Krause, W J; Yamada, J

    2005-08-01

    The present study has demonstrated the immunohistochemical localization of gastrin-releasing peptide (GRP), neuronal nitric oxide synthase (nNOS) and neurone-specific enolase (NSE) in the uterus of the North American opossum. Although the presence of GRP, nNOS and NSE has been reported recently in the uterus of eutherian species this is the first description of these peptides in a metatherian species. Metatherian mammals are of interest because in these species it is the prolonged lactation phase of development that is the period of primary reproductive investment rather than intrauterine development as is true of eutherian mammals. The opossum, like other marsupial species, has a very abbreviated gestation period which in Didelphis lasts only 12.5 days. GRP was localized in the cytoplasm of cells forming the surface lining epithelium and the glandular epithelium of the opossum endometrium late in pregnancy, at 11.5 days of gestation. Likewise, immunoreactivities of nNOS and NSE were found primarily within the epithelial cells of the endometrium at 11.5 days of gestation. As these peptides and enzymes appear primarily at the time of establishment of the yolk sac placenta (between day 10 and day 12.5 gestation), the present results strongly suggest that these factors may play a fundamental role in the placentation of the opossum.

  15. [The changes of memory and their correlations to S100beta protein as well as neuron-specific enolase in patients with obstructive sleep apnea-hypopnea syndrome].

    Science.gov (United States)

    Feng, Huiwei; Fan, Xianliang; Jiang, Hong

    2011-02-01

    To explore the possible mechanism of brain damage and memory impairment in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) by detecting the memory, serum S100beta protein, neuron specific enolase( NSE) and analyzing the relationship among them. Thirty patients with moderate or severe OSAHS (AHI > 20/h) and twenty normal controls were included in this study. All subjects were detected by polysomnography in the sleep laboratory and the memory of them were evaluated before PSG examination. Memory tests including point memory, association learning, picture free recall, meaningless picture recognition, face characters associated memory have been conducted. The serum S100beta protein was detected by ELISA and the serum NSE was detected by immunoradiometric assay. The relationship between memory and serum S100beta as well as NSE were analyzed in both experiment group and control group. The score of point memory, association learning, meaningless picture recognition, face characters associated memory and memory quotient in patients with OSAHS was significantly lower than control group (P Memory quotient correlated negatively with AHI, ODI, serum S100beta and NSE level; and correlated positively with LSaO2, MSaO2. Memory impairment were present in patients with OSAHS. The increased level of serum S100Beta and NSE may be one of the mechanisms of brain damage and memory impairment in with, OSAHS. And nocturnal hypoxia may contribute to the increased level of serum S100beta and NSE.

  16. A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices.

    Science.gov (United States)

    Fan, Yan; Liu, Juntao; Wang, Yang; Luo, Jinping; Xu, Huiren; Xu, Shengwei; Cai, Xinxia

    2017-09-15

    Neuron-specific enolase (NSE) had clinical significance on diagnosis, staging, monitoring effect and judging prognosis of small cell lung cancer. Thus, there had a growing demand for the on-site testing of NSE. Here, a wireless point-of-care testing (POCT) system with electrochemical measurement for NSE detection was developed and verified. The wireless POCT system consisted of microfluidic paper-based analytical devices (μPADs), electrochemical detector and Android's smartphone. Differential pulse voltammetry (DPV) measurement was adopted by means of electrochemical detector which including a potentiostat and current-to-voltage converter. μPADs were modified with nanocomposites synthesized by Amino functional graphene, thionine and gold nanoparticles (NH 2 -G/Thi/AuNPs) as immunosensors for NSE detection. Combined with μPADs, the performance of the wireless POCT system was evaluated. The peak currents showed good linear relationship of the logarithm of NSE concentration ranging from 1 to 500ngmL -1 with the limit of detection (LOD) of 10pgmL -1 . The detection results were automatically stored in EEPROM memory and could be displayed on Android's smartphone through Bluetooth in real time. The detection results were comparable to those measured by a commercial electrochemical workstation. The wireless POCT system had the potential for on-site testing of other tumor markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of serum neuron specific enolase and glutathion S transferases levels in patients with acute cerebral infarction and its clinical significance

    International Nuclear Information System (INIS)

    Guo Jianyi; Lu Tianhe; Bao Yanmei

    2002-01-01

    Objective: To evaluate the variation of serum neuron specific enolase (NSE) and glutathion S transferases (GST) levels in patients with cerebral infarction and its clinical significance. Methods: The serum levels of NSE in cerebral infarction patients were determined with immunoradiometric assay (IRMA), and the serum level of GST were determined by enzyme immuno sandwich assay (ELISA). Results: Serum NSE levels linked in patients were significantly higher (p<0.01) and GST serum levels were significantly lower (p < 0.01) within 3 days after onset of disease than those at two weeks and those in the controls. There was a positive correlation between serum NSE levels and neurological deficit scores (p < 0.001) and a negative correlation with serum GST levels (p < 0.05). There was also a close relationship between the serum NSE levels and the volume of infarction (p < 0.001). Conclusion: There was a close relationship between the Serum levels of NSE, GST and clinical features of Patients in the early stage of cerebral infarction

  18. In vivo evolution of the gp90 gene and consistently low plasma viral load during transient immune suppression demonstrate the safety of an attenuated equine infectious anemia virus (EIAV) vaccine.

    Science.gov (United States)

    Ma, Jian; Jiang, Chenggang; Lin, Yuezhi; Wang, Xuefeng; Zhao, Liping; Xiang, Wenhua; Shao, Yiming; Shen, Rongxian; Kong, Xiangang; Zhou, Jianhua

    2009-01-01

    To study the in vivo evolution of the attenuated Chinese equine infectious anemia virus (EIAV) vaccine, viral gp90 gene variation and virus replication in immunosuppressed hosts were investigated. The results showed that after vaccination, the gp90 gene followed an evolutionary trend of declining diversity. The trend coincided with the maturation of immunity to EIAV, and eventually, the gp90 gene became highly homologous. The sequences of these predominant quasispecies were consistently detected up to 18 months after vaccination. Furthermore, after transient immune suppression with dexamethasone, the plasma viral RNA copy number of the vaccine strain in three vaccinated ponies remained consistently below the "pathogenic threshold" level, while the viral load increased by 25,000-fold in the positive control of an inapparent carrier of the parental virulent strain. This study is the first to provide evidence for the safety of an attenuated lentiviral vaccine with decreased genomic diversity and consistently low viral replication under suppressed immunity.

  19. Immune response gene control of collagen reactivity in man: collagen unresponsiveness in HLA-DR4 negative nonresponders is due to the presence of T-dependent suppressive influences

    International Nuclear Information System (INIS)

    Solinger, A.M.; Stobo, J.D.

    1982-01-01

    To determine whether the failure to detect collagen reactivity in nonresponders represents an absence of collagen-reactive T cells or a preponderance of suppressive influences, the peripheral blood mononuclear cells from HLA-DR4 - individuals were subjected to three procedures capable of separating suppressive influences from LIF-secreting cells; irradiation (1000 rad), discontinuous gradient fractionation, and cytolysis with the monoclonal antibody OKT 8. Each procedure resulted in the specific appearance of reactivity to collagen, which was identical to that seen in HLA-DR4 + individuals with regard to its cellular requirements and antigenic specificity. Addition of unresponsive (i.e., nonirradiated or low-density T cells) to responsive (i.e., irradiated or high-density T cells) autologous populations resulted in specific suppression of collagen reactivity. Radiation-sensitive suppressive influences could not be detected in HLA-DR4 + collagen responders.These studies indicate that the expression of T-dependent reactivity to collagen in man reflects the net influence of collage-reactive vs collagen-suppressive T cells. Moreover, it is the influence of HLA-D-linked genes on the development of suppressive influences rather than on the development of collagen-reactive, LIF-secreting T cells that serves to distinguish HLA-DR4 + collagen responders from HLA-DR4 - collagen nonresponders

  20. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33°C and 36°C

    DEFF Research Database (Denmark)

    Stammet, Pascal; Collignon, Olivier; Hassager, Christian

    2015-01-01

    BACKGROUND: Neuron-specific enolase (NSE) is a widely-used biomarker for prognostication of neurological outcome after cardiac arrest, but the relevance of recommended cutoff values has been questioned due to the lack of a standardized methodology and uncertainties over the influence of temperatu...

  1. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua [Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Berggren-Söderlund, Maria; Nilsson-Ehle, Peter [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden); Zhang, Xiaoying, E-mail: zhangxy6689996@163.com [Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Xu, Ning, E-mail: ning.xu@med.lu.se [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden)

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  2. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.

    Science.gov (United States)

    Lin, Xian-Zi; Luo, Jun; Zhang, Li-Ping; Wang, Wei; Shi, Heng-Bo; Zhu, Jiang-Jiang

    2013-05-25

    MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  3. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    Science.gov (United States)

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  4. Reoxygenation of human coronary smooth muscle cells suppresses HIF-1{alpha} gene expression and augments radiation-induced growth delay and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Grumann, T.; Arab, A.; Bode, C.; Hehrlein, C. [Dept. of Cardiology, Univ. Clinic of Freiburg (Germany); Guttenberger, R. [Dept. of Radiotherapy, Univ. Clinic of Freiburg (Germany)

    2006-01-01

    Background and Purpose: Catheter-based coronary brachytherapy with {beta}- and {gamma}-radiation is an evidence-based method to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) and stent implantation, but the outcome may be PTCA are hypoxic. A lack of oxygen decreases the effect of low LET (linear energy transfer) irradiation. The authors assumed that reoxygenation of hypoxic human coronary smooth muscle cells (HCSMCs) improves the results of coronary brachytherapy. The expression of hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) gene, and the rates of growth and apoptosis of hypoxic and reoxygenated HCSMCs after {gamma}-iradiation were therefore analyzed. Material and Methods: An in vitro model of megacolonies of HCSMCs was developed. After exposure to chronic hypoxia the HCSMCs were irradiated with graded doses of 2, 4, 8, and 16 Gy using a {sup 60}Co source either under hypoxia (pO{sub 2}<3 mmHg) or after reoxygenation (pO{sub 2}{approx}150 mmHg). RT-PCR (reverse transcription-polymerase chain reaction) analysis was used to quantify HIF-1{alpha} gene expression and the growth of HCSMC megacolonies was measured serially. The oxygen enhancement ratio (OER) was calculate from the specific growth delay. Apoptosis of HCSMCs was quantified by counting cells with specific DNA strand breaks using the TUNEL assy. Results: HIF-1{alpha} gene expression was markedly suppressed in reoxygenated cells versus hypoxic cells 30 min after {gamma}-irradiation at all radiation doses (158{+-}46% vs. 1,675{+-}1,211%; p<0.01). Apoptosis was markedly increased in reoxygenated HCSMCs. The OER was 1.8(95% CI[confidence interval]1.3-2.4). Therefore, reoxygenated HCSMCs require 44% less radiation dose to achieve the equivalent biological radiation effect compared to hypoxic HCSMCs. Conclusion: Reoxygenation of coronary smooth muscle cells should be considered an option to increase efficacy of coronary brachytherapy. This could be used to reduce radiation dose

  5. Serum Neuron-Specific Enolase, Biogenic Amino-Acids and Neurobehavioral Function in Lead-Exposed Workers from Lead-Acid Battery Manufacturing Process

    Directory of Open Access Journals (Sweden)

    K Ravibabu

    2015-01-01

    Full Text Available Background: The interaction between serum neuron-specific enolase (NSE, biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. Objective: To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs. Methods: In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests—simple reaction time (SRT, symbol digit substitution test (SDST, and serial digit learning test (SDLT. Results: There was a significant correlation (r 0.199, p<0.05 between SDST and BLL. SDLT and SRT had also a significant positive correlation (r 0.238, p<0.01. NSE had a negative correlation (r –0.194, p<0.05 with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Conclusion: Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the “attention and perception” (SDST.

  6. Metabolic syndrome and its components with neuron-specific enolase: a cross-sectional study in large health check-up population in China.

    Science.gov (United States)

    Wang, Shu-Yi; Zha, Xiao-Juan; Zhu, Xin-Ying; Li, Wen-Bo; Ma, Jun; Wu, Ze-Wei; Wu, Huan; Jiang, Ming-Fei; Wen, Yu-Feng

    2018-04-10

    This study was aimed at investigating the relationship between neuron-specific enolase (NSE) and components of metabolic syndrome (MS). Cross-sectional study. Chinese health check-up population. 40 684 health check-up people were enrolled in this study from year 2014 to 2016. OR and coefficient for MS. The percentage of abnormal NSE and MS was 26.85% and 8.85%, respectively. There were significant differences in sex, body mass index, drinking habit, triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), blood pressure and MS between low-NSE and high-NSE groups. In logistic regression analysis, elevated NSE was present in MS, higher body mass index, hypertriglyceridaemia, hypertension and low-HDL groups. Stepwise linear analysis showed a negative correlation between NSE and fasting blood glucose (FBG) (<6.0 mmol/L), and a positive correlation between NSE and TGs (<20 mmol/L), systolic blood pressure (75-200 mm Hg), HDL-C (0.75-2.50 mmol/L), diastolic blood pressure (<70 mm Hg) and FBG (6.00-20.00 mmol/L). Furthermore, MS was positively correlated with NSE within the range of 2.00-7.50 ng/mL, but had a negative correlation with NSE within the range of 7.50-23.00 ng/mL. There are associations between NSE with MS and its components. The result suggests that NSE may be a potential predictor of MS. Further research could be conducted in discussing the potential mechanism involved. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. A kainate receptor subunit promotes the recycling of the neuron-specific K+-Cl-co-transporter KCC2 in hippocampal neurons.

    Science.gov (United States)

    Pressey, Jessica C; Mahadevan, Vivek; Khademullah, C Sahara; Dargaei, Zahra; Chevrier, Jonah; Ye, Wenqing; Huang, Michelle; Chauhan, Alamjeet K; Meas, Steven J; Uvarov, Pavel; Airaksinen, Matti S; Woodin, Melanie A

    2017-04-14

    Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K + -Cl - co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (E GABA ). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. TGFβ-induced deptor suppression recruits mTORC1 and not mTORC2 to enhance collagen I (α2 gene expression.

    Directory of Open Access Journals (Sweden)

    Falguni Das

    Full Text Available Enhanced TGFβ activity contributes to the accumulation of matrix proteins including collagen I (α2 by proximal tubular epithelial cells in progressive kidney disease. Although TGFβ rapidly activates its canonical Smad signaling pathway, it also recruits noncanonical pathway involving mTOR kinase to regulate renal matrix expansion. The mechanism by which chronic TGFβ treatment maintains increased mTOR activity to induce the matrix protein collagen I (α2 expression is not known. Deptor is an mTOR interacting protein that suppresses mTOR activity in both mTORC1 and mTORC2. In proximal tubular epithelial cells, TGFβ reduced deptor levels in a time-dependent manner with concomitant increase in both mTORC1 and mTORC2 activities. Expression of deptor abrogated activity of mTORC1 and mTORC2, resulting in inhibition of collagen I (α2 mRNA and protein expression via transcriptional mechanism. In contrast, neutralization of endogenous deptor by shRNAs increased activity of both mTOR complexes and expression of collagen I (α2 similar to TGFβ treatment. Importantly, downregulation of deptor by TGFβ increased the expression of Hif1α by increasing translation of its mRNA. TGFβ-induced deptor downregulation promotes Hif1α binding to its cognate hypoxia responsive element in the collagen I (α2 gene to control its protein expression via direct transcriptional mechanism. Interestingly, knockdown of raptor to specifically block mTORC1 activity significantly inhibited expression of collagen I (α2 and Hif1α while inhibition of rictor to prevent selectively mTORC2 activation did not have any effect. Critically, our data provide evidence for the requirement of TGFβ-activated mTORC1 only by deptor downregulation, which dominates upon the bystander mTORC2 activity for enhanced expression of collagen I (α2. Our results also suggest the presence of a safeguard mechanism involving deptor-mediated suppression of mTORC1 activity against developing TGF

  9. [Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by suppression subtracted hybridization for differentially expressed genes].

    Science.gov (United States)

    Zhao, Kai; Sun, Lixin; Wang, Xuan; Li, Xiuliang; Wang, Xin; Zhou, Dongpo

    2011-07-01

    To screen mutants with high yield of taxol, and construct cDNA subtractive library of obtained mutant and primary strain HD(1-3). The spores of taxol-producing fungus HD(1-3) were treated by diethyl sulphate (DES), ultraviolet radiation and diethyl sulphate (UV + DES). cDNA subtractive library of taxol producing fungi from the mRNA of obtained mutant with high yield of taxol tester and HD(1-3) driver was constructed by using suppression subtracted hybridization (SSH). The optimal conditions for mutagenesis of strain HD(1-3) were as follows: the spore suspension was treated with 8% DES for 15 min, followed by UV irradiation (30 w, 30 cm distance) for 45 sec under magnetic stirring, a mutant UD(14-1) which was able to produce taxol with high yield and could be stably passed on genetics was found. Its ability to produce taxol was improved from 232.73 +/- 4.61 microg/L (strain HD(1-3)) to 312.81 +/- 7.51 microg/L (strain UD(14-1)). The tilter of the constructed cDNA library was 1.2 x 10(7) cfu/mL, the recombinant rate reached to 75.3% and the length of the inserted fragments was mostly 300 bp-1.0 kb. A mutant UD(14-11) with high yield was obtained, and cDNA subtractive library of the mutant UD(14-11) and strain HD(1-3) was constructed. The study laid solid foundation for isolation of taxol biosynthesis related genes and construction of engineering strains with high yield of taxol by genetic techniques.

  10. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  11. The neuron-specific interleukin-1 receptor accessory protein is required for homeostatic sleep and sleep responses to influenza viral challenge in mice.

    Science.gov (United States)

    Davis, Christopher J; Dunbrasky, Danielle; Oonk, Marcella; Taishi, Ping; Opp, Mark R; Krueger, James M

    2015-07-01

    Interleukin-1β (IL1) is involved in sleep regulation and sleep responses induced by influenza virus. The IL1 receptor accessory protein (AcP) and an alternatively spliced isoform of AcP found primarily in neurons, AcPb, form part of the IL1 signaling complex. IL1-induced sleep responses depend on injection time. In rat cortex, both IL1 mRNA and AcPb mRNA peak at Zeitgeber Time (ZT) 0 then decline over the daylight hours. Sleep deprivation enhances cortical IL1 mRNA and AcPb mRNA levels, but not AcP mRNA. We used wild type (WT) and AcPb knockout (KO) mice and performed sleep deprivation between ZT10 and 20 or between ZT22 and 8 based on the time of day expression profiles of AcPb and IL1. We hypothesized that the magnitude of the responses to sleep loss would be strain- and time of day-dependent. In WT mice, NREMS and REMS rebounds occurred regardless of when they were deprived of sleep. In contrast, when AcPbKO mice were sleep deprived from ZT10 to 20 NREMS and REMS rebounds were absent. The AcPbKO mice expressed sleep rebound if sleep loss occurred from ZT22 to 8 although the NREMS responses were not as robust as those that occurred in WT mice. We also challenged mice with intranasal H1N1 influenza virus. WT mice exhibited the expected enhanced sleep responses. In contrast, the AcPbKO mice had less sleep after influenza challenge compared to their own baseline values and compared to WT mice. Body temperature and locomotor activity responses after viral challenge were lower and mortality was higher in AcPbKO than in WT mice. We conclude that neuron-specific AcPb plays a critical role in host defenses and sleep homeostasis. Published by Elsevier Inc.

  12. The important role of circulating CYFRA21-1 in metastasis diagnosis and prognostic value compared with carcinoembryonic antigen and neuron-specific enolase in lung cancer patients.

    Science.gov (United States)

    Zhang, Li; Liu, Dan; Li, Lei; Pu, Dan; Zhou, Ping; Jing, Yuting; Yu, He; Wang, Yanwen; Zhu, Yihan; He, Yanqi; Li, Yalun; Zhao, Shuang; Qiu, Zhixin; Li, Weimin

    2017-02-02

    The roles of carcinoembryonic antigen (CEA), cytokeratin 19 fragments (CYFRA21-1) and neuron-specific enolase (NSE) in metastases occurrence and poor diagnosis in specific histological classifications of lung cancer need further exploring. In this study, we investigated relationship between elevated levels of three biomarkers of CEA, CYFRA21-1 and NSE (individually and in combination) and metastasis, survival status and prognosis in lung cancer patients. Eight hundred and sixty eight lung cancer patients including adenocarcinoma (ADC, N = 445), squamous cell carcinoma (SCC, N = 215), small cell lung cancer (SCLC, N = 159) and other types (N = 49) were categorized into negative, moderate and high groups according to serum levels of biomarkers, and were then categorized into negative, single, double and triple groups according to any positive combination of three biomarkers. The cutoff values of three biomarkers for groupings were developed on the training group (N = 432) and verified in a validation group (N = 436). Clinical and laboratory characteristics were then assessed for correlation with occurrence of metastasis, survival status and prognosis between the two groups. Further correlation analyses were also conducted by different subtypes (ADC, SCC and SCLC) and tumor stages (I + II, III and IV) of lung cancers. The consistent results between training and validation group confirmed the rationality of grouping methods. CYFRA21-1 levels had stronger association with metastases and survival status than CEA and NSE in all lung cancer patients. When stratified by subtypes, these significances only existed in ADC patients for CYFRA21-1. Cox regression analyses showed that CYFRA21-1 and NSE were independent prognostic factors for lung cancer patients. However, only CYFRA21-1 was an independent prognostic factor in ADC and SCLC patients subtypes. Cox-regression results also indicated that CYFRA21-1 could act as independent prognostic factor

  13. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Science.gov (United States)

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce ...

  14. Bioinformatic identification of IGF1 as a hub gene in hepatocellular carcinoma (HCC) and in-vitro analysis of the chemosensitizing effect of miR-379 via suppressing the IGF1/IGF1R signaling pathway.

    Science.gov (United States)

    Huang, D-J; Huang, J-Z; Yang, J; Li, Y-H; Luo, Y-C; He, H-Y; Huang, H-J

    2016-12-01

    We investigated the interactions among the dysregulated genes in hepatocellular carcinoma (HCC) and identified the hub genes in the protein-protein interaction (PPI) network. Also, we also investigated the regulative effect of miR-379 on the IGF1/IGF1R signaling pathway and chemoresistance in HCC. Raw data of a microarray that compared transcriptional gene profile between 3-paired HCC tissue samples and adjacent normal tissues were downloaded from Expression Atlas (E-GEOD-33006). The raw data was reanalyzed to identify the significantly dysregulated genes, which were further used for PPI network and KEGG pathway analysis. The regulative effect of miR-379 on IGF1R expression was studied by dual luciferase assay and Western blotting. The functional role of miR-379 in chemosensitivity of HCC cells was studied by drug sensitivity and flow cytometric assay. IGF1 is a hub gene that is mostly upregulated in HCC and it is an important player in the p53 signaling pathway. Knockdown of IGF1R significantly decreased IC50 of 5-FU, paclitaxel (PTX) and Doxorubicin (DOX) in Huh7 and HepG2 cells. MiR-379 could directly bind to the 3'UTR of IGF1R and suppress IGF1R expression. MiR-379 overexpression sensitized Huh7 and HepG2 cells to 5-FU, PTX and DOX and also enhanced DOX-induced cell apoptosis. IGF1 is a hub gene in HCC and is also one of the most upregulated genes in HCC tissues compared to normal tissues. It is involved in the p53 signaling pathway regulation. MiR-379 can sensitize HCC cells to chemotherapeutic reagents via targeting IGF1R and suppressing its expression.

  15. The effect of intense intermittent training with and without taking vitamin E on mRNA expression of p53/PTEN tumor suppressing genes in prostate glands of male rats

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeil Afzalpour

    2016-11-01

    Full Text Available Physical activity and diet are the most important modifiable determinants of cancer risk. The objective of this study was to examine the effect of intense intermittent training with and without taking vitamin E on expression of p53 and PTEN tumor suppressing genes in the prostate gland of male rats. For this purpose, 50 Sprague-Dawley male rats were randomly assigned into 5 groups: [1] control (CON, n = 10, [2] sham (S, n = 10, [3] intense intermittent training (IIT, n = 10, [4] intense intermittent training + vitamin E (IIT + VE, n = 10, [5] vitamin E (VE, n = 10. Protocol of this study was implemented for 6 days per week for 6 weeks, with observing the overload principle on the motorized treadmill. After implementing training protocol, expression rate of p53 and PTEN genes reduced significantly (p<0.000, p<0.031, respectively. Taking vitamin E with intermittent training caused significant reduction in p53 expression (p<0.013, while it caused significant increase in expression of PTEN (p<0.035. These results showed that intense intermittent training reduces expression of p53 and PTEN tumor suppressing genes and taking supplementation vitamin E along with this type of training could cause different effects in expression of these tumor suppressor genes.

  16. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.

    Science.gov (United States)

    Nakagawa, Yoshiyuki

    2008-01-01

    Although the catalase gene (CAT1) disruptant of the human pathogenic yeast Candida albicans was viable under ordinary growth conditions, we previously found that it could not grow on YPD (yeast extract/peptone/dextrose) containing SDS or at higher growth temperatures. To investigate the pleiotrophic nature of the disruptant, we examined the effect of the catalase inhibitor 3-AT on the growth of wild-type strains. Surprisingly, the addition of 3-AT and SDS caused the wild-type cells to be non-viable on YPD plates. We found an additional phenotype of the catalase gene disruptant: it did not produce normal hyphae on Spider medium. Hyphal growth was observed in a CAP1 (Candida AP-1-like protein gene) disruptant, a HOG1 (high-osmolarity glycerol signaling pathway gene) disruptant, and the double CAP1/HOG1 disruptant, suggesting that the defect in hyphal formation by the catalase disruptant was independent of these genes. Addition of 3-AT and SDS to hyphae-inducing media suppressed growth of normal hyphae in the wild-type strain. The potential necessity for catalase action upon exposure to hyphae-inducing conditions was confirmed by the immediate elevation of the catalase gene message. In spite of the requirement for catalase during hyphal growth, the catalase gene disruptant was capable of forming germ tubes in medium containing serum.

  17. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  18. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions.

    Science.gov (United States)

    Kim, Hye-Sook; Thammarat, Phanit; Lommel, Steven A; Hogan, Clifford S; Charkowski, Amy O

    2011-07-01

    The broad-host-range bacterial soft rot pathogen Pectobacterium carotovorum causes a DspE/F-dependent plant cell death on Nicotiana benthamiana within 24 h postinoculation (hpi) followed by leaf maceration within 48 hpi. P. carotovorum strains with mutations in type III secretion system (T3SS) regulatory and structural genes, including the dspE/F operon, did not cause hypersensitive response (HR)-like cell death and or leaf maceration. A strain with a mutation in the type II secretion system caused HR-like plant cell death but no maceration. P. carotovorum was unable to impede callose deposition in N. benthamiana leaves, suggesting that P. carotovorum does not suppress this basal immunity function. Within 24 hpi, there was callose deposition along leaf veins and examination showed that the pathogen cells were localized along the veins. To further examine HR-like plant cell death induced by P. carotovorum, gene expression profiles in N. benthamiana leaves inoculated with wild-type and mutant P. carotovorum and Pseudomonas syringae strains were compared. The N. benthamiana gene expression profile of leaves infiltrated with Pectobacterium carotovorum was similar to leaves infiltrated with a Pseudomonas syringae T3SS mutant. These data support a model where Pectobacterium carotovorum uses the T3SS to induce plant cell death in order to promote leaf maceration rather than to suppress plant immunity.

  19. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray.

    Science.gov (United States)

    Zhang, Jin-Zhi; Li, Zhi-Min; Yao, Jia-Ling; Hu, Chun-Gen

    2009-02-01

    To gain a better understanding of gene expression in early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata L. Raf.), we performed suppression subtractive hybridization, which allowed identification of flowering-related genes in the mutant and the wild type in the juvenile phase. Using macroarray analysis, we identified 125 and 149 non-redundant expressed sequence tags (ESTs) in the forward-subtracted and the reverse-subtracted library. These cDNAs covered a broad repertoire of flowering development related genes, provided helpful information for understanding genetic mechanism underlying the signaling and regulation in transition from the vegetative to reproductive phase. We have investigated the temporal and spatial expression pattern of some SSH-enriched flowering-related genes in the mutant and the wild type. Of these genes, three genes (BARELY ANY MERITED, FLOWERING LOCUS T and TERMINAL FLOWER1) encoding proteins previously reported to be associated with, or involved in, developmental processes in other species were identified and further investigated by in situ hybridization. Specific spatial and/or temporal patterns were detected, and differences were observed between the mutant and the wild type during flower development. Meanwhile, the temporal expression of these genes was further examined by real-time PCR, the results showed that FT and BAM transcripts accumulated to higher levels and TFL1 transcripts accumulated to lower levels in mutant juvenile tissues relative to wild-type juvenile tissues. In the adult stage, FT, BAM and TFL1 expression patterns were closely correlated with flowering development, suggesting that these three genes may play a critical role in the early flowering process of precocious trifoliate orange.

  20. Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Hassager, Christian; Stammet, Pascal

    2017-01-01

    of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition......, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population. METHODS: This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients...

  1. Increase of IRF-1 gene expression and impairment of T regulatory cells suppression activity on patients with myelodysplastic syndrome: A longitudinal one-year study.

    Science.gov (United States)

    Perazzio, Aline S B; Oliveira, José Salvador R; Figueiredo, Vera L P; Chauffaille, Maria de Lourdes L F

    2017-04-01

    Studies have demonstrated that abnormalities in interferon regulatory factor-1 (IRF-1) expression might develop myelodysplastic syndromes (MDS). IRF-1 was described as modulator of T regulatory (Treg) cells by suppressing Foxp3 on mice. We aimed to determine the role of Treg and IRF-1 in MDS. Thirty-eight MDS patients fulfilling WHO criteria and classified according to risk scores were evaluated at time 0 (T0) and after 12 months (T12) for: Treg suppression activity in coculture with T effector (Teff) cells; IRF-1 and Foxp3 genetic expression by qRT-PCR; IL-2, -4, -6, -10, -17, TNFα and IFNγ production by Cytometric Bead Array. No differences in Foxp3 expression (T0=0.06±0.06 vs T12=0.06±0.12, p=0.5), Treg number (T0=5.62±2.84×10 5 vs T12=4.87±2.62×10 5 ; p=0.3) and Teff percentage (T0=16.8±9.56% vs T12=13.1±6.3%; p=0.06) were observed on T12. Low risk MDS patients showed a higher number of Treg (5.2±2.6×10 5 ) versus high risk group (2.6±1.2×10 5 , p=0.03). Treg suppression activity was impaired on T0 and T12.Cytokine production and IRF-1 expression were increased on T12. The correlation between IRF-1 and FoxP3 was negative (r 2 =0.317, p=0.045) on T0. These results suggest a hyper activity of the immune system, probably secondary to Treg suppression activity impairment. This state may induce the loss of tolerance culminating in the proliferation of MDS clones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    Energy Technology Data Exchange (ETDEWEB)

    Walden, Tomas B.; Petrovic, Natasa [The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm (Sweden); Nedergaard, Jan, E-mail: jan@metabol.su.se [The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  3. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession 'Calcutta-4' Using Suppression Subtractive Hybridization.

    Science.gov (United States)

    Sánchez Timm, Eduardo; Hidalgo Pardo, Lisette; Pacheco Coello, Ricardo; Chávez Navarrete, Tatiana; Navarrete Villegas, Oscar; Santos Ordóñez, Efrén

    2016-01-01

    Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession 'Calcutta-4' has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in 'Calcutta-4' might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession 'Calcutta-4'. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in 'Calcutta-4' when compared to 'Williams' after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of 'Calcutta-4' to Black Sigatoka

  4. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession 'Calcutta-4' Using Suppression Subtractive Hybridization.

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez Timm

    Full Text Available Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession 'Calcutta-4' has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in 'Calcutta-4' might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession 'Calcutta-4'. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in 'Calcutta-4' when compared to 'Williams' after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of 'Calcutta-4' to

  5. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession ‘Calcutta-4’ Using Suppression Subtractive Hybridization

    Science.gov (United States)

    Pacheco Coello, Ricardo; Chávez Navarrete, Tatiana; Navarrete Villegas, Oscar; Santos Ordóñez, Efrén

    2016-01-01

    Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession ‘Calcutta-4’ has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in ‘Calcutta-4’ might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession ‘Calcutta-4’. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in ‘Calcutta-4’ when compared to ‘Williams’ after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of ‘Calcutta-4

  6. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  7. Molecular Detection of Neuron-Specific ELAV-Like-Positive Cells in the Peripheral Blood of Patients with Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Vito D’Alessandro

    2008-01-01

    Full Text Available Background: n-ELAV (neuronal-Embryonic Lethal, Abnormal Vision-like genes belong to a family codifying for onconeural RNA-binding proteins. Anti-Hu-antibodies (anti-Hu-Ab are typically associated with paraneoplastic encephalomyelitis/sensory neuropathy (PEM/PSN, and low titres of anti-Hu-Ab, were found in newly diagnosed Small Cell Lung Cancer (SCLC. The aim of this study is to develop a sensitive and quantitative molecular real-time PCR assay to detect SCLC cells in peripheral blood (PB through nELAV-like transcripts quantification.

  8. Identification of key genes implicated in the suppressive function of human FOXP3+CD25+CD4+ regulatory T cells through the analysis of time‑series data.

    Science.gov (United States)

    Bai, Xiaofeng; Shi, Hua; Yang, Mingxi; Wang, Yuanlin; Sun, Zhaolin; Xu, Shuxiong

    2018-03-01

    Human forkhead box P3 (FOXP3)+ cluster of differentiation (CD)25+CD4+ regulatory T cells (Tregs) are a type of T cell that express CD4, CD25 and FOXP3, which are critical for maintaining immune homeostasis. The present study aimed to determine the mechanisms underlying Treg function. The GSE11292 dataset was downloaded from the Gene Expression Omnibus, which included data from Treg cells at 19 time points (0‑360 min) with an equal interval of 20 min, and corresponding repeated samples. However, data for Treg cells at time point 120 min were missing. Using the Mfuzz package, the key genes were identified by clustering analysis. Subsequently, regulatory networks and protein‑protein interaction (PPI) networks were constructed and merged into integrated networks using Cytoscape software. Using Database for Annotation, Visualization and Integrated Discover software, enrichment analyses were performed for the genes involved in the PPI networks. Cluster 1 (including 292 genes), cluster 2 (including 111 genes), cluster 3 (including 194 genes) and cluster 4 (including 103 genes) were obtained from the clustering analysis. GAPDH (degree, 40) in cluster 1, Janus kinase 2 (JAK2) (degree, 10) and signal transducer and activator of transcription 5A (STAT5A) (degree, 9) in cluster 3, and tumor necrosis factor (TNF) (degree, 26) and interleukin 2 (IL2) (degree, 22) in cluster 4 had higher degrees in the PPI networks. In addition, it was indicated that several genes may have a role in Treg function by targeting other genes [e.g. microRNA (miR)‑146b‑3p→TNF, miR‑146b‑5p→TNF, miR‑142‑5p→TNF and tripartite motif containing 28 (TRIM28)→GAPDH]. Enrichment analyses indicated that IL2 and TNF were enriched in the immune response and T cell receptor signaling pathway. In conclusion, GAPDH targeted by TRIM28, TNF targeted by miR‑146b‑3p, miR‑146b‑5p and miR‑142‑5p, in addition to JAK2, IL2, and STAT5A may serve important roles in Treg function.

  9. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  10. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene.

    Directory of Open Access Journals (Sweden)

    Hesheng Ou

    Full Text Available The present study is to investigate the role of microRNA-21 (miR-21 in nasopharyngeal carcinoma (NPC and the mechanisms of regulation of PTEN by miR-21. Fifty-four tissue samples were collected from 42 patients with NPC and 12 healthy controls. Human NPC cell lines CNE-1, CNE-2, TWO3 and C666-1 were used for cell assays. To investigate the expression of miR-21, RT-PCR was employed. RT-PCR, Western blotting, and immunohistochemistry were used to measure the expression of STAT3 mRNA and STAT3 protein. To test the effect of miR-21 on the cell growth and apoptosis of NPC cells in vitro, transfection of CNE1 and CNE2 cell lines and flow cytometry were performed. TUNEL assay was used to detect DNA fragmentation. To validate whether miR-21 directly recognizes the 3'-UTRs of PTEN mRNA, luciferase reporter assay was employed. miR-21 expression was increased in NPC tissues compared with control and the same result was found in NPC cell lines. Notably, increased expression of miR-21 was directly related to advanced clinical stage and lymph node metastasis. STAT3, a transcription factor activated by IL-6, directly activated miR-21 in transformed NPC cell lines. Furthermore, miR-21 markedly inhibited PTEN tumor suppressor, leading to increased AKT activity. Both in vitro and in vivo assays revealed that miR-21 enhanced NPC cell proliferation and suppressed apoptosis. miR-21, activated by STAT3, induced proliferation and suppressed apoptosis in NPC by targeting PTEN-AKT pathway.

  11. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization.

    Science.gov (United States)

    Chou, Min-Xia; Wei, Xin-Yuan; Chen, Da-Song; Zhou, Jun-Chu

    2006-01-01

    Thirteen nodule-specific or nodule-enhanced genes have been revealed by suppressive subtractive hybridization (SSH) with two mRNA populations of infected and uninfected control roots of Astragalus sinicus. Eleven of them encode small polypeptides showing homology to cysteine cluster proteins (CCPs) that contain a putative signal peptide and conserved cysteine residues. Among these CCP-like genes, AsG257 codes for a homologue of the defensin 2 family and AsD255 contains a scorpion toxin-like domain at the C-terminus. Sequence analysis of a genomic AsD255 fragment which was isolated revealed that one intron separates the first exon encoding the signal peptide from the second exon encoding the cysteine cluster domain of this nodulin. Another two genes, AsE246 and AsIB259, encode two different products similar to lipid transfer proteins (LTPs). Virtual northern blot and reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that the other genes except AsIB259 and AsC2411 were expressed exclusively in inoculated roots and that their expression was 2-4 d later than that of the leghaemoglobin (Lb) gene during nodule development. Transcription of AsIB259 was also detected in uninfected control roots but with a significant decline in expression and a temporal expression similar to Lb. AsC2411 had a basal expression in control roots identified by RT-PCR. Sequence alignment showed that the putative proteins AsE246 and AsIB259 show lower homology with LTPs from legumes than with those from other plants.

  12. Weakener of white (Wow), a gene that modifies the expression of the white eye color locus and that suppresses position effect variegation in Drosophila melanogaster.

    Science.gov (United States)

    Birchler, J A; Bhadra, U; Rabinow, L; Linsk, R; Nguyen-Huynh, A T

    1994-08-01

    A locus is described in Drosophila melanogaster that modifies the expression of the white eye color gene. This trans-acting modifier reduces the expression of the white gene in the eye, but elevates the expression in other adult tissues. Because of the eye phenotype in which the expression of white is lessened but not eliminated, the newly described locus is called the Weakener of white (Wow). Northern analysis reveals that Wow can exert an inverse or direct modifying effect depending upon the developmental stage. Two related genes, brown and scarlet, that are coordinately expressed with white, are also affected by Wow. In addition, Wow modulates the steady state RNA level of the retrotransposon, copia. When tested with a white promoter-Alcohol dehydrogenase reporter. Wow confers the modifying effect to the reporter, suggesting a requirement of the white regulatory sequences for mediating the response. In addition to being a dosage sensitive regulator of white, brown, scarlet and copia, Wow acts as a suppressor of position effect variegation. There are many dosage sensitive suppressors of position effect variegation and many dosage-sensitive modifiers of gene expression. The Wow mutations provide evidence for an overlap between the two types of modifiers.

  13. Dietary soy protein induces hepatic lipogenic enzyme gene expression while suppressing hepatosteatosis in obese female Zucker rats bearing DMBA-initiated mammary tumors.

    Science.gov (United States)

    Hakkak, Reza; Al-Dwairi, Ahmed; Fuchs, George J; Korourian, Soheila; Simmen, Frank A

    2012-10-01

    Fatty liver is associated with obesity and breast cancer. We used an obese rat model of mammary cancer to examine whether hepatosteatosis is modifiable by diet and associated with altered expression of hepatic lipogenic enzyme genes, thyroid hormone system genes and cholesterol metabolism-related genes. Beginning at the age of 5 weeks, lean and obese female Zucker rats were fed high-isoflavone soy protein- or casein (control protein)-containing diets. Rats were euthanized at 200 days of age [corresponding to 147 days after administration of carcinogen to induce mammary tumors; (Hakkak et al. in, Oncol Lett 2:29-36, 2011)]. Obese rats had a greater degree of liver steatosis than lean rats. Obese casein-fed rats had marked steatosis with small foci of mononuclear infiltration, whereas obese soy protein-fed rats had a significantly lower steatosis index. Comparisons between lean and obese casein-fed rats showed that obesity was associated with significant reductions in hepatic mRNA abundance for Glucose 6-Phosphate Dehydrogenase (G6PD), 6-Phosphogluconate Dehydrogenase (6PGD), Thyroid Receptor Alpha 1 (TRα1), Thyroid Receptor Beta 1 (TRβ1) and Iodothyronine Deiodinase 1 (DIO1). The soy protein diet was associated with increased expression of Fatty Acid Synthase (FASN), Malic Enzyme 1 (ME1), 6PGD, Sterol Regulatory Element Binding Protein-1c (SREBP-1c) and SREBP-2 genes in the livers of obese but not lean rats. Western blot analysis showed a significant induction of ME1 protein expression in the livers of obese, soy protein-fed rats, which paralleled the increased serum insulin level in this group. Long-term soy protein consumption can counter hepatic steatosis while coincidently promoting hepatic lipogenic gene expression, the latter likely a consequence of elevated serum insulin. We suggest that elevations in serum insulin, hepatic lipogenesis and cholesterol synthesis all contributed to the increased tumorigenesis previously observed for the obese, soy protein

  14. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism.

    Directory of Open Access Journals (Sweden)

    Simon Edvardson

    Full Text Available Parkinson disease is caused by neuronal loss in the substantia nigra which manifests by abnormality of movement, muscle tone, and postural stability. Several genes have been implicated in the pathogenesis of Parkinson disease, but the underlying molecular basis is still unknown for ∼70% of the patients. Using homozygosity mapping and whole exome sequencing we identified a deleterious mutation in DNAJC6 in two patients with juvenile parkinsonism. The mutation was associated with abnormal transcripts and marked reduced DNAJC6 mRNA level. DNAJC6 encodes the HSP40 Auxilin, a protein which is selectively expressed in neurons and confers specificity to the ATPase activity of its partner Hcs70 in clathrin uncoating. In Auxilin null mice it was previously shown that the abnormally increased retention of assembled clathrin on vesicles and in empty cages leads to impaired synaptic vesicle recycling and perturbed clathrin mediated endocytosis. Endocytosis function, studied by transferring uptake, was normal in fibroblasts from our patients, likely because of the presence of another J-domain containing partner which co-chaperones Hsc70-mediated uncoating activity in non-neuronal cells. The present report underscores the importance of the endocytic/lysosomal pathway in the pathogenesis of Parkinson disease and other forms of parkinsonism.

  15. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  16. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  17. The chloroplast gene encoding ribosomal protein S4 in Chlamydomonas reinhardtii spans an inverted repeat--unique sequence junction and can be mutated to suppress a streptomycin dependence mutation in ribosomal protein S12.

    Science.gov (United States)

    Randolph-Anderson, B L; Boynton, J E; Gillham, N W; Huang, C; Liu, X Q

    1995-05-10

    The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51-59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Leu (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Leu ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two

  18. The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways.

    Science.gov (United States)

    Zhou, Juan; Zhao, Mengjing; Tang, Yigui; Wang, Jing; Wei, Cai; Gu, Fang; Lei, Ting; Chen, Zhiwu; Qin, Yide

    2016-03-24

    ACFP is an anti-cancer fusion peptide derived from bovine milk protein. This study was to investigate the anti-cancer function and underlying mechanisms of ACFP in ovarian cancer. Fresh ovarian tumor tissues were collected from 53 patients who underwent initial debulking surgery, and primary cancer cells were cultured. Normal ovarian surface epithelium cells (NOSECs), isolated from 7 patients who underwent surgery for uterine fibromas, were used as normal control tissue. Anti-viabilities of ACFP were assessed by WST-1 (water-soluble tetrazolium 1), and apoptosis was measured using a flow cytometry-based assay. Gene expression profiles of ovarian cancer cells treated with ACFP were generated by cDNA microarray, and the expression of apoptotic-specific genes, such as bcl-xl, bax, akt, caspase-3, CDC25C and cyclinB1, was assessed by real time PCR and western blot analysis. Treatment with ACFP inhibited the viability and promoted apoptosis of primary ovarian cancer cells but exhibited little or no cytotoxicity toward normal primary ovarian cells. Mechanistically, the anti-cancer effects of ACFP in ovarian cells were shown to occur partially via changes in gene expression and related signal pathways. Gene expression profiling highlighted that ACFP treatment in ovarian cancer cells repressed the expression of bcl-xl, akt, CDC25C and cyclinB1 and promoted the expression of bax and caspase-3 in a time- and dose-dependent manner. Our results suggest that ACFP may represent a potential therapeutic agent for ovarian cancer that functions by altering the expression and signaling of cancer-related pathways in ovarian cancer cells.

  19. Quinclorac resistance induced by the suppression of the expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase genes in Echinochloa crus-galli var. zelayensis.

    Science.gov (United States)

    Gao, Yuan; Li, Jun; Pan, Xukun; Liu, Dingrong; Napier, Richard; Dong, Liyao

    2018-04-01

    We previously reported that the mechanism of quinclorac resistance in Echinochloa crus-galli var. zelayensis may be closely related to ethylene biosynthesis and the detoxification of cyanide. Differences in EcCAS gene sequences and expression levels may result in higher capacity to detoxify cyanide in resistant biotypes, which may avoid cyanide accumulation and avoid more ethylene and cyanide production and then avoid damage. In the present study, we focused on the mechanism of resistance related to ethylene biosynthesis in E. crus-galli var. zelayensis. The fresh weight of susceptible and moderately resistant biotypes were significantly reduced after treatment with quinclorac. However, AOA, an ethylene biosynthesis inhibitor, reduced the impact of quinclorac. On pretreatment with AOA, ethylene production was significantly reduced in the three biotypes. The highly resistant biotype produced less ethylene compared to the other two biotypes. Three ACS and seven ACO genes, which are the key genes in ethylene biosynthesis, were obtained. The expression levels of EcACS-like, EcACS7, and EcACO1 varied in the three biotypes upon treatment with quinclorac, which could be manipulated by AOA. In summary, it is inferred that the expression of EcACS-like, EcACS7, and EcACO1 can be stimulated to varying extent after quinclorac treatment in three E. crus-galli var. zelayensis biotypes, which consequently results in varying levels of ethylene production. Lower expression of these three genes results in more resistance to quinclorac, which may also be related to quinclorac resistance in E. crus-galli var. zelayensis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes.

    Science.gov (United States)

    Gill, Upinder S; Sun, Liang; Rustgi, Sachin; Tang, Yuhong; von Wettstein, Diter; Mysore, Kirankumar S

    2018-03-01

    Phosphite (Phi) is used commercially to manage diseases mainly caused by oomycetes, primarily due to its low cost compared with other fungicides and its persistent control of oomycetous pathogens. We explored the use of Phi in controlling the fungal pathogens Puccinia emaculata and Phakopsora pachyrhizi, the causal agents of switchgrass rust and Asian soybean rust, respectively. Phi primes host defenses and efficiently inhibits the growth of P. emaculata, P. pachyrhizi and several other fungal pathogens tested. To understand these Phi-mediated effects, a detailed molecular analysis was undertaken in both the host and the pathogen. Transcriptomic studies in switchgrass revealed that Phi activates plant defense signaling as early as 1 h after application by increasing the expression of several cytoplasmic and membrane receptor-like kinases and defense-related genes within 24 h of application. Unlike in oomycetes, RNA sequencing of P. emaculata and P. pachyrhizi did not exhibit Phi-mediated retardation of cell wall biosynthesis. The genes with reduced expression in either or both rust fungi belonged to functional categories such as ribosomal protein, actin, RNA-dependent RNA polymerase, and aldehyde dehydrogenase. A few P. emaculata genes that had reduced expression upon Phi treatment were further characterized. Application of double-stranded RNAs specific to P. emaculata genes encoding glutamate N-acetyltransferase and cystathionine gamma-synthase to switchgrass leaves resulted in reduced disease severity upon P. emaculata inoculation, suggesting their role in pathogen survival and/or pathogenesis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  1. Rare copy number variants observed in hereditary breast cancer cases disrupt genes in estrogen signaling and TP53 tumor suppression network.

    Directory of Open Access Journals (Sweden)

    Katri Pylkäs

    Full Text Available Breast cancer is the most common cancer in women in developed countries, and the contribution of genetic susceptibility to breast cancer development has been well-recognized. However, a great proportion of these hereditary predisposing factors still remain unidentified. To examine the contribution of rare copy number variants (CNVs in breast cancer predisposition, high-resolution genome-wide scans were performed on genomic DNA of 103 BRCA1, BRCA2, and PALB2 mutation negative familial breast cancer cases and 128 geographically matched healthy female controls; for replication an independent cohort of 75 similarly mutation negative young breast cancer patients was used. All observed rare variants were confirmed by independent methods. The studied breast cancer cases showed a consistent increase in the frequency of rare CNVs when compared to controls. Furthermore, the biological networks of the disrupted genes differed between the two groups. In familial cases the observed mutations disrupted genes, which were significantly overrepresented in cellular functions related to maintenance of genomic integrity, including DNA double-strand break repair (P = 0.0211. Biological network analysis in the two independent breast cancer cohorts showed that the disrupted genes were closely related to estrogen signaling and TP53 centered tumor suppressor network. These results suggest that rare CNVs represent an alternative source of genetic variation influencing hereditary risk for breast cancer.

  2. Suppression of protein tyrosine phosphatase PTPN22 gene induces apoptosis in T-cell leukemia cell line (Jurkat) through the AKT and ERK pathways.

    Science.gov (United States)

    Baghbani, Elham; Baradaran, Behzad; Pak, Fatemeh; Mohammadnejad, Leila; Shanehbandi, Daryoush; Mansoori, Behzad; Khaze, Vahid; Montazami, Noushin; Mohammadi, Ali; Kokhaei, Parviz

    2017-02-01

    The aim of this study was to investigate the effect of specific PTPN22 small interfering RNAs (siRNAs) on the viability and induction of apoptosis in Jurkat cells and to evaluate apoptosis signaling pathways. In this study, Jurkat cells were transfected with specific PTPN22 siRNA. Relative PTPN22 mRNA expression was measured by Quantitative Real-time PCR. Western blotting was performed to determine the protein levels of PTPN22, AKT, P-AKT, ERK, and P-ERK. The cytotoxic effects of PTPN22 siRNA were determined using the MTT assay. Apoptosis was quantified using TUNEL assay and flow cytometry. Results showed that in Jurkat cells after transfection with PTPN22 siRNA, the expression of PTPN22 in both mRNA and protein levels was effectively reduced. Moreover, siRNA transfection induced apoptosis on the viability of T-cell acute leukemia cells. More importantly, PTPN22 positively regulated the anti-apoptotic AKT kinase, which provides a powerful survival signal to T-ALL cells as well as the suppression of PTPN22 down regulated ERK activity. Our results suggest that the PTPN22 specific siRNA effectively decreases the viability of T-cell acute leukemia cells, induces apoptosis in this cell line, and therefore could be considered as a potent adjuvant in T-ALL therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunxia [Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Bai, Li [Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Xia, Yongzhi [Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Wang, Guansong; Qian, Guisheng [Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Feng, Hua [Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  4. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-01-01

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  5. ROS-induced nanotherapeutic approach for ovarian cancer treatment based on the combinatorial effect of photodynamic therapy and DJ-1 gene suppression.

    Science.gov (United States)

    Schumann, Canan; Taratula, Olena; Khalimonchuk, Oleh; Palmer, Amy L; Cronk, Lauren M; Jones, Carson V; Escalante, Cesar A; Taratula, Oleh

    2015-11-01

    This study represents a novel approach for intraoperative ovarian cancer treatment based on the combinatorial effect of a targeted photodynamic therapy (PDT) associated with suppression of the DJ-1 protein, one of the key players in the ROS defense of cancer cells. To assess the potential of the developed therapy, dendrimer-based nanoplatforms for cancer-targeted delivery of near-infrared photosensitizer, phthalocyanine, and DJ-1 siRNA have been constructed. In vitro studies revealed that therapeutic efficacy of the combinatorial approach was enhanced when compared to PDT alone and this enhancement was more pronounced in ovarian carcinoma cells, which are characterized by higher basal levels of DJ-1 protein. Moreover, the ovarian cancer tumors exposed to a single dose of combinatorial therapy were completely eradicated from the mice and the treated animals showed no evidence of cancer recurrence. Thus, the developed therapeutic approach can be potentially employed intraoperatively to eradicate unresactable cancer cells. The complete clearance of microscopic residual tumor cells during excision surgery is important to improve survival of the patient. In this interesting paper, the authors developed a novel approach using targeted photodynamic therapy (PDT), combining a photosensitizer, phthalocyanine, and DJ-1 siRNA for the treatment of ovarian cancer. The data showed that this approach increased cancer cell killing and may pave way for future clinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp Penaeus monodon by suppression subtractive hybridization (SSH).

    Science.gov (United States)

    Preechaphol, Rachanimuk; Klinbunga, Sirawut; Khamnamtong, Bavornlak; Menasveta, Piamsak

    2010-10-01

    Suppression subtractive hybridization (SSH) libraries between cDNA in stages I (previtellogenic) and III (cortical rod) ovaries of the giant tiger shrimp (Penaeus monodon) were established. In all, 452 ESTs were unidirectionally sequenced. Sequence assembly generated 28 contigs and 201 singletons, 109 of which (48.0%) corresponding to known sequences previously deposited in GenBank. Several reproduction-related transcripts were identified. The full-length cDNA of anaphase promoting complex subunit 11 (PmAPC11; 600 bp with an ORF of 255 bp corresponding to a polypeptide of 84 amino acids) and selenoprotein Mprecursor (PmSePM; 904 bp with an ORF of 396 bp corresponding to a polypeptide of 131 amino acids) were characterized and reported for the first time in penaeid shrimp. Semiquantitative RT-PCR revealed that the expression levels of PmSePM and keratinocyte-associated protein 2 significantly diminished throughout ovarian development, whereas Ser/Thrcheckpoint kinase 1 (Chk1), DNA replication licensing factor mcm2 and egalitarian were down-regulated in mature ovaries of wild P. monodon (p < 0.05). Accordingly, the expression profiles of PmSePM and keratinocyte-associated protein 2 could be used as biomarkers for evaluating the degree of reproductive maturation in domesticated P. monodon.

  7. Growth hormone suppression test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  8. Targeting EZH1 and EZH2 contributes to the suppression of fibrosis-associated genes by miR-214-3p in cardiac myofibroblasts.

    Science.gov (United States)

    Zhu, Wen-Si; Tang, Chun-Mei; Xiao, Zhen; Zhu, Jie-Ning; Lin, Qiu-Xiong; Fu, Yong-Heng; Hu, Zhi-Qin; Zhang, Zhuo; Yang, Min; Zheng, Xi-Long; Wu, Shu-Lin; Shan, Zhi-Xin

    2016-11-29

    The role of microRNA-214-3p (miR-214-3p) in cardiac fibrosis was not well illustrated. The present study aimed to investigate the expression and potential target of miR-214-3p in angiotensin II (Ang-II)-induced cardiac fibrosis. MiR-214-3p was markedly decreased in the fibrotic myocardium of a mouse Ang-II infusion model, but was upregulated in Ang-II-treated mouse myofibroblasts. Cardiac fibrosis was shown attenuated in Ang-II-infused mice received tail vein injection of miR-214-3p agomir. Consistently, miR-214-3p inhibited the expression of Col1a1 and Col3a1 in mouse myofibroblasts in vitro. MiR-214-3p could bind the 3'-UTRs of enhancer of zeste homolog 1 (EZH1) and -2, and suppressed EZH1 and -2 expressions at the transcriptional level. Functionally, miR-214-3p mimic, in parallel to EZH1 siRNA and EZH2 siRNA, could enhance peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and inhibited the expression of Col1a1 and Col3a1 in myofibroblasts. In addition, enforced expression of EZH1 and -2, and knockdown of PPAR-γ resulted in the increase of Col1a1 and Col3a1 in myofibroblasts. Moreover, the NF-κB signal pathway was verified to mediate Ang-II-induced miR-214-3p expression in myofibroblasts. Taken together, our results revealed that EZH1 and -2 were novel targets of miR-214-3p, and miR-214-3p might be one potential miRNA for the prevention of cardiac fibrosis.

  9. miR-200c targets nuclear factor IA to suppress HBV replication and gene expression via repressing HBV Enhancer I activity.

    Science.gov (United States)

    Tian, Hui; He, Zhenkun

    2018-03-01

    Hepatitis B virus (HBV) chronic infection is a health problem in the worldwide, with a underlying higher risk of liver cirrhosis and hepaticocellular carcinoma. A number of studies indicate that microRNAs (miRNAs) play vital roles in HBV replication. This study was designed to explore the potential molecular mechanism of miR-200c in HBV replication. The expression of miR-200c, nuclear factor IA (NFIA) mRNA, HBV DNA, and HBV RNA (pregenomic RNA (pgRNA), and total RNA) were measured by qRCR. The levels of HBsAg and HBeAg were detected by ELISA. NFIA expression at protein level was measured by western blot. The direct interaction between miR-200c and NFIA were identified by Targetscan software and Dual-Luciferase reporter analysis. Enhance I activity were detected by Dual-Luciferase reporter assay. miR-200c expression was prominently reduced in pHBV1.3-tranfected Huh7 and in stable HBV-producing cell line (HepG2.2.15). The enforced expression of miR-200c significantly suppressed HBV replication, as demonstrated by the reduced levels of HBV protein (HBsAg and HBeAg) and, DNA and RNA (pgRNA and total RNA) levels. NFIA was proved to be a target of miR-200c and NFIA overexpression notably stimulated HBV replication. In addition, the inhibitory effect of miR-200c on HBV Enhance I activity was abolished following restoration of NFIA. miR-200c repressed HBV replication by directly targeting NFIA, which might provide a novel therapeutic target for HBV infection. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Mutations in circularly permuted GTPase family genes AtNOA1/RIF1/SVR10 and BPG2 suppress var2-mediated leaf variegation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Yafei; Zhao, Jun; An, Rui; Zhang, Juan; Liang, Shuang; Shao, Jingxia; Liu, Xiayan; An, Lijun; Yu, Fei

    2016-03-01

    Leaf variegation mutants constitute a unique group of chloroplast development mutants and are ideal genetic materials to dissect the regulation of chloroplast development. We have utilized the Arabidopsis yellow variegated (var2) mutant and genetic suppressor analysis to probe the mechanisms of chloroplast development. Here we report the isolation of a new var2 suppressor locus SUPPRESSOR OF VARIEGATION (SVR10). Genetic mapping and molecular complementation indicated that SVR10 encodes a circularly permuted GTPase that has been reported as Arabidopsis thaliana NITRIC OXIDE ASSOCIATED 1 (AtNOA1) and RESISTANT TO INHIBITION BY FOSMIDOMYCIN 1 (RIF1). Biochemical evidence showed that SVR10/AtNOA1/RIF1 likely localizes to the chloroplast stroma. We further demonstrate that the mutant of a close homologue of SVR10/AtNOA1/RIF1, BRASSINAZOLE INSENSITIVE PALE GREEN 2 (BPG2), can also suppress var2 leaf variegation. Mutants of SVR10 and BPG2 are impaired in photosynthesis and the accumulation of chloroplast proteins. Interestingly, two-dimensional blue native gel analysis showed that mutants of SVR10 and BPG2 display defects in the assembly of thylakoid membrane complexes including reduced levels of major photosynthetic complexes and the abnormal accumulation of a chlorophyll-protein supercomplex containing photosystem I. Taken together, our findings suggest that SVR10 and BPG2 are functionally related with VAR2, likely through their potential roles in regulating chloroplast protein homeostasis, and both SVR10 and BPG2 are required for efficient thylakoid protein complex assembly and photosynthesis.

  11. Association of Differentiation-Related Gene-1 (DRG1) with Breast Cancer Survival and in Vitro Impact of DRG1 Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Ruqia Mehmood [Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN (United Kingdom); Cancer Genetics Lab, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Sanders, Andrew J. [Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN (United Kingdom); Kayani, Mahmood Akhtar [Cancer Genetics Lab, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Jiang, Wen G., E-mail: jiangw@cf.ac.uk [Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN (United Kingdom)

    2012-07-10

    Differentiation-related gene-1, DRG1, is a metastasis suppressor gene whose expression has been shown to be dysregulated in a number of malignancies. The current study examines the expression of DRG1 in a clinical breast cohort and its association with a number of clinical pathological factors using quantitative polymerase chain reaction. Additionally, DRG1 expression is targeted in vitro using ribozyme transgene technology to explore the function of DRG1 in two human breast cancer cell lines. Low levels of DRG1 were found in patients who developed metastasis (p = 0.036) and who died of breast cancer (p = 0.0048) compared to disease free patients. Knockdown of DRG1 also resulted in significantly increased invasion and motility, but decreased matrix-adhesion in MCF7 cells. Knockdown of DRG1 seemed to have minimal impact on the cellular functions of the MDA-MB-231 breast cancer cell line causing no significant differences in cell growth, invasion, motility or matrix-adhesion. Thus, DRG1 appears to be linked to development of metastasis and death in patients who died as a result of breast cancer and may be useful as a prognostic factor as its knockdown appears to be linked with increased invasion and motility and decreased adhesion in MCF7 breast cancer cells.

  12. Association of Differentiation-Related Gene-1 (DRG1) with Breast Cancer Survival and in Vitro Impact of DRG1 Suppression

    International Nuclear Information System (INIS)

    Baig, Ruqia Mehmood; Sanders, Andrew J.; Kayani, Mahmood Akhtar; Jiang, Wen G.

    2012-01-01

    Differentiation-related gene-1, DRG1, is a metastasis suppressor gene whose expression has been shown to be dysregulated in a number of malignancies. The current study examines the expression of DRG1 in a clinical breast cohort and its association with a number of clinical pathological factors using quantitative polymerase chain reaction. Additionally, DRG1 expression is targeted in vitro using ribozyme transgene technology to explore the function of DRG1 in two human breast cancer cell lines. Low levels of DRG1 were found in patients who developed metastasis (p = 0.036) and who died of breast cancer (p = 0.0048) compared to disease free patients. Knockdown of DRG1 also resulted in significantly increased invasion and motility, but decreased matrix-adhesion in MCF7 cells. Knockdown of DRG1 seemed to have minimal impact on the cellular functions of the MDA-MB-231 breast cancer cell line causing no significant differences in cell growth, invasion, motility or matrix-adhesion. Thus, DRG1 appears to be linked to development of metastasis and death in patients who died as a result of breast cancer and may be useful as a prognostic factor as its knockdown appears to be linked with increased invasion and motility and decreased adhesion in MCF7 breast cancer cells

  13. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene.

    Directory of Open Access Journals (Sweden)

    Huang He

    Full Text Available Chrysanthemum (Chrysanthemum × morifolium is one of the most important ornamental plants in the world. They are typically used as cut flowers or potted plants. Chrysanthemum can exhibit red, purple, pink, yellow and white flowers, but lack bright red and blue flowers. In this study, we identified two chrysanthemum cultivars, C × morifolium 'LPi' and C × morifolium 'LPu', that only accumulate flavonoids in their ligulate flowers. Next, we isolated seven anthocyanin biosynthesis genes, namely CmCHS, CmF3H, CmF3'H, CmDFR, CmANS, CmCHI and Cm3GT in these cultivars. RT-PCR and qRT-PCR analyses showed that CmF3'H was the most important enzyme required for cyanidin biosynthsis. To rebuild the delphinidin pathway, we downregulated CmF3'H using RNAi and overexpressed the Senecio cruentus F3'5'H (PCFH gene in chrysanthemum. The resultant chrysanthemum demonstrated a significantly increased content of cyanidin and brighter red flower petals but did not accumulate delphinidin. These results indicated that CmF3'H in chrysanthemum is important for anthocyanin accumulation, and Senecio cruentus F3'5'H only exhibited F3'H activity in chrysanthemum but did not rebuild the delphinidin pathway to form blue flower chrysanthemum.

  14. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene.

    Science.gov (United States)

    He, Huang; Ke, Hu; Keting, Han; Qiaoyan, Xiang; Silan, Dai

    2013-01-01

    Chrysanthemum (Chrysanthemum × morifolium) is one of the most important ornamental plants in the world. They are typically used as cut flowers or potted plants. Chrysanthemum can exhibit red, purple, pink, yellow and white flowers, but lack bright red and blue flowers. In this study, we identified two chrysanthemum cultivars, C × morifolium 'LPi' and C × morifolium 'LPu', that only accumulate flavonoids in their ligulate flowers. Next, we isolated seven anthocyanin biosynthesis genes, namely CmCHS, CmF3H, CmF3'H, CmDFR, CmANS, CmCHI and Cm3GT in these cultivars. RT-PCR and qRT-PCR analyses showed that CmF3'H was the most important enzyme required for cyanidin biosynthsis. To rebuild the delphinidin pathway, we downregulated CmF3'H using RNAi and overexpressed the Senecio cruentus F3'5'H (PCFH) gene in chrysanthemum. The resultant chrysanthemum demonstrated a significantly increased content of cyanidin and brighter red flower petals but did not accumulate delphinidin. These results indicated that CmF3'H in chrysanthemum is important for anthocyanin accumulation, and Senecio cruentus F3'5'H only exhibited F3'H activity in chrysanthemum but did not rebuild the delphinidin pathway to form blue flower chrysanthemum.

  15. Isolation of genes involved in the preventive effect of electroacupuncture at Fenglong acupoint (ST40) on hypercholesterolemia mice by suppression subtractive hybridization (SSH) combined with negative subtraction chain (NSC) technology.

    Science.gov (United States)

    Li, Xingjie; Zhang, Yizheng; Yan, Wenqi; Kang, Jinmei; Kang, Yaoxia; Lie, Min

    2006-01-01

    We have shown that electroacupuncture (EA) at Fenglong acupoint (ST40) has the cholesterol-lowering effect in hypercholesterolemia mice. The present study was designed to study preventive effect of EA at ST40 on hypercholesterolemia. C57BL/6j mice were randomly divided into normal group (NG), hypercholesterolemia group (HG) and EA prevention group (EPG). NG were fed chow, HG a hypercholesterolemic diet (HD), and EPG the same HD and received EA treatment simultaneously. Lipid profile of both the plasma and liver indicated that EA at ST40 had preventive effect on hypercholesterolemia. Compared with corresponding values in the HG mice, the levels of the hepatic total cholesterol and total triglyceride in the EPG mice lowered 45% and 23% respectively, and the levels of plasma total-, LDL-, and HDL-cholesterol in the EPG mice lowered 39%, 37% and 39% respectively. Eleven genes whose expressions were up-regulated in EPG mice compared with HG were isolated using suppression subtractive hybridization (SSH) combined with negative subtraction chain (NSC) technology, and then confirmed by dot-blot assay. Except two genes whose functions were still unknown, the others were mainly involved in cholesterol metabolism, lipid metabolism, glucose metabolism and immune response. The potential molecular mechanism of preventive effect was discussed.

  16. Impaired Uptake and/or Utilization of Leucine by Saccharomyces cerevisiae Is Suppressed by the SPT15-300 Allele of the TATA-Binding Protein Gene

    DEFF Research Database (Denmark)

    Baerends, RJ; Qiu, Jin-Long; Rasmussen, Simon

    2009-01-01

    us to examine the effect of expression of the SPT15-300 allele in various yeast species of industrial importance. Expression of SPT15-300 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance...... to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT15-300 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol...... was indeed associated with enhanced uptake and/or utilization of leucine. Reexamination of the microarray data published by Alper and coworkers likewise suggested that expression of genes coding for the leucine permeases, Tat1p and Bap3p, were upregulated in the SPT15-300 mutant, as was expression...

  17. Soy milk suppresses cholesterol-induced inflammatory gene expression and improves the fatty acid profile in the skin of SD rats.

    Science.gov (United States)

    Lee, Seung-Min; Kim, Yunhye; Choi, Hye jung; Choi, Jina; Yi, Yue; Yoon, Sun

    2013-01-04

    Recently, an elevation in skin cholesterol level has been implicated in skin inflammation. Given the potential therapeutic effects of soy on low grade inflammatory diseases, we hypothesized that a CHOL diet could promote an inflammatory response in skin and that soy milk (SM) or fermented soy milk (F.SM) could prevent this cholesterol-induced skin inflammation. To test this hypothesis, freeze-dried SM or F.SM was provided as a protein replacement for 20% of the casein in the diets of Sprague-Dawley (SD) rats. The animals were divided into the following groups: (1) control group (CTRL), AIN76A diet without cholesterol, (2) high cholesterol (CHOL) group, AIN76A with 1% (w/w) cholesterol, (3) SM group, CHOL diet with freeze-dried SM, and (4) F.SM group, CHOL diet with F.SM. In the CHOL group, the expression levels of pro-inflammatory genes, including IL-1β, IL-1α, iNOS, and COX-2, were elevated. In comparison, the SM and F.SM groups displayed the lowered expression of IL-1β, COX-2, F4/80, and Cd68, an increase of a n-3/n-6 ratio, and a reduction in the estimated desaturase activities of delta 5 desaturase (D5D) and steaoryl CoA desaturase (SCD-1). In particular, F.SM significantly increased the proportion of dihomo-γ-linolenic acid (DGLA) in skin fatty acid (FA) composition compared with the CHOL group. Here we present evidence that SM or F.SM could alleviate the inflammatory response in the skin that is triggered by excess dietary cholesterol by reducing the expression of pro-inflammatory genes. This response could be partly associated with a decreased in macrophages in skin and/or by modulation of the skin's FA composition. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    Science.gov (United States)

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    Science.gov (United States)

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  20. alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression.

    Science.gov (United States)

    Fekete, C; Légrádi, G; Mihály, E; Huang, Q H; Tatro, J B; Rand, W M; Emerson, C H; Lechan, R M

    2000-02-15

    The hypothalamic arcuate nucleus has an essential role in mediating the homeostatic responses of the thyroid axis to fasting by altering the sensitivity of prothyrotropin-releasing hormone (pro-TRH) gene expression in the paraventricular nucleus (PVN) to feedback regulation by thyroid hormone. Because agouti-related protein (AGRP), a leptin-regulated, arcuate nucleus-derived peptide with alpha-MSH antagonist activity, is contained in axon terminals that terminate on TRH neurons in the PVN, we raised the possibility that alpha-MSH may also participate in the mechanism by which leptin influences pro-TRH gene expression. By double-labeling immunocytochemistry, alpha-MSH-IR axon varicosities were juxtaposed to approximately 70% of pro-TRH neurons in the anterior and periventricular parvocellular subdivisions of the PVN and to 34% of pro-TRH neurons in the medial parvocellular subdivision, establishing synaptic contacts both on the cell soma and dendrites. All pro-TRH neurons receiving contacts by alpha-MSH-containing fibers also were innervated by axons containing AGRP. The intracerebroventricular infusion of 300 ng of alpha-MSH every 6 hr for 3 d prevented fasting-induced suppression of pro-TRH in the PVN but had no effect on AGRP mRNA in the arcuate nucleus. alpha-MSH also increased circulating levels of free thyroxine (T4) 2.5-fold over the levels in fasted controls, but free T4 did not reach the levels in fed controls. These data suggest that alpha-MSH has an important role in the activation of pro-TRH gene expression in hypophysiotropic neurons via either a mono- and/or multisynaptic pathway to the PVN, but factors in addition to alpha-MSH also contribute to the mechanism by which leptin administration restores thyroid hormone levels to normal in fasted animals.

  1. Specific suppression of insulin sensitivity in growth hormone receptor gene-disrupted (GHR-KO) mice attenuates phenotypic features of slow aging.

    Science.gov (United States)

    Arum, Oge; Boparai, Ravneet K; Saleh, Jamal K; Wang, Feiya; Dirks, Angela L; Turner, Jeremy G; Kopchick, John J; Liu, Jun-Li; Khardori, Romesh K; Bartke, Andrzej

    2014-12-01

    In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1). The RIP::IGF-1 transgene increased circulating insulin content in GHR-KO mice, and thusly fully normalized their insulin sensitivity, without affecting the proliferation of any non-β-cell cell types. Multiple (nonsurvivorship) longevity-associated physiological and endocrinological characteristics of these mice (namely beneficial blood glucose regulatory control, altered metabolism, and preservation of memory capabilities) were partially or completely normalized, thus supporting the causal role of insulin sensitivity for the decelerated senescence of GHR-KO mice. We conclude that a delayed onset and/or decreased pace of aging can be hormonally regulated. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Sorafenib overcomes the chemoresistance in HBx-expressing hepatocellular carcinoma cells through down-regulation of HBx protein stability and suppresses HBV gene expression.

    Science.gov (United States)

    Kim, Hye Young; Jung, Hye Uk; Yoo, Seung Hee; Yoo, Ki Soo; Cheong, JaeHun; Park, Bong Soo; Yun, Il; Yoo, Young Hyun

    2014-12-01

    Previous studies have revealed that HBx expression has anti-apoptotic effects, resulting in increased drug resistance in HCC cells. Thus, we examined if sorafenib efficiently induces apoptosis in HBx-overexpressing HCC cells. Noticeably, sorafenib efficiently induced apoptosis, even in HBx-expressing HepG2 cells, indicating that the HBx protein does not attenuate sorafenib-induced apoptosis. We next investigated if sorafenib modulates autophagy, allowing HCC cells to overcome the chemoresistance conferred by the HBx protein. Although autophagy plays a cytoprotective role against sorafenib-induced lethality, sorafenib was effective irrespective of HBx protein overexpression. We next examined if sorafenib exerts its cytotoxic effect via direct effects on the HBx protein. Importantly, sorafenib decreased HBx protein stability through a proteasome-dependent degradation pathway. Moreover, sorafenib decreased HBV gene expression and viral promoter activity. Taken together, sorafenib efficiently induces apoptotic cell death in HBx-expressing HCC cells via the downregulation of the HBx protein, a key factor in the anti-cancer drug resistance observed in HBV-induced HCC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  4. Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Tang, Chun-Mei; Liu, Fang-Zhou; Zhu, Jie-Ning; Fu, Yong-Heng; Lin, Qiu-Xiong; Deng, Chun-Yu; Hu, Zhi-Qin; Yang, Hui; Zheng, Xi-Long; Cheng, Jian-Ding; Wu, Shu-Lin; Shan, Zhi-Xin

    2016-10-31

    The role of microRNA-214-3p (miR-214-3p) in cardiac hypertrophy was not well illustrated. The present study aimed to investigate the expression and potential target of miR-214-3p in angiotensin II (Ang-II)-induced mouse cardiac hypertrophy. In mice with either Ang-II infusion or transverse aortic constriction (TAC) model, miR-214-3p expression was markedly decreased in the hypertrophic myocardium. Down-regulation of miR-214-3p was observed in the myocardium of patients with cardiac hypertrophy. Expression of miR-214-3p was upregulated in Ang-II-induced hypertrophic neonatal mouse ventricular cardiomyocytes. Cardiac hypertrophy was attenuated in Ang-II-infused mice by tail vein injection of miR-214-3p. Moreover, miR-214-3p inhibited the expression of atrial natriuretic peptide (ANP) and β-myosin heavy chain (MHC) in Ang-II-treated mouse cardiomyocytes in vitro. Myocyte-specific enhancer factor 2C (MEF2C), which was increased in Ang-II-induced hypertrophic mouse myocardium and cardiomyocytes, was identified as a target gene of miR-214-3p. Functionally, miR-214-3p mimic, consistent with MEF2C siRNA, inhibited cell size increase and protein expression of ANP and β-MHC in Ang-II-treated mouse cardiomyocytes. The NF-κB signal pathway was verified to mediate Ang-II-induced miR-214-3p expression in cardiomyocytes. Taken together, our results revealed that MEF2C is a novel target of miR-214-3p, and attenuation of miR-214-3p expression may contribute to MEF2Cexpressionin cardiac hypertrophy.

  5. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.Q. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Liao, Q.J.; Wang, X.W. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Xin, D.Q. [Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Chen, S.X.; Wu, Q.J.; Ye, G. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China)

    2012-08-10

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.

  6. A snapshot of the hepatic transcriptome: ad libitum alcohol intake suppresses expression of cholesterol synthesis genes in alcohol-preferring (P rats.

    Directory of Open Access Journals (Sweden)

    Jonathon D Klein

    Full Text Available Research is uncovering the genetic and biochemical effects of consuming large quantities of alcohol. One prime example is the J- or U-shaped relationship between the levels of alcohol consumption and the risk of atherosclerotic cardiovascular disease. Moderate alcohol consumption in humans (about 30 g ethanol/d is associated with reduced risk of coronary heart disease, while abstinence and heavier alcohol intake is linked to increased risk. However, the hepatic consequences of moderate alcohol drinking are largely unknown. Previous data from alcohol-preferring (P rats showed that chronic consumption does not produce significant hepatic steatosis in this well-established model. Therefore, free-choice alcohol drinking in P rats may mimic low risk or nonhazardous drinking in humans, and chronic exposure in P animals can illuminate the molecular underpinnings of free-choice drinking in the liver. To address this gap, we captured the global, steady-state liver transcriptome following a 23 week free-choice, moderate alcohol consumption regimen (∼ 7.43 g ethanol/kg/day in inbred alcohol-preferring (iP10a rats. Chronic consumption led to down-regulation of nine genes in the cholesterol biosynthesis pathway, including HMG-CoA reductase, the rate-limiting step for cholesterol synthesis. These findings corroborate our phenotypic analyses, which indicate that this paradigm produced animals whose hepatic triglyceride levels, cholesterol levels and liver histology were indistinguishable from controls. These findings explain, at least in part, the J- or U-shaped relationship between cardiovascular risk and alcohol intake, and provide outstanding candidates for future studies aimed at understanding the mechanisms that underlie the salutary cardiovascular benefits of chronic low risk and nonhazardous alcohol intake.

  7. A snapshot of the hepatic transcriptome: ad libitum alcohol intake suppresses expression of cholesterol synthesis genes in alcohol-preferring (P) rats.

    Science.gov (United States)

    Klein, Jonathon D; Sherrill, Jeremy B; Morello, Gabriella M; San Miguel, Phillip J; Ding, Zhenming; Liangpunsakul, Suthat; Liang, Tiebing; Muir, William M; Lumeng, Lawrence; Lossie, Amy C

    2014-01-01

    Research is uncovering the genetic and biochemical effects of consuming large quantities of alcohol. One prime example is the J- or U-shaped relationship between the levels of alcohol consumption and the risk of atherosclerotic cardiovascular disease. Moderate alcohol consumption in humans (about 30 g ethanol/d) is associated with reduced risk of coronary heart disease, while abstinence and heavier alcohol intake is linked to increased risk. However, the hepatic consequences of moderate alcohol drinking are largely unknown. Previous data from alcohol-preferring (P) rats showed that chronic consumption does not produce significant hepatic steatosis in this well-established model. Therefore, free-choice alcohol drinking in P rats may mimic low risk or nonhazardous drinking in humans, and chronic exposure in P animals can illuminate the molecular underpinnings of free-choice drinking in the liver. To address this gap, we captured the global, steady-state liver transcriptome following a 23 week free-choice, moderate alcohol consumption regimen (∼ 7.43 g ethanol/kg/day) in inbred alcohol-preferring (iP10a) rats. Chronic consumption led to down-regulation of nine genes in the cholesterol biosynthesis pathway, including HMG-CoA reductase, the rate-limiting step for cholesterol synthesis. These findings corroborate our phenotypic analyses, which indicate that this paradigm produced animals whose hepatic triglyceride levels, cholesterol levels and liver histology were indistinguishable from controls. These findings explain, at least in part, the J- or U-shaped relationship between cardiovascular risk and alcohol intake, and provide outstanding candidates for future studies aimed at understanding the mechanisms that underlie the salutary cardiovascular benefits of chronic low risk and nonhazardous alcohol intake.

  8. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  9. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chun-Ho; Chiang, Tin-Bin [Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan (China); Wang, Wen-Jeng, E-mail: wjwang@mail.cgust.edu.tw [Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan (China); Department of Neurological Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, Taiwan (China)

    2017-03-15

    -motif could affect HCASMC multi-functions. • CVX significantly diminished cell proliferation, adhesion and invasion in HCASMCs. • The WAD-motif/integrin-αv interaction was involved in its suppressive mechanism. • CVX impaired the gene expression of GRO and IL-8 with a NF-κB independent manner.

  10. Mechanism of Action of Nigella sativa on Human Colon Cancer Cells: the Suppression of AP-1 and NF-κB Transcription Factors and the Induction of Cytoprotective Genes.

    Science.gov (United States)

    Elkady, Ayman I; Hussein, Rania A; El-Assouli, Sufian M

    2015-01-01

    Colorectal cancer is one of the leading causes of death in the world. The aim of this study was to investigate the growth-suppression potentiality of a crude saponin extract (CSENS) prepared from medicinal herb, Nigella sativa, on human colon cancer cells, HCT116. HCT116 cells were subjected to increasing doses of CSENS for 24, 48 and 72 h, and then harvested and assayed for cell viability by WST-1. Flow cytometry analyses, cell death detection ELISA, fluorescent stains (Hoechst 33342 and acridine orange/ethidium bromide), DNA laddering and comet assays were carried out to confirm the apoptogenic effects of CSENS. Luciferase reporter gene assays, quantitative reverse transcription-polymerase chain reaction and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. The results demonstrated that CSENS inhibited proliferation and induced apoptosis. Apoptosis was confirmed by flow cytometry analyses, while CSENS-treated cells exhibited morphological hallmarks of apoptosis including cell shrinkage, irregularity in cellular shape, cellular detachment and chromatin condensation. Biochemical signs of apoptosis, such as DNA degradation, were observed by comet assay and gel electrophoresis. The pro-apoptotic effect of CSENS was caspase-3-independent and associated with increase of the Bax/Bcl-2 ratio. CSENS treatment down-regulated transcriptional and DNA-binding activities of NF-κB and AP-1 proteins, associated with down-regulation of their target oncogenes, c-Myc, cyclin D1 and survivin. On the other hand, CSENS up-regulated transcriptional and DNA-binding activities of Nrf2 and expression of cytoprotective genes. In addition, CSENS modulated the expression levels of ERK1/2 MAPK, p53 and p21. These findings suggest that CSENS may be a valuable agent for treatment of colon cancer.

  11. Pressure suppression device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Funahashi, Toshihiro.

    1976-01-01

    Purpose: To provide a structure which permits the absorption of shocks and vibratory load produced on the floor of a pressure suppression chamber due to nitrogen gas or the like discharged into pool water in the pressure suppression chamber at the time of a loss-of-coolant accident. Constitution: A pressure suppression chamber accommodating pool water is comprised of a bottom wall and side walls constructed of concrete on the inner side of a liner. By providing concrete on the bottom surface and side wall surfaces of a pressure suppression chamber, it is possible to prevent non-condensing gas and steam exhausted from the vent duct and exhaust duct of a main vapor escapement safety valve exhaust duct from exerting impact forces and vibratory forces upon the bottom and side surfaces of the pressure suppression chamber. (Horiuchi, T.)

  12. A gene encoding a protein with a proline-rich domain (MtPPRD1), revealed by suppressive subtractive hybridization (SSH), is specifically expressed in the Medicago truncatula embryo axis during germination.

    Science.gov (United States)

    Bouton, Sophie; Viau, Laure; Lelièvre, Eric; Limami, Anis M

    2005-03-01

    A gene MtPPRD1, encoding a protein of 132 amino acids containing a proline-rich domain (PRD), has been revealed by suppressive subtractive hybridization (SSH) with two mRNA populations of embryo axes harvested immediately before and after radicle emergence. Although at the protein level MtPPRD1 showed low homology with plant lipid transfer proteins (LTPs), it did exhibit the eight cysteine residues conserved in all plant LTPs, a characteristic signature that allows the formation of a hydrophobic cavity adapted for loading hydrophobic molecules. Expression studies of MtPPRD1 have been carried out by quantitative real time RT-PCR throughout germination and post-germination processes in control seeds and seeds in which germination was delayed by abscisic acid (ABA) or the glutamine synthetase inhibitor methionine sulphoximine (MSX) treatments. The results showed that MtPPRD1 expression is developmentally regulated, induced in the embryo axis immediately before radicle emergence, reaches its maximum expression and declines during the early post-germination phase. Organ specificity studies showed that, except for a low and probably constitutive expression in roots, MtPPRD1 is specifically expressed in the embryo axis. Based on both experimental and in silico studies several putative roles are proposed for MtPPRD1 in Medicago truncatula, this protein can intervene (i) as an LTP in membrane biogenesis and regulation of the intracellular fatty acid pool by binding and transferring fatty acids and phospholipids between membranes, (ii) in the control of a developmental process specific to late germination and to early phases of post-germination, and (iii) and/or pathogen defence.

  13. Menstrual suppression for adolescents.

    Science.gov (United States)

    Altshuler, Anna Lea; Hillard, Paula J Adams

    2014-10-01

    The purpose of this review is to highlight the recent literature and emerging data describing clinical situations in which menstrual suppression may improve symptoms and quality of life for adolescents. A variety of conditions occurring frequently in adolescents and young adults, including heavy menstrual bleeding, and dysmenorrhea as well as gynecologic conditions such as endometriosis and pelvic pain, can safely be improved or alleviated with appropriate menstrual management. Recent publications have highlighted the efficacy and benefit of extended cycle or continuous combined oral contraceptives, the levonorgestrel intrauterine device, and progestin therapies for a variety of medical conditions. This review places menstrual suppression in an historical context, summarizes methods of hormonal therapy that can suppress menses, and reviews clinical conditions for which menstrual suppression may be helpful.

  14. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  15. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  16. Secretoneurin suppresses cardiac hypertrophy through suppression of oxidant stress.

    Science.gov (United States)

    Chen, Hua-Li; Liu, Yan; Jiang, Wei; Wang, Xiao-Xiao; Yuan, Guo-Lin; Zhao, Yi-Lin; Yu, Chao

    2018-03-05

    The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs. In hypertrophic mice, the heart size, heart weight/body weight (HW/BW) ratio, cardiomyocyte size, and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expression were significantly higher than those in controls but were effectively suppressed by SN gene therapy. Similarly, the protective effects of SN were also observed in cultured cardiomyocytes following ISO treatment. SN significantly increased the activity of catalase and superoxide dismutase (SOD) in parallel with the decrease in reactive oxygen species levels in cardiomyocytes. We observed that SN evoked the activation of all of the AMPK, P38/MAPK and ERK/MAPK pathways in cardiomyocytes, but pretreatment with only AMPK inhibitor (compound C) and ERK1/2/MAPK inhibitor (PD98059) counteracted the protective effects of SN against cardiomyocyte hypertrophy and the suppressive effects of SN on oxidant stress in cardiomyocytes. These results indicated that endogenous SN is induced in hypertrophic cardiomyocytes, and may play a protective role in the pathogenesis of cardiac hypertrophy. These results suggest that exogenous SN supplementation protects the cardiac hypertrophy induced by ISO treatment through the activation of AMPK and ERK/MAPK pathways, thus upregulating antioxidants and suppressing oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy.

    Directory of Open Access Journals (Sweden)

    Sebastian Wiberg

    Full Text Available Prediction of neurological outcome is a crucial part of post cardiac arrest care and prediction in patients remaining unconscious and/or sedated after rewarming from targeted temperature management (TTM remains difficult. Current guidelines suggest the use of serial measurements of the biomarker neuron-specific enolase (NSE in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA. This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population.This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients were included from sites participating in the TTM-trial biobank sub study. NSE was measured at 24, 48 and 72 hours after ROSC and follow-up was concluded after 180 days. The primary end point was poor neurological function or death defined by a cerebral performance category score (CPC-score of 3 to 5.A total of 685 (73% patients participated in the study. At day three after OHCA 63 (9% patients had died and 473 (69% patients were not awake. In these patients, a single NSE measurement at 48 hours predicted poor outcome with an area under the receiver operating characteristics curve (AUC of 0.83. A combination of all three NSE measurements yielded the highest discovered AUC (0.88, p = .0002. Easily applicable combinations of serial NSE measurements did not significantly improve prediction over a single measurement at 48 hours (AUC 0.58-0.84 versus 0.83.NSE is a strong predictor of poor outcome after OHCA in persistently unconscious patients undergoing TTM, and NSE is a promising surrogate marker of outcome in clinical trials. While combinations of serial NSE measurements may

  18. Lentiviral vectors in neurodegenrative disorders - Aspects in gene therapy and disease models

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup

    2009-01-01

    Neurodegenerative disorders remain a complex group of diseases (i.e. Huntington's disease, HD) that are characterized by progressive loss of neurons resulting in movement disorders, cognitive decline, dementia and death. There is no cure for these diseases and treatment relies on symptomatic relief......, which is most often only satisfactory in the initial phase of the disease. Gene therapy is a novel treatment strategy intended to treat or alleviate disease by genetically modifying cells by introducing nucleic acids into the cells. Lentiviral vectors hold great promise as gene transfer vectors...... and in vivo. Robust gene knock-down was shown using a ubiquitous promoter (CMV) and for the first time neuron specific RNAi was obtained using a neuron specific promoter (NSE). Furthermore, optimization of lentiviral vectors was conducted using an insulator element (cHS4) in order to enhance transgene...

  19. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation.

    Science.gov (United States)

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-03-01

    We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE(2) production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  1. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  2. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  3. Enolasa específica de neurona en dos recién nacidos con depresión ligera al nacer Neuron- specific Enolase in two newborns presenting with moderate depression at birth

    Directory of Open Access Journals (Sweden)

    Raisa Bu-Coifiu Fanego

    2009-03-01

    Full Text Available INTRODUCCIÓN. La enolasa específica de neurona es una isoenzima que se vierte al torrente sanguíneo después de un episodio de daño neuronal. En los procesos de hipoxia neonatal estos valores enzimáticos en suero suelen estar alterados. El objetivo del presente artículo fue estudiar la enolasa específica de neurona en suero de 2 recién nacidos con Apgar bajo y determinar si, en el seguimiento durante un año, dichos pacientes presentaban trastornos del desarrollo psicomotor. MÉTODOS. Se tomaron muestras de suero al momento del nacimiento y a las 72 h siguientes. Se determinaron los niveles de enolasa específica de neurona por un método inmunoenzimático de tipo ELISA. Cada muestra fue evaluada por el método de reacción en cadena de la polimerasa para citomegalovirus, en el Instituto de Inmunología de Wuersburg (Alemania. También se cuantificaron anticuerpos contra citomegalovirus de clase IgM e IgG, en el Laboratorio de Neuroquímica de la Universidad Georg August de Goettingen (Alemania. Se recogieron los datos clínicos de interés de cada recién nacido y al año se citaron a estos pacientes y se les realizó un examen físico para evaluar su neurodesarrollo. RESULTADOS. Las cifras de enolasa estuvieron incrementadas tanto al nacimiento como a las 72 h, con anticuerpos anticitomegalovirus de clase IgG que fueron transferidos de la madre a través de la placenta. No se encontró presencia de este virus en el momento del nacimiento. En el examen físico y neurológico realizado al año se constató que los niños evolucionaban satisfactoriamente hasta esa fecha. CONCLUSIONES. Se recomienda extender el estudio hasta los 3 años de vida y aumentar el número de pacientes estudiados, con énfasis en aquellos casos cuyo Apgar es menor de 5 a los 5 min del nacimiento.INTRODUCTION: Neuron-specific Enolase of is an isoenzyme present in blood stream after a neuronal damage episode. In processes of neonatal hypoxia, these enzymatic values

  4. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  5. Plasma suppression of beamstrahlung

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamsstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 10 refs., 5 figs., 4 tabs

  6. Suppression of Thyroid Hormone Receptor-Mediated Transcription ...

    African Journals Online (AJOL)

    We therefore examined the effect of methamidophos on thyroid hormone receptor (TR)-mediated gene expression using transient transfection-based reporter gene assay. Our results shows that methamidophos (10-6 M) suppressed thyroid hormone (TH)-induced TR-mediated transcription. We further examined the effects ...

  7. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  8. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression of interleukin-1 β production in a cancer-induced pain model in mice

    Directory of Open Access Journals (Sweden)

    Hori Yuko

    2010-10-01

    Full Text Available Abstract Background Z-360 is an orally active cholecystokinin-2 (CCK2/gastrin receptor antagonist currently under development as a therapeutic drug for pancreatic cancer. It was previously reported that Z-360 treatment in combination with gemcitabine prolonged the survival period in a lethal pancreatic cancer xenograft model in mice. In a phase Ib/IIa clinical study, Z-360 treatment displayed a trend of reduced pain in patients with advanced pancreatic cancer in combination with gemcitabine including analgesics such as opioids. Here, we investigated the mechanism of analgesic action of Z-360 in a severe cancer-induced pain model in mice, which is considered to be opioid-resistant, by examining ephrin B1 gene expression, N-methyl-D-aspartate receptor NR2B subunit phosphorylation, and interleukin-1β (IL-1β production. Results In a mouse model of cancer-induced pain, ephrin B1 gene expression in dorsal root ganglia (DRGs and the phosphorylation of NR2B in the spinal cord were induced. Z-360 treatment inhibited both ephrin B1 gene expression and the phosphorylation of NR2B. In addition, IL-1β production increased in the cancer-inoculated hind paw of mice, but could be suppressed by treatment with Z-360. Moreover, we observed that the CCK1 receptor antagonist devazepide similarly suppressed up-regulation of ephrin B1 gene expression and IL-1β production, and that the intraperitoneal injection of sulfated CCK-8 induced the production of IL-1β in the cancer-inoculated region. Conclusions We have identified a novel pain cascade, in which IL-1β production in cancer-inoculated regions induces ephrin B1 gene expression in DRGs and then ephrin B1 enhances the tyrosine phosphorylation of NR2B via Eph B receptor in the spinal cord. Notably, Z-360 relieves cancer-induced pain by preventing this pain cascade through the suppression of IL-1β production, likely via the blockade of CCK1 receptor. The pre-clinical results presented here support the analgesic

  10. Alteration of the timing of implantation by in vivo gene transfer: delay of implantation by suppression of nuclear factor κB activity and partial rescue by leukemia inhibitory factor

    International Nuclear Information System (INIS)

    Nakamura, Hitomi; Kimura, Tadashi; Ogita, Kazuhide; Koyama, Shinsuke; Tsujie, Tomoko; Tsutsui, Tateki; Shimoya, Koichiro; Koyama, Masayasu; Kaneda, Yasufumi; Murata, Yuji

    2004-01-01

    Nuclear factor κB (NF-κB) is activated in the murine endometrium during implantation period [Am. J. Reprod. Immunol. 51 (2004) 16]. Transient transfection of IκBα mutant (IκBαM) cDNA into the mouse uterine cavity using hemagglutinating virus of Japan envelope vector suppressed uterine NF-κB activity less than half of that observed in control on days 3.5 and 4.5 p.c. IκBαM cDNA transfection led to significant delay of implantation. After IκBαM cDNA transfection, LIF mRNA expression in the uterus was significantly suppressed on days 3.5 and 4.5 p.c. Co-transfection of LIF cDNA with IκBαM cDNA in the uterus partially rescued the delay of implantation induced by suppression of NF-κB activity. Taken together, these findings indicate that NF-κB activation determines the timing of the implantation, at least in part, via control of LIF expression

  11. How to suppress obsessive thoughts.

    Science.gov (United States)

    Rassin, Eric; Diepstraten, Philip

    2003-01-01

    Thought suppression (i.e. consciously trying to avoid certain thoughts from entering consciousness) has been argued to be an inadequate strategy in case of unwanted intrusions. That is, thought suppression seems to result in more rather than less intrusions. Although this experimental finding has been explained in terms of failing attempts to distract oneself from the target thought, the White Bear Suppression Inventory (WBSI; a scale that measures chronic thought suppression tendencies) does not address the means by which respondents try to suppress unwanted thoughts. To examine which strategies of mental control people use to suppress unwanted thoughts, obsessive-compulsive disorder patients (N=47) completed the WBSI, the Thought Control Questionnaire, and two measures of psychopathology. Results suggest that the crucial mechanism in thought suppression may not be distraction, but self-punishment.

  12. Unihemispheric burst suppression

    Directory of Open Access Journals (Sweden)

    Edward C. Mader Jr.

    2014-08-01

    Full Text Available Burst suppression (BS consists of bursts of high-voltage slow and sharp wave activity alternating with periods of background suppression in the electroencephalogram (EEG. When induced by deep anesthesia or encephalopathy, BS is bihemispheric and is often viewed as a non-epileptic phenomenon. In contrast, unihemispheric BS is rare and its clinical significance is poorly understood. We describe here two cases of unihemispheric BS. The first patient is a 56-year-old woman with a left temporoparietal tumor who presented in convulsive status epilepticus. EEG showed left hemispheric BS after clinical seizure termination with lorazepam and propofol. The second patient is a 39-year-old woman with multiple medical problems and a vague history of seizures. After abdominal surgery, she experienced a convulsive seizure prompting treatment with propofol. Her EEG also showed left hemispheric BS. In both cases, increasing the propofol infusion rate resulted in disappearance of unihemispheric BS and clinical improvement. The prevailing view that typical bihemispheric BS is non-epileptic should not be extrapolated automatically to unihemispheric BS. The fact that unihemispheric BS was associated with clinical seizure and resolved with propofol suggests that, in both cases, an epileptic mechanism was responsible for unihemispheric BS.

  13. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines.

    OpenAIRE

    Costello, J F; Futscher, B W; Kroes, R A; Pieper, R O

    1994-01-01

    There is considerable interest in identifying factors responsible for expression of the O-6-methylguanine DNA methyltransferase (MGMT) gene, as MGMT is a major determinant in the response of glioma cells to the chemotherapeutic agent 1,3 bis(2-chloroethyl)-1-nitrosourea. Recently we have shown that MGMT expression is correlated in a direct, graded fashion with methylation in the body of the MGMT gene and in an inverse, graded fashion with promoter methylation in human glioma cell lines. To de...

  14. Suppression of sympathetic detonation

    Science.gov (United States)

    Foster, J. C., Jr.; Gunger, M. E.; Craig, B. G.; Parsons, G. H.

    1984-08-01

    There are two basic approaches to suppression of sympathetic detonation. Minimizing the shock sensitivity of the explosive to long duration pressure will obviously reduce interround separation distances. However, given that the explosive sensitivity is fixed, then much can be gained through the use of simple barriers placed between the rounds. Researchers devised calculational methods for predicting shock transmission; experimental methods have been developed to characterize explosive shock sensitivity and observe the response of acceptors to barriers. It was shown that both EAK and tritonal can be initiated to detonation with relatively low pressure shocks of long durations. It was also shown that to be an effective barrier between the donor and acceptor, the material must attenuate shock and defect fragments. Future actions will concentrate on refining the design of barriers to minimize weight, volume, and cost.

  15. Long-day suppressed expression of type 2 deiodinase gene in the mediobasal hypothalamus of the Saanen goat, a short-day breeder: implication for seasonal window of thyroid hormone action on reproductive neuroendocrine axis.

    Science.gov (United States)

    Yasuo, Shinobu; Nakao, Nobuhiro; Ohkura, Satoshi; Iigo, Masayuki; Hagiwara, Satoko; Goto, Akemitsu; Ando, Hiroshi; Yamamura, Takashi; Watanabe, Miwa; Watanabe, Tsuyoshi; Oda, Sen-ichi; Maeda, Kei-ichiro; Lincoln, Gerald A; Okamura, Hiroaki; Ebihara, Shizufumi; Yoshimura, Takashi

    2006-01-01

    In most animals that live in temperate regions, reproduction is under photoperiodic control. In long-day breeders such as Japanese quail and Djungarian hamsters, type 2 deiodinase (Dio2) plays an important role in the mediobasal hypothalamus, catalyzing the conversion of prohormone T4 to bioactive T3 to regulate the photoperiodic response of the gonads. However, the molecular basis for seasonal reproduction in short-day breeders remains unclear. Because thyroid hormones are also known to be involved in short-day breeders, we examined the effect of an artificial long-day stimulus on Dio2 expression in the male Saanen goat (Capra hircus), a short-day breeder. Dio2 expression was observed in the caudal continuation of the arcuate nucleus, known as the target site for both melatonin and T4 action. In addition, expression of Dio2 and T3 content in the mediobasal hypothalamus was suppressed by artificial long-day conditions, which is the opposite of the results of long-day breeders. Thyroid hormone action on the development of neuroendocrine anestrus is known to be limited to a specific seasonal window. This long-day suppression of Dio2 may provide a mechanism that accounts for the lack of responsiveness to thyroxine during the mid to late anestrus.

  16. Repeated pre-treatment with antihistamines suppresses [corrected] transcriptional up-regulations of histamine H(1) receptor and interleukin-4 genes in toluene-2,4-diisocyanate-sensitized rats.

    Science.gov (United States)

    Mizuguchi, Hiroyuki; Hatano, Masaya; Matsushita, Chiyo; Umehara, Hayato; Kuroda, Wakana; Kitamura, Yoshiyuki; Takeda, Noriaki; Fukui, Hiroyuki

    2008-12-01

    Antihistamines are effective for treatment of seasonal nasal allergy. Recently, prophylactic treatment with antihistamines in patients with pollinosis was reported to be more effective when started before the pollen season. The administration with antihistamines from 2 to 6 weeks before onset of the pollen season is recommended for management of allergic rhinitis in Japan. To determine the reason for the effectiveness of prophylactic treatment with antihistamines, the effects of repeated pre-treatment with antihistamines before provocation with toluene 2,4-diisocyanate (TDI) on their nasal allergy-like behavior and up-regulations of histamine H(1) receptors (H1R) and interleukin (IL)-4 mRNAs in their nasal mucosa were examined. Provocation with TDI induced sneezing and up-regulations of H1R and IL-4 mRNAs in the nasal mucosa of TDI-sensitized rats. Repeated pre-treatments with antihistamines including epinastine, olopatadine, or d-chlorpheniramine for 1 to 5 weeks before provocation with TDI suppressed TDI-induced sneezing and the up-regulations of H1R and IL-4 mRNAs in the nasal mucosa more than their administrations once or for 3 days before TDI provocation. Our data indicate that repeated pre-treatment with antihistamines before provocation with TDI is more effective than their single treatment in reducing nasal allergy-like behavior by causing additional suppression of up-regulations of H1R and IL-4 mRNAs in the nasal mucosa.

  17. An Alternative to Thought Suppression?

    Science.gov (United States)

    Boice, Robert

    2012-01-01

    Comments on the original article, "Setting free the bears: Escape from thought suppression," by D. M. Wegner (see record 2011-25622-008). While Wegner supposed that we might have to learn to live with bad thoughts, the present author discusses the use of imagination and guided imagery as an alternative to forced thought suppression.

  18. miR-24 inhibits cell proliferation by suppressing expression of E2F2, MYC and other cell cycle regulatory genes by binding to “seedless” 3′UTR microRNA recognition elements

    Science.gov (United States)

    Lal, Ashish; Navarro, Francisco; Maher, Christopher; Maliszewski, Laura E.; Yan, Nan; O'Day, Elizabeth; Chowdhury, Dipanjan; Dykxhoorn, Derek M.; Tsai, Perry; Hofman, Oliver; Becker, Kevin G.; Gorospe, Myriam; Hide, Winston; Lieberman, Judy

    2009-01-01

    Summary miR-24, up-regulated during terminal differentiation of multiple lineages, inhibits cell cycle progression. Antagonizing miR-24 restores post-mitotic cell proliferation and enhances fibroblast proliferation, while over-expressing miR-24 increases the G1 compartment. The 248 mRNAs down-regulated upon miR-24 over-expression are highly enriched for DNA repair and cell cycle regulatory genes that form a direct interaction network with prominent nodes at genes that enhance (MYC, E2F2, CCNB1, CDC2) or inhibit (p27Kip1, VHL) cell cycle progression. miR-24 directly regulates MYC and E2F2 and some genes they transactivate. Enhanced proliferation from antagonizing miR-24 is abrogated by knocking down E2F2, but not MYC, and cell proliferation, inhibited by miR-24 over-expression, is rescued by miR-24-insensitive E2F2. Therefore, E2F2 is a critical miR-24 target. The E2F2 3′UTR lacks a predicted miR-24 recognition element. In fact, miR-24 regulates expression of E2F2, MYC, AURKB, CCNA2, CDC2, CDK4 and FEN1 by recognizing seedless, but highly complementary, sequences. PMID:19748357

  19. Menstrual suppression in the adolescent.

    Science.gov (United States)

    Kantartzis, Kelly L; Sucato, Gina S

    2013-06-01

    Menstrual suppression, the use of contraceptive methods to eliminate or decrease the frequency of menses, is often prescribed for adolescents to treat menstrual disorders or to accommodate patient preference. For young women using hormonal contraceptives, there is no medical indication for menstruation to occur monthly, and various hormonal contraceptives can be used to decrease the frequency of menstruation with different side effect profiles and rates of amenorrhea. This article reviews the different modalities for menstrual suppression, common conditions in adolescents which may improve with menstrual suppression, and strategies for managing common side effects. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  20. Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth.

    Science.gov (United States)

    Noguchi, Y; Saito, A; Miyagi, Y; Yamanaka, S; Marat, D; Doi, C; Yoshikawa, T; Tsuburaya, A; Ito, T; Satoh, S

    2000-06-30

    We attempted to suppress glucose transporter 1 (GLUT1) expression by transfecting MKN45 cells with cDNA for antisense GLUT1. Glucose transport was significantly decreased in cells with antisense GLUT1 compared with wild-type cells or cells with vector alone. Suppression of GLUT1 mRNA resulted in a decreased number of cells in the S phase. This was accompanied by overexpression of p21 protein. Tumorigenicity in the nude mice injected with antisense GLUT1 expressing cells was significantly slower than in those with wild-type MKN45 cells. These results suggest that antisense GLUT1 mRNA inhibits tumor growth through a G(1) arrest and that expression of antisense GLUT1 mRNA via gene therapy can be used as a tool in the treatment of cancer.

  1. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  2. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  3. In vivo Treg suppression assays.

    Science.gov (United States)

    Workman, Creg J; Collison, Lauren W; Bettini, Maria; Pillai, Meenu R; Rehg, Jerold E; Vignali, Dario A A

    2011-01-01

    To fully examine the functionality of a regulatory T cell (T(reg)) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of T(regs) upon different target cell types. The advantages and disadvantages of each model including resources, time, and technical expertise required to execute each model are also described.

  4. In Vivo Treg Suppression Assays

    OpenAIRE

    Workman, Creg J.; Collison, Lauren W.; Bettini, Maria; Pillai, Meenu R.; Rehg, Jerold E.; Vignali, Dario A.A.

    2011-01-01

    To fully examine the functionality of a regulatory T cell (Treg) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of Tregs upon different target cell types. The advantages and disadvantages of each model includ ing resources, time, and technical expertise required to execute each model are also described.

  5. Burst Suppression for ICP Control.

    Science.gov (United States)

    Zeiler, Frederick A; Akoth, Eva; Gillman, Lawrence M; West, Michael

    2017-02-01

    The goal of our study was to perform a systematic review of the literature to determine the effect that burst suppression has on intracranial pressure (ICP) control. All articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to January 2015), reference lists of relevant articles, and gray literature were searched. The strength of evidence was adjudicated using both the Oxford and the Grading of Recommendation Assessment Development and Education (GRADE) methodology. Seven articles were considered for review. A total of 108 patients were studied, all receiving burst suppression therapy. Two studies failed to document a decrease in ICP with burst suppression therapy. There were reports of severe hypotension and increased infection rates with barbiturate-based therapy. Etomidate-based suppressive therapy was linked to severe renal dysfunction. There currently exists both Oxford level 2b and GRADE C evidence to support that achieving burst suppression reduces ICP, and also has no effect on ICP, in severe traumatic brain injury. The literature suggests burst suppression therapy may be useful for ICP reduction in certain cases, although these situations are currently unclear. In addition, the impact on patient functional outcome is unclear. Further prospective study is warranted.

  6. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  7. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8.

    Science.gov (United States)

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2017-03-15

    Convulxin (CVX), a C-type lectin-like protein (CLPs), is a potent platelet aggregation inducer. To evaluate its potential applications in angiogenic diseases, the multimeric CVX were further explored on its mode of actions toward human coronary artery smooth muscle cells (HCASMCs). The N-terminus of β-chain of CVX (CVX-β) contains a putative disintegrin-like domain with a conserved motif upon the sequence comparison with other CLPs. Importantly, native CVX had no cytotoxic activity as examined by electrophoretic pattern. A Trp-Ala-Asp (WAD)-containing octapeptide, MTWADAEK, was thereafter synthesized and analyzed in functional assays. In the case of specific integrin antagonists as positive controls, the anti-angiogenic effects of CVX on HCASMCs were investigated by series of functional analyses. CVX showed to exhibit multiple inhibitory activities toward HCASMCs proliferation, adhesion and invasion with a dose- and integrin αvβ3-dependent fashion. However, the WAD-octapeptide exerting a minor potency could also work as an active peptidomimetic. In addition, flow cytometric analysis demonstrated both the intact CVX and synthetic peptide can specifically interact with integrin-αv on HCASMCs and CVX was shown to have a down-regulatory effect on the gene expression of CXC-chemokines, such as growth-related oncogene and interleukin-8. According to nuclear factor-κB (NF-κB) p65 translocation assay and Western blotting analysis, the NF-κB activation was not involved in the signaling events of CVX-induced gene expression. In conclusion, CVX may act as a disintegrin-like protein via the interactions of WAD-motif in CVX-β with integrin-αv on HCASMCs and it also is a gene suppressor with the ability to diminish the expression of two CXC-chemokines in a NF-κB-independent manner. Indeed, more extensive investigations are needed and might create a new avenue for the development of a novel angiostatic agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ethanolic extracts of herbal supplement Equiguard suppress growth and control gene expression in CWR22Rv1 cells representing the transition of prostate cancer from androgen dependence to hormone refractory status.

    Science.gov (United States)

    Hsieh, Tze-Chen; Wu, Joseph M

    2008-01-01

    Dietary supplements and botanical products are widely used by patients diagnosed with prostate cancer (CaP) as a primary or adjuvant form of treatment for their medical conditions in the United States. Many of the available products are complex mixtures composed of extracts from foreign plants, whose mechanism of action typically is not systematically and rigorously investigated. Laboratory studies employing precisely defined conditions and referenced methodologies are essential not only for standardization and characterization of the products, but are also important requisites for providing scientific evidence and molecular insights in regard to the clinical efficacies some of these products purportedly demonstrate. In previous studies from this laboratory, we serendipitously observed that Equiguard, a dietary supplement formulated with extracts from nine Chinese herbs for preventing decline in renal functions associated with the aging process, contain 70% ethanol-extractable ingredients that displayed potent growth inhibitory activities in androgen-dependent (AD) LNCaP and androgen-independent (AI) DU-145 and PC-3 cells. Moreover, significant reduction in expression of the androgen receptor (AR) and prostate specific antigen (PSA) also occurred in Equiguard-treated LNCaP cells. Although these results offer the possibility that Equiguard confers chemoprevention for CaP, it remains undetermined whether Equiguard functions in CaP cell types that represent the transition of AD to the AI status. Further, details of its mechanism of action have not been fully elucidated. The studies described in this report focusing on CWR22Rv1 cells are intended to fill these gaps. These cells express AR and PSA, yet show weak responsiveness to androgens and largely proliferate in an AI-independent manner - features that mimic AD --> AI in clinically advanced disease. Using the CWR22Rv1 cells, we showed that 70% ethanolic extracts of Equiguard effectively suppressed colony formation

  9. Demethylation of miR-9-3 and miR-193a Genes Suppresses Proliferation and Promotes Apoptosis in Non-Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Jinliang Wang

    2013-12-01

    Full Text Available Background: MicroRNAs miR-9-3 and miR-193a have recently been found to be hypermethylated in a variety of non-small cell lung cancer (NSCLC cells and primary human tumors. The objectives of this study were to investigate the role of demethylation of miR-9-3 and miR-193a genes in regulating proliferation and apoptosis in NSCLCs, and to decipher the potential mechanisms underlying the properties. Methods: MTT and population doubling time by flow cytometry were used to assess cell proliferation. Enzyme-Linked Immunosorbent Assay and caspase-3 activity assay were employed to evaluate apoptosis. Real-time RT-PCR and Western blot were used to quantify gene expression at mRNA and protein levels, respectively. Methylation-specific PCR was utilized to assess methylation status. Results: We found that demethylation agent 5-Aza-2'-deoxycytidine (5-AzaC reduced cell numbers and prolonged population doubling time (PDT, and promoted doxorubicin-induced apoptosis in seven NSCLC cell lines with different methylation statuses on miR-9-3 and miR-193a promoter regions: NCI-H1993/NCI-H1915 (miR-9-3+/miR-193a+, NCI-H1975/NCI-H200 (miR-9-3+/miR-193a-, A427/NCI-H2073 (miR-9-3-/miR-193a+, and NCI-H1703 (miR-9-3-/miR-193a-. Treatment with 5-AzaC concomitantly upregulated expression of miR-9-3 and miR-193a, and downregulated their respective target genes NF-κB and Mcl-1. The effects of 5-AzaC were abolished by concomitant knockdown of miR-9-3 and miR-193a using the complex antisense technique, whereas forced ectopic expression of miR-9-3 and miR-193a mimicked the effects of 5-AzaC. We further observed that the strength of proliferation inhibition and apoptosis promotion elicited by 5-AzaC was in the order of NCI-H1993/NCI-H1915 > A427/NCI-H2073 > NCI-H1975/NCI-H200 > NCI-H1703. Conclusions: Methylation-silencing of miR-9-3 and miR-193a may be an important epigenetic mechanisms favoring NSCLC cell growth and survival for carcinogenesis and cancer progression, and

  10. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome.

    Science.gov (United States)

    Babenko, Vladimir N; Makunin, Igor V; Brusentsova, Irina V; Belyaeva, Elena S; Maksimov, Daniil A; Belyakin, Stepan N; Maroy, Peter; Vasil'eva, Lyubov A; Zhimulev, Igor F

    2010-05-21

    Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster. Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles. Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.

  11. Inhibition of estrogen receptor β-mediated human telomerase reverse transcriptase gene transcription via the suppression of mitogen-activated protein kinase signaling plays an important role in 15-deoxy-Δ12,14-prostaglandin J2-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Kondoh, Kei; Tsuji, Naoki; Asanuma, Koichi; Kobayashi, Daisuke; Watanabe, Naoki

    2007-01-01

    The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-γ plays a role in cancer development in addition to its role in glucose metabolism. The natural ligand of PPAR-γ, namely, 15-deoxy-Δ 12,14 -prostaglandin J 2 (15d-PGJ 2 ), has been shown to possess antineoplastic activity in cancer cells. However, the mechanism underlying its antineoplastic activity remains to be elucidated. Inhibition of the expression of human telomerase reverse transcriptase (hTERT), a major determinant of telomerase activity, reportedly induces rapid apoptosis in cancer cells. In this study, we investigated the effect of 15d-PGJ 2 on hTERT expression. We found that 15d-PGJ 2 induced apoptosis in the MIAPaCa-2 pancreatic cancer cells and dose-dependently decreased hTERT mRNA and protein expression. Down-regulation of hTERT expression by hTERT-specific small inhibitory RNA also induced apoptosis. Furthermore, 15d-PGJ 2 attenuated the DNA binding of estrogen receptor (ER). MIAPaCa-2 expressed only ERβ, and although its expression did not decrease due to 15d-PGJ 2 , its phosphorylation was suppressed. Additionally, a mitogen-activated protein kinase (MAPK) kinase inhibitor decreased ERβ phosphorylation, and 15d-PGJ 2 attenuated MAPK activity. We conclude that hTERT down-regulation by 15d-PGJ 2 plays an important role in the proapoptotic property of the latter. Furthermore, 15d-PGJ 2 inhibits ERβ-mediated hTERT gene transcription by suppressing ERβ phosphorylation via the inhibition of MAP kinase signaling

  12. Drosophila as a Model for Intractable Epilepsy: Gilgamesh Suppresses Seizures in parabss1 Heterozygote Flies

    Science.gov (United States)

    Howlett, Iris C.; Rusan, Zeid M.; Parker, Louise; Tanouye, Mark A.

    2013-01-01

    Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na+ channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na+ channel gain-of-function mutant parabss1 that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with parabss1, seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of parabss1/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics. PMID:23797108

  13. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  14. Inhibition of SIRT2 suppresses hepatic fibrosis.

    Science.gov (United States)

    Arteaga, Maribel; Shang, Na; Ding, Xianzhong; Yong, Sherri; Cotler, Scott J; Denning, Mitchell F; Shimamura, Takashi; Breslin, Peter; Lüscher, Bernhard; Qiu, Wei

    2016-06-01

    Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl4) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis. Copyright © 2016 the American Physiological Society.

  15. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  16. Resonance suppression from color reconnection

    Science.gov (United States)

    Acconcia, R.; Chinellato, D. D.; de Souza, R. Derradi; Takahashi, J.; Torrieri, G.; Markert, C.

    2018-02-01

    We present studies that show how multi-parton interaction and color reconnection affect the hadro-chemistry in proton-proton (pp) collisions with special focus on the production of resonances using the pythia8 event generator. We find that color reconnection suppresses the relative production of meson resonances such as ρ0 and K* , providing an alternative explanation for the K*/K decrease observed in proton-proton collisions as a function of multiplicity by the ALICE collaboration. Detailed studies of the underlying mechanism causing meson resonance suppression indicate that color reconnection leads to shorter, less energetic strings whose fragmentation is less likely to produce more massive hadrons for a given quark content, therefore reducing ratios such as K*/K and ρ0/π in high-multiplicity pp collisions. In addition, we have also studied the effects of allowing string junctions to form and found that these may also contribute to resonance suppression.

  17. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  18. Teaching to suppress Polglish processes

    OpenAIRE

    Dziubalska-Kołaczyk, Katarzyna; Balas, Anna; Schwartz, Geoffrey; Rojczyk, Arkadiusz; Wrembel, Magdalena

    2015-01-01

    Advanced second language (henceforth L2) learners in a formal setting can suppress many first language (henceforth L1) processes in L2 pronunciation when provided with sufficient exposure to L2 and meta competence (see Sect. 4 for a definition of this term). This paper shows how imitation in L2 teaching can be enhanced on the basis of current phonetic research and how complex allophonic processes such as nasal vocalization and glottal stop insertion can be suppressed using “repair”—a method o...

  19. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  20. Conditioned suppression, punishment, and aversion

    Science.gov (United States)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  1. Plasma suppression of beamstrahlung: Revision

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 17 refs., 5 figs., 5 tabs

  2. Suppressive Subtraction Hybridization on Stimulated Primary Horse Macrophages

    Directory of Open Access Journals (Sweden)

    J. Matiašovic

    2006-01-01

    Full Text Available To study genes potentially involved in genetic resistance to infectious diseases in the horse, suppressive subtraction hybridization was used to identify genes expressed in primary horse macrophages after their stimulation with E. coli. Overnight culture of blood monocyte-derived macrophage cells was stimulated with E. coli K12 in ratio 40 E. coli cells to one macrophage cell. After 4 hours of incubation, non-phagocyted bacteria were washed away. Following next 20 hour incubation in MEM alpha containing 5 μg of gentamycin in 1 ml of media, mRNA was isolated and used in Clontech PCR-Select cDNA Subtraction Kit. Expression of several known horse genes, as well as some new ESTs (expressed sequence tags showing sequence similarity with immunity-related genes from other species was identified.

  3. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  4. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  5. Suppressing Quantum Fluctuations in Classicalization

    CERN Document Server

    Vikman, Alexander

    2013-01-01

    We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons - derivatively coupled single scalar-field theories possessing shift-symmetry in field space. We argue that quantum fluctuations of the interacting field can be drastically suppressed with respect to the free-field case. Moreover, the power-spectrum of these fluctuations can soften to become red for sufficiently small scales. In quasiclassical approximation, we demonstrate that this suppression can only occur for those theories that admit such classical static backgrounds around which small perturbations propagate faster than light. Thus a quasiclassical softening of quantum fluctuations is only possible for theories which classicalize instead of having a usual Lorentz invariant and local Wilsonian UV- completion. We illustrate our analysis by estimating the quantum fluctuations for the DBI-like theories.

  6. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  7. E2F4 loss suppresses tumorigenesis in Rb mutant mice.

    Science.gov (United States)

    Lee, Eunice Y; Cam, Hieu; Ziebold, Ulrike; Rayman, Joseph B; Lees, Jacqueline A; Dynlacht, Brian David

    2002-12-01

    The E2F transcription factors mediate the activation or repression of key cell cycle regulatory genes under the control of the retinoblastoma protein (pRB) tumor suppressor and its relatives, p107 and p130. Here we investigate how E2F4, the major "repressive" E2F, contributes to pRB's tumor-suppressive properties. Remarkably, E2F4 loss suppresses the development of both pituitary and thyroid tumors in Rb(+/-) mice. Importantly, E2F4 loss also suppresses the inappropriate gene expression and proliferation of pRB-deficient cells. Biochemical analyses suggest that this tumor suppression occurs via a novel mechanism: E2F4 loss allows p107 and p130 to regulate the pRB-specific, activator E2Fs. We also detect these novel E2F complexes in pRB-deficient cells, suggesting that they play a significant role in the regulation of tumorigenesis in vivo.

  8. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  9. BRCA1 and BRCA2 gene testing

    Science.gov (United States)

    Breast cancer - BRCA1 and BRCA2; Ovarian cancer - BRCA1 and BRCA2 ... genes change (become mutated) they do not suppress tumors like they ... or ovarian cancer. Mutations may also increase a woman's risk ...

  10. Background Suppression Effects on Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom [Los Alamos National Laboratory

    2008-01-01

    Gamma detectors at border crossings are intended to detect illicit nuclear material. One performance challenge involves the fact that vehicles suppress the natural background, thus potentially reducing detection probability for threat items. Methods to adjust for background suppression have been considered in related but different settings. Here, methods to adjust for background suppression are tested in the context of signal estimation. Adjustment methods include several clustering options. We find that for the small-to-moderate suppression magnitudes exhibited in the analyzed data, suppression adjustment is only moderatel helpful in locating the signal peak, and in estimating its width or magnitude.

  11. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    Science.gov (United States)

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  13. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri.

    Science.gov (United States)

    Thomas, Carissa M; Saulnier, Delphine M A; Spinler, Jennifer K; Hemarajata, Peera; Gao, Chunxu; Jones, Sara E; Grimm, Ashley; Balderas, Miriam A; Burstein, Matthew D; Morra, Christina; Roeth, Daniel; Kalkum, Markus; Versalovic, James

    2016-10-01

    Bacterial-derived compounds from the intestinal microbiome modulate host mucosal immunity. Identification and mechanistic studies of these compounds provide insights into host-microbial mutualism. Specific Lactobacillus reuteri strains suppress production of the proinflammatory cytokine, tumor necrosis factor (TNF), and are protective in a mouse model of colitis. Human-derived L. reuteri strain ATCC PTA 6475 suppresses intestinal inflammation and produces 5,10-methenyltetrahydrofolic acid polyglutamates. Insertional mutagenesis identified the bifunctional dihydrofolate synthase/folylpolyglutamate synthase type 2 (folC2) gene as essential for 5,10-methenyltetrahydrofolic acid polyglutamate biosynthesis, as well as for suppression of TNF production by activated human monocytes, and for the anti-inflammatory effect of L. reuteri 6475 in a trinitrobenzene sulfonic acid-induced mouse model of acute colitis. In contrast, folC encodes the enzyme responsible for folate polyglutamylation but does not impact TNF suppression by L. reuteri. Comparative transcriptomics between wild-type and mutant L. reuteri strains revealed additional genes involved in immunomodulation, including previously identified hdc genes involved in histidine to histamine conversion. The folC2 mutant yielded diminished hdc gene cluster expression and diminished histamine production, suggesting a link between folate and histadine/histamine metabolism. The identification of genes and gene networks regulating production of bacterial-derived immunoregulatory molecules may lead to improved anti-inflammatory strategies for digestive diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    Science.gov (United States)

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.

    2014-02-01

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  15. Suppression Subtractive Hybridization (SSH) and its modifications in microbiological research.

    Science.gov (United States)

    Huang, Xiaowei; Li, Yunxia; Niu, Qiuhong; Zhang, Keqin

    2007-09-01

    Suppression subtractive hybridization (SSH) is an effective approach to identify the genes that vary in expression levels during different biological processes. It is often used in higher eukaryotes to study the molecular regulation in complex pathogenic progress, such as tumorigenesis and other chronic multigene-associated diseases. Because microbes have relatively smaller genomes compared with eukaryotes, aside from the analysis at the mRNA level, SSH as well as its modifications have been further employed to isolate specific chromosomal locus, study genomic diversity related with exceptional bacterial secondary metabolisms or genes with special microbial function. This review introduces the SSH and its associated methods and focus on their applications to detect specific functional genes or DNA markers in microorganisms.

  16. Nuclear reactor scram suppression device

    International Nuclear Information System (INIS)

    Koshi, Hiroshi; Ozawa, Hisamitsu.

    1993-01-01

    The device of the present invention suppresses reactor scram due to increase of neutrons caused by pressure elevation in the reactor even when a portion of main steam pipes is closed by some or other causes such as closure of a main steam isolation valve in a BWR type power plant. That is, when a flow channel is closed, such as upon closure of a main steam isolation valve, a flow rate signal sent from each of main steam flow rate detection means is inputted to a selective circuit of a pressure control device, from which a normal value is obtained. A deviation value for each of the main steam flow rate values is determined from the value described above and a flow rate average value obtained in an averaging circuit. Abnormality in the main steam pipelines is judged if a level for each of the deviation values is greater than a predetermined value. Further, the insertion of selective control rods and trip and run back instructions for recycling pumps are controlled by output signals of the deviation value detection circuit, to decrease the reactor power and prevent elevation in the reactor. As a result, reactor scram due to increase of neutron fluxes is suppressed. (I.S.)

  17. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. The suppression of apoptosis by α-herpesvirus

    Science.gov (United States)

    You, Yu; Cheng, An-Chun; Wang, Ming-Shu; Jia, Ren-Yong; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Zhu, Dekang; Chen, Shun; Liu, Ma-Feng; Zhao, Xin-Xin; Chen, Xiao-Yue

    2017-01-01

    Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically. PMID:28406478

  19. Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in para(bss1) heterozygote flies.

    Science.gov (United States)

    Howlett, Iris C; Rusan, Zeid M; Parker, Louise; Tanouye, Mark A

    2013-08-07

    Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na(+) channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na(+) channel gain-of-function mutant para(bss1) that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with para(bss1), seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of para(bss1)/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics.

  20. Safety system for pressure suppression

    International Nuclear Information System (INIS)

    Wood, L.E.; Ludwig, G.J.; Tulsa, O.

    1975-01-01

    The rupture disk with rated breaking points is constrained by two supporting elements and has a convex-concave shape. For pressure suppression, it is reversable inversely to its bulging. Its surface has notches which are the rated breaking points and respond to higher pressures. The centre of the rupture disk contains an area of relatively smaller thickness that will burst at lower pressure and thus makes it applicable for lower pressures. For the response of the rupture disk centre, a thrust ring with a central opening may also be used. Its edge is formed into a convex-concave section supported on the edge of the rupture disk on the exit side. The free centre of the rupture disk is then the area of relative weakness. (RW/AK) [de

  1. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19).

    Science.gov (United States)

    Digilio, Laura; Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  2. p53-Dependent suppression of genome instability in germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Otozai, Shinji [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Ishikawa-Fujiwara, Tomoko [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Oda, Shoji [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Kamei, Yasuhiro [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ryo, Haruko [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Sato, Ayuko [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Nomura, Taisei [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Mitani, Hiroshi [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Tsujimura, Tohru [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Inohara, Hidenori [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Todo, Takeshi, E-mail: todo@radbio.med.osaka-u.ac.jp [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    Highlights: • Radiation-induced microsatellite instability (MSI) was investigated in medaka fish. • msh2{sup −/−} fish had a high frequency of spontaneous MSI. • p53{sup −/−} fish had a high frequency of radiation-induced MSI. • p53 and msh2 suppress MSI by different pathways: mismatch removal and apoptosis. - Abstract: Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2{sup −/−} males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2{sup −/−} and wild-type fish. By contrast, irradiated p53{sup −/−} fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2{sup −/−} fish, but negligible levels in p53{sup −/−} fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.

  3. Enhancers of GnRH Transcription Embedded in an Upstream Gene Use Homeodomain Proteins to Specify Hypothalamic Expression

    OpenAIRE

    Iyer, Anita K.; Miller, Nichol L. G.; Yip, Kathleen; Tran, Brian H.; Mellon, Pamela L.

    2010-01-01

    GnRH, the central regulator of reproductive function, is produced by only approximately 800 highly specialized hypothalamic neurons. Previous studies identified a minimal promoter [GnRH minimal promoter (GnRH-P)] (−173/+1) and a neuron-specific enhancer [GnRH-enhancer (E)1] (−1863/−1571) as regulatory regions in the rat gene that confer this stringent specificity of GnRH expression to differentiated GnRH neurons. In transgenic mice, these two elements target only GnRH neurons but fail to driv...

  4. Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity.

    Science.gov (United States)

    Park, Youngjin; Herbert, Erin E; Cowles, Charles E; Cowles, Kimberly N; Menard, Megan L; Orchard, Samantha S; Goodrich-Blair, Heidi

    2007-03-01

    Virulence of the insect pathogen Xenorhabdus nematophila is attributed in part to its ability to suppress immunity. For example, X. nematophila suppresses transcripts encoding several antimicrobial proteins, even in the presence of Salmonella enterica, an inducer of these transcripts. We show here that virulence and immune suppression phenotypes can be lost in a subpopulation of X. nematophila. Cells that have undergone 'virulence modulation' (vmo) have attenuated virulence and fail to suppress antimicrobial transcript levels, haemocyte aggregation and nodulation in Manduca sexta insects. When plated on certain media, vmo cells have a higher proportion of translucent (versus opaque) colonies compared with non-vmo cells. Like vmo strains, translucent colony isolates are defective in virulence and immune suppression. The X. nematophila genome encodes two 'opacity' genes with similarity to the Ail/PagC/Rck family of outer membrane proteins involved in adherence, invasion and serum resistance. Quantitative polymerase chain reaction analysis shows that RNA levels of one of these opacity genes, opaB, are higher in opaque relative to translucent colonies. We propose that in X. nematophila opaB may be one of several factors involved in immune suppression during infection, and expression of these factors can be co-ordinately eliminated in a subpopulation, possibly through a phase variation mechanism.

  5. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri.

    Science.gov (United States)

    Gao, Chunxu; Major, Angela; Rendon, David; Lugo, Monica; Jackson, Vanessa; Shi, Zhongcheng; Mori-Akiyama, Yuko; Versalovic, James

    2015-12-15

    Probiotics and commensal intestinal microbes suppress mammalian cytokine production and intestinal inflammation in various experimental model systems. Limited information exists regarding potential mechanisms of probiotic-mediated immunomodulation in vivo. In this report, we demonstrate that specific probiotic strains of Lactobacillus reuteri suppress intestinal inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Only strains that possess the hdc gene cluster, including the histidine decarboxylase and histidine-histamine antiporter genes, can suppress colitis and mucosal cytokine (interleukin-6 [IL-6] and IL-1β in the colon) gene expression. Suppression of acute colitis in mice was documented by diminished weight loss, colonic injury, serum amyloid A (SAA) protein concentrations, and reduced uptake of [(18)F]fluorodeoxyglucose ([(18)F]FDG) in the colon by positron emission tomography (PET). The ability of probiotic L. reuteri to suppress colitis depends on the presence of a bacterial histidine decarboxylase gene(s) in the intestinal microbiome, consumption of a histidine-containing diet, and signaling via the histamine H2 receptor (H2R). Collectively, luminal conversion of l-histidine to histamine by hdc(+) L. reuteri activates H2R, and H2R signaling results in suppression of acute inflammation within the mouse colon. Probiotics are microorganisms that when administered in adequate amounts confer beneficial effects on the host. Supplementation with probiotic strains was shown to suppress intestinal inflammation in patients with inflammatory bowel disease and in rodent colitis models. However, the mechanisms of probiosis are not clear. Our current studies suggest that supplementation with hdc(+) L. reuteri, which can convert l-histidine to histamine in the gut, resulted in suppression of colonic inflammation. These findings link luminal conversion of dietary components (amino acid metabolism) by gut microbes and probiotic

  6. IMMUNE SUPPRESSION OF CHALLENGED VACCINATES AS A RIGOROUS ASSESSMENT OF STERILE PROTECTION BY LENTIVIRAL VACCINES

    Science.gov (United States)

    Craigo, Jodi K.; Durkin, Shannon; Sturgeon, Timothy J.; Tagmyer, Tara; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2007-01-01

    We previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAVPV) challenge [1,2]. To determine if attenuated EIAV vaccines actually prevent persistent infection by challenge virus, we employed a 14-day dexamethasone treatment of vaccinated horses post-challenge to suppress host immunity and amplify replication levels of any infecting EIAV. At two months post-challenge the horses were all protected from virulent-virus challenge, evidenced by a lack of EIA signs and detectable challenge plasma viral RNA. Upon immune suppression, 6/12 horses displayed clinical EIA. Post-immune suppression characterizations demonstrated that the attenuated vaccine evidently prevented detectable challenge virus infection in 50% of horses. These data highlight the utility of post-challenge immune suppression for evaluating persistent viral vaccine protective efficacy. PMID:17023099

  7. Photoperiodic suppression of drug reinstatement.

    Science.gov (United States)

    Sorg, B A; Stark, G; Sergeeva, A; Jansen, H T

    2011-03-10

    The rewarding influence of drugs of abuse varies with time of day and appears to involve interactions between the circadian and the mesocorticolimbic dopamine systems. The circadian system is also intimately involved in measuring daylength. Thus, the present study examined the impact of changing daylength (photoperiod) on cocaine-seeking behaviors. Male Sprague-Dawley rats were trained and tested on a 12L:12D light:dark schedule for cocaine-induced reinstatement of conditioned place preference (CPP) at three times of day (Zeitgeber time (ZT): 4, 12, and 20) to determine a preference score. Rats were then shifted to either shorter (6L:18D) or longer (18L:6D) photoperiods and then to constant conditions, re-tested for cocaine-induced reinstatement under each different condition, and then returned to their original photoperiod (12L:12D) and tested once more. Rats exhibited a circadian profile of preference score in constant darkness with a peak at 12 h after lights-off. At both ZT4 and ZT20, but not at ZT12, shorter photoperiods profoundly suppressed cocaine reinstatement, which did not recover even after switching back to 12L:12D. In contrast, longer photoperiods did not alter reinstatement. Separate studies showed that the suppression of cocaine reinstatement was not due to repeated testing. In an additional experiment, we examined the photoperiodic regulation of tyrosine hydroxylase (TH) and dopamine transporter (DAT) proteins in drug-naive rats. These results revealed photoperiodic modulation of proteins in the prefrontal cortex and dorsal striatum, but not in the nucleus accumbens or ventral tegmental area. Together, these findings add further support to the circadian genesis of cocaine-seeking behaviors and demonstrate that drug-induced reinstatement is modulated by photoperiod. Furthermore, the results suggest that photoperiod partly contributes to the seasonal expression of certain drug-related behaviors in humans living at different latitudes and thus our

  8. Amlexanox Suppresses Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss.

    Science.gov (United States)

    Zhang, Yong; Guan, Hanfeng; Li, Jing; Fang, Zhong; Chen, Wenjian; Li, Feng

    2015-09-04

    The activity of protein kinases IKK-ε and TANK-binding kinase 1 (TBK1) has been shown to be associated with inflammatory diseases. As an inhibitor of IKK-ε and TBK1, amlexanox is an anti-inflammatory, anti-allergic, immunomodulator and used for treatment of ulcer, allergic rhinitis and asthma in clinic. We hypothesized that amlexanox may be used for treatment of osteoclast-related diseases which frequently associated with a low grade of systemic inflammation. In this study, we investigated the effects of amlexanox on RANKL-induced osteoclastogenesis in vitro and ovariectomy-mediated bone loss in vivo. In primary bone marrow derived macrophages (BMMs), amlexanox inhibited osteoclast formation and bone resorption. At the molecular level, amlexanox suppressed RANKL-induced activation of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPKs), c-Fos and NFATc1. Amlexanox decreased the expression of osteoclast-specific genes, including TRAP, MMP9, Cathepsin K and NFATc1. Moreover, amlexanox enhanced osteoblast differentiation of BMSCs. In ovariectomized (OVX) mouse model, amlexanox prevented OVX-induced bone loss by suppressing osteoclast activity. Taken together, our results demonstrate that amlexanox suppresses osteoclastogenesis and prevents OVX-induced bone loss. Therefore, amlexanox may be considered as a new therapeutic candidate for osteoclast-related diseases, such as osteoporosis and rheumatoid arthritis.

  9. Menstrual suppression for adolescents with developmental disabilities.

    Science.gov (United States)

    Savasi, I; Spitzer, R F; Allen, L M; Ornstein, M P

    2009-06-01

    The approach to menstrual suppression for adolescents with developmental disabilities has evolved considerably over the years due to changing philosophies and evolving treatment options. We review the medical management options available for menstrual suppression with a focus on the needs and treatment of adolescents with developmental disabilities.

  10. Suppression of fertility in adult cats

    DEFF Research Database (Denmark)

    Goericke-Pesch, Sandra Kathrin; Wehrend, A.; Georgiev, P.

    2014-01-01

    and clinical options are available for the suppression of fertility in adult cats and the decision as to which should be chosen - independent of the legal registration of any state - depends on different facts: (i) feral or privately owned animal? (ii) temporary or permanent suppression of fertility wanted...

  11. Simulation analysis of a wildfire suppression system

    Science.gov (United States)

    Abílio Pereira Pacheco; João Claro; Tiago. Oliveira

    2013-01-01

    Rekindles and false alarms are unusually high in the Portuguese wildfire management system, representing a high burden on suppression resources in particular, and fire management resources in general. In 20,049 occurrences that the suppression system handled in the summer of 2010, 12.5% were false alarms and 15.0% were rekindles. We present a discreteevent simulation...

  12. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (-)-isolongifolene.

    Science.gov (United States)

    Sakata, Kazuki; Oda, Yoshimitsu; Miyazawa, Mitsuo

    2010-02-24

    In this study, biotransformation of (-)-isolongifolene (1) by Glomerella cingulata and suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B(1) (AFB(1)) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, 1 was carried out the microbial transformation by G. cingulata. The result found that 1 was converted into (-)-isolongifolen-9-one (2), (-)-(2S)-13-hydroxy-isolongifolen-9-one (3), and (-)-(4R)-4-hydroxy-isolongifolen-9-one (4) by G. cingulata, and their conversion rates were 60, 25, and 15%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB(1) in the umu test. Comound 2 showed gene expression by chemical mutagens furylfuramide and AFB(1) was suppressed 54 and 50% at <0.5 mM, respectively. Compound 2 is the most effective compound in this experiment.

  13. Suppression of Aspergillus by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib

    Objectives: Cystic fibrosis patients are commonly infected by Pseudomonas aeruginosa, but Aspergilli are also frequently isolated. Our aim was to examine the possible interaction between P. aeruginosa and different Aspergillus. Methods: A suspension of 106 fungal spores/ml was streaked onto WATM......, here among 2-heptyl-3-hydroxy-4-quinolone (PQS). An unidentified green pseudomonas compound was also observed. Interestingly the P. aeruginosa mutant rpoN was unable to suppress A. fumigatus, but suppressed A. flavus, A. oryzae and A. niger. However several other P. aeruginosa mutants suppressed A....... fumigatus including flif, pilA, lasR, PVDA, PQSC and rhlA mutants indicating that phenazines may be involved in the suppressed growth of A. fumigatus. All pseudomonas mutants suppressed A. oryzae, A. niger and A. flavus. Conclusions: An increase in phenazine production by P. aeruginosa may contribute...

  14. Emotion suppression, not reappraisal, predicts psychotherapy outcome.

    Science.gov (United States)

    Scherer, Anne; Boecker, Maren; Pawelzik, Markus; Gauggel, Siegfried; Forkmann, Thomas

    2017-03-01

    The aim of this study was to identify whether trait emotion regulation strategies predict successful or unsuccessful psychotherapy outcomes in cognitive behaviour therapy. Three emotion regulation strategies (reappraisal, suppression, and externalizing behaviour) were assessed in 358 in- and outpatients. Patients were then grouped by therapy outcome. Emotion regulation strategies and confounding variables were entered as predictors in multinomial logistic regression analyses. Emotion suppression, but not reappraisal, was found to predict therapy outcomes for in- and outpatients, with patients high in suppression experiencing worse outcomes. Externalizing behaviour was only relevant in inpatient treatment. High suppression might be detrimental to psychotherapy outcome and should be assessed early on. Further research should investigate the influence of suppression on the mechanisms that facilitate change in psychotherapy.

  15. Isolation of cowpea genes conferring drought tolerance ...

    African Journals Online (AJOL)

    The main objective of this study was to identify and isolate the genes conferring drought tolerance in cowpea. A cDNA library enriched for cowpea genes expressed specifically during responses to drought was constructed. A procedure called suppression subtractive hybridisation (SSH) was successfully employed to obtain ...

  16. Genetic Control of Mosquitoes: population suppression strategies

    Directory of Open Access Journals (Sweden)

    André Barretto Bruno Wilke

    2012-10-01

    Full Text Available Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.

  17. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    Science.gov (United States)

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  18. Bovine parainfluenza virus type 3 accessory proteins that suppress beta interferon production.

    Science.gov (United States)

    Komatsu, Takayuki; Takeuchi, Kenji; Gotoh, Bin

    2007-07-01

    The paramyxovirus P gene encodes accessory proteins antagonistic to interferon (IFN). Viral proteins responsible for the IFN antagonism, however, are distinct among paramyxoviruses. Here we determine bovine parainfluenza virus type 3 (bPIV3) IFN antagonists that suppress IFN-beta production, and investigate the underlying molecular mechanism. Of bPIV3 P gene products, C and V proteins were found to suppress double-stranded RNA-stimulated IFN-beta production. The V protein of bPIV3 and Sendai virus in the same genus Respirovirus significantly inhibits double-stranded RNA-stimulated IFN-beta production and the IFN-beta promoter activation enhanced by overexpression of MDA5 but not RIG-I, and yet does not suppress IFN-beta production induced by TRIF, TBK1, and IKKi. The V protein of both viruses specifically binds to MDA5 but not RIG-I. These results suggest that the V protein targets MDA5 for blockage of the IFN-beta gene activation signal. On the other hand, both bPIV3 and Sendai virus C proteins modestly inhibited IFN-beta production irrespective of a species of the signaling molecules used as an inducer. Interestingly, reporter gene expression driven by various promoters was also suppressed by the C proteins irrespective of the promoter species. These results demonstrate that the target of the respirovirus C protein is undoubtedly different from that of the V protein.

  19. Syk-Mediated Suppression of Inflammatory Responses by Cordyceps bassiana.

    Science.gov (United States)

    Yang, Woo Seok; Nam, Gyeong Sug; Kim, Mi-Yeon; Cho, Jae Youl

    2017-01-01

    The fruit body of artificially cultivated Cordyceps bassiana has been reported to exhibit anti-inflammatory and anticancer activities. Although it has been suggested that the fruit body has neutraceutic and pharmaceutic biomaterial potential, the exact anti-inflammatory molecular mechanism has not been fully elucidated. In this study, we demonstrated the immunopharmacologic activity of Cordyceps bassiana under in vitro conditions and investigated its anti-inflammatory mechanism. Water extract (Cm-WE) of the fruit body of artificially cultivated Cordyceps bassiana without polysaccharide fractions reduced the expression of the proinflammatory genes cyclooxygenase (COX)-2, interleukin (IL)-12, and inducible nitric oxide synthase (iNOS) and promoted the expression of the anti-inflammatory gene IL-10 in lipopolysaccharide (LPS)-treated RAW264.7 cells. In addition, this fraction suppressed proliferation and interferon (IFN)-[Formula: see text] production in splenic T lymphocytes. Cm-WE blocked the activation of nuclear factor (NF)-[Formula: see text]B and activator protein (AP)-1 and their upstream inflammatory signaling cascades, including Syk, MEK, and JNK. Using kinase assays, Syk was identified as the target enzyme most strongly inhibited by Cm-WE. These results strongly suggest that Cm-WE suppresses inflammatory responses by inhibiting Syk kinase activity, with potential implications for novel neutraceutic and pharmaceutic biomaterials.

  20. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  1. Human AZU-1 gene, variants thereof and expressed gene products

    Science.gov (United States)

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  2. Psychopathology and Thought Suppression: A Quantitative Review

    Science.gov (United States)

    Magee, Joshua C.; Harden, K. Paige; Teachman, Bethany A.

    2012-01-01

    Recent theories of psychopathology have suggested that thought suppression intensifies the persistence of intrusive thoughts, and proposed that difficulty with thought suppression may differ between groups with and without psychopathology. The current meta-analytic review evaluates empirical evidence for difficulty with thought suppression as a function of the presence and specific type of psychopathology. Based on theoretical proposals from the psychopathology literature, diagnosed and analogue samples were expected to show greater recurrence of intrusive thoughts during thought suppression attempts than non-clinical samples. However, results showed no overall differences in the recurrence of thoughts due to thought suppression between groups with and without psychopathology. There was, nevertheless, variation in the recurrence of thoughts across different forms of psychopathology, including relatively less recurrence during thought suppression for samples with symptoms of Obsessive-Compulsive Disorder, compared to non-clinical samples. However, these differences were typically small and provided only mixed support for existing theories. Implications for cognitive theories of intrusive thoughts are discussed, including proposed mechanisms underlying thought suppression. PMID:22388007

  3. Volatile suppressing method for radioactive iodine

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Haruguchi, Keiko.

    1997-01-01

    In the present invention, a metal plate is disposed above the pool water surface of a suppression chamber disposed to a reactor container in order to reduce evaporation of radioactive iodine released from a suppression pool. A metal plate is disposed above the pool water surface of the suppression chamber disposed to the reactor container. In addition, a metal plate is disposed around the space connecting a bent tube extending from a dry well to underwater of suppression pool water and a gas bent tube extending from the suppression chamber to an emergency gas processing system. Spray water is supplied for cooling the suppression chamber d as a means for cooling the metal plate. Then, among iodine released to the suppression chamber, elemental iodine liberated from the pool water is deposited on the surface of the metal plate, and the amount of iodine to be flown into and processed by an emergency gas processing system or a filter bent system can be reduced. (T.M.)

  4. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  5. Studying Genes

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Studying Genes Studying Genes Tagline (Optional) Middle/Main Content Area PDF Version (382 KB) Other Fact Sheets What are genes? Genes are segments of DNA that contain instructions ...

  6. Ectopic expression of SUPERMAN suppresses development of petals and stamens.

    Science.gov (United States)

    Yun, Jae-Young; Weigel, Detlef; Lee, Ilha

    2002-01-01

    The floral regulatory gene SUPERMAN (SUP) encodes a C2H2 type zinc finger protein that is required for maintaining boundaries between floral organs in Arabidopsis. It has been proposed that the main function of SUP is to balance cell proliferation in the third and fourth whorl of developing flowers, thereby maintaining the boundaries between the two whorls. To gain further insight into the function of SUP, we have ectopically expressed SUP using the promoter of APETALA1 (AP1), a gene that is initially expressed throughout floral meristems and later becomes restricted to the first and second whorls. Flowers of AP1::SUP plants have fewer floral organs, consistent with an effect of SUP on cell proliferation. In addition, the AP1::SUP transgene caused the conversion of petals to sepals and suppressed the development of stamens. The expression of the B function homeotic gene APETALA3 (AP3) and its regulator UNUSUAL FLORAL ORGANS (UFO) were delayed and reduced in AP1::SUP flowers. However, SUP does not act merely through UFO, as constitutive expression of UFO did not rescue the defects in petal and stamen development in AP1::SUP flowers. Together, these results suggest that SUP has both indirect and direct effects on the expression of B function homeotic genes.

  7. Gut Microbe-Mediated Suppression of Inflammation-Associated Colon Carcinogenesis by Luminal Histamine Production.

    Science.gov (United States)

    Gao, Chunxu; Ganesh, Bhanu Priya; Shi, Zhongcheng; Shah, Rajesh Rasik; Fultz, Robert; Major, Angela; Venable, Susan; Lugo, Monica; Hoch, Kathleen; Chen, Xiaowei; Haag, Anthony; Wang, Timothy C; Versalovic, James

    2017-10-01

    Microbiome-mediated suppression of carcinogenesis may open new avenues for identification of therapeutic targets and prevention strategies in oncology. Histidine decarboxylase (HDC) deficiency has been shown to promote inflammation-associated colorectal cancer by accumulation of CD11b + Gr-1 + immature myeloid cells, indicating a potential antitumorigenic effect of histamine. Here, we demonstrate that administration of hdc + Lactobacillus reuteri in the gut resulted in luminal hdc gene expression and histamine production in the intestines of Hdc -/- mice. This histamine-producing probiotic decreased the number and size of colon tumors and colonic uptake of [ 18 F]-fluorodeoxyglucose by positron emission tomography in Hdc -/- mice. Administration of L. reuteri suppressed keratinocyte chemoattractant (KC), Il22, Il6, Tnf, and IL1α gene expression in the colonic mucosa and reduced the amounts of proinflammatory, cancer-associated cytokines, keratinocyte chemoattractant, IL-22, and IL-6, in plasma. Histamine-generating L. reuteri also decreased the relative numbers of splenic CD11b + Gr-1 + immature myeloid cells. Furthermore, an isogenic HDC-deficient L. reuteri mutant that was unable to generate histamine did not suppress carcinogenesis, indicating a significant role of the cometabolite, histamine, in suppression of chronic intestinal inflammation and colorectal tumorigenesis. These findings link luminal conversion of amino acids to biogenic amines by gut microbes and probiotic-mediated suppression of colorectal neoplasia. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  9. Differentially expressed genes in the midgut of Silkworm infected ...

    African Journals Online (AJOL)

    In this report, we employed suppression subtractive hybridization to compare differentially expressed genes in the midguts of CPV-infected and normal silkworm larvae. 36 genes and 20 novel ESTs were obtained from 2 reciprocal subtractive libraries. Three up-regulated genes (ferritin, rpL11 and alkaline nuclease) and 3 ...

  10. Suppression factors in diffractive photoproduction of dijets

    International Nuclear Information System (INIS)

    Klasen, Michael; Kramer, Gustav

    2010-06-01

    After new publications of H1 data for the diffractive photoproduction of dijets, which overlap with the earlier published H1 data and the recently published data of the ZEUS collaboration, have appeared, we have recalculated the cross sections for this process in next-to-leading order (NLO) of perturbative QCD to see whether they can be interpreted consistently. The results of these calculations are compared to the data of both collaborations. We find that the NLO cross sections disagree with the data, showing that factorization breaking occurs at that order. If direct and resolved contributions are both suppressed by the same amount, the global suppression factor depends on the transverse-energy cut. However, by suppressing only the resolved contribution, also reasonably good agreement with all the data is found with a suppression factor independent of the transverse-energy cut. (orig.)

  11. Attention modulates sensory suppression during back movements.

    Science.gov (United States)

    Van Hulle, Lore; Juravle, Georgiana; Spence, Charles; Crombez, Geert; Van Damme, Stefaan

    2013-06-01

    Tactile perception is often impaired during movement. The present study investigated whether such sensory suppression also occurs during back movements, and whether this would be modulated by attention. In two tactile detection experiments, participants simultaneously engaged in a movement task, in which they executed a back-bending movement, and a perceptual task, consisting of the detection of subtle tactile stimuli administered to their upper or lower back. The focus of participants' attention was manipulated by raising the probability that one of the back locations would be stimulated. The results revealed that tactile detection was suppressed during the execution of the back movements. Furthermore, the results of Experiment 2 revealed that when the stimulus was always presented to the attended location, tactile suppression was substantially reduced, suggesting that sensory suppression can be modulated by top-down attentional processes. The potential of this paradigm for studying tactile information processing in clinical populations is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Quadratic dynamical decoupling with nonuniform error suppression

    International Nuclear Information System (INIS)

    Quiroz, Gregory; Lidar, Daniel A.

    2011-01-01

    We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N 1 and N 2 pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N 1 and N 2 , and near-optimal performance is achieved for general single-qubit interactions when N 1 =N 2 .

  13. Combustion suppressing device for leaked sodium

    International Nuclear Information System (INIS)

    Ooto, Akihiro.

    1985-01-01

    Purpose: To suppress the atmospheric temperature to secure the building safety and shorten the recovery time after the leakage in a chamber for containing sodium leaked from coolant circuit equipments or pipeways of LMFBR type rector by suppressing the combustion of sodium contained in the chamber. Constitution: To the inner wall of a chamber for containing sodium handling equipments, are vertically disposed a panel having a coolant supply port at the upper portion and a coolant discharge port at the lower portion thereof and defined with a coolant flowing channel and a panel for sucking the coolant discharged from the abovementioned panel and exhausting the same externally. Further, a corrugated combustion suppressing plate having apertures for draining the condensated leaked sodium is disposed near the sodium handling equipments. If ruptures are resulted to the sodium handling equipments or pipeway, leaked sodium is passed through the drain apertures in the suppressing plate and stored at the bottom of the containing chamber. (Horiuchi, T.)

  14. Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex

    International Nuclear Information System (INIS)

    Banerjee, Soma; Sikdar, Nilabja; Myung, Kyungjae

    2007-01-01

    Defects in DNA replication fidelity lead to genomic instability. Gross chromosomal rearrangement (GCR), a type of genomic instability, is highly enhanced by various initial mutations affecting DNA replication. Frequent observations of GCRs in many cancers strongly argue the importance of maintaining high fidelity of DNA replication to suppress carcinogenesis. Recent genome wide screens in Saccharomyces cerevisiae identified a new GCR suppressor gene, ELG1, enhanced level of genome instability gene 1. Its physical interaction with proliferating cell nuclear antigen (PCNA) and complex formation with Rfc2-5p proteins suggest that Elg1 functions to load/unload PCNA onto DNA during a certain DNA metabolism. High level of DNA damage accumulation and enhanced phenotypes with mutations in genes involved in cell cycle checkpoints, homologous recombination (HR), or chromatin assembly in the elg1 strain suggest that Elg1p-Rfc2-5p functions in a fundamental DNA metabolism to suppress genomic instability

  15. A Computer Model of Saccadic Suppression.

    Science.gov (United States)

    1981-01-01

    Implications of sustained and transient channels for theories of visul pattern masking, saccadic suppression, and information processing...suppression. Because information available to the retina during saccades is a dynamic eve