WorldWideScience

Sample records for suppresses fibroblast activation

  1. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  2. Curcumin Triggers p16-Dependent Senescence in Active Breast Cancer-Associated Fibroblasts and Suppresses Their Paracrine Procarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Siti-Fauziah Hendrayani

    2013-06-01

    Full Text Available Activated cancer-associated fibroblasts (CAFs or myofibroblasts not only facilitate tumor growth and spread but also affect tumor response to therapeutic agents. Therefore, it became clear that efficient therapeutic regimens should also take into account the presence of these supportive cells and inhibit their paracrine effects. To this end, we tested the effect of low concentrations of curcumin, a pharmacologically safe natural product, on patient-derived primary breast CAF cells. We have shown that curcumin treatment upregulates p16INK4A and other tumor suppressor proteins while inactivates the JAK2/STAT3 pathway. This reduced the level of alpha-smooth muscle actin (α-SMA and the migration/invasion abilities of these cells. Furthermore, curcumin suppressed the expression/secretion of stromal cell-derived factor-1 (SDF-1, interleukin-6 (IL-6, matrix metalloproteinase-2 (MMP-2, MMP-9, and transforming growth factor-β, which impeded their paracrine procarcinogenic potential. Intriguingly, these effects were sustained even after curcumin withdrawal and cell splitting. Therefore, using different markers of senescence [senescence-associated β-galactosidase (SA-β-gal activity, Ki-67 and Lamin B1 levels, and bromodeoxyuridine incorporation], we have shown that curcumin markedly suppresses Lamin B1 and triggers DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts. Importantly, this curcumin-related senescence was p16INK4A-dependent and occurred with no associated inflammatory secretory phenotype. These results indicate the possible inactivation of cancer-associated myofibroblasts and present the first indication that curcumin can trigger DNA damage-independent and safe senescence in stromal fibroblasts.

  3. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  4. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    International Nuclear Information System (INIS)

    Wang, Xianwei; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-01-01

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22 phox , p47 phox , p67 phox , NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H 2 O 2 . Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen

  5. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L., E-mail: MehtaJL@UAMS.edu

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac

  6. The Histone Deacetylase Inhibitors MS-275 and SAHA Suppress the p38 Mitogen-Activated Protein Kinase Signaling Pathway and Chemotaxis in Rheumatoid Arthritic Synovial Fibroblastic E11 Cells

    Directory of Open Access Journals (Sweden)

    Hai-Shu Lin

    2013-11-01

    Full Text Available MS-275 (entinostat and SAHA (vorinostat, two histone deacetylase (HDAC inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA. To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α  MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1, an endogenous suppressor of p38α  in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation of p38α  was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2, monocyte chemotactic protein-2 (MCP-2 and macrophage migration inhibitory factor (MIF in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.

  7. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  8. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  9. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  10. Mycophenolic acid suppresses human pterygium and normal tenon fibroblast proliferation in vitro.

    Science.gov (United States)

    Amer, Radgonde; Rabinowich, Liane; Maftsir, Genia; Puxeddu, Ilaria; Levi-Schaffer, Francesca; Solomon, Abraham

    2010-10-01

    To investigate whether mycophenolic acid (MPA) exerts antifibrotic effects on pterygium fibroblasts (PFB) with and without stimulation with fibrogenic cytokines, and to compare the efficacy of MPA with mitomycin (MMC) and dexamethasone (DXM) on PFB and tenon fibroblasts (TFB). TFB and PFB were obtained from tissue explants during strabismus or pterygium surgery. Proliferation of subconfluent fibroblasts ± basic fibroblast growth factor (bFGF) (10 ng/ml) was assessed by using the (3H) thymidine-incorporation assay. Cell cultures were incubated with MPA, MMC or DXM. Apoptosis was evaluated by quantifying Annexin V and propidium iodide positive cells with flow cytometry. MPA showed a concentration-dependent inhibition of proliferation of PFB ± bFGF as well as TFB ± bFGF. The antiproliferative effect of MPA was comparable with that of MMC and DXM. Short exposure of PFB to MPA under profibrogenic conditions was significantly inhibitory. No apoptotic effect was found on TFB. MPA suppressed tenon and pterygium fibroblast proliferation in vitro under basal and profibrogenic conditions. It was comparable with MMC under long-term exposure, but MMC was more suppressive under short-term exposure. MPA may be safer than MMC due to a more specific mechanism of action and lack of cytotoxicity. Further investigation is warranted regarding MPA concentrations that will lead to a potent antiproliferative effect in vivo.

  11. Celecoxib suppresses fibroblast growth factor-2 expression in pancreatic ductal adenocarcinoma PANC-1 cells.

    Science.gov (United States)

    Li, Jing; Luo, Miaosha; Wang, Yan; Shang, Boxin; Dong, Lei

    2016-09-01

    The inhibition of cyclooxygenase (COX)-2 has been reported to suppress growth and induce apoptosis in human pancreatic cancer cells. Nevertheless, the precise biological mechanism of how celecoxib, a selective COX-2 inhibitor, regulates the growth and invasion of pancreatic tumors is not completely understood. It has been shown that fibroblast growth factor-2 (FGF-2) and its receptor levels correlate with the inhibition of cancer cell proliferation, migration and invasion in pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of the present study was to examine the hypothesis that the antitumor activity of celecoxib in PDAC may be exerted through modulation of FGF-2 function. In the present study, we evaluated the effects of celecoxib on the proliferation, migration, invasion and apoptosis of the PANC-1 cell line. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of FGF-2, FGFR-2, ERK1/2 and MMPs. In the present study, FGF-2 and FGFR-2 were expressed in PANC-1 cells and FGF-2 exerted a stimulatory effect on phosphorylated extracellular signal regulated kinase (p-ERK) expression. Celecoxib treatment suppressed FGF-2 and FGFR-2 expression and decreased MMP-2, MMP-9 and p-ERK expression in the PANC-1 cells. Furthermore, celecoxib treatment caused the resistance of PANC-1 cells to FGF-2 induced proliferation, migration and invasion ability, as well as the increase in their apoptotic rate. Our data provide evidence that targeting FGF-2 with celecoxib may be used as an effective treatment in PDAC.

  12. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α...

  13. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led...... to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis...... and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  14. Suppression of cholesterol synthesis in cultured fibroblasts from a patient with homozygous familial hypercholesterolemia by her own low density lipoprotein density fraction. A possible role of apolipoprotein E

    NARCIS (Netherlands)

    Havekes, L.; Vermeer, B.J.; Wit, E. de

    1980-01-01

    The suppression of cellular cholesterol synthesis by low density lipoprotein (LDL) from a normal and from a homozygous familial hypercholesterolemic subject was measured on normal fibroblasts and on fibroblasts derived from the same homozygous familial hypercholesterolemic patient. On normal

  15. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  16. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  17. LIF Mediates Proinvasive Activation of Stromal Fibroblasts in Cancer

    Directory of Open Access Journals (Sweden)

    Jean Albrengues

    2014-06-01

    Full Text Available Signaling crosstalk between tumor cells and fibroblasts confers proinvasive properties to the tumor microenvironment. Here, we identify leukemia inhibitory factor (LIF as a tumor promoter that mediates proinvasive activation of stromal fibroblasts independent of alpha-smooth muscle actin (α-SMA expression. We demonstrate that a pulse of transforming growth factor β (TGF-β establishes stable proinvasive fibroblast activation by inducing LIF production in both fibroblasts and tumor cells. In fibroblasts, LIF mediates TGF-β-dependent actomyosin contractility and extracellular matrix remodeling, which results in collective carcinoma cell invasion in vitro and in vivo. Accordingly, carcinomas from multiple origins and melanomas display strong LIF upregulation, which correlates with dense collagen fiber organization, cancer cell collective invasion, and poor clinical outcome. Blockade of JAK activity by Ruxolitinib (JAK inhibitor counteracts fibroblast-dependent carcinoma cell invasion in vitro and in vivo. These findings establish LIF as a proinvasive fibroblast producer independent of α-SMA and may open novel therapeutic perspectives for patients with aggressive primary tumors.

  18. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan, E-mail: shan_mou@126.com; Ni, Zhaohui, E-mail: doctor_nzh@126.com

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  19. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Gen Kuroyanagi

    2014-10-01

    Full Text Available It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2 on osteoprotegerin (OPG synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK, and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.

  20. Matrix metalloproteinase (MMP-9 in cancer-associated fibroblasts (CAFs is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ayumi Taguchi

    Full Text Available Cancer associated fibroblasts (CAFs are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.

  1. Cell proliferation in vitro modulates fibroblast collagenase activity

    International Nuclear Information System (INIS)

    Lindblad, W.J.; Flood, L.

    1986-01-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14 C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3 H-thymidine and 3 H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  2. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  3. Cancer-Associated Fibroblasts from lung tumors maintain their immuno-suppressive abilities after high-dose irradiation

    Directory of Open Access Journals (Sweden)

    Laia eGorchs

    2015-05-01

    Full Text Available Accumulating evidence supports the notion that high-dose (>5 Gy radiotherapy (RT regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study we have investigated the effects of high-dose irradiation (HD-RT on the immunomodulating functions of cancer-associated fibroblasts (CAFs. Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays and T-cell cytokine production. Additionally, CAF-secreted immuno-regulatory factors were studied by multiplex protein arrays, ELISAs and by LC-MS/MS proteomics. In all functional assays we observed a powerful immuno-suppressive effect exerted by CAF-conditioned medium on activated T-cells (p>0,001, and this effect was sustained after a single radiation dose of 18 Gy. Relevant immuno-suppressive molecules such as prostaglandin E2, interleukin-6 and -10, or transforming growth factor-β were found in CAF conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immuno-suppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.

  4. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Science.gov (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  5. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...... could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular...

  6. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    dose-dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis.

  7. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H.

    1989-01-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed

  8. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Science.gov (United States)

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (ppulmonary fibrosis in a dose-dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis.

  9. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Cheng M

    2014-12-01

    Full Text Available Michelle Cheng,1,* Samantha Ho,1,* Jun Hwan Yoo,1,2,* Deanna Hoang-Yen Tran,1,* Kyriaki Bakirtzi,1 Bowei Su,1 Diana Hoang-Ngoc Tran,1 Yuzu Kubota,1 Ryan Ichikawa,1 Hon Wai Koon1 1Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; 2Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Republic of Korea *These authors share co-first authorship Background: Cathelicidin (LL-37 in humans and mCRAMP in mice represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods: We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results: Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-ß1-induced EMT of colon cancer cells. Media conditioned by the

  10. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (fibrotic response. © 2012 John Wiley & Sons A/S.

  11. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    2007-01-01

    Full Text Available A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA. Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4 inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  12. Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

    Science.gov (United States)

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  13. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    Science.gov (United States)

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  14. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts.

    Science.gov (United States)

    Zhu, Rong; Zheng, Rong; Deng, Yueyi; Chen, Yiping; Zhang, Shuwei

    2014-02-15

    Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    Science.gov (United States)

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  16. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  17. Apamin suppresses biliary fibrosis and activation of hepatic stellate cells.

    Science.gov (United States)

    Kim, Jung-Yeon; An, Hyun-Jin; Kim, Woon-Hae; Park, Yoon-Yub; Park, Kyung Duck; Park, Kwan-Kyu

    2017-05-01

    Cholestatic liver disease is characterized by the progressive destruction of biliary epithelial cells (BECs) followed by fibrosis, cirrhosis and liver failure. Activated hepatic stellate cells (HSCs) and portal fibroblasts are the major cellular effectors of enhanced collagen deposition in biliary fibrosis. Apamin, an 18 amino acid peptide neurotoxin found in apitoxin (bee venom), is known to block Ca2+-activated K+ channels and prevent carbon tetrachloride-induced liver fibrosis. In the present study, we aimed to ascertain whether apamin inhibits biliary fibrosis and the proliferation of HSCs. Cholestatic liver fibrosis was established in mouse models with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Cellular assays were performed on HSC-T6 cells (rat immortalized HSCs). DDC feeding led to increased hepatic damage and proinflammtory cytokine levels. Notably, apamin treatment resulted in decreased liver injury and proinflammatory cytokine levels. Moreover, apamin suppressed the deposition of collagen, proliferation of BECs and expression of fibrogenic genes in the DDC-fed mice. In HSCs, apamin suppressed activation of HSCs by inhibiting the Smad signaling pathway. These data suggest that apamin may be a potential therapeutic target in cholestatic liver disease.

  18. Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease

    NARCIS (Netherlands)

    S.U. de Willige; Keane, F.M. (Fiona M.); Bowen, D.G. (David G.); J.J.M.C. Malfliet (Joyce); Zhang, H.E. (H. Emma); Maneck, B. (Bharvi); G. McCaughan (Geoff); F.W.G. Leebeek (Frank); D.C. Rijken (Dingeman); Gorrell, M.D. (Mark D.)

    2017-01-01

    textabstractBackground and aim: Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to

  19. Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke-induced alterations

    Directory of Open Access Journals (Sweden)

    James Elliot Scott

    2016-03-01

    Full Text Available Background Cigarette smoking is the leading cause of preventable death in the world. It has been implicated in the pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is clearly a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity is the first site of exposure to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases, are proteases which belong to the family of cysteine aspartic acid proteases and are the key components for the downstream amplification of intra-cellular apoptotic signals. Of the 14 caspases known, caspase-3 is the key executioner of apoptosis. Fetal rat lung fibroblasts but not PDL viability is reduced by exposure to CSE. In addition Caspase 3 activity is elevated after CSE exposure in fetal lung fibroblasts but not in PDLs. Expression of caspase 3 is induced in CSE exposed lung fibroblasts but not in PDLs. Caspase 3 was localized to the cytoplasm in both cell types.

  20. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  1. Molecular Insights into SIRT1 Protection Against UVB-Induced Skin Fibroblast Senescence by Suppression of Oxidative Stress and p53 Acetylation.

    Science.gov (United States)

    Chung, Ki Wung; Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Kim, Dae Hyun; Park, Byung Hyun; Yu, Byung Pal; Chung, Hae Young

    2015-08-01

    Stresses, such as exposure to ultraviolet radiation and those associated with aging, are known to cause premature cellular senescence that is characterized by growth arrest and morphological and gene expression changes. This study was designed to investigate the protective effect of Sirtuin1 (SIRT1) on the UVB-induced premature senescence. Under in vitro experimental conditions, exposure to a subcytotoxic dose of UVB enhanced human skin fibroblasts senescence, as characterized by increased β-galactosidase activity and increased levels of senescence-associated proteins. However, adenovirus-mediated SIRT1 overexpression significantly protected fibroblasts from UVB-induced cellular deterioration. Exposure to UVB-induced cell senescence was associated with oxidative stress and p38 mitogen-activated protein kinase activation. Molecular analysis demonstrated that deacetylation of Forkhead box O3α (FOXO3α) by SIRT1 changed the transcriptional activity of FOXO3α and increased resistance to the oxidative stress. In addition, SIRT1 suppressed UVB-induced p53 acetylation and its transcriptional activity, which directly affected the cell cycle arrest induced by UVB. Further study demonstrated that SIRT1 activation inhibited cell senescence in the skin of the HR1 hairless mouse exposed to UVB. The study identifies a new role for SIRT1 in the UVB-induced senescence of skin fibroblats and provides a potential target for skin protection through molecuar insights into the mechanisms responsible for UVB-induced photoaging. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation

    International Nuclear Information System (INIS)

    Blanc-Brude, Olivier P.; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-01-01

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR 1 ). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR 1 -deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR 1 -specific agonists and inhibitors were used to demonstrate that PAR 1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR 1 and not PAR 2 . These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis

  3. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  4. Evodiamine attenuates TGF-β1-induced fibroblast activation and endothelial to mesenchymal transition.

    Science.gov (United States)

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  5. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    Science.gov (United States)

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation

    Directory of Open Access Journals (Sweden)

    Jihee Kim

    2017-12-01

    Full Text Available Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1 in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK 1/2, protein kinase B (AKT, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE—mitogen-activated protein kinases (MAPK and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  7. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation.

    Science.gov (United States)

    Kim, Jihee; Park, Jong-Chul; Lee, Mi Hee; Yang, Chae Eun; Lee, Ju Hee; Lee, Won Jai

    2017-12-28

    Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)-mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  8. Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts

    International Nuclear Information System (INIS)

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-01-01

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1β (IL1-β) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-β expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-β processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-β. IL1-β signaling was investigated by western blot and immunocytochemistry. IL1-β-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-β, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NFκBα. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-β reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-β-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-β in the tumor cells leads to IL1-β-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-β. PDL fibroblasts possess receptor for IL1-β, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-β receptor expression in

  9. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  10. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  11. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    Day, R.S. III; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  12. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China); Liu, Xinguang, E-mail: xgliu64@126.com [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China)

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  13. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    International Nuclear Information System (INIS)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling; Liu, Xinguang

    2016-01-01

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  14. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland); Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland)

    2009-06-10

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  15. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    International Nuclear Information System (INIS)

    Vaheri, Antti; Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli

    2009-01-01

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  16. Fibroblast growth factor 21 is not required for glucose homeostasis, ketosis and tumour suppression associated to ketogenic diets in mice

    Science.gov (United States)

    Stemmer, Kerstin; Zani, Fabio; Habegger, Kirk M.; Neff, Christina; Kotzbeck, Petra; Bauer, Michaela; Yalamanchilli, Suma; Azad, Ali; Lehti, Maarit; Martins, Paulo J.F.; Müller, Timo D.; Pfluger, Paul T.; Seeley, Randy J.

    2016-01-01

    AIMS/HYPOTHESIS Ketogenic diets (KDs) increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. Metabolic benefits of KDs are regularly ascribed towards enhanced hepatic secretion of fibroblast growth factor (FGF) 21, and its systemic effects on fatty acid oxidation, energy expenditure and body weight. Ambiguous data from Fgf21 knockout strains and low FGF21 concentrations reported for humans in ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating therapeutic benefits of KDs on metabolism and cancer. METHODS We established a dietary model of increased vs. decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted or enriched with protein, respectively. We furthermore used wild type and Fgf21 knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumor growth after transplantation of Lewis-Lung-Carcinoma cells. RESULTS Hepatic and circulating but not adipose tissue FGF21 levels were profoundly increased by protein starvation and independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycemia upon protein and carbohydrate starvation and is dispensable for the effects of KDs on energy expenditure. Furthermore, the tumor-suppressing effects of KDs were independent from FGF21, and rather driven by concomitant protein and carbohydrate starvation. CONCLUSION/INTERPRETATION Our data indicate that multiple systemic effects of KDs exposure in mice that were previously ascribed towards increased FGF21 secretion are rather a consequence of protein malnutrition. PMID:26099854

  17. Active vibration suppression of helicopter horizontal stabilizers

    Science.gov (United States)

    Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio

    2017-04-01

    Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.

  18. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  19. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  20. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-01-01

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β 1 (TGF-β 1 )-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β 1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β 1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β 1

  1. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François, E-mail: fberthia@rci.rutgers.edu

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  2. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    Science.gov (United States)

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  3. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  4. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  5. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  6. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    Science.gov (United States)

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  8. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.

    Science.gov (United States)

    Yu, Yinhang; Bai, Fuliang; Wang, Wenfei; Liu, Yaonan; Yuan, Qingyan; Qu, Susu; Zhang, Tong; Tian, Guiyou; Li, Siming; Li, Deshan; Ren, Guiping

    2015-06-01

    Fibroblast growth factor 21 (FGF21) is a hormone secreted predominantly in the liver, pancreas and adipose tissue. Recently, it has been reported that FGF21-Transgenic mice can extend their lifespan compared with wild type counterparts. Thus, we hypothesize that FGF21 may play some roles in aging of organisms. In this study d-galactose (d-gal)-induced aging mice were used to study the mechanism that FGF21 protects mice from aging. The three-month-old Kunming mice were subcutaneously injected with d-gal (180mg·kg(-1)·d(-1)) for 8weeks and administered simultaneously with FGF21 (1, 2 or 5mg·kg(-1)·d(-1)). Our results showed that administration of FGF21 significantly improved behavioral performance of d-gal-treated mice in water maze task and step-down test, reduced brain cell damage in the hippocampus, and attenuated the d-gal-induced production of MDA, ROS and advanced glycation end products (AGEs). At the same time, FGF21 also markedly renewed the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total anti-oxidation capability (T-AOC), and decreased the enhanced total cholinesterase (TChE) activity in the brain of d-gal-treated mice. The expression of aldose reductase (AR), sorbitol dehydrogenase (SDH) and member-anchored receptor for AGEs (RAGE) declined significantly after FGF21 treatment. Furthermore, FGF21 suppressed inflamm-aging by inhibiting IκBα degradation and NF-κB p65 nuclear translocation. The expression levels of pro-inflammatory cytokines, such as TNF-α and IL-6, decreased significantly. In conclusion, these results suggest that FGF21 protects the aging mice brain from d-gal-induced injury by attenuating oxidative stress damage and decreasing AGE formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    Science.gov (United States)

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko; Ihara, Yoshito, E-mail: y-ihara@wakayama-med.ac.jp

    2016-08-26

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-induced Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells. - Highlights: • Hsc70 siRNA treatment suppressed the expression of Hsc70 but induced the expression of Hsp70 in NRK-49F cells. • Hsc70 siRNA treatment suppressed the activation of Smad2/3 in the cells treated with TGF-β. • Hsc70 interacted with Smad2/3 on stimulation with TGF-β in the cells. • Hsp70 did not influence the TGF-β-induced activation of Smad2/3 in the cells overexpressing Hsp70.

  11. Effects of titanium surface topography on morphology and in vitro activity of human gingival fibroblasts.

    Science.gov (United States)

    Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L

    2013-01-01

    The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.

  12. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity...

  13. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2015-08-01

    Full Text Available Glycogen synthase kinase-3β (GSK3β is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.

  14. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    Science.gov (United States)

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  15. Determining the pharmacological activity of Physalis peruviana fruit juice on rabbit eyes and fibroblast primary cultures.

    Science.gov (United States)

    Pardo, Juan Manuel; Fontanilla, Marta Raquel; Ospina, Luis Fernando; Espinosa, Lady

    2008-07-01

    The pharmacologic activity of compounds isolated from Physalis peruviana has been demonstrated. The use of this fruit juice for treating pterygium has been reported in Colombian traditional medicine. However, studies demonstrating the fruit juice's pharmacologic activity when used in this disease have not been published to date. In the present study the anti-inflammatory and cytostatic activities of P. peruviana fruit juice in a rabbit eye inflammatory model were investigated. A novel rabbit eye inflammation model was developed for studying the juice's anti-inflammatory activity (based on an adaptation of the Draize test). Cytostatic activity was evaluated by measuring and comparing growth rates of cultured fibroblasts exposed and not exposed to various fruit juice concentrations. P. peruviana fruit juice exhibited a mild anti-inflammatory activity compared with methylprednisolone, a known anti-inflammatory drug. An interesting dose-dependent cytostatic effect on cultured fibroblasts was also established. The data found suggest that the P. peruviana fruit juice anti-pterygium effect described in traditional medicine may be related to its inhibiting fibroblast growth. The present study contributes to the pharmacologic knowledge regarding a remedy commonly used in Colombian traditional medicine.

  16. Senescence-associated β-galactosidase activity in the in vitro ovarian stromal fibroblasts

    Directory of Open Access Journals (Sweden)

    Lilian Chuaire-Noack

    2011-04-01

    Full Text Available A growing biological research field is the cellular senescence, a mechanism that has been associated, under certain circumstances, withmalignant transformation. Given the high incidence of ovarian cancerand its main origin from the ovarian surface epithelium, as well asthe possibility that an epithelial-mesenchymal transition occurs, weevaluated both the in vitro growth of stromal fibroblasts from the ovarian cortex and their β-galactosidase activity at pH 6,enzyme whose expression is considered as a marker of replicativesenescence. Methods: 48 samples of ovarian cortical fibroblasts fromdonors without a history of cancer were serially cultured untilthe end of their replicative life. β-galactosidase activity at pH 6was quantified in each passage by the chemiluminiscent method. Ascontrol, we used ovarian epithelial cell cultures from the samedonors. The enzyme activity was also evaluated in fibroblastspreviously induced to senescence by exposure to hydrogen peroxide.Results: The analysis of the enzyme activity and the replicativecapacity taken together showed that the fibroblast cultures reachedthe senescent state at passages 4-5, as what happened with the control epithelial cells. Fibroblasts induced to senescence showed high variability in the values of enzymatic activity. Conclusions:The similarity between both types of cells in reaching the senescent state deserves to be taken into account in relation to theepithelialmesenchymal transition that has been proposed to explaintheir behavior in the genesis of cancer arising from ovarian surfaceepithelium. Low β-galactosidase activity values at pH 6 would suggestpossible inactivation of the response pathways to oxidative stress.

  17. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    Science.gov (United States)

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2).

    Science.gov (United States)

    Dvorak, Kaitlyn M; Pettee, Krista M; Rubinic-Minotti, Kaitlin; Su, Robin; Nestor-Kalinoski, Andrea; Eisenmann, Kathryn M

    2018-01-01

    The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells.

  19. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  20. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    to block FAP enzymatic activity. RESULTS: TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total...... (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. METHODS: To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB...... and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect...

  1. Memory suppression is an active process that improves over childhood

    Directory of Open Access Journals (Sweden)

    Pedro M Paz-Alonso

    2009-09-01

    Full Text Available We all have memories that we prefer not to think about. The ability to suppress retrieval of unwanted memories has been documented in behavioral and neuroimaging research using the Think/No-Think (TNT paradigm with adults. Attempts to stop memory retrieval are associated with increased activation of lateral prefrontal cortex (PFC and concomitant reduced activation in medial temporal lobe (MTL structures. However, the extent to which children have the ability to actively suppress their memories is unknown. This study investigated memory suppression in middle childhood using the TNT paradigm. Forty children aged 8 to 12 and 30 young adults were instructed either to remember (Think or suppress (No-Think the memory of the second word of previously studied word-pairs, when presented with the first member as a reminder. They then performed two different cued recall tasks, testing their memory for the second word in each pair after the Think/No-Think phase using the same first studied word within the pair as a cue (intra-list cue and also an independent cue (extra-list cue. Children exhibited age-related improvements in memory suppression from age 8 to 12 in both memory tests, against a backdrop of overall improvements in declarative memory over this age range. These findings suggest that memory suppression is an active process that develops during late childhood, likely due to an age-related refinement in the ability to engage PFC to down-regulate activity in areas involved in episodic retrieval.

  2. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  3. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  4. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    International Nuclear Information System (INIS)

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-01-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM TGF , FCM PDGF ) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM B ). FCM TGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM TGF ≫FCM PDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM TGF >FCM PDGF ) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify

  5. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis

    DEFF Research Database (Denmark)

    Tomcik, Michal; Palumbo-Zerr, Katrin; Zerr, Pawel

    2015-01-01

    (SSc). METHODS: The expression of S100A4 was analysed in human samples, murine models of SSc and in cultured fibroblasts by real-time PCR, immunohistochemistry and western blot. The functional role of S100A4 was evaluated using siRNA, overexpression, recombinant protein and S100A4 knockout (S100A4...... or stimulation with recombinant S100A4 induced an activated phenotype in resting normal fibroblasts. In contrast, knockdown of S100A4 reduced the pro-fibrotic effects of TGF-β and decreased the release of collagen. S100A4(-/-) mice were protected from bleomycin-induced skin fibrosis with reduced dermal...

  6. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    2010-12-01

    Full Text Available Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  7. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  8. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting.

    Directory of Open Access Journals (Sweden)

    David J Kahler

    Full Text Available Current methods to derive induced pluripotent stem cell (iPSC lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS to isolate single cells expressing the cell surface marker signature CD13(NEGSSEA4(POSTra-1-60(POS on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral or non- integrating (Sendai virus reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.

  9. Expression levels of novel cytokine IL-32 in periodontitis and its role in the suppression of IL-8 production by human gingival fibroblasts stimulated with Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Kazuhisa Ouhara

    2012-03-01

    Full Text Available Background:IL-32 was recently found to be elevated in the tissue of rheumatoid arthritis and inflammatory bowel disease. Periodontitis is a chronic inflammatory disease caused by polymicrobial infections that result in soft tissue destruction and alveolar bone loss. Although IL-32 is also thought to be associated with periodontal disease, its expression and possible role in periodontal tissue remain unclear. Therefore, this study investigated the expression patterns of IL-32 in healthy and periodontally diseased gingival tissue. The expression of IL-32 in cultured human gingival fibroblasts (HGF as well as effects of autocrine IL-32 on IL-8 production from HGF were also examined.Methods:Periodontal tissue was collected from both healthy volunteers and periodontitis patients, and immunofluorescent staining was performed in order to determine the production of IL-32. Using real-time PCR and ELISA, mRNA expression and protein production of IL-32 in HGF, stimulated by Porphyromonas gingivalis (Pg, were also investigated.Results:Contrary to our expectation, the production of IL-32 in the periodontitis patients was significantly lower than in the healthy volunteers. According to immunofluorescent microscopy, positive staining for IL-32 was detected in prickle and basal cell layers in the epithelium as well as fibroblastic cells in connective tissue. Addition of fixed Pg in vitro was found to suppress the otherwise constitutive expression of IL-32 mRNA and protein in HGF. However, recombinant IL-32 in vitro inhibited the expression of IL-8 mRNA by HGF stimulated with Pg. Interestingly, anti-IL-32 neutralizing antibody upregulated the IL-8 mRNA expression in non-stimulated HGF, indicating that constitutive expression of IL-32 in HGF suppressed IL-8 mRNA expression in the absence of bacterial stimulation.Conclusion:These results indicate that IL-32 is constitutively produced by HGF which can be suppressed by Pg and may play a role in the downregulation

  10. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  11. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.

    Science.gov (United States)

    Pan, Dongmei; Li, Nan; Liu, Yanyan; Xu, Qiang; Liu, Qingping; You, Yanting; Wei, Zhenquan; Jiang, Yubao; Liu, Minying; Guo, Tianfeng; Cai, Xudong; Liu, Xiaobao; Wang, Qiang; Liu, Mingling; Lei, Xujie; Zhang, Mingying; Zhao, Xiaoshan; Lin, Changsong

    2018-02-01

    In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) play an essential role in cartilage destruction. Aggressive migration and invasion by FLSs significantly affect RA pathology. Kaempferol has been shown to inhibit cancer cell migration and invasion. However, the effects of kaempferol on RA FLSs have not been investigated. Our study aimed to determine the effects of kaempferol on RA both in vitro and in vivo. In vitro, cell migration and invasion were measured using scratch assays and the Boyden chamber method, respectively. The cytoskeletal reorganization of RA FLSs was evaluated by immunofluorescence staining. Matrix metalloproteinase (MMP) levels were measured by real-time PCR, and protein expression levels were measured by western blotting. In vivo, the effects of kaempferol were evaluated in mice with CIA. The results showed that kaempferol reduced migration, invasion and MMP expression in RA FLSs. In addition, we demonstrated that kaempferol inhibited reorganization of the actin cytoskeleton during cell migration. Moreover, kaempferol dramatically suppressed tumor necrosis factor (TNF)-α-induced MAPK activation without affecting the expression of TNF-α receptors. We also demonstrated that kaempferol attenuated the severity of arthritis in mice with CIA. Taken together, these results suggested that kaempferol inhibits the migration and invasion of FLSs in RA by blocking MAPK pathway activation without affecting the expression of TNF-α receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume

    2005-01-01

    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  13. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    International Nuclear Information System (INIS)

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  14. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    Science.gov (United States)

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  15. Mastication suppresses initial gastric emptying by modulating gastric activity.

    Science.gov (United States)

    Ohmure, H; Takada, H; Nagayama, K; Sakiyama, T; Tsubouchi, H; Miyawaki, S

    2012-03-01

    Because various mastication-related factors influence gastric activity, the functional relationship between mastication and gastric function has not been fully elucidated. To investigate the influence of mastication on gastric emptying and motility, we conducted a randomized trial to compare the effects of mastication on gastric emptying and gastric myoelectrical activity under conditions that excluded the influences of food comminution, taste, and olfaction. A (13)C-acetate breath test with electrogastrography and electrocardiography was performed in 14 healthy men who ingested a test meal with or without chewing gum. Autonomic nerve activity was evaluated by fluctuation analysis of heart rate. Gastric emptying was significantly delayed in the 'ingestion with mastication' group. Gastric myoelectrical activity was significantly suppressed during mastication and increased gradually in the post-mastication phase. A decrease in the high-frequency power of heart rate variability was observed coincidentally with gastric myoelectrical activity suppression. These findings suggest that initial gastric emptying is suppressed by mastication, and that the suppression is caused by mastication-induced inhibition of gastric activity (UMIN Clinical Trial Registration no. UMIN000005351).

  16. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  17. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  18. Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yoolhee Yang

    Full Text Available Dysregulation of collagen production contributes to various pathological processes, including tissue fibrosis as well as impaired wound healing. Lipo-prostaglandin E1 (Lipo-PGE1, a lipid microsphere-incorporated prostaglandin E1, is used as a vasodilator for the treatment of peripheral vascular diseases. Lipo-PGE1 was recently shown to enhance human dermal fibroblast (HDF migration and in vivo wound healing. No published study has characterized the role of Lipo-PGE1 in collagen regulation in HDFs. Here, we investigated the cellular signaling mechanism by which Lipo-PGE1 regulates collagen in HDFs. Collagen production was evaluated by the Sircol collagen assay, Western blot analysis of type I collagen and real time PCR. Unexpectedly, Lipo-PGE1 decreased mRNA expression of collagen 1A1, 1A2, and 3A1. Lipo-PGE1 markedly inhibited type I collagen and total soluble collagen production. In addition, Lipo-PGE1 inhibited transforming growth factor-β-induced collagen expression via Smad2 phosphorylation. To further investigate whether extracellular signal-regulated kinase (ERK/Ets-1 signaling, a crucial pathway in collagen regulation, is involved in Lipo-PGE1-inhibited collagen production, cells were pretreated with an ERK-specific inhibitor, PD98059, prior to the addition of Lipo-PGE1. Lipo-PGE1-inhibited collagen mRNA expression and total soluble collagen production were recovered by pretreatment with PD98059. Moreover, Lipo-PGE1 directly induced the phosphorylation of ERK. Furthermore, silencing of Ets-1 recovered Lipo-PGE1-inhibited collagen production and PD98059 blocked Lipo-PGE1-enhanced Ets-1 expression. The present study reveals an important role for Lipo-PGE1 as a negative regulator of collagen gene expression and production via ERK/Ets-1 signaling. These results suggest that Lipo-PGE1 could potentially be a therapeutic target in diseases with deregulated collagen turnover.

  19. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Cecilia Prata

    2017-01-01

    Full Text Available Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.

  20. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Science.gov (United States)

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  1. Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts.

    Science.gov (United States)

    Hatanaka, Miho; Higashi, Yuko; Fukushige, Tomoko; Baba, Naoko; Kawai, Kazuhiro; Hashiguchi, Teruto; Su, Juan; Zeng, Weiqi; Chen, Xiang; Kanekura, Takuro

    2014-12-01

    Cluster of differentiation 147 (CD147)/basigin on the malignant tumor cell surface is critical for tumor proliferation, invasiveness, metastasis, and angiogenesis. CD147 expressed on malignant melanoma cells can induce tumor cell invasion by stimulating the production of matrix metalloproteinases (MMPs) by surrounding fibroblasts. Membrane vesicles, microvesicles and exosomes have attracted attention, as vehicles of functional molecules and their association with CD147 has been reported. Cleaved CD147 fragments released from tumor cells were reported to interact with fibroblasts. We investigated the intercellular mechanisms by which CD147 stimulates fibroblasts to induce MMP2 activity. CD147 was knocked-down using short hairpin RNA (shRNA). The stimulatory effect of CD147 in cell culture supernatants, microvesicles, and exosomes on the enzymatic activity of MMP2 was examined by gelatin zymography. Supernatants from A375 control cells induced increased enzymatic activity of fibroblasts; such activity was significantly lower in CD147 knock-down cells. Cleaved CD147 plays a pivotal role in stimulating fibroblasts to induce MMP2 activity. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueting [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Fang, Shencun [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liu, Haijun [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Wei; Zhang, Yingming [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liao, Hong [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Zhang, Wei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong [Department of Pharmacology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China)

    2015-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D

  3. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    International Nuclear Information System (INIS)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-01-01

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO 2 ). Phagocytosis of SiO 2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO 2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO 2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO 2 -induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO 2 -induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO 2 . CCR2 was also up-regulated in response to SiO 2 , and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO 2 -induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO 2 induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO 2 directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO 2 increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2

  4. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  5. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  6. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Xing

    2011-11-01

    Full Text Available Abstract Background Diagnosis of ductal carcinoma in situ (DCIS in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α, and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion. Methods 349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH; group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI, and group 5: invasive ductal carcinoma (IDC. A comparative evaluation of the four immunostains was conducted. Results Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%. Conclusions This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.

  7. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts.

    Science.gov (United States)

    Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2014-04-21

    Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. MCPIP1 Regulates Alveolar Macrophage Apoptosis and Pulmonary Fibroblast Activation After in vitro Exposure to Silica.

    Science.gov (United States)

    Wang, Xingang; Zhang, Yuxia; Zhang, Wei; Liu, Haijun; Zhou, Zewei; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Yao, Honghong; Chao, Jie

    2016-05-01

    Silicosis is a fatal and fibrotic pulmonary disease caused by the inhalation of silica. After arriving at the alveoli, silica is ingested by alveolar macrophages (AMOs), in which monocyte chemotactic protein-induced protein 1 (MCPIP1) plays an essential role in controlling macrophage-mediated inflammatory responses. However, the mechanism of action of MCPIP1 in silicosis is poorly understood. Primary rat AMOs were isolated and treated with SiO2 (50 µg/cm(2)). MCPIP1 and AMO activation/apoptosis markers were detected by immunoblotting. MCPIP1 was down-regulated using siRNA in AMOs. The effects of AMOs on fibroblast activation and migration were evaluated using a gel contraction assay, a scratch assay, and a nested collagen matrix migration model. After exposure to SiO2, MCPIP1 was significantly increased in rat AMOs. Activation and apoptosis markers in AMOs were up-regulated after exposure to SiO2 Following siRNA-mediated silencing of MCPIP1 mRNA, the markers of AMO activation and apoptosis were significantly decreased. Rat pulmonary fibroblasts (PFBs) cultured in conditional medium from AMOs treated with MCPIP1 siRNA and SiO2 showed significantly less activation and migration compared with those cultured in conditional medium from AMOs treated with control siRNA and SiO2 CONCLUSION: Our data suggest a vital role for MCPIP1 in AMO apoptosis and PFB activation/migration induced by SiO2. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Rac inhibition reverses the phenotype of fibrotic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shi-wen Xu

    Full Text Available BACKGROUND: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA, type I collagen and CCN2 (connective tissue growth factor, CTGF. The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. METHODS AND FINDINGS: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. CONCLUSION: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.

  10. Artifact suppression and analysis of brain activities with electroencephalography signals.

    Science.gov (United States)

    Rashed-Al-Mahfuz, Md; Islam, Md Rabiul; Hirose, Keikichi; Molla, Md Khademul Islam

    2013-06-05

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  11. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells

    International Nuclear Information System (INIS)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul; Lee, Mee-Hee; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin; Kim, Sunoh; Yoon, Ho-Geun

    2011-01-01

    Highlights: → Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. → Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. → Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-κB. → Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  12. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Lee, Mee-Hee [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Yoo-Hyun [Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do (Korea, Republic of); Lee, Jeongmin [Department of Medical Nutrition, Kyung Hee University, Kyunggi-do (Korea, Republic of); Jun, Woojin [Department of Food and Nutrition, Chonnam National University, Gwangju (Korea, Republic of); Kim, Sunoh, E-mail: sunoh@korea.ac.kr [Jeollanamdo Institute of Natural Resources Research, Jeonnam (Korea, Republic of); Yoon, Ho-Geun, E-mail: yhgeun@yuhs.ac [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  13. Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2

    International Nuclear Information System (INIS)

    Miller, A Dusty; Van Hoeven, Neal S; Liu, Shan-Lu

    2004-01-01

    The envelope (Env) protein of jaagsiekte sheep retrovirus (JSRV) can transform cells in culture and is likely to be the main factor responsible for lung cancer induction by JSRV in animals. A recent report indicates that the epithelial-cell transforming activity of JSRV Env depends on activation of the cell-surface receptor tyrosine kinase Mst1r (called RON for the human and Stk for the rodent orthologs). In the immortalized line of human epithelial cells used (BEAS-2B cells), the virus receptor Hyal2 was found to bind to and suppress the activity of RON. When Env was expressed it bound to Hyal2 causing its degradation, release of RON activity from Hyal2 suppression, and activation of pathways resulting in cell transformation. Due to difficulty with reproducibility of the transformation assay in BEAS-2B cells, we have used more tractable rodent fibroblast models to further study Hyal2 modulation of RON/Stk transforming activity and potential effects of Hyal2 on RON/Stk activation by its natural ligand, macrophage stimulating protein (MSP). We did not detect transformation of NIH 3T3 cells by plasmids expressing RON or Stk, but did detect transformation of 208F rat fibroblasts by these plasmids at a very low rate. We were able to isolate 208F cell clones that expressed RON or Stk and that showed changes in morphology indicative of transformation. The parental 208F cells did not respond to MSP but 208F cells expressing RON or Stk showed obvious increases in scattering/transformation in response to MSP. Human Hyal2 had no effect on the basal or MSP-induced phenotypes of RON-expressing 208F cells, and human, mouse or rat Hyal2 had no effect on the basal or MSP-induced phenotypes of Stk-expressing 208F cells. We have shown that RON or Stk expression in 208F rat fibroblasts results in a transformed phenotype that is enhanced by addition of the natural ligand for these proteins, MSP. Hyal2 does not directly modulate the basal or MSP-induced RON/Stk activity, although it

  14. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  15. Hydrodynamic suppression of phase separation in active suspensions.

    Science.gov (United States)

    Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M

    2014-09-01

    We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.

  16. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration

    DEFF Research Database (Denmark)

    Angebault, Claire; Gueguen, Naig; Desquiret-Dumas, Valerie

    2011-01-01

    to impairment in some cases and stimulation in others. Conclusion: These results indicate that idebenone is able to compensate the complex I deficiency in LHON patient cells with variable effects on respiration, indicating that the patients might not be equally likely to benefit from the treatment....... of idebenone in fibroblasts from LHON patients using enzymatic and polarographic measurements. Results: Complex I activity was 42% greater in treated fibroblasts compared to controls (p = 0.002). Despite this complex I activity improvement, the effects on mitochondrial respiration were contradictory, leading...

  17. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...... these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect...

  18. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    International Nuclear Information System (INIS)

    Ai, Shingo; Cheng Xianwu; Inoue, Aiko; Nakamura, Kae; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2007-01-01

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  19. Kefiran suppresses antigen-induced mast cell activation.

    Science.gov (United States)

    Furuno, Tadahide; Nakanishi, Mamoru

    2012-01-01

    Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3β, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.

  20. Adaptive Active Noise Suppression Using Multiple Model Switching Strategy

    Directory of Open Access Journals (Sweden)

    Quanzhen Huang

    2017-01-01

    Full Text Available Active noise suppression for applications where the system response varies with time is a difficult problem. The computation burden for the existing control algorithms with online identification is heavy and easy to cause control system instability. A new active noise control algorithm is proposed in this paper by employing multiple model switching strategy for secondary path varying. The computation is significantly reduced. Firstly, a noise control system modeling method is proposed for duct-like applications. Then a multiple model adaptive control algorithm is proposed with a new multiple model switching strategy based on filter-u least mean square (FULMS algorithm. Finally, the proposed algorithm was implemented on Texas Instruments digital signal processor (DSP TMS320F28335 and real time experiments were done to test the proposed algorithm and FULMS algorithm with online identification. Experimental verification tests show that the proposed algorithm is effective with good noise suppression performance.

  1. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    Directory of Open Access Journals (Sweden)

    Claudia von Montfort

    2015-04-01

    Full Text Available Recently, it has been published that cerium (Ce oxide nanoparticles (CNP; nanoceria are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS-induced cell death and stimulate proliferation due to the antioxidative property of these particles.

  2. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  3. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    International Nuclear Information System (INIS)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-01-01

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  4. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  5. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  6. Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces cardiac fibroblast proliferation by suppressing GATA Binding Protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Liu, Ning-Ning; Liu, Wei-Hua; Zhang, Shuang-Wei; Zhang, Jing-Zhi; Li, Ai-Qun [Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Guangzhou Institute of Cardiovascular Disease, Guangzhou (China); Liu, Shi-Ming, E-mail: gzliushiming@126.com [Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Guangzhou Institute of Cardiovascular Disease, Guangzhou (China)

    2016-07-08

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and GATA Binding Protein 4 (GATA4) are important for the growth of cardiac fibroblasts (CFs). When deregulated, LOX-1 and GATA4 can cause cardiac remodeling. In the present study, we found novel evidence that GATA4 was required for the LOX-1 regulation of CF proliferation. The inhibition of LOX-1 by RNA interference LOX-1 lentivirus resulted in the loss of PI3K/Akt activation and GATA4 protein expression. The overexpression of LOX-1 by lentivirus rescued CF proliferation, PI3K/Akt activation, and GATA4 protein expression. Moreover, GATA4 overexpression enhanced CF proliferation with LOX-1 inhibition. We also found that the inhibition of PI3K/Akt activation by LY294002, a PI3K inhibitor, reduced cell proliferation and protein level of GATA4. In summary, GATA4 may play an important role in the LOX-1 and PI3K/Akt regulation of CF proliferation. -- Highlights: •GATA4 is regulated by LOX-1 signaling in CFs. •GATA4 is involved in LOX-1 regulating CF proliferation. •GATA4 is regulated by PI3K/Akt signaling in CFs.

  7. Suppression of in vitro cell-mediated lympholysis generation by alloactivated lymphocytes. Examination of radioresistant suppressive activity

    International Nuclear Information System (INIS)

    Orosz, C.G.; Ferguson, R.M.

    1986-01-01

    We investigated the radioresistant (1000 rads) suppression of CML generation mediated by alloactivated murine splenocytes. Suppressive cells were generated in MLCs by stimulation of (A X 6R)F1 splenocytes with irradiated C57BL/10 splenocytes. Suppressive cells could lyse targets bearing H-2b alloantigens, but would not lyse parental B10.T(6R) or B10.A targets. Suppressive activity was detected by including the alloactivated (A X 6R)F1 cells in B10.T(6R) anti-B10.A(1R) MLCs. Relative to the suppressive (A X 6R)F1 cells, the B10.A(1R) lymphocytes display both parental and suppressor-inducing alloantigens. In the absence of a suppressive population, B10.A(1R) stimulators cause B10.T(6R) splenocytes to generate cytolytic activity specific for both H-2Db (suppressor-inducing) and H-2Kk (suppressor-borne) target determinants. The irradiated, alloactivated (A X 6R)F1 cells decrease the H-2Db-specific CML generated in this system, thus mediating apparent antigen-specific suppression. However, cytolytic activity concomitantly generated in the same culture against the unrelated H-2Kk target determinants is similarly reduced by the (A X 6R)F1 cells. Thus, radioresistant suppression by alloactivated splenocytes is not necessarily antigen-specific. The irradiated (A X 6R)F1 cells would not suppress the generation of H-2Kk-specific CTL in B10.T(6R) anti-B10.A MLCs. Hence, the irradiated (A X 6R)F1 cells can impede CML generation against third-party alloantigens if, and only if, those alloantigens are coexpressed with suppressor-inducing alloantigens on the stimulator cells in suppressed MLCs. Similar results were also obtained using a different histoincompatible lymphocyte combination

  8. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Peroxiredoxin 5 Protects TGF-β Induced Fibrosis by Inhibiting Stat3 Activation in Rat Kidney Interstitial Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Hoon-In Choi

    Full Text Available Renal fibrosis is a common final pathway of end-stage kidney disease which is induced by aberrant accumulation of myofibroblasts. This process is triggered by reactive oxygen species (ROS and proinflammatory cytokines generated by various source of injured kidney cells. Peroxiredoxin 5 (Prdx5 is a thiol-dependent peroxidase that reduces oxidative stress by catalyzing intramolecular disulfide bonds. Along with its antioxidant effects, expression level of Prdx5 also was involved in inflammatory regulation by immune stimuli. However, the physiological effects and the underlying mechanisms of Prdx5 in renal fibrosis have not been fully characterized. Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO for 1 or 7 days. For the in vitro model, NRK49F cells, a rat kidney interstitial fibroblast cell lines, were treated with transforming growth factor β (TGF-β for 0, 1, 3, or 5 days. To access the involvement of its peroxidase activity in TGF-β induced renal fibrosis, wild type Prdx5 (WT and double mutant Prdx5 (DM, converted two active site cysteines at Cys 48 and Cys 152 residue to serine, were transiently expressed in NRK49F cells. The protein expression of Prdx5 was reduced in UUO kidneys. Upregulation of fibrotic markers, such as fibronectin and alpha-smooth muscle actin (α-SMA, declined at 5 days in time point of higher Prdx5 expression in TGF-β treated NRK49F cells. The overexpression of wild type Prdx5 by transient transfection in NRK49F cells attenuated the TGF-β induced upregulation of fibronectin and α-SMA. On the other hand, the transient transfection of double mutant Prdx5 did not prevent the activation of fibrotic markers. Overexpression of Prdx5 also suppressed the TGF-β induced upregulation of Stat3 phosphorylation, while phosphorylation of Smad 2/3 was unchanged. In conclusion, Prdx5 protects TGF-β induced fibrosis in NRK49F cells by modulating Stat3 activation in a peroxidase activity dependent manner.

  10. Inhibition of aromatase activity by methyl sulfonyl PCB metabolites in primary culture of human mammary fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. van den; Heneweer, M.; Geest, M. de; Sanderson, T. [Inst. for Risk Assessment Sciences and Utrecht Univ. (Netherlands); Jong, P. de [St. Antonius Hospital, Nieuwegein (Netherlands); Bergman, A. [Stockholm Univ., Stockholm (Sweden)

    2004-09-15

    Methyl sulfonyl PCB metabolites (MeSO2-PCBs) are persistent contaminants and are ubiquitously present in humans and the environment. Lipophilicity of MeSO2- PCB metabolites is similar to the parent compounds and they have been detected in human milk, adipose, liver and lung tissue. 4- MeSO2-PCB-149 is the most abundant PCB metabolite in human adipose tissue and milk at a level of 1.5 ng/g lipids. Human blood concentration of 4-MeSO2-PCB-149 is approximately 0.03 nM. 3- MeSO2-PCB-101 is the predominant PCB metabolite in muscle and blubber in wildlife, such as otter, mink and grey seal. In the environment, they have been linked to chronic and reproductive toxicity in exposed mink. Additionaly, some MeSO{sub 2}-PCBs have been shown to be glucocorticoid receptor (GR) antagonists. Since approximately 60% of all breast tumors are estrogen responsive, exposure to compounds that are able to alter estrogen synthesis through interference with the aromatase enzyme, can lead to changes in estrogen levels and possibly to accelerated or inhibit breast tumor growth. Therefore, it is important to identify exogenous compounds that can alter aromatase activity in addition to those compounds which have direct interaction with the estrogen receptor (ER). Aromatase (CYP19) comprises the ubiquitous flavoprotein, NADPH-cytochrome P450 reductase, and a unique cytochrome P450 that is exclusively expressed in estrogen producing cells. Previous studies have revealed that expression of the aromatase gene is regulated in a species- and tissue specific manner. In healthy breast tissue, the predominantly active aromatase promoter region I.4 is regulated by glucocorticoids and class I cytokines. Therefore, it is important to investigate possible aromatase inhibiting properties of MeSO{sub 2}-PCBs (as anti glucocorticoids?) in relevant human tissues. We used primary human mammary fibroblasts because of their role in breast cancer development. We compared the results in primary fibroblasts with

  11. Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2−/− Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Mandar Dave

    2017-12-01

    Full Text Available The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF in lung fibroblasts derived from COX-2−/− but not wild-type (WT or COX-1−/− mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2−/− fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2−/− was “prostaglandin-independent.” GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2−/− cells. Furthermore, COX-2−/− fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells.

  12. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts.

    Science.gov (United States)

    Townley, William A; Cambrey, Alison D; Khaw, Peng T; Grobbelaar, Adriaan O

    2008-11-01

    Dupuytren's disease is a common fibroproliferative condition of the hand characterized by fibrotic lesions (nodules and cords), leading to disability through progressive digital contracture. Although the etiology of the disease is poorly understood, recent evidence suggests that abnormal matrix metalloproteinase (MMP) activity may play a role in cell-mediated collagen contraction and tissue scarring. The aim of this study was to investigate the efficacy of ilomastat, a broad-spectrum MMP inhibitor, in an in vitro model of Dupuytren fibroblast-mediated contraction. Nodule-derived and cord-derived fibroblasts were isolated from Dupuytren patients; carpal ligament-derived fibroblasts acted as control. Stress-release fibroblast-populated collagen lattices (FPCLs) were used as a model of contraction. FPCLs were allowed to develop mechanical stress (48 hours) during treatment with ilomastat (0-100 micromol/L), released, and allowed to contract over a 48-hour period. Contraction was estimated by measuring lattice area compared with untreated cells or treatment with a control peptide. MMP-1, MMP-2, and MT1-MMP levels were assessed by zymography, Western blotting, and enzyme-linked immunosorbent assay. Nodule-derived fibroblasts contracted lattices (69% +/- 2) to a greater extent than did cord-derived (55% +/- 3) or carpal ligament-derived (55% +/- 1) fibroblasts. Exposure to ilomastat led to significant inhibition of lattice contraction by all fibroblasts, although a reduction in lattice contraction by nodule-derived fibroblasts was most prominent (84% +/- 8). In addition, treatment with ilomastat led to a concomitant suppression of MMP-1 and MMP-2 activity, whereas MT1-MMP activity was found to be upregulated. Our results demonstrate that inhibition of MMP activity results in a reduction in extracellular matrix contraction by Dupuytren fibroblasts and suggest that MMP activity may be a critical target in preventing recurrent contracture caused by this disease.

  13. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions.

    Science.gov (United States)

    Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa; Vyavahare, Naren

    2018-04-30

    Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. [Suppression of cycling activity in sheep using parenteral progestagen treatment].

    Science.gov (United States)

    Janett, F; Camponovo, L; Lanker, U; Hässig, M; Thun, R

    2004-03-01

    The objective of this study was to evaluate the effect of two synthetic progestagen preparations Chlormadinone acetate (CAP, Chronosyn, Veterinaria AG Zürich) and Medroxyprogesterone acetate (MPA, Nadigest, G Streuli & Co. Uznach) on cycling activity and fertility in sheep. A flock of 28 non pregnant white alpine sheep was randomly divided into three groups, A (n = 10), B (n = 9) and C (n = 9). During a period of 4 weeks the cycling activity was confirmed by blood progesterone analysis. Thereafter, the animals of group A were treated with 50 mg CAP, those of group B with 140 mg MPA and those of group C with physiological saline solution. All injections were given intramuscularly. Suppression of endogenous progesterone secretion lasted from 28 to 49 days (mean = 39 days) in group A and from 42 to 70 days (mean = 50 days) in group B. The synchronization effect of both preparations was unsatisfactory as the occurrence of first estrus was distributed over a period of 3 weeks in group A and 4 weeks in group B. These findings could also be confirmed by the lambing period which lasted 52 days in group A and 36 days in group B. Control animals lambed within 9 days due to the synchronizing effect of the ram. The first fertile estrus was observed 36 days (group A) and 45 days (group B) after the treatment. In group A all 10 animals and in groups B and C 8 of 9 ewes each became pregnant. Parenteral progestagen application with CAP and MPA is a simple, safe and reversible method of estrus suppression in the sheep. The minimal suppressive duration of 4 (CAP) and 5 weeks (MPA) is not sufficient when a period of 3 months (alpine pasture period) is desired.

  15. Synthesis and processing of sphingolipid activator protein-2 (SAP-2) in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Fujibayashi, S.; Wenger, D.A.

    1986-01-01

    Sphingolipid activator proteins (SAP) are relatively small molecular weight proteins that stimulate the enzymatic hydrolysis of sphingolipids in the presence of specific lysosomal hydrolases. SAP-2 has previously been demonstrated to activate the hydrolysis of glucosylceramide, galactosylceramide, and, possibly, sphingomyelin. Using monospecific rabbit antibodies against human spleen SAP-2, the synthesis and processing of SAP-2 were studied in cultured human fibroblasts. When [ 35 S]methionine was presented in the medium to control human cells for 4 h, five major areas of radiolabeling were found. These had apparent molecular weights of 73,000, 68,000, 50,000, 12,000, and 9000. Further studies indicated that the major extracellular product in normal cells given NH4Cl along with the [ 35 S]methionine and in medium from cultures from patients with I cell disease had an apparent molecular weight of 73,000. The Mr = 68,000 and 73,000 species can be converted to a species with an apparent molecular weight of 50,000 by the action of endoglycosidase F. After labeling cells for 1 h followed by a 1-h chase, the Mr = 12,000 and 9000 species appear. Treatment of the immunoprecipitated mixture with endoglycosidase F resulted in conversion of these species to one band with an apparent molecular weight of 7600. These studies indicate that this relatively low molecular weight protein is rapidly synthesized from a relatively large molecular weight highly glycosylated precursor

  16. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process.

    Science.gov (United States)

    Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L

    1999-07-22

    Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.

  17. Evaluation of Fibroblast Activation Protein-Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer

    Science.gov (United States)

    2009-12-01

    low molecular weight recombinant human gelatin: development of a substitute for animal- derived gelatin with superior features, Protein Expr. Purif...by the honey - bee , could be modified to a form that was no longer hydro- lyzed by the native activator protease DPP4 but, instead, was hydrolyzed by...TITLE: Evaluation of Fibroblast Activation Protein -Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer PRINCIPAL

  18. Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation.

    Science.gov (United States)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Choo, Hea-Young Park; Lee, Kyung Ho

    2018-05-01

    Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)‑induced expression of proinflammatory cytokines, production of histamine and surface expression of co‑stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)‑1β, IL‑6, IL‑13, tumor necrosis factor‑α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti‑allergic agents to suppress mast cell activation.

  19. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  20. Influence of repetitive mechanical loading on MMP2 activity in tendon fibroblasts.

    Science.gov (United States)

    Huisman, Elise; Lu, Alex; Jamil, Sarwat; Mousavizadeh, Rouhollah; McCormack, Robert; Roberts, Clive; Scott, Alex

    2016-11-01

    Matrix metalloproteinase2 has been implicated in tendon pathology caused by repetitive movements. However, its activity in the early stages of the tendon's response to overuse, and its presence in the circulation as a possible indicator of tendon degradation, remain unknown. Human tendon cells were repetitively stretched for 5 days, and the rabbit Achilles tendon complex underwent repetitive motion 3× per week for 2 weeks. Quantitative polymer chain reaction analysis was performed to detect matrix metalloproteinase2/14 and tissue inhibitor of matrix metalloproteinase2 messenger ribonucleic acid of cells and rabbit tissue, and matrix metalloproteinase2 protein levels were determined with an enzyme linked immunoassay. Matrix metalloproteinase2 activity was examined using zymography of the conditioned media, tendon and serum. Immunohistochemistry was used to localize matrix metalloproteinase2 in tendon tissue, and the density of fibrillar collagen in tendons was examined using second harmonic generation microscopy. Tendon cells stretched with high strain or high frequency demonstrated increased matrix metalloproteinase2 messenger ribonucleic acid and protein levels. Matrix metalloproteinase2 activity was increased in the rabbit Achilles tendon tissue at weeks 1 and 2; however, serum activity was only increased at week 1. After 2 weeks of exercise, the collagen density was lower in specific regions of the exercised rabbit Achilles tendon complex. Matrix metalloproteinase2 expression in exercised rabbit Achilles tendons was detected surrounding tendon fibroblasts. Repetitive mechanical stimulation of tendon cells results in a small increase in matrix metalloproteinase2 levels, but it appears unlikely that serum matrix metalloproteinase2 will be a useful indicator of tendon overuse injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1991-2000, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Quantitation of fibroblast activation protein (FAP-specific protease activity in mouse, baboon and human fluids and organs

    Directory of Open Access Journals (Sweden)

    Fiona M. Keane

    2014-01-01

    Full Text Available The protease fibroblast activation protein (FAP is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

  2. Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Vorum, Katrine Gribel; Lambert, Ian Henry

    2008-01-01

    Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein......+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 n......M) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production...

  3. Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Science.gov (United States)

    Prasad, Raju Y.; Chastain, Paul D.; Nikolaishvili-Feinberg, Nana; Smeester, Lisa M.; Kaufmann, William K.; Fry, Rebecca C.

    2013-01-01

    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway. PMID:22770119

  4. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    Science.gov (United States)

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  5. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension

    Science.gov (United States)

    Anwar, Adil; Li, Min; Frid, Maria G.; Kumar, Binod; Gerasimovskaya, Evgenia V.; Riddle, Suzette R.; McKeon, B. Alexandre; Thukaram, Roopa; Meyrick, Barbara O.; Fini, Mehdi A.

    2012-01-01

    Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a “constitutively activated” phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the “activated” highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, αVβ3 and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH. PMID:22582113

  6. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  7. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin

    DEFF Research Database (Denmark)

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah

    2017-01-01

    of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.......BACKGROUND: Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety...... of neoplasms but their role in BCC is poorly understood. METHODS: Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical...

  8. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin

    DEFF Research Database (Denmark)

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mourier, Tobias

    2017-01-01

    of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.......Background: Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety...... of neoplasms but their role in BCC is poorly understood. Methods: Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical...

  9. Covertly active and progressing neurochemical abnormalities in suppressed HIV infection.

    Science.gov (United States)

    Cysique, Lucette A; Jugé, Lauriane; Gates, Thomas; Tobia, Michael; Moffat, Kirsten; Brew, Bruce J; Rae, Caroline

    2018-01-01

    To assess whether HIV-related brain injury is progressive in persons with suppressed HIV infection. Seventy-three HIV+ virally suppressed men and 35 HIV- men, screened for psychiatric and alcohol/drug use disorders, underwent neuropsychological evaluation and proton magnetic resonance spectroscopy ( 1 H-MRS) at baseline and after and 23 ± 5 months. 1 H-MRS included brain regions known to be vulnerable to HIV and aging: frontal white matter (FWM), posterior cingulate cortex (PCC), and caudate area (CA). Major brain metabolites such as creatine (Cr: marker of cellular energy), N -acetyl aspartate (NAA: marker of neuronal integrity), choline (marker of cellular membrane turnover), glutamate/glutamine (excitatory/inhibitory neurotransmitter), and myo -Inositol (mI: marker of neuroinflammation) were calculated with reference to water signal. Neurocognitive decline was corrected for practice effect and baseline HIV-associated neurocognitive disorder (HAND) status. Across the study period, 44% had intact cognition, 42% stable HAND (including the single case that improved), 10% progressing HAND, and 4% incident HAND. When analyzing the neurochemical data per neurocognitive trajectories, we found decreasing PCC Cr in all subgroups compared with controls ( p < 0.002). In addition, relative to the HIV- group, stable HAND showed decreasing FWM Cr, incident HAND showed steep FWM Cr reduction, whereas progressing HAND had a sharply decreasing PCC NAA and reduced but stable CA NAA. When analyzing the neurochemical data at the group level (HIV+ vs HIV- groups), we found stable abnormal metabolite concentrations over the study period: decreased FWM and PCC Cr (both p < 0.001), decreased PCC NAA and CA NAA (both p < 0.05) and PCC mI increase ( p < 0.05). HIV duration and historical HAND had modest effects on metabolite changes. Our study reveals covertly active or progressing HIV-related brain injury in the majority of this virally suppressed cohort, reflecting ongoing

  10. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation.

    Science.gov (United States)

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun; Zhao, Yuliang

    2016-01-18

    A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yulia Shamis

    Full Text Available Human embryonic and induced pluripotent stem cells (hESC/hiPSC are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.

  12. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    Directory of Open Access Journals (Sweden)

    Moffett J

    2012-09-01

    Full Text Available John Moffett,1 Linley M Fray,1 Nicole J Kubat21Life Science Department, 2Independent Consultant, Regenesis Biomedical Inc, Scottsdale, AZ, USABackground: Pulsed radiofrequency energy (PRFE fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways.Methods and Results: Using cultured human dermal fibroblasts (HDF and human epidermal keratinocytes (HEK, we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types.Conclusion: These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting.Keywords: peripheral analgesia, endogenous opioids, endothelin-1, endothelin receptor A, endothelin receptor B, pulsed radiofrequency energy field, cyclooxygenase

  13. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF).

    Science.gov (United States)

    Vancauwenberghe, Eric; Noyer, Lucile; Derouiche, Sandra; Lemonnier, Loïc; Gosset, Pierre; Sadofsky, Laura R; Mariot, Pascal; Warnier, Marine; Bokhobza, Alexandre; Slomianny, Christian; Mauroy, Brigitte; Bonnal, Jean-Louis; Dewailly, Etienne; Delcourt, Philippe; Allart, Laurent; Desruelles, Emilie; Prevarskaya, Natalia; Roudbaraki, Morad

    2017-08-01

    Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis. © 2017 Wiley Periodicals, Inc.

  14. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    Science.gov (United States)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  15. The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salahshoor

    2013-10-01

    Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 μmol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

  16. Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse LmnaDhe dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    C Herbert Pratt

    2011-03-01

    Full Text Available Lamin A (LMNA is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350 and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670. Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1 activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood.We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (Lmna(Dhe. We found that dermal fibroblasts from heterozygous Lmna(Dhe (Lmna(Dhe/+ mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, Lmna(Dhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3, a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1 also was perturbed in Lmna(Dhe/+ cells. Lmna(Dhe/+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects.These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control.

  17. Mitotic Defects Lead to Pervasive Aneuploidy and Accompany Loss of RB1 Activity in Mouse LmnaDhe Dermal Fibroblasts

    Science.gov (United States)

    Pratt, C. Herbert; Curtain, Michelle; Donahue, Leah Rae; Shopland, Lindsay S.

    2011-01-01

    Background Lamin A (LMNA) is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350) and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670). Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1) activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood. Results We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (LmnaDhe). We found that dermal fibroblasts from heterozygous LmnaDhe (LmnaDhe/+) mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, LmnaDhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3), a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1) also was perturbed in LmnaDhe /+ cells. LmnaDhe /+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects. Conclusions These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control. PMID:21464947

  18. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  19. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  20. Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography

    NARCIS (Netherlands)

    Loesberg, W.A.; Walboomers, X.F.; van Loon, J.J.W.A.; Jansen, J.A.

    2008-01-01

    This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 mu m, width: I pm), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more

  1. Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography.

    NARCIS (Netherlands)

    Loesberg, W.A.; Walboomers, X.F.; Loon, J.J.W.A. van; Jansen, J.A.

    2008-01-01

    This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 mum, width: 1 mum), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more

  2. Acute sex hormone suppression reduces skeletal muscle sympathetic nerve activity.

    Science.gov (United States)

    Day, Danielle S; Gozansky, Wendolyn S; Bell, Christopher; Kohrt, Wendy M

    2011-10-01

    Comparisons of sympathetic nervous system activity (SNA) between young and older women have produced equivocal results, in part due to inadequate control for potential differences in sex hormone concentrations, age, and body composition. The aim of the present study was to determine the effect of a short-term reduction in sex hormones on tonic skeletal muscle sympathetic nerve activity (MSNA), an indirect measure of whole body SNA, using an experimental model of sex hormone deficiency in young women. We also assessed the independent effects of estradiol and progesterone add-back therapy on MSNA. MSNA was measured in 9 women (30±2 years; mean±SE) on three separate occasions: during the mid-luteal menstrual cycle phase, on the fifth day of gonadotropin-releasing hormone antagonist (GnRHant) administration, and after 5 days add-back of either estradiol (n=4) or progesterone (n=3) during continued GnRHant administration. In response to GnRHant, there were significant reductions in serum estradiol and progesterone (both psuppression attenuates MSNA and that this may be related to the suppression of progesterone rather than estradiol.

  3. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun, E-mail: lijunfmmu@163.com; Hu, Da-Hai, E-mail: hudahaifmmu@aliyun.com

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  4. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    International Nuclear Information System (INIS)

    Akudugu, John M.; Bell, Robert S.; Catton, Charles; Davis, Aileen M.; Griffin, Anthony M.; O'Sullivan, Brian; Waldron, John N.; Ferguson, Peter C.; Wunder, Jay S.; Hill, Richard P.

    2006-01-01

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF 2.4 ) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after

  5. Pirfenidone inhibits the proliferation of fibroblasts from patients with active Crohn's disease.

    Science.gov (United States)

    Kadir, Sara-Irini; Wenzel Kragstrup, Tue; Dige, Anders; Kok Jensen, Simon; Dahlerup, Jens Frederik; Kelsen, Jens

    2016-11-01

    One-third of Crohn's disease (CD) patients develop intestinal strictures that require repeated surgical intervention. Current anti-inflammatory therapies have limited effect on stricture development, which necessitates the exploration of new pharmacological approaches. Pirfenidone (PFD), a novel anti-fibrotic agent, was recently approved in Europe for the treatment of idiopathic pulmonary fibrosis (IPF). We hypothesized that observations in IPF could be transferable to intestinal fibrosis and that PFD inhibits the proliferation and extracellular matrix (ECM) turnover of gut-derived fibroblasts from CD patients. Fibroblasts were isolated from biopsies of inflamed (n = 8) and non-inflamed (n = 5) colonic mucosa. Expression of CD90 and alpha-smooth muscle actin (αSMA) expression was determined by flow cytometry. The fibroblasts were cultured with PFD (0.5, 1.0 and 2.0 mg/ml). Proliferation was evaluated with CellTiter 96(®) AQueous One Solution Cell Proliferation Assay. Production of matrix metalloproteinase-3 (MMP-3), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen were assessed using ELISA and calorimetric assays, respectively. The majority of the fibroblasts were αSMA-positive myofibroblasts. PFD inhibited fibroblast proliferation [0.94 (PFD 0.5 mg/ml); 0.76 (1.0 mg/ml); 0.58 (2.0 mg/ml)] and production of MMP-3 [0.85 (0.5 mg/ml); 0.74 (1.0 mg/ml); 0.63 (2.0 mg/ml)] dose-dependently (both p = 0.0001). The anti-proliferative effect of PFD was reversible (p = 0.0001), indicating that PFD does not act by an irreversible cytotoxic mechanism. PFD did not influence neither TIMP-1 nor collagen production. PFD inhibited the proliferation and the production of MMP-3 dose-dependently in gut-derived fibroblast from CD patients. Our observations support further studies on PFD in stricturing CD.

  6. Mincle suppresses Toll-like receptor 4 activation.

    Science.gov (United States)

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  7. Fibroblast growth factor and canonical WNT/beta-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Oralová, Veronika; Aklian, A.; Mašek, J.; Veselá, I.; Ouyang, Z.; Obadalová, T.; Konečná, Ž.; Spoustová, T.; Pospíšilová, T.; Matula, P.; Vařecha, M.; Balek, L.; Gudernová, I.; Jelínková, I.; Ďuran, I.; Červenková, I.; Murakami, S.; Kozubík, Alois; Dvořák, P.; Bryja, Vítězslav; Krejčí, P.

    2015-01-01

    Roč. 1852, č. 5 (2015), s. 839-850 ISSN 0925-4439 R&D Projects: GA ČR GCP302/12/J059; GA ČR GBP302/12/G157; GA ČR(CZ) GA14-31540S Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor receptor * FGFR3 * WNT Subject RIV: EA - Cell Biology Impact factor: 5.158, year: 2015

  8. Supernatants from culture of type I collagen-stimulated PBMC from patients with cutaneous systemic sclerosis versus localized scleroderma demonstrate suppression of MMP-1 by fibroblasts.

    Science.gov (United States)

    Brown, Monica; Postlethwaite, Arnold E; Myers, Linda K; Hasty, Karen A

    2012-06-01

    Systemic sclerosis (SSc) is a chronic fibrosing disease characterized by vasculopathy, autoimmunity, and an accumulation of collagen in tissues. Numerous studies have shown that compared to healthy or diseased controls, the peripheral blood mononuclear cells (PBMC) from patients with SSc produce a variety of cytokines or proliferate when cultured with solubilized type I collagen (CI) or constituent α1(II) and α2(I) polypeptide chains. The purpose of this study was to determine whether PBMC isolated from patients with SSc and cultured in vitro with soluble CI elaborated soluble mediators that inhibit the production of collagenase (i.e., matrix metalloproteinase, MMP-1) by fibroblasts. Supernatants of CI-stimulated PBMC from juvenile and adult diffuse cutaneous (dc)SSc patients significantly reduced MMP-1 production by SSc dermal fibroblasts, while supernatants of CI-stimulated PBMC from patients with localized scleroderma (LS) did not. CI-stimulated PBMC culture supernatants from patients with dcSSc in contrast to patients with LS exhibited increased levels of platelet-derived growth factor (PDGF)-AA, PDGF-BB, TNF-α, IL-13, and EGF. Prolonged culture of SSc dermal fibroblasts with recombinant PDGF-BB or IL-13 inhibited the induction of MMP-1 in response to subsequent TNF-α stimulation. These data suggest that therapies aimed at reducing these cytokines may decrease collagen accumulation in SSc, preventing the development of chronic fibrosis.

  9. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  10. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  11. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully.

  12. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen-Yu [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, No.250 Changgang East Road, Guangzhou 510260, Guangdong Province (China); Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Zhang, Wei-Xi, E-mail: weixizhang@qq.com [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China)

    2016-03-18

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  13. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    International Nuclear Information System (INIS)

    Ma, Zhen-Yu; Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua; Zhang, Wei-Xi

    2016-01-01

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  14. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation

    Science.gov (United States)

    van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein

    2018-01-01

    To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571

  15. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  16. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

    Science.gov (United States)

    Wang, Daren; Zhang, Hui; Li, Min; Frid, Maria G; Flockton, Amanda R; McKeon, B Alexandre; Yeager, Michael E; Fini, Mehdi A; Morrell, Nicholas W; Pullamsetti, Soni S; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A; Sucharov, Carmen C; Stenmark, Kurt R

    2014-01-03

    Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly

  17. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1...

  18. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  19. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin.

    Science.gov (United States)

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah; Asplund, Maria; Mourier, Tobias; Hansen, Anders Johannes; Gniadecki, Robert

    2017-10-07

    Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety of neoplasms but their role in BCC is poorly understood. Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical and immunofluorescent staining were performed to validate the NGS results and to investigate CAF-related cyto-and chemokines. NGS revealed upregulation of 65 genes in BCC coding for extracellular matrix components pointing at CAF-related matrix remodeling. qRT-PCR showed increased mRNA expression of CAF markers FAP-α, PDGFR-β and prolyl-4-hydroxylase in BCC. Peritumoural skin (but not buttock skin) also exhibited high expression of PDGFR-β and prolyl-4-hydroxylase but not FAP-α. We found a similar pattern for the CAF-associated chemokines CCL17, CCL18, CCL22, CCL25, CXCL12 and IL6 with high expression in BCC and peritumoural skin but absence in buttock skin. Immunofluorescence revealed correlation between FAP-α and PDGFR-β and CXCL12 and CCL17. Matrix remodeling is the most prominent molecular feature of BCC. CAFs are present within BCC stroma and associated with increased expression of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.

  20. Antioxidant Activity of Ixora parviflora in a Cell/Cell-Free System and in UV-Exposed Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2011-07-01

    Full Text Available Polyphenols and flavonoids possess a variety of biological activities including antioxidant and anti-tumor activities. Ixora parviflora is a member of the flavonoid-rich Rubiaceae family of flowering plants and used as folk medicine in India. The aim of this study was to investigate the antioxidant activity of Ixora parviflora extract (IPE in a cell-free system and erythrocytes, and the ability of IPE to inhibit reactive oxygen species (ROS generation in human fibroblasts (Hs68 after ultraviolet (UV exposure. Various in vitro antioxidant assays were employed in this study. The extraction yield of IPE was 17.4 ± 3.9%, the total phenolic content of IPE was 26.2 μg gallic acid equivalent (GAE/mg leaves dry weight and the total flavonoids content was 54.2 ± 4.4 μg quercetin equvalent (QE/mg extract. The content of chlorogenic acid was 9.7 ± 1.2 mg/g extract. IPE at 1000 μg/mL exhibited a reducing capacity of 90.5 ± 0.6%, a 1,1-diphenyl-2-picrylhydrazy (DPPH radical scavenging activity of 96.0 ± 0.4%, a ferrous chelating activity of 72.2 ± 3.5%, a hydroxyl radical scavenging activity of 96.8 ± 1.4%, and a hydrogen peroxide scavenging activity of 99.5 ± 3.3%. IPE at 500 μg/mL also possessed inhibitory activity against 2,2'-azobis (2-methylpropionamidine dihydrochloride (AAPH-induced hemolysis of erythrocytes (89.4 ± 1.8% and resulted in a 52.9% reduction in ROS generation in UV-exposed fibroblasts. According to our findings, IPE is a potent antioxidant and a potential anti-photoaging agent.

  1. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Díaz, M.; Alvarado-Gomez, E. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Magaña-Aquino, M. [Servicio de Epidemiologia del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi (Mexico); Sánchez-Sánchez, R.; Velasquillo, C. [Laboratorio de Biotecnologia, Instituto Nacional de Rehabilitacion, Mexico, D.F. (Mexico); Gonzalez, C. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Ganem-Rondero, A. [Division de Estudios de Posgrado (Tecnologia Farmaceutica), Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Estado de Mexico (Mexico); Martínez-Castañon, G.; Zavala-Alonso, N. [Doctorado en Ciencias Odontológicas Facultad de Estomatologia, UASLP (Mexico); Martinez-Gutierrez, F. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico)

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  2. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    International Nuclear Information System (INIS)

    Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Ganem-Rondero, A.; Martínez-Castañon, G.; Zavala-Alonso, N.; Martinez-Gutierrez, F.

    2016-01-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  3. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    Science.gov (United States)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  4. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  5. Dermal fibroblasts from patients with Parkinson’s disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lucy M Collins

    2018-02-01

    Full Text Available Background: Recently, the development of Parkinson’s disease (PD has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA mutations. Methods: We investigated PD and Gaucher Disease (GD patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.

  6. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  7. miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2.

    Science.gov (United States)

    Fierro-Fernández, Marta; Busnadiego, Óscar; Sandoval, Pilar; Espinosa-Díez, Cristina; Blanco-Ruiz, Eva; Rodríguez, Macarena; Pian, Héctor; Ramos, Ricardo; López-Cabrera, Manuel; García-Bermejo, Maria Laura; Lamas, Santiago

    2015-10-01

    Uncontrolled extracellular matrix (ECM) production by fibroblasts in response to injury contributes to fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Reactive oxygen species (ROS) generation is involved in the pathogenesis of IPF. Transforming growth factor-β1 (TGF-β1) stimulates the production of NADPH oxidase 4 (NOX4)-dependent ROS, promoting lung fibrosis (LF). Dysregulation of microRNAs (miRNAs) has been shown to contribute to LF. To identify miRNAs involved in redox regulation relevant for IPF, we performed arrays in human lung fibroblasts exposed to ROS. miR-9-5p was selected as the best candidate and we demonstrate its inhibitory effect on TGF-β receptor type II (TGFBR2) and NOX4 expression. Increased expression of miR-9-5p abrogates TGF-β1-dependent myofibroblast phenotypic transformation. In the mouse model of bleomycin-induced LF, miR-9-5p dramatically reduces fibrogenesis and inhibition of miR-9-5p and prevents its anti-fibrotic effect both in vitro and in vivo. In lung specimens from patients with IPF, high levels of miR-9-5p are found. In omentum-derived mesothelial cells (MCs) from patients subjected to peritoneal dialysis (PD), miR-9-5p also inhibits mesothelial to myofibroblast transformation. We propose that TGF-β1 induces miR-9-5p expression as a self-limiting homeostatic response. © 2015 The Authors.

  8. Fibroblastic rheumatism

    Directory of Open Access Journals (Sweden)

    Jyoti Ranjan Parida

    2017-01-01

    Full Text Available Fibroblastic rheumatism (FR is a rare dermoarthopathy reported from different parts of the world since 1980. Although the exact cause is unknown, few reports implicate infection may be a triggering event. Patients usually present with multiple skin nodules and polyarthropathy with progressive skin contractures. Laboratory parameters including acute phase reactants are usually normal. The confirmatory diagnosis is based on histopathologic study of skin nodules, which demonstrate fibroblastic proliferation, thickened collagen fibers, dermal fibrosis, and decreased number of elastic fibers. Immunoreactivity for b-catenin, smooth muscle actin, and the monoclonal antibody HHF35 show myofibroblastic differentiation. Treatments with oral prednisolone and other disease-modifying drugs such as methotrexate, infliximab, and interferon have been tried with variable success. In general, skin lesions respond more aptly than joint symptoms indicating that skin fibroblast is more amenable to treatment than synovial fibroblasts. Awareness regarding this orphan disease among clinicians and pathologists will help in more reporting of such cases and finding out optimal treatment regimen.

  9. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1ß and activation of fibroblast growth factor receptor-1

    DEFF Research Database (Denmark)

    Gjørlund, Michelle D; Nielsen, Janne; Pankratova, Stanislava

    2012-01-01

    Neurexin-1 (NRXN1) and neuroligin-1 (NLGN1) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses and mediate signaling across the synapse, which modulates synaptic activity and determines the properties of neuronal networks. Defects in the genes encoding NLGN1...... have been linked to cognitive diseases such as autism. The roles of both NRXN1 and NLGN1 during synaptogenesis have been studied extensively, but little is known about the role of these molecules in neuritogenesis, which eventually results in neuronal circuitry formation. The present study investigated...... the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1ß and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic...

  10. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2011-01-01

    Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health.

  11. Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity.

    Science.gov (United States)

    Anitua, E; Pino, A; Orive, G

    2016-11-02

    The use of plasma rich in growth factors (PRGF) has gained importance in many medical fields due to its regenerative potential. The aim of this study is to evaluate the effects of PRGF on primary skin fibroblasts assessing cell proliferation, migration and secretion of growth factors. The age of the patients from who PRGF was prepared was also studied to determine whether it influenced the outcomes. Human dermal fibroblasts were isolated from three healthy volunteers. Using PRGF-Endoret technology, PRGF was prepared from two groups of different ages (18-35 years and 50+ years). The effects of increasing concentration of PRGF (5%, 10% and 20%) on cell proliferation and migration was evaluated. Biosynthetic behaviour of cells was also analysed measuring vascular endothelial growth factor (VEGF), transforming growth factor b1 (TGFb1) and pro-collagen type I secreted levels with or without PRGF treatment. Mean platelet enrichment reached 2.4X and 2X in 18-35 and 50+ groups respectively. A dose-dependent response was observed in proliferation assays achieving the highest levels with 20% PRGF. Migration was also promoted in cells but not in a dose-dependent manner. Cell proliferation and migration outcomes obtained with PRGF (from both groups) were significantly higher compared to non-stimulated groups (pPRGF, however, with the exception of VEGF, no statistical significances were observed between the different age groups. Results from this study concluded that PRGF is safe and effective in stimulating skin regeneration by enhancing proliferation, migration and expression of pivotal bioactive molecules involved in wound healing and haemostasis.

  12. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y.

    1991-01-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  13. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    Science.gov (United States)

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. TNFSF14 (LIGHT Exhibits Inflammatory Activities in Lung Fibroblasts Complementary to IL-13 and TGF-β

    Directory of Open Access Journals (Sweden)

    Ricardo da Silva Antunes

    2018-03-01

    Full Text Available The cytokine TNFSF14 [homologous to Lymphotoxin, exhibits Inducible expression and competes with HSV Glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT] has been shown in mouse models to be important for development of lung tissue remodeling that is characteristic of asthma, idiopathic pulmonary fibrosis (IPF, and systemic sclerosis (SSc. However, its cellular targets are not fully delineated. In the present report, we show that LTβR and HVEM, the receptors for LIGHT, are constitutively expressed in primary human lung fibroblasts (HLFs. We asked whether LIGHT could promote inflammatory and remodeling-relevant activity in HLFs and how this was similar to, or distinct from, IL-13 or TGF-β, two cytokines strongly implicated in the pathogenesis of asthma, IPF, and SSc. Accumulation of myofibroblasts expressing alpha smooth muscle actin is a feature of lung inflammatory diseases. LIGHT promoted cell cycle progression and proliferation of HLFs, but not alpha smooth muscle actin expression. In contrast, TGF-β upregulated alpha smooth muscle actin but did not drive their proliferation. LIGHT also increased the gene or protein expression of a number of proinflammatory mediators, including ICAM-1 and VCAM-1, IL-6 and GM-CSF, the chemokines CCL5 and 20, and CXCL5, 11, and 12, and lung remodeling-associated proteinases MMP-9 and ADAM8. These were dependent on LTβR but not HVEM. LIGHT displayed overlapping and synergistic activities with IL-13 for a number of the activities, but LIGHT additionally enhanced the gene expression of several molecules, including the innate cytokines IL-33 and TSLP, which were not upregulated by IL-13. Our results highlight the varied and pleiotropic effects of LIGHT in HLFs. LIGHT might then be a therapeutic target for modulation of inflammation and remodeling associated with asthma and other similar diseases of the lung that involve fibroblasts.

  15. Stromal Activation Associated with Development of Prostate Cancer in Prostate-Targeted Fibroblast Growth Factor 8b Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Teresa D. Elo

    2010-11-01

    Full Text Available Expression of fibroblast growth factor 8 (FGF-8 is commonly increased in prostate cancer. Experimental studies have provided evidence that it plays a role in prostate tumorigenesis and tumor progression. To study how increased FGF-8 affects the prostate, we generated and analyzed transgenic (TG mice expressing FGF-8b under the probasin promoter that targets expression to prostate epithelium. Prostates of the TG mice showed an increased size and changes in stromal and epithelialmorphology progressing fromatypia and prostatic intraepithelial neoplasia (mouse PIN, mPIN lesions to tumors with highly variable phenotype bearing features of adenocarcinoma, carcinosarcoma, and sarcoma. The development of mPIN lesions was preceded by formation of activated stroma containing increased proportion of fibroblastic cells, rich vasculature, and inflammation. The association between advancing stromal and epithelial alterations was statistically significant. Microarray analysis and validation with quantitative polymerase chain reaction revealed that expression of osteopontin and connective tissue growth factor was markedly upregulated in TG mouse prostates compared with wild type prostates. Androgen receptor staining was decreased in transformed epithelium and in hypercellular stroma but strongly increased in the sarcoma-like lesions. In conclusion, our data demonstrate that disruption of FGF signaling pathways by increased epithelial production of FGF-8b leads to strongly activated and atypical stroma, which precedes development of mPIN lesions and prostate cancer with mixed features of adenocarcinoma and sarcoma in the prostates of TG mice. The results suggest that increased FGF-8 in human prostate may also contribute to prostate tumorigenesis by stromal activation.

  16. Phosphatidylinositol response and proliferation of oxidative enzyme-activated human T lymphocytes: suppression by plasma lipoproteins

    International Nuclear Information System (INIS)

    Akeson, A.L.; Scupham, D.W.; Harmony, J.A.

    1984-01-01

    The phosphatidylinositol (PI) response and DNA synthesis of neuraminidase and galactose oxidase (NAGO)-stimulated human T lymphocytes are suppressed by low density lipoproteins (LDL). To understand the mechanism of lymphocyte activation more fully, the PI response and DNA synthesis and suppression of these events by LDL in NAGO-stimulated T lymphocytes were characterized. Between 30 min and 6 hr after NAGO stimulation, there was an increase of 32 Pi incorporation into PI without increased incorporation into the phosphorylated forms of PI or into other phospholipids. DNA synthesis as determined by [ 3 H]thymidine incorporation depended on the lymphocyte-accessory monocyte ratio and total cell density. Optimal stimulation of the PI response and DNA synthesis occurred at the same concentration of neuraminidase and galactose oxidase. While the PI response was only partially suppressed by LDL with optimal suppression at 10 to 20 micrograms of protein/ml, DNA synthesis was completely suppressed although at much higher LDL concentrations, greater than 100 micrograms protein/ml. As monocyte numbers are increased, LDL suppression of DNA synthesis is decreased. The ability of NAGO to stimulate the PI response and DNA synthesis in a similar way, and the suppression of both events by LDL, suggests the PI response is important for lymphocyte activation and proliferation. Stimulation of human T lymphocytes by oxidative mitogens, neuraminidase, and galactose oxidase caused increased phosphatidylinositol metabolism and increased DNA synthesis. Both responses were suppressed by low density lipoproteins

  17. Synthesis and biological activity of M6-P and M6-P analogs on fibroblast and keratinocyte proliferation.

    Science.gov (United States)

    Clavel, Caroline; Barragan-Montero, Véronique; Garric, Xavier; Molès, Jean-Pierre; Montero, Jean-Louis

    2005-09-01

    A new synthetic route to obtain the carboxylate analog of mannose 6-phosphate (M6-P) is presented. The effects of the M6-P, the carboxylate and two other analogs (the phosphonate and the alpha,beta ethylenic carboxylate) on the proliferation of human keratinocytes and dermal fibroblasts as well as on the proliferation of a murine fibroblast cell line, 3T3-J2 are tested. We observed that M6-P is a potent inhibitor of proliferation of both fibroblasts and keratinocytes. Among its analogs, the phosphonate showed a similar effect on human dermal fibroblasts but not on keratinocytes.

  18. Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness.

    Science.gov (United States)

    Todd, J Jay; Fougnie, Daryl; Marois, René

    2005-12-01

    The right temporo-parietal junction (TPJ) is critical for stimulus-driven attention and visual awareness. Here we show that as the visual short-term memory (VSTM) load of a task increases, activity in this region is increasingly suppressed. Correspondingly, increasing VSTM load impairs the ability of subjects to consciously detect the presence of a novel, unexpected object in the visual field. These results not only demonstrate that VSTM load suppresses TPJ activity and induces inattentional blindness, but also offer a plausible neural mechanism for this perceptual deficit: suppression of the stimulus-driven attentional network.

  19. Differences between Solution and Membrane Forms of Chitosan on the In Vitro Activity of Fibroblasts

    Directory of Open Access Journals (Sweden)

    Bahar Uslu

    2015-03-01

    Full Text Available Background: Chitosan, a linear polysaccharide, has been recently used in biomedical applications. In vitro studies have demonstrated its effect on cellular growth and its stimulatory action on cellular layer formation. Aims: The present study aims to compare the proliferative effects of chitosan in two forms, membranous and solution forms, on Swiss 3T3 mouse embryonic fibroblasts. Study Design: In vitro study. Methods: Three experimental groups were formed: cells were cultured in a normal medium without chitosan (Control Group; cells were cultured either in a medium containing 2.0% chitosan in membranous form (Membrane Group or chitosan solution at a concentration of 2.0% (Solution Group.Two different methods were used in the experiments: cells cultured on the medium containing chitosan in solution or membranous forms (method 1; and chitosan solution or membranous forms were added into the medium containing previously cultured cells (method 2. Results: Scanning electron microscopic investigations of the experimental groups revealed cells with well-defined cellular projections, intact cellular membranes and tight intercellular junctions. They were especially prominent in the membrane group of method 1 and in the membrane and solution groups of method 2. Mouse monoclonal anti-collagen 1 primary antibody was used to indicate collagen synthesis. Prominent collagen synthesis was detected in the membrane groups on the 10th day of culture for both methods. Bromodeoxyuridine (BrdU and MTT assays were performed in order to assess cellular proliferation and viability, respectively. BrdU labelling tests indicated a higher proliferation index in the membrane group of method 1 on the 5th and 10th days. For the second method, the membranous form on the 10th day and solution form on the 5th day were the most effective groups in terms of cellular proliferation. MTT results reflected a high cellular viability in method 1 on the 5th day of treatment with the

  20. Fibronectin-synthesizing activity of free and membrane-bound polyribosomes from human embryonic fibroblasts and chick embryos

    International Nuclear Information System (INIS)

    Belkin, V.M.; Volodarskaya, S.M.

    1986-01-01

    The fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied using immunochemical methods. It was found that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts accounts for 4.9% and those from 10-day-old chick embryos for 1.1% of the total amount of newly synthesized proteins, whereas on free polyribosomes it is 1.0 and 0.3%, respectively. Fibronectin monomers with a molecular weight of 220,000 were found only in the material of the cell-free system containing heavy fractions of membrane-bound polyribosomes newly synthesized in the presence of spermidine. Thus, it was shown that fibronectin is synthesized primarily on membrane-bound polyribosomes

  1. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation

    Science.gov (United States)

    Jiao, Delong; Wong, Chun-Kwok; Qiu, Huai-Na; Dong, Jie; Cai, Zhe; Chu, Man; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil–fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD. PMID:26388234

  2. Chemical Composition of Moringa oleifera Ethyl Acetate Fraction and Its Biological Activity in Diabetic Human Dermal Fibroblasts

    Science.gov (United States)

    Gothai, Sivapragasam; Muniandy, Katyakyini; Zarin, Mazni Abu; Sean, Tan Woan; Kumar, S. Suresh; Munusamy, Murugan A.; Fakurazi, Sharida; Arulselvan, Palanisamy

    2017-01-01

    Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction. SUMMARY Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as

  3. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.

    Science.gov (United States)

    Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-02-19

    Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22

  4. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production.

    Science.gov (United States)

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages.

  5. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Aaron C-H Chen

    Full Text Available Despite over forty years of investigation on low-level light therapy (LLLT, the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear.In this study, we isolated murine embryonic fibroblasts (MEF from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm(2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration.We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT.

  6. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  7. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  8. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    Science.gov (United States)

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  9. Comparison of the effect of activated or non-activated PRP in various concentrations on osteoblast and fibroblast cell line proliferation.

    Science.gov (United States)

    Vahabi, Surena; Yadegari, Zahra; Mohammad-Rahimi, Hossein

    2017-09-01

    Platelet-rich plasma (PRP) contains growth factors which positively affect cell proliferation, cell differentiation, chemotaxis and intracellular matrix synthesis. All these processes are involved in wound healing and tissue regeneration; thus, PRP as a source of growth factors can be used in periodontal regenerative therapies. The purpose of the present study was to assess the effect of various concentrations of activated and non-activated PRP on proliferation of osteoblasts and fibroblasts in vitro. PRP was obtained from three healthy volunteers. 75, 50, 25, and 10% concentrations of f PRP were prepared by dilution in Dulbecco's modified Eagle's medium. In activated PRP groups, PRP concentrations were activated by adding calcium gluconate. Human gingival fibroblast (HGF) cell line and MG-63 (osteosarcoma) human osteoblast-like cell line were used in the study. The MTT proliferation assay was used to assess the effect of different types of PRP concentrates on proliferation of HGF and MG-63 cells, in 24, 48 and 72 h. After 24, 48, and 72 h, the proliferation rate of both cell lines was higher in the positive control group, except in 72 h in HGF cell lines, that 10% non-activated PRP group and 10 and 25% activated PRP groups has higher proliferation rate than the positive control group, which it was not significant. Proliferation rate in cells with 10% activated PRP was highest among samples containing PRP. The current study failed to show the significant effect of activated or non-activated PRP on proliferation of HGFs or MG-63 osteoblast-like cells. However, our results showed that activated PRP had a greater effect than non-activated PRP.

  10. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  11. Active vertical tail buffeting suppression based on macro fiber composites

    Science.gov (United States)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  12. Extinction cross-section suppression and active acoustic invisibility cloaking

    Science.gov (United States)

    Mitri, F. G.

    2017-10-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.

  13. Extinction cross-section suppression and active acoustic invisibility cloaking

    International Nuclear Information System (INIS)

    Mitri, F G

    2017-01-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility. (letter)

  14. The polypeptide in Chlamys farreri can protect human dermal fibroblasts from ultraviolet B damage

    Science.gov (United States)

    Zhang, Yujiang; Zhan, Songmei; Cao, Pengli; Liu, Ning; Chen, Xuehong; Wang, Yuejun; Wang, Chunbo

    2005-09-01

    To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25% 1%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant proerty.

  15. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    Science.gov (United States)

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  16. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kurabayashi, Masahiko, E-mail: mkuraba@med.gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan)

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  17. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    Directory of Open Access Journals (Sweden)

    Dinender Singla

    2016-01-01

    Full Text Available We hypothesized that fibroblast growth factor-9 (FGF-9 would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p<0.05. Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p<0.05. Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p<0.05. Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p<0.05. Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.

  18. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future.

    Science.gov (United States)

    Hobson, Hannah M; Bishop, Dorothy V M

    2017-03-01

    Mu suppression studies have been widely used to infer the activity of the human mirror neuron system (MNS) in a number of processes, ranging from action understanding, language, empathy and the development of autism spectrum disorders (ASDs). Although mu suppression is enjoying a resurgence of interest, it has a long history. This review aimed to revisit mu's past, and examine its recent use to investigate MNS involvement in language, social processes and ASDs. Mu suppression studies have largely failed to produce robust evidence for the role of the MNS in these domains. Several key potential shortcomings with the use and interpretation of mu suppression, documented in the older literature and highlighted by more recent reports, are explored here.

  19. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  20. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    Science.gov (United States)

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  1. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    NARCIS (Netherlands)

    Heida, Tjitske; Zhao, Yan; van Wezel, Richard Jack Anton

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly

  2. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  3. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Science.gov (United States)

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  4. Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β.

    Science.gov (United States)

    Rawal, S Y; Dabbous, M Kh; Tipton, D A

    2012-06-01

    Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity. © 2011 John Wiley & Sons A/S.

  5. Development of Active Flutter Suppression Wind Tunnel Testing Technology

    Science.gov (United States)

    1975-01-01

    inch stainless steel precision haft ng out to the aileron surfaces. Torque was then transmitted aft through another crank-pushrod linkage...NMMltetiM Clllir llllisi Sl> ptT »I»" CmrN StiiiH tli!ii<ti> »ir|wu ŗK kUfej •*! AFFDL-TR-74-126 o 00 DEVELOPMENT OF ACTIVE FLUTTER...Installations . . 28 14. Outboard Aileron Installation 30 15. Airplane FMCS Block Diagram 35 16. Model FMCS Block Diagram 36 17. Model FMCS

  6. Mechanism of suppression of normal hemopoietic activity by lymphokine-activated killer cells and their products

    International Nuclear Information System (INIS)

    Gibson, F.M.; Malkovska, V.; Myint, A.A.; Meager, A.; Gordon-Smith, E.C.

    1991-01-01

    Interleukin 2 (IL-2)-activated lymphocytes (lymphokine-activated killer [LAK] cells) have been shown to inhibit the formation of autologous human granulocyte-macrophage hemopoietic progenitors (granulocyte-macrophage colony-forming units, CFU-GM) in vitro. Effects of LAK cells on these progenitors may include a number of different mechanisms. LAK cells are potent cytotoxic lymphocytes capable of lysing certain normal autologous cells. They also produce cytokines known to inhibit hemopoiesis (interferon gamma [IFN-gamma] and tumor necrosis factor alpha [TNF-alpha]) or enhance it (granulocyte-macrophage colony-stimulating factor, GM-CSF). In the authors' current study they analyzed the mechanism of suppression of autologous CFU-GM by LAK cells. Their results suggest that LAK cells are not directly cytotoxic to normal CFU-GM. They show that it is possible to abolish the hemopoiesis-inhibiting activity of LAK cells without abrogating their cytotoxicity against tumor cell lines using inhibitors of DNA synthesis, namely hydroxyurea or irradiation

  7. Enhanced Dupuytren's disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-β2

    Directory of Open Access Journals (Sweden)

    Howard Jeffrey

    2004-11-01

    Full Text Available Abstract Background Dupuytren's disease (DD is a debilitating fibro-proliferative disorder of the hand characterized by the appearance of fibrotic lesions (nodules and cords leading to flexion contractures of the fingers and loss of hand function. Although the molecular mechanism of DD is unknown, it has been suggested that transforming growth factor-β2 (TGF-β2 may play an important role in the underlying patho-physiology of the disease. The purpose of this study was to further explore this hypothesis by examining the effects of TGF-β2 on primary cell cultures derived from patient-matched disease and normal palmar fascia tissue using a three-dimensional collagen contraction assay. Methods Fibroblast-populated collagen lattice (FPCL contraction assays using primary cell cultures derived from diseased and control fascia of the same DD patients were studied in response to exogenous TGF-β2 and neutralizing anti-TGF-β2 antibodies. Results Contraction of the FPCLs occurred significantly faster and to a greater extent in disease cells compared to control cells. The addition of TGF-β2 enhanced the rate and degree of collagen contraction in a dose-dependent fashion for both control and diseased cells. Neutralizing anti-TGF-β2 antibodies abolished exogenous TGF-β2 stimulated collagen contraction, but did not inhibit the enhanced basal collagen contraction activity of disease FPCL cultures. Conclusions Although exogenous TGF-β2 stimulated both disease and control FPCL contraction, neutralizing anti-TGF-β2 antibodies did not affect the elevated basal collagen contraction activity of disease FPCLs, suggesting that the differences in the collagen contraction activity of control and disease FPCL cultures are not due to differences in the levels of endogenous TGF-β2 activity.

  8. How to inhibit a distractor location? Statistical learning versus active, top-down suppression.

    Science.gov (United States)

    Wang, Benchi; Theeuwes, Jan

    2018-05-01

    Recently, Wang and Theeuwes (Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13-17, 2018a) demonstrated the role of lingering selection biases in an additional singleton search task in which the distractor singleton appeared much more often in one location than in all other locations. For this location, there was less capture and selection efficiency was reduced. It was argued that statistical learning induces plasticity within the spatial priority map such that particular locations that are high likely to contain a distractor are suppressed relative to all other locations. The current study replicated these findings regarding statistical learning (Experiment 1) and investigated whether similar effects can be obtained by cueing the distractor location in a top-down way on a trial-by-trial basis. The results show that top-down cueing of the distractor location with long (1,500 ms; Experiment 2) and short stimulus-onset symmetries (SOAs) (600 ms; Experiment 3) does not result in suppression: The amount of capture nor the efficiency of selection was affected by the cue. If anything, we found an attentional benefit (instead of the suppression) for the short SOA. We argue that through statistical learning, weights within the attentional priority map are changed such that one location containing a salient distractor is suppressed relative to all other locations. Our cueing experiments show that this effect cannot be accomplished by active, top-down suppression. Consequences for recent theories of distractor suppression are discussed.

  9. Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I.

    Science.gov (United States)

    Li, Hongwei; Yang, Liu; Zhang, Yuebing; Gao, Zhigang

    2016-10-01

    Hypertrophic scar (HPS) formation is a debilitating condition that results in pain, esthetic symptom and loss of tissue function. So far, no satisfactory therapeutic approach has been available for HPS treatment. In this study, we discovered that a natural small molecule, kaempferol, could significantly inhibit HPS formation in a mechanical load-induced mouse model. Our results also demonstrated that kaempferol remarkably attenuated collagen synthesis, proliferation and activation of fibroblasts in vitro and in vivo. Western blot analysis further revealed that kaempferol significantly down-regulated Smad2 and Smad3 phosphorylation in a dose-dependent manner. At last, we found that such bioactivity of kaempferol which resulted from the inhibition of TGF-β1/Smads signaling was induced by the selective binding of kaempferol to TGF-β receptor type I (TGFβRI). These findings suggest that kaempferol could be developed into a promising agent for the treatment of HPS or other fibroproliferative disorders. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Suppression of leukocyte inhibitory factor (LIF) production and [3H]thymidine incorporation by concanavalin A-activated mononuclear cells

    International Nuclear Information System (INIS)

    Lomnitzer, R.; Rabson, A.R.

    1979-01-01

    The capacity of human mononuclear (MN) cells pretreated with concanavalin A (Con A) to suppress the activity of fresh phytohemagglutinin (PHA)-pulsed mononuclear cells was assessed. Con A-pretreated MN cells suppressed leukocyte inhibitory factor (LIF) activity in supernatants of PHA-pulsed cell cultures and [ 3 H]thymidine incorporation by these cells. Suppression was obtained in both allogeneic and autologous systems with mitomycin-treated, irradiated, or untreated Con A-induced cells. Lymphocytes from two patients that, following treatment with Con A, did not suppress mitogen-induced proliferative response of normal cells also did not suppress LIF production

  11. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  13. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  14. Effects of budesonide and formoterol on eosinophil activation induced by human lung fibroblasts

    NARCIS (Netherlands)

    Spoelstra, FM; Kauffman, HF; Hovenga, H; Noordhoek, JA; de Monchy, JGR; Postma, DS

    2000-01-01

    Budesonide and formoterol are extensively used in current asthma therapy. Budesonide is known as potent antiinflammatory agent and formoterol also appears to have some antiinflammatory properties. We investigated inhibitory effects of these drugs on eosinophil activation in vitro as induced by

  15. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer.

    Directory of Open Access Journals (Sweden)

    Lisa Salazar

    Full Text Available Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1. Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3 tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.

  16. Fibroblast Activation Protein-Alpha, a Serine Protease that Facilitates Metastasis by Modification of Diverse Microenvironments

    Science.gov (United States)

    2011-10-01

    diabetes and hematopoietic stem cell engraftment [21]. Sitagliptin is a DPPIV inhibitor already approved for type 2 diabetes because it has...activation protein (FAP) in hepatitis C virus infection. Adv Exp Med Biol 524:235–243 12. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM...kb ( Abbott et al., 1994). Three different splice variants of FAP have been observed in mouse embryonic tissues, with all three predicted to encode

  17. Telomerase Activity in Chicken EmbryoFibroblast Cell Cultures Infected withMarek's Disease Virus

    Directory of Open Access Journals (Sweden)

    Gregory A. Tannock

    2010-07-01

    Full Text Available Background:Telomerase is a ribonucleoprotein, which adds telomeric repeats onto the 3’end of existing telomers at the end of chromosomes ineukaryotes. One hypothesis states that telomere length may function as a mitoticclock, therefore expression of telomerase activity in cancer cells may be a necessary and essential step for tumor development and progression.Methods:The detectability of telomerase activity in chicken embryofibroblast (CEF cells infected with different passages of Marek's disease virus(MDV was tested with the TRAPEZE® telomerase detection kit at passages14 (P14, P80/1 and P120 for the Woodland strain, and passage 9 (P9 for theMPF57 strain. Results:The results showed increased telomerase activity in MDV Woodlands strain at P14 and MPF57 strain at P9. Conclusion:Our results suggest that MDV-transformed cells at low passage are a suitable system for the study of telomerases in tumor developmentand for testing telomerase-inhibiting drugs.

  18. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  19. The oncoprotein gankyrin interacts with RelA and suppresses NF-κB activity

    International Nuclear Information System (INIS)

    Higashitsuji, Hiroaki; Higashitsuji, Hisako; Liu, Yu; Masuda, Tomoko; Fujita, Takanori; Abdel-Aziz, H. Ismail; Kongkham, Supranee; Dawson, Simon; John Mayer, R.; Itoh, Yoshito; Sakurai, Toshiharu; Itoh, Katsuhiko; Fujita, Jun

    2007-01-01

    Gankyrin is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It interacts with multiple proteins and accelerates degradation of tumor suppressors Rb and p53. Since gankyrin consists of 7 ankyrin repeats and is structurally similar to IκBs, we investigated its interaction with NF-κB. We found that gankyrin directly binds to RelA. In HeLa and 293 cells, overexpression of gankyrin suppressed the basal as well as TNFα-induced transcriptional activity of NF-κB, whereas down-regulation of gankyrin increased it. Gankyrin did not affect the NF-κB DNA-binding activity or nuclear translocation of RelA induced by TNFα in these cells. Leptomycin B that inhibits nuclear export of RelA suppressed the NF-κB activity, which was further suppressed by gankyrin. The inhibitory effect of gankyrin was abrogated by nicotinamide as well as down-regulation of SIRT1, a class III histone deacetylase. Thus, gankyrin binds to NF-κB and suppresses its activity at the transcription level by modulating acetylation via SIRT1

  20. Persistent suppression of subthalamic beta-band activity during rhythmic finger tapping in Parkinson's disease.

    Science.gov (United States)

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2013-03-01

    The function of synchronous oscillatory activity at beta band (15-30Hz) frequencies within the basal ganglia is unclear. Here we sought support for the hypothesis that beta activity has a global function within the basal ganglia and is not directly involved in the coding of specific biomechanical parameters of movement. We recorded local field potential activity from the subthalamic nuclei of 11 patients with Parkinson's disease during a synchronized tapping task at three different externally cued rates. Beta activity was suppressed during tapping, reaching a minimum that differed little across the different tapping rates despite an increase in velocity of finger movements. Thus beta power suppression was independent of specific motor parameters. Moreover, although beta oscillations remained suppressed during all tapping rates, periods of resynchronization between taps were markedly attenuated during high rate tapping. As such, a beta rebound above baseline between taps at the lower rates was absent at the high rate. Our results demonstrate that beta desynchronization in the region of the subthalamic nucleus is independent of motor parameters and that the beta resynchronization is differentially modulated by rate of finger tapping, These findings implicate consistent beta suppression in the facilitation of continuous movement sequences. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  2. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  3. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  4. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  5. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  6. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (-)-isolongifolene.

    Science.gov (United States)

    Sakata, Kazuki; Oda, Yoshimitsu; Miyazawa, Mitsuo

    2010-02-24

    In this study, biotransformation of (-)-isolongifolene (1) by Glomerella cingulata and suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B(1) (AFB(1)) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, 1 was carried out the microbial transformation by G. cingulata. The result found that 1 was converted into (-)-isolongifolen-9-one (2), (-)-(2S)-13-hydroxy-isolongifolen-9-one (3), and (-)-(4R)-4-hydroxy-isolongifolen-9-one (4) by G. cingulata, and their conversion rates were 60, 25, and 15%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB(1) in the umu test. Comound 2 showed gene expression by chemical mutagens furylfuramide and AFB(1) was suppressed 54 and 50% at <0.5 mM, respectively. Compound 2 is the most effective compound in this experiment.

  7. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    Science.gov (United States)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  8. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Directory of Open Access Journals (Sweden)

    Devyn D Gilette

    2014-04-01

    Full Text Available Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.

  9. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  11. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  12. Suppression of resistive wall instabilities with distributed, independently controlled, active feedback coils

    International Nuclear Information System (INIS)

    Cates, C.; Shilov, M.; Mauel, M. E.; Navratil, G. A.; Maurer, D.; Mukherjee, S.; Nadle, D.; Bialek, J.; Boozer, A.

    2000-01-01

    External kink instabilities are suppressed in a tokamak experiment by either (1) energizing a distributed array of independently controlled active feedback coils mounted outside a segmented resistive wall or (2) inserting a second segmented wall having much higher electrical conductivity. When the active feedback coils are off and the highly conducting wall is withdrawn, kink instabilities excited by plasma current gradients grow at a rate comparable to the magnetic diffusion rate of the resistive wall. (c) 2000 American Institute of Physics

  13. Use of [1,2-3 h] testosterone in 5 α- reductase enzymatic activity dosing in dermal fibroblast cultures from polycystic ovarian patients

    International Nuclear Information System (INIS)

    Matei, Lidia; Postolache, Cristian; Condac, Eduard

    2003-01-01

    Polycystic ovarian syndrome is an endocrine malady very frequent in women characterized by the presence of ovarian cysts, visible or not by ultrasonography, menstrual cycle deregulation and sometimes by high plasmatic concentrations of androgen hormones. Many cases of polycystic syndrome could not be easily diagnosed or had an erroneous diagnostic. Therefore, is useful to know the plasmatic androgen hormone profile. This profile could indicate the cause for observed clinical manifestations; this cause may be observed in ovarian, suprarenal glands or hypothalamo-hypophysis level. In vitro studies on dermal fibroblasts permit the detail determination of steroid hormones metabolism in target organs and offer important information regarding action mechanism. This study follows the identification of testosterone metabolites in fibroblasts and enzymatic activities of 5α-reductase using testosterone radioactively labeled with tritium. (authors)

  14. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  15. Radio-induced superficial fibrosis: investigation of the activation mechanisms of the myo-fibroblast and characterization of the cicatricial epidermis

    International Nuclear Information System (INIS)

    Sivan, Virginie

    2001-01-01

    Whereas radio-induced cutaneous fibrosis is one of the frequent after-effects of accidental and therapeutic irradiations, this research thesis addresses the mechanisms which govern the activation of the myo-fibroblast. After some results obtained on cells from a radio-induced fibrosis on swine cells, the author proposes a signalling alteration as a mechanism. In a model a reconstructed skin, the author shows that myo-fibroblasts are a direct target of Superoxide Dismutase (SOD), and respond to this anti-fibrosis agent by a phenotype reversion. She reports the molecular characterization of epidermis of fibro-necrosis human lesions induced by an accidental or therapeutic irradiation. This leads to a better understanding of the role of the myo-fibroblast during the development and regression of fibrosis. Besides, the author shows that an alteration of the epidermis adjacent to dermis is developing in parallel with the fibrosis process. This suggests an active contribution of keratinocytes during the development of this radio-induced after-effect [fr

  16. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis

    Science.gov (United States)

    Sieghart, Daniela; Liszt, Melissa; Wanivenhaus, Axel; Bröll, Hans; Kiener, Hans; Klösch, Burkhard; Steiner, Günter

    2015-01-01

    Balneotherapy employing sulphurous thermal water is still applied to patients suffering from diseases of musculoskeletal system like osteoarthritis (OA) but evidence for its clinical effectiveness is scarce. Since the gasotransmitter hydrogen sulphide (H2S) seems to affect cells involved in degenerative joint diseases, it was the objective of this study to investigate the effects of exogenous H2S on fibroblast-like synoviocytes (FLS), which are key players in OA pathogenesis being capable of producing pro-inflammatory cytokines and matrix degrading enzymes. To address this issue primary FLS derived from OA patients were stimulated with IL-1β and treated with the H2S donor NaHS. Cellular responses were analysed by ELISA, quantitative real-time PCR, phospho-MAPkinase array and Western blotting. Treatment-induced effects on cellular structure and synovial architecture were investigated in three-dimensional extracellular matrix micromasses. NaHS treatment reduced both spontaneous and IL-1β-induced secretion of IL-6, IL-8 and RANTES in different experimental settings. In addition, NaHS treatment reduced the expression of matrix metallo-proteinases MMP-2 and MMP-14. IL-1β induced the phosphorylation of several MAPkinases. NaHS treatment partially reduced IL-1β-induced activation of several MAPK whereas it increased phosphorylation of pro-survival factor Akt1/2. When cultured in spherical micromasses, FLS intentionally established a synovial lining layer-like structure; stimulation with IL-1β altered the architecture of micromasses leading to hyperplasia of the lining layer which was completely inhibited by concomitant exposure to NaHS. These data suggest that H2S partially antagonizes IL-1β stimulation via selective manipulation of the MAPkinase and the PI3K/Akt pathways which may encourage development of novel drugs for treatment of OA. PMID:25312962

  17. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    Science.gov (United States)

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  18. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  19. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  20. Activity of ethanolic extracts leaves of Machaerium floribundum against acne-inducing bacteria, and their cytoprotective and antioxidant effects on fibroblast

    Directory of Open Access Journals (Sweden)

    Lorena Díaz

    2011-08-01

    Full Text Available Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus have been recognized as the bacteria that are involved in the inflammatory process of acne, while oxidants and antioxidants are involved in the repair of cutaneous tissue affected. In this study an evaluation was made of the antibacterial effect by the agar diffusion and broth dilution method, the cytoprotective and antioxidant effect on 3T3 dermic fibroblast cells, treated with hydrogen peroxide and the scavenging capacity of free radicals was determined by the 2, 2-diphenyl-l-picrylhydrazyl (DPPH method as well as the Reducing Power of the ethanolic extracts of the leaves of the Machaerium floribundum. Minimal bactericidal concentrations (MBC were obtained against Propionibacterium acnes and Staphylococcus aureus of 5 mg/mL and 2 mg/mL, respectively. A cytoprotective effect of 111% was observed over the cellular viability of the fibroblasts at 10 μg/mL and an antioxidant effect of 92% over the viability of the fibroblasts treated with hydrogen peroxide at 25 μg/mL. A stimulation of 24% growth of fibroblasts at 50 μg/mL was evidenced. On the other hand a 93% scavenging activity of the DPPH free radical was shown for 100 μg/mL with a CI50 of 34 μg/mL. The reducing power was evidenced to be dependent on the concentration. The results obtained indicated that the ethanolic extract of Machaerium floribundum shows a good antibacterial activity against bacteria that induce acne and a high potential for scavenging of free radicals at relatively low concentrations.

  1. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E; Marchand-Pauvert, Veronique

    2001-01-01

    1. The involvement of the motor cortex during human walking was evaluated using transcranial magnetic stimulation (TMS) of the motor cortex at a variety of intensities. Recordings of EMG activity in tibialis anterior (TA) and soleus muscles during walking were rectified and averaged. 2. TMS of low...... intensity (below threshold for a motor-evoked potential, MEP) produced a suppression of ongoing EMG activity during walking. The average latency for this suppression was 40.0 +/- 1.0 ms. At slightly higher intensities of stimulation there was a facilitation of the EMG activity with an average latency of 29.......5 +/- 1.0 ms. As the intensity of the stimulation was increased the facilitation increased in size and eventually a MEP was clear in individual sweeps. 3. In three subjects TMS was replaced by electrical stimulation over the motor cortex. Just below MEP threshold there was a clear facilitation at short...

  2. [From gene to disease; achondroplasia and other skeletal dysplasias due to an activating mutation in the fibroblast growth factor

    NARCIS (Netherlands)

    Ravenswaaij-Arts, C.M.A. van; Losekoot, M.

    2001-01-01

    Achondroplasia, the most common and best known skeletal dysplasia, is inherited in an autosomal dominant fashion. Like a number of other skeletal dysplasias, among which hypochondroplasia and thanatophoric dysplasia, achondroplasia is caused by mutations in the fibroblast growth factor receptor 3

  3. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Nicole M., E-mail: nicolegardner@creighton.edu [Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178 (United States); Riley, Ronald T.; Showker, Jency L.; Voss, Kenneth A. [USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605 (United States); Sachs, Andrew J.; Maddox, Joyce R.; Gelineau-van Waes, Janee B. [Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178 (United States)

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. - Highlights: • FB1 treatment results in accumulation of Sa1P primarily in the nucleus of MEFs. • FB1 treatment and elevated nuclear Sa1P are associated with HDAC inhibition. • Sphk2 inhibition alone

  4. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Gardner, Nicole M.; Riley, Ronald T.; Showker, Jency L.; Voss, Kenneth A.; Sachs, Andrew J.; Maddox, Joyce R.; Gelineau-van Waes, Janee B.

    2016-01-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. - Highlights: • FB1 treatment results in accumulation of Sa1P primarily in the nucleus of MEFs. • FB1 treatment and elevated nuclear Sa1P are associated with HDAC inhibition. • Sphk2 inhibition alone

  5. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes.

    Science.gov (United States)

    Steinhagen, Folkert; Zillinger, Thomas; Peukert, Konrad; Fox, Mario; Thudium, Marcus; Barchet, Winfried; Putensen, Christian; Klinman, Dennis; Latz, Eicke; Bode, Christian

    2018-04-01

    Type I interferon (IFN) is a critical mediator of autoimmune diseases such as systemic lupus erythematosus (SLE) and Aicardi-Goutières Syndrome (AGS). The recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of type I IFN in response to cytosolic DNA and is potentially linked to SLE and AGS. Suppressive oligodeoxynucleotides (ODN) containing repetitive TTAGGG motifs present in mammalian telomeres have proven useful in the treatment of autoimmune diseases including SLE. In this study, we demonstrate that the suppressive ODN A151 effectively inhibits activation of cGAS in response to cytosolic DNA, thereby inhibiting type I IFN production by human monocytes. In addition, A151 abrogated cGAS activation in response to endogenous accumulation of DNA using TREX1-deficient monocytes. We demonstrate that A151 prevents cGAS activation in a manner that is competitive with DNA. This suppressive activity of A151 was dependent on both telomeric sequence and phosphorothioate backbone. To our knowledge this report presents the first cGAS inhibitor capable of blocking self-DNA. Collectively, these findings might lead to the development of new therapeutics against IFN-driven pathologies due to cGAS activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  7. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    International Nuclear Information System (INIS)

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F.; Poumay, Yves

    2007-01-01

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity

  8. Sipi soup inhibits cancer‑associated fibroblast activation and the inflammatory process by downregulating long non‑coding RNA HIPK1‑AS.

    Science.gov (United States)

    Zhou, Bingxiu; Yu, Yuanyuan; Yu, Lixia; Que, Binfu; Qiu, Rui

    2018-06-06

    Sipi soup (SPS), the aqueous extract derived from the root bark of Sophora japonical L, Salix babylonica L., Morus alba L., as well as Amygdalus davidiana (Carr.) C. de Vos, is a traditional Chinese medicine frequently used to prevent and treat infection and inflammation. However, the role of SPS in cancer‑associated fibroblasts (CAFs) require further investigation. In the present study, the effects of SPS on fibroblast inactivation and the underlying mechanism were investigated. Reverse transcription‑quantitative polymerase chain reaction was used to analyze the mRNA expression levels of fibroblast activation protein (FAP), interleukin (IL)‑6, α‑smooth muscle actin (α‑SMA) and programmed cell death 4 (PDCD4). Flow cytometry was used to evaluate cell apoptosis. Immunofluorescence was used to determine the number of activated fibroblasts. The present study reported that SPS treatment did not affect the proliferative apoptotic potential of fibroblasts. Treatment with HeLa cell culture medium (CM) induced a significant increase in the expression levels of FAP, IL‑6 and α‑SMA, but reduced the expression of PDCD4. SPS reversed the effects of HeLa CM on the expression of these genes. Analysis with a long non‑coding (lnc)RNA array of numerous differentially expressed lncRNAs revealed that the expression levels of the lncRNA homeodomain‑interacting protein kinase 1 antisense RNA (HIPK1‑AS) were increased in cervicitis tissues and cervical squamous cell carcinoma tissues compared with in normal cervical tissues. HIPK1‑AS expression levels were upregulated in response to HeLa CM, but were decreased under SPS treatment. The downregulation of HIPK1‑AS expression via short hairpin RNA abolished the effects of HeLa CM on the expression of inflammation‑associated genes. The findings of the present study suggested that SPS may prevent the progression of cervical cancer by inhibiting the activation of CAF and the inflammatory process by reducing HIPK1

  9. Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts

    International Nuclear Information System (INIS)

    Hu, Fen; Hui, Zhenhai; Wei, Wei; Yang, Jianyu; Chen, Ziyuan; Guo, Bu; Xing, Fulin; Zhang, Xinzheng; Pan, Leiting; Xu, Jingjun

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune-disease with complex and unclear etiology. Hypotonicity of synovial fluid is a typical characteristic of RA, which may play pivotal roles in RA pathogenesis. In this work, we studied the responses of RA synovial fibroblasts to hypotonic stress in vitro and further explored the underlying mechanisms. Data showed that hyposmotic solutions significantly triggered increases in cytosolic calcium concentration ([Ca 2+ ] c ) of synoviocytes. Subsequently, it caused rapid release of ATP, as well as remarkable production of intracellular reactive oxygen species (ROS). Meanwhile, hypotonic stimulus promoted the proliferation of synovial fibroblasts. These effects were almost abolished by calcium-free buffer and significantly inhibited by gadolinium (III) chloride (a mechanosensitive Ca 2+ channel blocker) and ruthenium red (a transient receptor potential vanilloid 4 (TRPV4) blocker). 4α-phorbol 12,13-didecanoate, a specific agonist of TRPV4, also mimicked hypotonic shock-induced responses shown above. In contrast, voltage-gated channel inhibitors verapamil and nifedipine had little influences on these responses. Furthermore, RT-PCR and western blotting evidently detected TRPV4 expression at mRNA and protein level in isolated synoviocytes. Taken together, our results indicated that hypotonic stimulus resulted in ATP release, ROS production, and cell proliferation depending on Ca 2+ entry through activation of TRPV4 channel in synoviocytes. - Highlights: • Hypotonic stress evokes Ca 2+ entry in rheumatoid arthritis synovial fibroblasts. • Hypotonic stress induces rapid ATP release and ROS production in synoviocytes. • Hypotonic stimulation promotes the proliferation of synovial fibroblasts. • TRPV4 controls hypotonic-induced responses in synoviocytes.

  10. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  11. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    Science.gov (United States)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  12. Relative left frontal activity in reappraisal and suppression of negative emotion: Evidence from frontal alpha asymmetry (FAA).

    Science.gov (United States)

    Choi, Damee; Sekiya, Takahiro; Minote, Natsumi; Watanuki, Shigeki

    2016-11-01

    Previous studies have shown that reappraisal (changing the way that one thinks about emotional events) is an effective strategy for regulating emotion, compared with suppression (reducing emotion-expressive behavior). In the present study, we investigated relative left frontal activity when participants were instructed to use reappraisal and suppression of negative emotion, by measuring frontal alpha asymmetry (FAA). Two electroencephalography (EEG) experiments were conducted; FAA was analyzed while 102 healthy participants (59 men, 43 women) watched negative images after being instructed to perform reappraisal (Experiment 1) and suppression (Experiment 2). Habitual use of reappraisal and suppression was also assessed using the emotion regulation questionnaire (ERQ). The results of Experiment 1 showed that relative left frontal activity was greater when instructed to use reappraisal of negative images than when normally viewing negative images. In contrast, we observed no difference between conditions of instructed suppression and normal viewing in Experiment 2. In addition, in male participants, habitual use of reappraisal was positively correlated with increased relative left frontal activity for instructed reappraisal, while habitual use of suppression did not show a significant correlation with changes in relative left frontal activity for instructed suppression. These results suggest that emotional responses to negative images might be decreased for instructed reappraisal, but not suppression. These findings support previous reports that reappraisal is an effective emotion regulation strategy, compared with suppression. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Anti-proliferative effect of olmesartan on Tenon's capsule fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-05-01

    Full Text Available AIM: To evaluate the inhibitive effect of olmesartan to fibroblast proliferation and the anti-scarring effect in Tenon’s capsule, both in vitro and in vivo. METHODS: Human primary Tenon’s capsule fibroblasts were cultured in vitro, treated with up titrating concentrations of olmesartan. The rate of inhibition was tested with methyl thiazol tetrazolium (MTT method. Real-time PCR was performed to analyze changes in mRNA expressions of the fibrosis-related factors: matrix metalloproteinase-2 (MMP-2, tissue inhibitor of metalloproteinase (TIMP-1,2 and proliferating cell nuclear antigen (PCNA. Thirty rabbits were divided into 5 groups (3, 7, 14, 21, and 28d. A rabbit conjunctiva flap model was created in each eye. Olmesartan solution was injected subconjunctivally and then evaluated its anti-proliferation and anti-fibrosis effects through the histological morphology and immunohistochemistry of MMP-2 and PCNA in each group. Only the 7d group was treated with Masson’s trichrome to compare the neovascularization in the subconjunctiva area. RESULTS: In vitro, cultured Tenon's capsule human fibroblasts showed a dose dependent inhibition by olmesartan in MTT. Olmesartan reduced mRNA expressions of MMP-2 and PCNA but increased mRNA expressions of TIMP-1 and TIMP-2. In vivo, the rabbit eyes treated with olmesartan at 3rd, 7th, 14th and 21st days demonstrated a significant reduced expressions of MMP-2 and PCNA compared with control eye, no significant difference observed in 28th day group. The cellular proliferation and neovascularization was suppressed by olmesartan in Masson’s trichrome observation. CONCLUSION: By inhibiting fibroblasts in vitro and in vivo, olmesartan prevents the proliferation and activity of fibroblasts in scar tissue formation, which might benefit glaucoma filtering surgery.

  14. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  15. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.

    Directory of Open Access Journals (Sweden)

    Christian Lacks Lino Cardenas

    Full Text Available As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF, remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls. In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that

  16. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    Science.gov (United States)

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights

  17. Role of Active Listening and Listening Effort on Contralateral Suppression of Transient Evoked Otoacousic Emissions

    OpenAIRE

    Kalaiah, Mohan Kumar; Theruvan, Nikhitha B; Kumar, Kaushlendra; Bhat, Jayashree S

    2017-01-01

    Background and Objectives The present study aimed to investigate the effect of active listening and listening effort on the contralateral suppression of transient evoked otoacoustic emissions (CSTEOAEs). Subjects and Methods Twenty eight young adults participated in the study. Transient evoked otoacoustic emissions (TEOAEs) were recorded using ?linear? clicks at 60 dB peSPL, in three contralateral noise conditions. In condition 1, TEOAEs were obtained in the presence of white noise in the con...

  18. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  19. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Apparent suppression of MMP-9 activity by GD1a as determined by gelatin zymography.

    Science.gov (United States)

    Hu, Dan; Tan, Xuan; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2006-10-13

    Gelatin zymography is widely used to detect and evaluate matrix metalloproteinase-9 (MMP-9) activity. MMP-9 transcription was previously shown to be negatively regulated by ganglioside GD1a [D. Hu, Z. Man, T. Xuan, P. Wang, T. Takaku, S. Hyuga, X.S. Yao, T. Sato, S. Yamagata, T. Yamagata, Ganglioside GD1a regulation of matrix metalloproteinase-9 (MMP-9) expression in mouse FBJ cell Lines: GD1a suppression of MMP-9 expression stimulated by PI3K-Akt and p38 though not by the Erk signaling pathway, 2006, submitted for publication.]. Zymography of MMP-9 of FBJ-M5 cells preincubated with GD1a indicated a greater decrease in activity than expected from mRNA suppression. Incubation of conditioned medium containing MMP-9 with GD1a caused MMP-9 activity to decrease. Examination was thus made to confirm that MMP-9 activity is actually suppressed and/or MMP-9 protein undergoes degradation by GD1a. GD1a was found to have no effect on MMP-9 activity and Western blots indicated GD1a not to diminish MMP-9 during electrophoresis under reducing conditions. GD1a appeared to mediate the binding of a portion of MMP-9 with certain molecules, with consequently greater molecular mass on the gel, to cause decrease in the activity of MMP-9 at the site where it would normally appear. Caution should be used in doing gelatin zymography since molecules other than GD1a may similarly work, causing decrease in MMP-9 activity in zymography.

  1. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  2. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  3. Aqueous extract of Arbutus unedo inhibits STAT1 activation in human breast cancer cell line MDA-MB-231 and human fibroblasts through SHP2 activation.

    Science.gov (United States)

    Mariotto, S; Ciampa, A R; de Prati, A Carcereri; Darra, E; Vincenzi, S; Sega, M; Cavalieri, E; Shoji, K; Suzuki, H

    2008-05-01

    Arbutus unedo L. has been for a long time employed in traditional and popular medicine as an astringent, diuretic, urinary anti-septic, and more recently, in the therapy of hypertension and diabetes. Signal transducer and activator of transcription 1 (STAT1) is a fascinating and complex protein with multiple yet contrasting transcriptional functions. Although activation of this nuclear factor is finely regulated in order to control the entire inflammatory process, its hyper-activation or time-spatially erroneous activation may lead to exacerbation of inflammation. The modulation of this nuclear factor, therefore, has recently been considered as a new strategy in the treatment of inflammatory diseases. In this study, we present data showing that the aqueous extract of Arbutus unedo's leaves exerts inhibitory action on interferon-gamma (IFN-gamma) elicited activation of STAT1, both in human breast cancer cell line MDA-MB-231 and in human fibroblasts. This down-regulation of STAT1 is shown to result from a reduced tyrosine phosphorylation of STAT1 protein. Evidence is also presented indicating that the inhibitory effect of this extract may be mediated through enhancement of tyrosine phosphorylation of SHP2 tyrosine phosphatase. The modulation of this nuclear factor turns out into the regulation of the expression of a number of genes involved in the inflammatory response such as inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 (ICAM-1). Taken together, our results suggest that the employment of the Arbutus unedo aqueous extract is promising, at least, as an auxiliary anti-inflammatory treatment of diseases in which STAT1 plays a critical role.

  4. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  5. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line

    International Nuclear Information System (INIS)

    Hirata, Akira; Higuchi, Masaya; Niinuma, Akiko; Ohashi, Minako; Fukushi, Masaya; Oie, Masayasu; Akiyama, Tetsu; Tanaka, Yuetsu; Gejyo, Fumitake; Fujii, Masahiro

    2004-01-01

    While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo

  6. Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems

    DEFF Research Database (Denmark)

    Lee, Tzung-Lin; Wang, Yen-Ching; Li, Jian-Cheng

    2015-01-01

    Unintentional series and/or parallel resonances, due to the tuned passive filter and the line inductance, may result in severe harmonic distortion in the industrial power system. This paper presents a hybrid active filter to suppress harmonic resonance and reduce harmonic distortion as well...... expensive. A reasonable trade-off between filtering performances and cost is to use the hybrid active filter. Design consideration are presented and experimental results are provided to validate effectiveness of the proposed method. Furthermore, this paper discusses filtering performances on line impedance...

  7. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  8. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  9. Compton suppression spectrometry for analysis of short-lived neutron activation products in foods

    International Nuclear Information System (INIS)

    Anderson, D.L.; Cunningham, W.C.

    2008-01-01

    Compton suppression spectrometry was used to analyze foods for elements with short-lived neutron activation products (half-lives of about 2 minutes to 1.5 days). Analysis conditions were optimized to provide quality assurance analyses for iodine in FDA's Total Diet Study. Iodine mass fractions (0.075 to 2.03 mg/kg) were measured in 19 of 42 foods analyzed, with limits of detection (LODs) ranging from 0.03 to 1.4 mg/kg, mostly depending on NaCl content. LODs were lowered by up to a factor of 2 for 16 elements. Suppression factors ranged from about 2 to 8 over the energy range 400 to 3200 keV. (author)

  10. Analysis of Harmonics Suppression by Active Damping Control on Multi Slim DC-link Drives

    DEFF Research Database (Denmark)

    Yang, Feng; Máthé, Lászlo; Lu, Kaiyuan

    2016-01-01

    Compared with conventional dc-link drive, slim dc-link drive is expected to achieve lower cost and longer life time. However, harmonics distortion problem may occur in such drive systems. This paper proposes to use an active damping control method to suppress the harmonic distortion...... with the benefit of low cost and also low loss. A new analysis method, based on the frequency domain impedance model, is presented to explore the mechanism of harmonics suppression. Also, a general method is presented to build the impedance model of a PMSM drive system using Field Oriented Control (FOC) method....... Some design issues, including power levels, current control bandwidth and harmonic interaction, are discussed when the drive system is fed by a weak grid. Case studies on a two-drive system composed by two slim dc-link drive units are provided to verify the proposed analysis method....

  11. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase.......5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting...

  12. Functional clonal deletion versus active suppression in transplantation tolerance induced by total-lymphoid irradiation

    International Nuclear Information System (INIS)

    Morecki, S.; Leshem, B.; Weigensberg, M.; Bar, S.; Slavin, S.

    1985-01-01

    Transplantation tolerance and stable chimerism were established in adult mice conditioned with a short course of total-lymphoid irradiation (TLI) followed by infusion of 30 X 10(6) allogeneic bone marrow cells. Spleen cells of tolerant mice could not exert a proliferative or cytotoxic response against host-type cells in vitro and were unable to induce graft-versus-host reaction in secondary host-type recipients. The degree of suppression assessed by coculturing tolerant splenocytes in vitro in the one-way mixed lymphocyte reaction was quite variable--and, in some cases, was not at all demonstrable, although tolerance was clearly maintained. Suppression, when apparent, could not be ascribed to T lymphocytes. Suppressor cells were found to bind soybean agglutinin and could be separated from the nonsuppressive cells by means of this lectin. Dissociation of the suppressive population (SBA+ cells) from that which is normally alloreactive (SBA- cells) resulted in a suppressor cell-depleted fraction that was still unable to respond to host-type cells but regained reactivity to unrelated cells. Limiting dilution analysis of chimeric splenocytes revealed markedly reduced frequencies of cytotoxic T lymphocyte precursors (CTL-P) directed against host-type cells, as compared with normal splenocytes reacting against the same target cells. This difference was accentuated when these cells were sensitized to host-type target cells prior to plating in limiting dilution cultures. In 1:1 mixing experiments of normal and chimeric splenocytes, there was no evidence of any in vitro suppressive activity to account for hyporeactivity of chimeric cells against host-type cells. Thus, maintenance of TLI-induced tolerance seemed not to be mediated primarily through an active suppressor cell mechanism

  13. Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure.

    Directory of Open Access Journals (Sweden)

    Shunsuke Yagi

    Full Text Available Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF, followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.

  14. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  15. Role of Active Listening and Listening Effort on Contralateral Suppression of Transient Evoked Otoacousic Emissions.

    Science.gov (United States)

    Kalaiah, Mohan Kumar; Theruvan, Nikhitha B; Kumar, Kaushlendra; Bhat, Jayashree S

    2017-04-01

    The present study aimed to investigate the effect of active listening and listening effort on the contralateral suppression of transient evoked otoacoustic emissions (CSTEOAEs). Twenty eight young adults participated in the study. Transient evoked otoacoustic emissions (TEOAEs) were recorded using 'linear' clicks at 60 dB peSPL, in three contralateral noise conditions. In condition 1, TEOAEs were obtained in the presence of white noise in the contralateral ear. While, in condition 2, speech was embedded into white noise at +3, -3, and -9 dB signal-to-noise ratio (SNR) and delivered to the contralateral ear. The SNR was varied to investigate the effect of listening effort on the CSTEOAE. In condition 3, speech was played backwards and embedded into white noise at -3 dB SNR. The conditions 1 and 3 served as passive listening condition and the condition 2 served as active listening condition. In active listening condition, the participants categorized the words in to two groups (e.g., animal and vehicle). CSTEOAE was found to be largest in the presence of white noise, and the amount of CSTEOAE was not significantly different between active and passive listening conditions (condition 2 and 3). Listening effort had an effect on the CSTEOAE, the amount of suppression increased with listening effort, when SNR was decreased from +3 dB to -3 dB. However, when the SNR was further reduced to -9 dB, there was no further increase in the amount of CSTEOAE, instead there was a reduction in the amount of suppression. The findings of the present study show that listening effort might affect CSTEOAE.

  16. Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells

    DEFF Research Database (Denmark)

    Ingvarsen, Signe; Madsen, Daniel H.; Hillig, Thore

    2008-01-01

    The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity......, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence...... that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about...

  17. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    Science.gov (United States)

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  18. PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-12-01

    Full Text Available PGC-1α plays a central role in hepatic gluconeogenesis and has been implicated in the onset of type 2 diabetes. Acetylation is an important posttranslational modification for regulating the transcriptional activity of PGC-1α. Here, we show that PCAF is a pivotal acetyltransferase for acetylating PGC-1α in both fasted and diabetic states. PCAF acetylates two lysine residues K328 and K450 in PGC-1α, which subsequently triggers its proteasomal degradation and suppresses its transcriptional activity. Adenoviral-mediated expression of PCAF in the obese mouse liver greatly represses gluconeogenic enzyme activation and glucose production and improves glucose homeostasis and insulin sensitivity. Moreover, liver-specific knockdown of PCAF stimulates PGC-1α activity, resulting in an increase in blood glucose and hepatic glucose output. Our results suggest that PCAF might be a potential pharmacological target for developing agents against metabolic disorders associated with hyperglycemia, such as obesity and diabetes.

  19. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation.

    Science.gov (United States)

    Ikedo, Taichi; Minami, Manabu; Kataoka, Hiroharu; Hayashi, Kosuke; Nagata, Manabu; Fujikawa, Risako; Higuchi, Sei; Yasui, Mika; Aoki, Tomohiro; Fukuda, Miyuki; Yokode, Masayuki; Miyamoto, Susumu

    2017-06-19

    Chronic inflammation plays a key role in the pathogenesis of intracranial aneurysms (IAs). DPP-4 (dipeptidyl peptidase-4) inhibitors have anti-inflammatory effects, including suppressing macrophage infiltration, in various inflammatory models. We examined whether a DPP-4 inhibitor, anagliptin, could suppress the growth of IAs in a rodent aneurysm model. IAs were surgically induced in 7-week-old male Sprague Dawley rats, followed by oral administration of 300 mg/kg anagliptin. We measured the morphologic parameters of aneurysms over time and their local inflammatory responses. To investigate the molecular mechanisms, we used lipopolysaccharide-treated RAW264.7 macrophages. In the anagliptin-treated group, aneurysms were significantly smaller 2 to 4 weeks after IA induction. Anagliptin inhibited the accumulation of macrophages in IAs, reduced the expression of MCP-1 (monocyte chemotactic protein 1), and suppressed the phosphorylation of p65. In lipopolysaccharide-stimulated RAW264.7 cells, anagliptin treatment significantly reduced the production of tumor necrosis factor α, MCP-1, and IL-6 (interleukin 6) independent of GLP-1 (glucagon-like peptide 1), the key mediator in the antidiabetic effects of DPP-4 inhibitors. Notably, anagliptin activated ERK5 (extracellular signal-regulated kinase 5), which mediates the anti-inflammatory effects of statins, in RAW264.7 macrophages. Preadministration with an ERK5 inhibitor blocked the inhibitory effect of anagliptin on MCP-1 and IL-6 expression. Accordingly, the ERK5 inhibitor also counteracted the suppression of p65 phosphorylation in vitro. A DPP-4 inhibitor, anagliptin, prevents the growth of IAs via its anti-inflammatory effects on macrophages. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jaguin, Marie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex (France); Lecureur, Valérie, E-mail: valerie.lecureur@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France)

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  2. Opiate-induced suppression of rat hypoglossal motoneuron activity and its reversal by ampakine therapy.

    Directory of Open Access Journals (Sweden)

    Amanda R Lorier

    2010-01-01

    Full Text Available Hypoglossal (XII motoneurons innervate tongue muscles and are vital for maintaining upper-airway patency during inspiration. Depression of XII nerve activity by opioid analgesics is a significant clinical problem, but underlying mechanisms are poorly understood. Currently there are no suitable pharmacological approaches to counter opiate-induced suppression of XII nerve activity while maintaining analgesia. Ampakines accentuate alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA receptor responses. The AMPA family of glutamate receptors mediate excitatory transmission to XII motoneurons. Therefore the objectives were to determine whether the depressant actions of mu-opioid receptor activation on inspiratory activity includes a direct inhibitory action at the inspiratory premotoneuron to XII motoneuron synapse, and to identify underlying mechanism(s. We then examined whether ampakines counteract opioid-induced depression of XII motoneuron activity.A medullary slice preparation from neonatal rat that produces inspiratory-related output in vitro was used. Measurements of inspiratory burst amplitude and frequency were made from XII nerve roots. Whole-cell patch recordings from XII motoneurons were used to measure membrane currents and synaptic events. Application of the mu-opioid receptor agonist, DAMGO, to the XII nucleus depressed the output of inspiratory XII motoneurons via presynaptic inhibition of excitatory glutamatergic transmission. Ampakines (CX614 and CX717 alleviated DAMGO-induced depression of XII MN activity through postsynaptic actions on XII motoneurons.The inspiratory-depressant actions of opioid analgesics include presynaptic inhibition of XII motoneuron output. Ampakines counteract mu-opioid receptor-mediated depression of XII motoneuron inspiratory activity. These results suggest that ampakines may be beneficial in countering opiate-induced suppression of XII motoneuron activity and resultant impairment of airway patency.

  3. Activation of peroxisome proliferator-activated receptor-α (PPARα) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes

    International Nuclear Information System (INIS)

    Kimura, Rino; Takahashi, Nobuyuki; Murota, Kaeko; Yamada, Yuko; Niiya, Saori; Kanzaki, Noriyuki; Murakami, Yoko; Moriyama, Tatsuya; Goto, Tsuyoshi; Kawada, Teruo

    2011-01-01

    Highlights: → PPARα activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. → PPARα activation also increased oxygen consumption rate and CO 2 production and decreased secretion of triglyceride and ApoB from Caco-2 cells. → Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO 2 production in small intestinal epithelial cells. → Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. → It suggested that intestinal lipid metabolism regulated by PPARα activation suppresses postprandial lipidemia. -- Abstract: Activation of peroxisome proliferator-activated receptor (PPAR)-α which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPARα activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPARα activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPARα agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO 2 and acid soluble metabolites in enterocytes. Moreover

  4. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  5. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  6. Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis.

    Science.gov (United States)

    Liu, Yi; Jing, Yan-Yun; Zeng, Chen-Ying; Li, Chen-Guang; Xu, Li-Hui; Yan, Liang; Bai, Wen-Jing; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz. and has been reported to exhibit potent anti-inflammatory activities, but the underlying mechanism is only partly understood. In this study, we aimed to investigate whether scutellarin could affect the activation of NLRP3 inflammasome in macrophages. The results showed that scutellarin dose-dependently reduced caspase-1 activation and decreased mature interleukin-1β (IL-1β) release in lipopolysaccharide (LPS)-primed macrophages upon ATP or nigericin stimulation, indicating that scutellarin inhibited NLRP3 inflammasome activation in macrophages. Consistent with this, scutellarin also suppressed pyroptotic cell death in LPS-primed macrophages treated with ATP or nigericin. ATP or nigericin-induced ASC speck formation and its oligomerization were blocked by scutellarin pre-treatment. Intriguingly, scutellarin augmented PKA-specific phosphorylation of NLRP3 in LPS-primed macrophages, which was completely blocked by selective PKA inhibitor H89, suggesting that PKA signaling had been involved in the action of scutellarin to suppress NLRP3 inflammasome activation. Supporting this, the inhibitory effect of scutellarin on NLRP3 inflammasome activation was completely counteracted by H89 or adenyl cyclase inhibitor MDL12330A. As NLRP3-dependent release of IL-1β has a critical role in sepsis, the in vivo activity of scutellarin was assayed in a mouse model of bacterial sepsis, which was established by intraperitoneally injection of a lethal dose of viable Escherichia coli . Oral administration of scutellarin significantly improved the survival of mice with bacterial sepsis

  7. Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from Erigeron breviscapus (Vant. Hand.-Mazz. and has been reported to exhibit potent anti-inflammatory activities, but the underlying mechanism is only partly understood. In this study, we aimed to investigate whether scutellarin could affect the activation of NLRP3 inflammasome in macrophages. The results showed that scutellarin dose-dependently reduced caspase-1 activation and decreased mature interleukin-1β (IL-1β release in lipopolysaccharide (LPS-primed macrophages upon ATP or nigericin stimulation, indicating that scutellarin inhibited NLRP3 inflammasome activation in macrophages. Consistent with this, scutellarin also suppressed pyroptotic cell death in LPS-primed macrophages treated with ATP or nigericin. ATP or nigericin-induced ASC speck formation and its oligomerization were blocked by scutellarin pre-treatment. Intriguingly, scutellarin augmented PKA-specific phosphorylation of NLRP3 in LPS-primed macrophages, which was completely blocked by selective PKA inhibitor H89, suggesting that PKA signaling had been involved in the action of scutellarin to suppress NLRP3 inflammasome activation. Supporting this, the inhibitory effect of scutellarin on NLRP3 inflammasome activation was completely counteracted by H89 or adenyl cyclase inhibitor MDL12330A. As NLRP3-dependent release of IL-1β has a critical role in sepsis, the in vivo activity of scutellarin was assayed in a mouse model of bacterial sepsis, which was established by intraperitoneally injection of a lethal dose of viable Escherichia coli. Oral administration of scutellarin significantly improved the survival of mice with

  8. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    International Nuclear Information System (INIS)

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-01-01

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  9. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  10. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system

    International Nuclear Information System (INIS)

    Lu Xiongbin; Lozano, Guillermina; Donehower, Lawrence A.

    2003-01-01

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo R marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53 +/- mouse fibroblasts show elevated levels of homologous recombination compared to their p53 +/+ counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors

  11. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  12. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced.

  13. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    Science.gov (United States)

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.

  14. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  15. Cytotoxic and Immunomodulatory Potential Activity of Physalis peruviana Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells.

    Science.gov (United States)

    Mier-Giraldo, Helen; Díaz-Barrera, Luis Eduardo; Delgado-Murcia, Lucy Gabriela; Valero-Valdivieso, Manuel Fernando; Cáez-Ramírez, Gabriela

    2017-10-01

    It was purposed to evaluate the biological potential of ethanol and isopropanol crude extracts of ripe Physalis peruviana fruits. Cytotoxic and immunomodulatory effects of the expression of interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 (MCP-1) were evaluated on human cervical cancer (HeLa) and murine fibroblast (L929) cells. The composition was evaluated by high-performance liquid chromatography diode-array detection and high-performance liquid chromatography ultraviolet/visible detection. The presence of ursolic acid and rosmarinic acid was found in both solvents. However, gallic acid, quercetin, and epicatechin were higher in isopropanol extracts ( P < .05). The results indicated a relationship among the total polyphenol content, antioxidant activity, and cytotoxic activity that was dependent on the solvent used. Isopropanol extracts presented a half-maximal inhibition concentration value (IC 50 ) of 60.48 ± 3.8 μg/mL for HeLa cells and 66.62 ± 2.67 μg/mL for L929 fibroblasts. The extracts reduced the release of interleukin-6, interleukin-8, and MCP-1 in a dose-dependent manner. Extracts showed anticancer and immunomodulatory potential for new complementary pharmaceutical products development.

  16. Active background suppression with the liquid argon scintillation veto of GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ˜10-3 cts/(keV·ky·yr) has been confirmed.

  17. Chaos suppression via observer based active control scheme: Application to Duffing's oscillator

    International Nuclear Information System (INIS)

    Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael

    2007-01-01

    The aim of this paper is the synthesis of a robust control law for chaos suppression of a class of non-linear oscillator with affine control input. A robust state observer based active controller, which provides robustness against model uncertainties and noisy output measurements is proposed. The closed-loop stability for the underlying closed-loop system is done via the regulation and estimation errors dynamics. The performance of the proposed control law is illustrated with numerical simulations. The method is general and can be applied to various non-linear systems which satisfy the conditions required

  18. Chaos suppression via observer based active control scheme: Application to Duffing's oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolita-Azcapotzalco, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, Mexico DF (Mexico)]. E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV-IPN, C.P. 07360 Mexico DF (Mexico)

    2007-06-15

    The aim of this paper is the synthesis of a robust control law for chaos suppression of a class of non-linear oscillator with affine control input. A robust state observer based active controller, which provides robustness against model uncertainties and noisy output measurements is proposed. The closed-loop stability for the underlying closed-loop system is done via the regulation and estimation errors dynamics. The performance of the proposed control law is illustrated with numerical simulations. The method is general and can be applied to various non-linear systems which satisfy the conditions required.

  19. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  20. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Science.gov (United States)

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-01-01

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair. PMID:23612369

  1. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads.

    Science.gov (United States)

    Rando, R F; Ojwang, J; Elbaggari, A; Reyes, G R; Tinder, R; McGrath, M S; Hogan, M E

    1995-01-27

    An oligonucleotide (I100-15) composed of only deoxyguanosine and thymidine was able to inhibit human immunodeficiency virus type-1 (HIV-1) in culture assay systems. I100-15 did not block virus entry into cells but did reduce viral-specific transcripts. As assessed by NMR and polyacrylamide gel methods, I100-15 appears to form a structure in which two stacked guanosine tetrads are connected by three two-base long loops. Structure/activity experiments indicated that formation of intramolecular guanosine tetrads was necessary to achieve maximum antiviral activity. The single deoxyguanosine nucleotide present in each loop was found to be extremely important for the overall antiviral activity. The toxicity of I100-15 was determined to be well above the 50% effective dose (ED50) in culture which yielded a high therapeutic index (> 100). The addition of a cholesterol moiety to the 3' terminus of I100-15 (I100-23) reduced the ED50 value to less than 50 nM (from 0.12 microM for I100-15) and increased the duration of viral suppression to greater than 21 days (versus 7-10 days for I100-15) after removal of the drug from infected cell cultures. The favorable therapeutic index of such molecules coupled with the prolonged suppression of HIV-1, suggest that such compounds further warrant investigation as potential therapeutic agents.

  2. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Cen, Ling; Hutzen, Brian; Ball, Sarah; DeAngelis, Stephanie; Chen, Chun-Liang; Fuchs, James R; Li, Chenglong; Li, Pui-Kai; Lin, Jiayuh

    2009-01-01

    Colorectal carcinoma is one of the major causes of morbidity and mortality in the Western World. Novel therapeutic approaches are needed for colorectal carcinoma. Curcumin, the active component and yellow pigment of turmeric, has been reported to have several anti-cancer activities including anti-proliferation, anti-invasion, and anti-angiogenesis. Clinical trials have suggested that curcumin may serve as a potential preventive or therapeutic agent for colorectal cancer. We compared the inhibitory effects of curcumin and novel structural analogues, GO-Y030, FLLL-11, and FLLL-12, in three independent human colorectal cancer cell lines, SW480, HT-29, and HCT116. MTT cell viability assay was used to examine the cell viability/proliferation and western blots were used to determine the level of PARP cleavages. Half-Maximal inhibitory concentrations (IC 50 ) were calculated using Sigma Plot 9.0 software. Curcumin inhibited cell viability in all three of the human colorectal cancer cell lines studied with IC 50 values ranging between 10.26 μM and 13.31 μM. GO-Y030, FLLL-11, and FLLL-12 were more potent than curcumin in the inhibition of cell viability in these three human colorectal cancer cell lines with IC 50 values ranging between 0.51 μM and 4.48 μM. In addition, FLLL-11 and FLLL-12 exhibit low toxicity to WI-38 normal human lung fibroblasts with an IC-50 value greater than 1,000 μM. GO-Y030, FLLL-11, and FLLL-12 are also more potent than curcumin in the induction of apoptosis, as evidenced by cleaved PARP and cleaved caspase-3 in all three human colorectal cancer cell lines studied. The results indicate that the three curcumin analogues studied exhibit more potent inhibitory activity than curcumin in human colorectal cancer cells. Thus, they may have translational potential as chemopreventive or therapeutic agents for colorectal carcinoma

  3. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation.

    Science.gov (United States)

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-10-14

    Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel

  4. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  5. Impact of matrix stiffness on fibroblast function

    Energy Technology Data Exchange (ETDEWEB)

    El-Mohri, Hichem; Wu, Yang; Mohanty, Swetaparna; Ghosh, Gargi, E-mail: gargi@umich.edu

    2017-05-01

    Chronic non-healing wounds, caused by impaired production of growth factors and reduced vascularization, represent a significant burden to patients, health care professionals, and health care system. While several wound dressing biomaterials have been developed, the impact of the mechanical properties of the dressings on the residing cells and consequently on the healing of the wounds is largely overlooked. The primary focus of this study is to explore whether manipulation of the substrate mechanics can regulate the function of fibroblasts, particularly in the context of their angiogenic activity. A photocrosslinkable hydrogel platform with orthogonal control over gel modulus and cell adhesive sites was developed to explore the quantitative relationship between ECM compliance and fibroblast function. Increase in matrix stiffness resulted in enhanced fibroblast proliferation and stress fiber formation. However, the angiogenic activity of fibroblasts was found to be optimum when the cells were seeded on compliant matrices. Thus, the observations suggest that the stiffness of the wound dressing material may play an important role in the progression of wound healing. - Highlights: • Proliferation and stress fiber formation of fibroblasts increase with increasing matrix mechanics. • Cell area correlates with the growth of fibroblasts. • Angiogenic activity of fibroblasts optimum when cells seeded on compliant gels.

  6. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    International Nuclear Information System (INIS)

    Chang Wang, Huei-Hsiang Lisa.

    1988-01-01

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca 2+ plus A23187, a Ca 2+ ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca 2+ -mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with [ 3 H]glycerol and [ 3 H]inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-β-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate

  7. Oxytocin administration suppresses hypothalamic activation in response to visual food cues.

    Science.gov (United States)

    van der Klaauw, Agatha A; Ziauddeen, Hisham; Keogh, Julia M; Henning, Elana; Dachi, Sekesai; Fletcher, Paul C; Farooqi, I Sadaf

    2017-06-27

    The aim of this study was to use functional neuroimaging to investigate whether oxytocin modulates the neural response to visual food cues in brain regions involved in the control of food intake. Twenty-four normal weight volunteers received intranasal oxytocin (24 IU) or placebo in a double-blind, randomized crossover study. Measurements were made forty-five minutes after dosing. On two occasions, functional MRI (fMRI) scans were performed in the fasted state; the blood oxygen level-dependent (BOLD) response to images of high-calorie foods versus low-calorie foods was measured. Given its critical role in eating behaviour, the primary region of interest was the hypothalamus. Secondary analyses examined the parabrachial nuclei and other brain regions involved in food intake and food reward. Intranasal oxytocin administration suppressed hypothalamic activation to images of high-calorie compared to low-calorie food (P = 0.0125). There was also a trend towards suppression of activation in the parabrachial nucleus (P = 0.0683). No effects of intranasal oxytocin were seen in reward circuits or on ad libitum food intake. Further characterization of the effects of oxytocin on neural circuits in the hypothalamus is needed to establish the utility of targeting oxytocin signalling in obesity.

  8. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  9. Giant Suppression of the Activation Rate in Dynamical Systems Exhibiting Chaotic Transitions

    Science.gov (United States)

    Gac, J. M.; Xafebrowski, J. J.

    2008-05-01

    The phenomenon of giant suppression of activation, when two or more correlated noise signals act on the system, was found a few years ago in dynamical bistable or metastable systems. When the correlation between these noise signals is strong enough and the amplitudes of the noise are chosen correctly --- the life time of the metastable state may be longer than in the case of the application of only a single noise even by many orders of magnitude. In this paper, we investigate similar phenomena in systems exhibiting several chaotic transitions: Pomeau--Manneville intermittency, boundary crisis and interior crisis induced intermittency. Our goal is to show that, in these systems the application of two noise components with the proper choice of the parameters in the case of intermittency can also lengthen the mean laminar phase length or, in the case of boundary crisis, lengthen the time the trajectory spends on the pre-crisis attractor. In systems with crisis induced intermittency, we introduce a new phenomenon we called quasi-deterministic giant suppression of activation in which the lengthening of the laminar phase lengths is caused not by the action of two correlated noise signals but by a single noise term which is correlated with one of the chaotic variables of the system.

  10. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts.

    Science.gov (United States)

    Makpol, Suzana; Yeoh, Thong Wei; Ruslam, Farah Adilah Che; Arifin, Khaizurin Tajul; Yusof, Yasmin Anum Mohd

    2013-08-16

    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.

  11. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    Science.gov (United States)

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  12. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Grum-Schwensen, Birgitte; Beck, Mette K

    2012-01-01

    microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment...... of T cells to the site of the primary tumor. In vitro studies demonstrated that this antibody efficiently reduced the invasion of T cells in a fibroblast monolayer. Moreover, it was capable of suppressing the invasive growth of human and mouse fibroblasts. We presume therefore that the antibody exerts...... its activity by suppressing stroma cell recruitment to the site of the growing tumor. Our epitope mapping studies suggested that the antibody recognition site overlaps with the target binding interface of human S100A4. We conclude here that this antibody could serve as a solid basis for development...

  13. Highly Efficient Stable Expression of Indoleamine 2,3 Dioxygenase Gene in Primary Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rezakhanlou Alireza

    2010-03-01

    Full Text Available Abstract Indoleamine 2,3 dioxygenase (IDO is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.

  14. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  15. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  16. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  17. Plasminogen activator inhibitor-1 suppresses endogenous fibrinolysis in a canine model of pulmonary embolism

    International Nuclear Information System (INIS)

    Reilly, C.F.; Fujita, T.; Hutzelmann, J.E.; Mayer, E.J.; Shebuski, R.J.

    1991-01-01

    Plasminogen activator inhibitor-1 (PAI-1), the specific, fast-acting inhibitor of tissue-type plasminogen activator (t-PA), binds to fibrin and has been found in high concentrations within arterial thrombi. These findings suggest that the localization of PAI-1 to a thrombus protects that same thrombus from fibrinolysis. In this study, clot-bound PAI-1 was assessed for its ability to suppress clot lysis in vivo. Autologous, canine whole blood clots were formed in the presence of increasing amounts of activated PAI-1 (0-30 micrograms/ml). Approximately 6-8% of the PAI-1 bound to the clots under the experimental conditions. Control and PAI-1-enriched clots containing iodine-125-labeled fibrin (ogen) were homogenized, washed to remove nonbound elements, and delivered to the lungs of anesthetized dogs where the homogenates subsequently underwent lysis by the endogeneous fibrinolytic system. 125I-labeled fibrin degradation products appeared in the blood of control animals within 10 minutes and were maximal by 90 minutes. PAI-1 reduced fibrin degradation product release in a dose-responsive manner at all times between 30 minutes and 5 hours (greater than or equal to 76% inhibition at 30 minutes, PAI-1 greater than or equal to 6 micrograms/ml). PAI-1 also suppressed D-dimer release from clots containing small amounts of human fibrin (ogen). t-PA administration attenuated the effects of PAI-1, whereas latent PAI-1 (20 micrograms/ml) had no effect on clot lysis. Blood levels of PA and PAI activity remained unaltered during these experiments. The results indicate that PAI-1 markedly inhibits endogenous fibrinolysis in vivo and, moreover, suggest that the localization of PAI-1 to a forming thrombus is an important physiological mechanism for subsequent thrombus stabilization

  18. Regulation and inhibition of collagenase expression by long-wavelength ultraviolet radiation in cultured human skin fibroblasts

    International Nuclear Information System (INIS)

    Petersen, Marta; Hamilton, Tiffani; Haili Li

    1995-01-01

    The cellular mechanisms responsible for the connective tissue changes produced by chronic exposure to UV light are poorly understood. collagenase, a metalloproteinase, initiates degradation of types I and III collagen and thus plays a key role in the remodeling of dermal collagen. Collagenase synthesis by fibroblasts and keratinocytes involves the protein kinase C (PKC) second messenger system, and corticosteroids have been shown to suppress its synthesis at the level of gene transcription. Long-wavelength UV light (UVA, 320-400 nm) stimulates the synthesis of interstitial collagenase, as well as increasing PKC activity, in human skin fibroblasts in vitro. This study explores the regulation of collagenase expression by UVA in cultured human skin fibroblasts. Specifically, the time course, the effect of actinomycin D, an inhibitor of RNA synthesis, as well as the effect of PKC inhibitors and dexamethansone on expression of collagenase following UVA irradiation were examined. (Author)

  19. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  20. Signal enhancement, not active suppression, follows the contingent capture of visual attention.

    Science.gov (United States)

    Livingstone, Ashley C; Christie, Gregory J; Wright, Richard D; McDonald, John J

    2017-02-01

    Irrelevant visual cues capture attention when they possess a task-relevant feature. Electrophysiologically, this contingent capture of attention is evidenced by the N2pc component of the visual event-related potential (ERP) and an enlarged ERP positivity over the occipital hemisphere contralateral to the cued location. The N2pc reflects an early stage of attentional selection, but presently it is unclear what the contralateral ERP positivity reflects. One hypothesis is that it reflects the perceptual enhancement of the cued search-array item; another hypothesis is that it is time-locked to the preceding cue display and reflects active suppression of the cue itself. Here, we varied the time interval between a cue display and a subsequent target display to evaluate these competing hypotheses. The results demonstrated that the contralateral ERP positivity is tightly time-locked to the appearance of the search display rather than the cue display, thereby supporting the perceptual enhancement hypothesis and disconfirming the cue-suppression hypothesis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Troglitazone suppresses telomerase activity independently of PPARγ in estrogen-receptor negative breast cancer cells

    International Nuclear Information System (INIS)

    Rashid-Kolvear, Fariborz; Taboski, Michael AS; Nguyen, Johnny; Wang, Dong-Yu; Harrington, Lea A; Done, Susan J

    2010-01-01

    Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ). However, its effect on telomerase regulation in breast cancer has not been investigated. In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined

  2. Single Cell Chemical Cytometry of Akt Activity in Rheumatoid Arthritis and Normal Fibroblast-like Synoviocytes in Response to Tumor Necrosis Factor α.

    Science.gov (United States)

    Mainz, Emilie R; Serafin, D Stephen; Nguyen, Tuong T; Tarrant, Teresa K; Sims, Christopher E; Allbritton, Nancy L

    2016-08-02

    The etiology of rheumatoid arthritis (RA) is poorly understood, and 30% of patients are unresponsive to established treatments targeting tumor necrosis factor α (TNFα). Akt kinase is implicated in TNFα signaling and may act as a barometer of patient responses to biologic therapies. Fluorescent peptide sensors and chemical cytometry were employed to directly measure Akt activity as well as proteolytic activity in individual fibroblast-like synoviocytes (FLS) from RA and normal subjects. The specificity of the peptide reporter was evaluated and shown to be a valid measure of Akt activity in single cells. The effect of TNFα treatment on Akt activity was highly heterogeneous between normal and RA subjects, which was not observable in bulk analyses. In 2 RA subjects, a bimodal distribution of Akt activity was observed, primarily due to a subpopulation (21.7%: RA Subject 5; 23.8%: RA Subject 6) of cells in which >60% of the reporter was phosphorylated. These subjects also possessed statistically elevated proteolytic cleavage of the reporter relative to normal subjects, suggesting heterogeneity in Akt and protease activity that may play a role in the RA-affected joint. We expect that chemical cytometry studies pairing peptide reporters with capillary electrophoresis will provide valuable data regarding aberrant kinase activity from small samples of clinical interest.

  3. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    Science.gov (United States)

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K

    2008-01-01

    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...... likely via a pathway independent of PDGFR-beta and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments...

  5. The influence of low dose irradiation on intracellular pH level, synthesizing activity and ATP level in cultured chinese fibroblasts

    International Nuclear Information System (INIS)

    Parkhomenko, I.M.; Perishvili, G.V.; Turovetskij, V.B.; Kudryashov, Yu.B.; Rubin, A.B.; Brovko, L.Yu.

    1993-01-01

    X-irradiation of Chinese fibroblasts with doses of 0.05-0.15 Gy was shown to cause intracellular pH (pH i ) changes: its diminishing during the first 40-60 min by 0.16-0.18 pH units, then the return to the control level 120 min after irradiation and, finally, the increase by 0.18-0.20 pH units. Simultaneously, the synthesizing activity of the cells changed in the same way. The ATP level changed in the opposite way: increased when pH fell and decreased when pH grew. It was shown that pH i changes were connected with the changes in Na + /H + -exchange system, and they seemed to be primary in the chain of the alterations observed

  6. Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry

    2007-01-01

    Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H(2)O(2) and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A(2) (PLA(2......)) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca(2+)-independent (iPLA(2))/secretory PLA(2) (sPLA(2)) plus 5-LO...... activity and modulation by ROS. Vanadate and H(2)O(2) stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell...

  7. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...

  8. Alpha8 Integrin (Itga8 Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover.

    Directory of Open Access Journals (Sweden)

    Ines Marek

    Full Text Available The α8 integrin (Itga8 chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.

  9. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    Science.gov (United States)

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Enhanced Suppressive Activity of Regulatory T Cells in the Microenvironment of Malignant Pleural Effusions

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2018-01-01

    Full Text Available Cancer metastatic spread to serous cavity causes malignant pleural effusions (MPEs, indicating dismal prognosis. Tumor microenvironment can implement suppressive activity on host immune responses. Thus, we investigated the prevalence of Tregs and the relationship between them and TGF-β and IL-10 concentrations and measured expression of FOXP3, CTLA-4, CD28, and GITR genes, as well as protein expression of selected genes in benign effusions and MPEs. The percentage of Tregs was determined by means of multicolor flow cytometry system. TGF-β and IL-10 concentrations were measured using human TGF-β1 and IL-10 ELISA kit. Relative mRNA expression of studied genes was analyzed by real-time PCR. The frequency of Tregs was significantly higher in MPEs compared to benign effusions; however, the level of TGF-β and IL-10 in analyzed groups was comparable, and no correlation between concentrations of TGF-β and IL-10 and percentage of Tregs was observed. Relative mRNA expression of all the genes was higher in CD4+CD25+ compared to CD4+CD25− cells. In CD4+CD25+ cells from MPEs, relative mRNA expression of FOXP3, CTLA-4, and CD28 genes was significantly higher than in benign effusions; however, the level of CD4+CD25+CTLA-4+ cells in analyzed groups showed no significant differences. We found numerous genes correlations in an entire CD4+CD25+ cell subset and CD4+CD25+ cells from MPEs. Enhanced suppressive activity of Tregs is observed in the microenvironment of MPEs. Understanding of relations between cellular and cytokine immunosuppressive factors in tumor microenvironment may determine success of anticancer response.

  12. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  13. Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

    DEFF Research Database (Denmark)

    Hennessy, Rosanna C.; Glaring, Mikkel Andreas; Frydenlund Michelsen, Charlotte

    2015-01-01

    Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight into ...

  14. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation.

    Science.gov (United States)

    Ding, Feijia; Li, Fan; Li, Yunhong; Hou, Xiaolin; Ma, Yi; Zhang, Nan; Ma, Jiao; Zhang, Rui; Lang, Bing; Wang, Hongyan; Wang, Yin

    2016-08-01

    Curcumin has anti-inflammatory and antioxidant properties and has been widely used to treat or prevent neurodegenerative diseases. However, the mechanisms underlying the neuroprotective effects of curcumin are not well known. In the present study, the effect of curcumin on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells was investigated using enzyme-linked immunosorbent assays of the culture medium and western blotting of cell lysates. The results showed that curcumin significantly inhibited the LPS-induced expression and release of heat shock protein 60 (HSP60) in the BV2 cells. The level of heat shock factor (HSF)-1 was upregulated in LPS-activated BV2 microglia, indicating that the increased expression of HSP60 was driven by HSF-1 activation. However, the increased HSF-1 level was downregulated by curcumin. Extracellular HSP60 is a ligand of Toll-like receptor 4 (TLR-4), and the level of the latter was increased in the LPS-activated BV2 microglia and inhibited by curcumin. The activation of TLR-4 is known to be associated with the activation of myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB, with the subsequent production of proinflammatory and neurotoxic factors. In the present study, curcumin demonstrated marked suppression of the LPS-induced expression of MyD88, NF-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the microglia. These results indicate that curcumin may exert its neuroprotective and anti-inflammatory effects by inhibiting microglial activation through the HSP60/TLR-4/MyD88/NF-κB signaling wpathway. Therefore, curcumin may be useful for the treatment of neurodegenerative diseases that are associated with microglial activation.

  15. Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts.

    Science.gov (United States)

    Lu, F; Jiang, J; Li, N; Zhang, S; Sun, H; Luo, C; Wei, Y; Shi, D

    2011-09-15

    The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P fusion (P fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. PDGFR alpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90(RSK) and AKT signaling pathways

    DEFF Research Database (Denmark)

    Clement, Ditte L.; Mally, Sabine; Stock, Christian

    2013-01-01

    In fibroblasts, platelet-derived growth factor receptor alpha (PDGFR alpha) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 path...

  17. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  18. Glimepiride attenuates Aβ production via suppressing BACE1 activity in cortical neurons.

    Science.gov (United States)

    Liu, Feiyang; Wang, Yijin; Yan, Ming; Zhang, Luyong; Pang, Tao; Liao, Hong

    2013-12-17

    Numerous lines of evidence suggest a strong link between diabetes mellitus and Alzheimer's disease (AD). Impaired insulin signaling and insulin resistance occur not only in diabetes but also in the brain of AD. Recent evidence has indicated that peroxisome proliferator-activated receptor γ (PPARγ) agonists thiazolidinediones (TZDs) can decrease β-amyloid peptide (Aβ) deposition, which is the core component of senile plaques in AD, but the underlying mechanisms still remain unclear. In this study, we investigated whether glimepiride with PPARγ-stimulating activity, an oral anti-diabetic drug, has similar effects on Aβ production in primary cortical neurons. We demonstrated that glimepiride decreased extracellular Aβ40 and Aβ42 levels. The effect of glimepiride on reduction of Aβ40 generation was mediated by downregulation of β-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression, and by suppression of BACE1 activity. In addition, we found that high glucose condition enhanced Aβ40 production and glimepiride significantly decreased high glucose-induced Aβ40 production. Finally, a specific PPARγ antagonist GW9662 reversed glimepiride inhibitory effect on Aβ40 generation, suggesting a PPARγ-dependent mechanism may be involved. Our data indicated that glimepiride may serve as a promising drug for the treatment of AD associated with diabetes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Active chatter suppression with displacement-only measurement in turning process

    Science.gov (United States)

    Ma, Haifeng; Wu, Jianhua; Yang, Liuqing; Xiong, Zhenhua

    2017-08-01

    Regenerative chatter is a major hindrance for achieving high quality and high production rate in machining processes. Various active controllers have been proposed to mitigate chatter. However, most of existing controllers were developed on the basis of multi-states feedback of the system and state observers were usually needed. Moreover, model parameters of the machining process (mass, damping and stiffness) were required in existing active controllers. In this study, an active sliding mode controller, which employs a dynamic output feedback sliding surface for the unmatched condition and an adaptive law for disturbance estimation, is designed, analyzed, and validated for chatter suppression in turning process. Only displacement measurement is required by this approach. Other sensors and state observers are not needed. Moreover, it facilitates a rapid implementation since the designed controller is established without using model parameters of the turning process. Theoretical analysis, numerical simulations and experiments on a computer numerical control (CNC) lathe are presented. It shows that the chatter can be substantially attenuated and the chatter-free region can be significantly expanded with the presented method.

  20. Active vibration suppression of self-excited structures using an adaptive LMS algorithm

    Science.gov (United States)

    Danda Roy, Indranil

    The purpose of this investigation is to study the feasibility of an adaptive feedforward controller for active flutter suppression in representative linear wing models. The ability of the controller to suppress limit-cycle oscillations in wing models having root springs with freeplay nonlinearities has also been studied. For the purposes of numerical simulation, mathematical models of a rigid and a flexible wing structure have been developed. The rigid wing model is represented by a simple three-degree-of-freedom airfoil while the flexible wing is modelled by a multi-degree-of-freedom finite element representation with beam elements for bending and rod elements for torsion. Control action is provided by one or more flaps attached to the trailing edge and extending along the entire wing span for the rigid model and a fraction of the wing span for the flexible model. Both two-dimensional quasi-steady aerodynamics and time-domain unsteady aerodynamics have been used to generate the airforces in the wing models. An adaptive feedforward controller has been designed based on the filtered-X Least Mean Squares (LMS) algorithm. The control configuration for the rigid wing model is single-input single-output (SISO) while both SISO and multi-input multi-output (MIMO) configurations have been applied on the flexible wing model. The controller includes an on-line adaptive system identification scheme which provides the LMS controller with a reasonably accurate model of the plant. This enables the adaptive controller to track time-varying parameters in the plant and provide effective control. The wing models in closed-loop exhibit highly damped responses at airspeeds where the open-loop responses are destructive. Simulations with the rigid and the flexible wing models in a time-varying airstream show a 63% and 53% increase, respectively, over their corresponding open-loop flutter airspeeds. The ability of the LMS controller to suppress wing store flutter in the two models has

  1. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Watt, James; Schlezinger, Jennifer J.

    2015-01-01

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  2. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Altieri, B.; Coia, D. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computation Physics, University of Crete, 71003 Heraklion (Greece); Daddi, E.; Le Floc' h, E.; Leiton, R. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Dannerbauer, H. [Insitut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dasyra, K. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014 Paris (France); Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Magnelli, B.; Popesso, P.; Rosario, D. [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  3. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  4. Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis

    International Nuclear Information System (INIS)

    Sen, Prosenjit; Mukherjee, Sebanti; Bhaumik, Gayaram; Das, Pradeep; Ganguly, Sandipan; Choudhury, Nandini; Raha, Sanghamitra

    2003-01-01

    Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H 2 O 2 doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m 2 ) or H 2 O 2 (7.5 mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H 2 O 2 . Cell viability was also significantly better preserved in VST cells than VC cells after UV or H 2 O 2 exposures. Following 3-AT treatment of VST cells, UVC radiation or H 2 O 2 brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability

  5. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Fechtner, Sabrina; Singh, Anil; Chourasia, Mukesh; Ahmed, Salahuddin

    2017-08-15

    In this study, we found that catechins found in green tea (EGCG, EGC, and EC) differentially interfere with the IL-1β signaling pathway which regulates the expression of pro-inflammatory mediators (IL-6 and IL-8) and Cox-2 in primary human rheumatoid arthritis synovial fibroblasts (RASFs). EGCG and EGC inhibited IL-6, IL-8, and MMP-2 production and selectively inhibited Cox-2 expression. EC did not exhibit any inhibitory effects. When we looked at the expression of key signaling proteins in the IL-1β signaling pathway, we found all the tested catechins could inhibit TAK-1 activity. Therefore, the consumption of green tea offers an overall anti-inflammatory effect. Molecular docking analysis confirms that EGCG, EGC, and EC all occupy the active site of the TAK1 kinase domain. However, EGCG occupies the majority of the TAK1 active site. In addition to TAK1 inhibition, EGCG can also inhibit P38 and nuclear NF-κB expression whereas EC and EGC were not effective inhibitors. Our findings suggest one of the main health benefits associated with the consumption of green tea are due to the activity of EGCG and EGC which are both present at higher amounts. Although EGCG is the most effective catechin at inhibiting downstream inflammatory signaling, its effectiveness could be hindered by the presence of EC. Therefore, varying EC content in green tea may reduce the anti-inflammatory effects of other potential catechins in green tea. Copyright © 2017. Published by Elsevier Inc.

  6. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor.

    Science.gov (United States)

    Yu, Lushan; Wang, Zhangting; Huang, Minmin; Li, Yingying; Zeng, Kui; Lei, Jinxiu; Hu, Haihong; Chen, Baian; Lu, Jing; Xie, Wen; Zeng, Su

    2016-09-01

    The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    International Nuclear Information System (INIS)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  8. Peroxisome Proliferator-Activated Receptor α Activation Suppresses Cytochrome P450 Induction Potential in Mice Treated with Gemfibrozil.

    Science.gov (United States)

    Shi, Cunzhong; Min, Luo; Yang, Julin; Dai, Manyun; Song, Danjun; Hua, Huiying; Xu, Gangming; Gonzalez, Frank J; Liu, Aiming

    2017-09-01

    Gemfibrozil, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely used for hypertriglyceridaemia and mixed hyperlipidaemia. Drug-drug interaction of gemfibrozil and other PPARα agonists has been reported. However, the role of PPARα in cytochrome P450 (CYP) induction by fibrates is not well known. In this study, wild-type mice were first fed gemfibrozil-containing diets (0.375%, 0.75% and 1.5%) for 14 days to establish a dose-response relationship for CYP induction. Then, wild-type mice and Pparα-null mice were treated with a 0.75% gemfibrozil-containing diet for 7 days. CYP3a, CYP2b and CYP2c were induced in a dose-dependent manner by gemfibrozil. In Pparα-null mice, their mRNA level, protein level and activity were induced more than those in wild-type mice. So, gemfibrozil induced CYP, and this action was inhibited by activated PPARα. These data suggested that the induction potential of CYPs was suppressed by activated PPARα, showing a potential role of this receptor in drug-drug interactions and metabolic diseases treated with fibrates. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    Science.gov (United States)

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  10. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    International Nuclear Information System (INIS)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Lee, Seung-Ho; Kim, Sang-Hyun

    2014-01-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H 1 receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases

  11. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Shin, Tae-Yong [College of Pharmacy, Woosuk University, Jeonju 565-701 (Korea, Republic of); Park, Pil-Hoon; Lee, Seung-Ho [College of Pharmacy, Youngnam University, Kyungsan 712-749 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  12. The constitutive activation of the CEF-4/9E3 chemokine gene depends on C/EBPbeta in v-src transformed chicken embryo fibroblasts

    DEFF Research Database (Denmark)

    Gagliardi, M; Maynard, S; Bojovic, B

    2001-01-01

    The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo fibroblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and post-transcriptional levels. Transcriptional activation depends on multiple elements of the CEF....../EBPbeta binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60(v-src) indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C....../EBPbeta (designated Delta184-C/EBPbeta) in RSV-transformed CEF. Delta184-C/EBPbeta decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60(v-src). The induction of the Cox-2 gene (CEF-147) was also reduced by Delta184-C/EBPbeta. The effect of the dominant negative mutant was observed...

  13. Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO1 signal pathway.

    Science.gov (United States)

    Lee, Jihyun; Yang, Goowon; Kim, Young-Joo; Tran, Quynh Hoa; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun

    2017-09-23

    Persistent oxidative stress is recognized as a major cause of many pathological conditions as well as ageing. However, most clinical trials of dietary antioxidants have failed to produce successful outcomes in treating oxidative stress-induced diseases. Molecular hydrogen (H 2 ) has recently received considerable attention as a therapeutic agent owing to its novel antioxidant properties, a selective scavenger of hydroxyl and peroxynitrite radicals. Beyond this, numerous reports support that H 2 can modulate the activity of various cellular signal pathways. However, its effect on AMP-activated protein kinase (AMPK) signal pathway, a central regulator of energy hemostasis, has remained almost elusive. Here, we report that hydrogen-rich medium activated LKB1-AMPK signal pathway without ATP depletion, which in turn induced FoxO1-dependent transcription of manganese superoxide dismutase and catalase in mouse embryonic fibroblasts. Moreover, hydrogen-rich media effectively reduced the level of reactive oxygen species in cells treated with hydrogen peroxide and protected these cells from apoptosis in an AMPK-dependent manner. These results suggest that the LKB1-AMPK-FoxO1 signaling pathway is a critical mediator of the antioxidant properties of H 2 , further supporting the idea that H 2 acts as a signaling molecule to serve various physiological functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The effect of Walterinnesia aegyptia venom proteins on TCA cycle activity and mitochondrial NAD(+)-redox state in cultured human fibroblasts.

    Science.gov (United States)

    Ghneim, Hazem K; Al-Sheikh, Yazeed A; Aboul-Soud, Mourad A M

    2015-01-01

    Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1-F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10 μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP(+)-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50-60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60-70% for fractions F3 and F6. In addition, the crude and fractions F3-F7 venom proteins caused a drop in mitochondrial NAD(+) and NADP(+) levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60-70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD(+) and NADP(+) biosynthesis.

  15. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells.

    Science.gov (United States)

    Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza

    2017-01-01

    Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.

  16. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  17. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  18. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  19. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    Science.gov (United States)

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes

  1. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys.

    Science.gov (United States)

    Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence

    2005-02-01

    Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than

  2. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  3. Active control law design for flutter suppression and gust alleviation of a panel with piezoelectric actuators

    International Nuclear Information System (INIS)

    Ahmad Fazelzadeh, S; Mohammad Jafari, S

    2008-01-01

    This paper presents an active optimal integral/feedforward control for a supersonic panel under gust disturbance effects with piezoelectric actuators. Classical laminate theory with induced strain actuation and a generalized form of Hamilton's principle are used to formulate the governing equations of motion. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The piezoelectric sensor distributed output is also integrated, since the output voltage is dependent on the integrated strain rates over the sensor area. Aerodynamic modeling is accomplished by first-order piston theory with gust velocity effects. The model reduction is performed to the state space system of equations for the control design and the time domain simulation. Moreover, the disturbance dynamics are modeled through the addition to the equations of motion for various conditions. The optimal control problem is set up to minimize the panel deflection using a linear quadratic regulator (LQR). Using an integral control model as a part of the feedback loop, together with a feedforward of the disturbances, greatly enhances the transient response, and the steady state error characteristics of this system are observed. Also, parametric studies for three piezoelectric actuator configurations are demonstrated. Simulation results show that the controller model is effective for flutter suppression and gust alleviation for various piezo configurations

  4. LPV Modeling and Control for Active Flutter Suppression of a Smart Airfoil

    Science.gov (United States)

    Al-Hajjar, Ali M. H.; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming

    2018-01-01

    In this paper, a novel technique of linear parameter varying (LPV) modeling and control of a smart airfoil for active flutter suppression is proposed, where the smart airfoil has a groove along its chord and contains a moving mass that is used to control the airfoil pitching and plunging motions. The new LPV modeling technique is proposed that uses mass position as a scheduling parameter to describe the physical constraint of the moving mass, in addition the hard constraint at the boundaries is realized by proper selection of the parameter varying function. Therefore, the position of the moving mass and the free stream airspeed are considered the scheduling parameters in the study. A state-feedback based LPV gain-scheduling controller with guaranteed H infinity performance is presented by utilizing the dynamics of the moving mass as scheduling parameter at a given airspeed. The numerical simulations demonstrate the effectiveness of the proposed LPV control architecture by significantly improving the performance while reducing the control effort.

  5. Entada phaseoloides extract suppresses hepatic gluconeogenesis via activation of the AMPK signaling pathway.

    Science.gov (United States)

    Zheng, Tao; Hao, Xincai; Wang, Qibin; Chen, Li; Jin, Si; Bian, Fang

    2016-12-04

    The seed of Entada phaseoloides (L.) Merr. (Entada phaseoloides) has been long used as a folk medicine for the treatment of Diabetes mellitus by Chinese ethnic minorities. Recent reports have demonstrated that total saponins from Entada phaseoloides (TSEP) could reduce fasting blood glucose in type 2 diabetic rats. However, the mechanism has not been fully elucidated. The aim of this study was to explore the underlying mechanisms of TSEP on type 2 Diabetes mellitus (T2DM). Primary mouse hepatocytes and HepG2 cells were used to investigate the effects of TSEP on gluconeogenesis. After treatment with TSEP, glucose production, genes expression levels of Glucose-6-phosphatase (G6pase) and Phosphoenoylpyruvate carboxykinase (Pepck) were detected. The efficacy and underlying mechanism of TSEP on AMP-activated protein kinase (AMPK) signaling pathway were determinated. TSEP significantly inhibited glucose production and the gluconeogenic gene expression. Treatment with TSEP elevated the phosphorylation of AMPK, which in turn promoted the phosphorylation of acetyl coenzyme A (ACC) and Akt/glycogen synthase kinase 3β (GSK3β), respectively. Furthermore, TSEP reduced lipid accumulation and improved insulin sensitivity in hepatocytes. These findings provide evidence that TSEP exerts an antidiabetic effect by suppressing hepatic gluconeogenesis via the AMPK signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Principle and Control Design of Active Ground-Fault Arc Suppression Device for Full Compensation of Ground Current

    DEFF Research Database (Denmark)

    Wang, Wen; Zeng, Xiangjun; Yan, Lingjie

    2017-01-01

    current into the neutral without any large-capacity reactors, and thus avoids the aforementioned overvoltage. It compensates all the active, reactive and harmonic components of the ground current to reliably extinguish the ground-fault arcs. A dual-loop voltage control method is proposed to realize arc...... suppression without capacitive current detection. Its time-based feature also brings the benefit of fast response on ground-fault arc suppression. The principle of full current compensation is analyzed, together with the controller design method of the proposed device. Experiment on a prototype was carried...

  7. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    Science.gov (United States)

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  8. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  9. Knockdown of Heparanase Suppresses Invasion of Human Trophoblasts by Activating p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guanglu Che

    2018-01-01

    Full Text Available Preeclampsia is a pregnancy-related disease with increasing maternal and perinatal morbidity and mortality worldwide. Defective trophoblast invasion is considered to be a major factor in the pathophysiological mechanism of preeclampsia. Heparanase, the only endo-β-glucuronidase in mammalian cells, has been shown to be abnormally expressed in the placenta of preeclampsia patients in our previous study. The biological role and potential mechanism of heparanase in trophoblasts remain unclear. In the present study, stably transfected HTR8/SVneo cell lines with heparanase overexpression or knockdown were constructed. The effect of heparanase on cellular proliferation, apoptosis, invasion, tube formation, and potential pathways in trophoblasts was explored. Our results showed that overexpression of heparanase promoted proliferation and invasion. Knockdown of heparanase suppressed proliferation, invasion, and tube formation but induced apoptosis. These findings reveal that downregulation of heparanase may contribute to defective placentation and plays a crucial role in the pathogenesis of preeclampsia. Furthermore, increased activation of p38 MAPK in heparanase-knockdown HTR8/SVneo cell was shown by MAPK pathway phosphorylation array and Western blotting assay. After pretreatment with 3 specific p38 MAPK inhibitors (BMS582949, SB203580, or BIRB796, inadequate invasion in heparanase-knockdown HTR8/SVneo cell was rescued. That indicates that knockdown of heparanase decreases HTR8/SVneo cell invasion through excessive activation of the p38 MAPK signaling pathway. Our study suggests that heparanase can be a potential predictive biomarker for preeclampsia at an early stage of pregnancy and represents a promising therapeutic target for the treatment of preeclampsia.

  10. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    Zaghloul, R.; Abd El-Haleam, A.; Mostafa, M.; Gantner, E.; Ache, H.J.

    1993-04-01

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm 3 . Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  11. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings.

    Science.gov (United States)

    Zheng, Yuyu; Cui, Xuefei; Su, Liang; Fang, Shuang; Chu, Jinfang; Gong, Qingqiu; Yang, Jianping; Zhu, Ziqiang

    2017-06-01

    A germinating seedling undergoes skotomorphogenesis to emerge from the soil and reach for light. During this phase, the cotyledons are closed, and the hypocotyl elongates. Upon exposure to light, the seedling rapidly switches to photomorphogenesis by opening its cotyledons and suppressing hypocotyl elongation. The E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is critical for maintaining skotomorphogenesis. Here, we report that jasmonate (JA) suppresses hypocotyl elongation and stimulates cotyledon opening in etiolated seedlings, partially phenocopying cop1 mutants in the dark. We also find that JA stabilizes several COP1-targeted transcription factors in a COP1-dependent manner. RNA-seq analysis further defines a JA-light co-modulated and cop1-dependent transcriptome, which is enriched for auxin-responsive genes and genes participating in cell wall modification. JA suppresses COP1 activity through at least two distinct mechanisms: decreasing COP1 protein accumulation in the nucleus; and reducing the physical interaction between COP1 and its activator, SUPPRESSOR OF PHYTOCHROME A-105 1 (SPA1). Our work reveals that JA suppresses COP1 activity to stabilize COP1 targets, thereby inhibiting hypocotyl elongation and stimulating cotyledon unfolding in etiolated Arabidopsis seedlings. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Suppression and excitation of MHD activity with an electrically polarized electrode at the TCABR tokamak plasma edge

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Kuznetsov, Yu.K.; Guimaraes-Filho, Z.O.; Chamaa-Neto, I. El; Usuriaga, O.; Fonseca, A.M.M.; Galvao, R.M.O.; Caldas, I.L.; Severo, J.H.F.; Semenov, I.B.; Ribeiro, C.; Heller, M.V.P.; Bellintani, V.; Elizondo, J.I.; Sanada, E.

    2007-01-01

    Two reproducible regimes of tokamak operation, with excitation or suppression of MHD activity can be obtained using a voltage-biased electrode inside the edge of the TCABR tokamak. The experiment was carried out adjusting the tokamak parameters to obtain two types of discharges: with strong or weak MHD activity, without biasing in both cases. The plasma current was adjusted to cover a range of safety factor from 2.9 up to 3.5, so that when biasing was applied the magnetic island (3,1) could interact with the edge barrier. The application of biasing in subsequent discharges of each type resulted in excitation or suppression of the MHD activity. The results show that the dominant modes are m = 2, n = 1 and m = 3, n = 1 for excitation and partial suppression, respectively. In both regimes a strong decrease in the radial electric field is detected with destruction of the transport barrier and of the improved confinement caused by different mechanisms. The measurements include temporal behaviour of edge transport, turbulence, poloidal electric and magnetic fields, edge density, radial electric fields and radial profile of H α line intensity. The explanation of the excitation and suppression processes is discussed in the paper

  13. Interleukin-1β attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-β1.

    Directory of Open Access Journals (Sweden)

    Masum M Mia

    Full Text Available One of the most potent pro-fibrotic cytokines is transforming growth factor (TGFβ. TGFβ is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1β (IL1β can influence the severity of fibrosis, however much less is known about the direct effects on fibroblasts. Using lung and dermal fibroblasts, we have investigated the effects of IL1β, TGFβ1, and IL1β in combination with TGFβ1 on myofibroblast formation, collagen synthesis and collagen modification (including prolyl hydroxylase, lysyl hydroxylase and lysyl oxidase, and matrix metalloproteinases (MMPs. We found that IL1β alone has no obvious pro-fibrotic effect on fibroblasts. However, IL1β is able to inhibit the TGFβ1-induced myofibroblast formation as well as collagen synthesis. Glioma-associated oncogene homolog 1 (GLI1, the Hedgehog transcription factor that is involved in the transformation of fibroblasts into myofibroblasts is upregulated by TGFβ1. The addition of IL1β reduced the expression of GLI1 and thereby also indirectly inhibits myofibroblast formation. Other potentially anti-fibrotic effects of IL1β that were observed are the increased levels of MMP1, -2, -9 and -14 produced by fibroblasts exposed to TGFβ1/IL1β in comparison with fibroblasts exposed to TGFβ1 alone. In addition, IL1β decreased the TGFβ1-induced upregulation of lysyl oxidase, an enzyme involved in collagen cross-linking. Furthermore, we found that lung and dermal fibroblasts do not always behave identically towards IL1β. Suppression of COL1A1 by IL1β in the presence of TGFβ1 is more pronounced in lung fibroblasts compared to dermal fibroblasts, whereas a higher upregulation of MMP1 is seen in dermal fibroblasts. The role of IL1β in fibrosis should be reconsidered, and the differences in phenotypical properties of fibroblasts derived from different organs should be taken into account in future

  14. Reconstitution of active telomerase in primary human foreskin fibroblasts : effects on proliferative characteristics and response to ionizing radiation

    NARCIS (Netherlands)

    Kampinga, H.H.; Waarde-Verhagen, M.A.W.H. van; Assen-Bolt, A.J. van; Rodemann, H.P.; Prowse, K.R.; Linskens, M.H.K.

    2004-01-01

    Purpose: Telomere shortening has been proposed to trigger senescence, and since most primary cells do not express active telomerase, reactivation of telomerase activity was proposed as a safe and non-transforming way of immortalizing cells. However, to study radiation responses, it is as yet unclear

  15. Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21.

    Science.gov (United States)

    Ryan, Karen K; Packard, Amy E B; Larson, Karlton R; Stout, Jayna; Fourman, Sarah M; Thompson, Abigail M K; Ludwick, Kristen; Habegger, Kirk M; Stemmer, Kerstin; Itoh, Nobuyuki; Perez-Tilve, Diego; Tschöp, Matthias H; Seeley, Randy J; Ulrich-Lai, Yvonne M

    2018-01-01

    In response to an acute threat to homeostasis or well-being, the hypothalamic-pituitary-adrenocortical (HPA) axis is engaged. A major outcome of this HPA axis activation is the mobilization of stored energy, to fuel an appropriate behavioral and/or physiological response to the perceived threat. Importantly, the extent of HPA axis activity is thought to be modulated by an individual's nutritional environment. In this study, we report that nutritional manipulations signaling a relative depletion of dietary carbohydrates, thereby inducing nutritional ketosis, acutely and chronically activate the HPA axis. Male rats and mice maintained on a low-carbohydrate high-fat ketogenic diet (KD) exhibited canonical markers of chronic stress, including increased basal and stress-evoked plasma corticosterone, increased adrenal sensitivity to adrenocorticotropin hormone, increased stress-evoked c-Fos immunolabeling in the paraventricular nucleus of the hypothalamus, and thymic atrophy, an indicator of chronic glucocorticoid exposure. Moreover, acutely feeding medium-chain triglycerides (MCTs) to rapidly induce ketosis among chow-fed male rats and mice also acutely increased HPA axis activity. Lastly, and consistent with a growing literature that characterizes the hepatokine fibroblast growth factor-21 (FGF21) as both a marker of the ketotic state and as a key metabolic stress hormone, the HPA response to both KD and MCTs was significantly blunted among mice lacking FGF21. We conclude that dietary manipulations that induce ketosis lead to increased HPA axis tone, and that the hepatokine FGF21 may play an important role to facilitate this effect. Copyright © 2018 Endocrine Society.

  16. Enhancement of catalase activity by repetitive low-grade H{sub 2}O{sub 2} exposures protects fibroblasts from subsequent stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Prosenjit; Mukherjee, Sebanti; Bhaumik, Gayaram; Das, Pradeep; Ganguly, Sandipan; Choudhury, Nandini; Raha, Sanghamitra

    2003-08-28

    Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H{sub 2}O{sub 2} doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m{sup 2}) or H{sub 2}O{sub 2} (7.5 mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H{sub 2}O{sub 2}. Cell viability was also significantly better preserved in VST cells than VC cells after UV or H{sub 2}O{sub 2} exposures. Following 3-AT treatment of VST cells, UVC radiation or H{sub 2}O{sub 2} brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability.

  17. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  18. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  19. Induction of fibroblast growth factor 21 does not require activation of the hepatic X-box binding protein 1 in mice

    Directory of Open Access Journals (Sweden)

    Shantel Olivares

    2017-12-01

    Full Text Available Objective: Fibroblast growth factor 21 (FGF21, a key regulator of the metabolic response to fasting, is highly induced by endoplasmic reticulum (ER stress. The X-box binding protein 1 (Xbp1 is one of several ER stress proteins that has been shown to directly activate the FGF21 promoter. We aimed to determine whether hepatic Xbp1 is required for induction of hepatic FGF21 in vivo. Methods: Mice bearing a hepatocyte-specific deletion of Xbp1 (Xbp1LKO were subjected to fasting, pharmacologic ER stress, or a ketogenic diet, all potent stimuli of Fgf21 expression. Results: Hepatocyte-specific Xbp1 knockout mice demonstrated normal induction of FGF21 in response to fasting or pharmacologic ER stress and enhanced induction of FGF21 in response to a ketogenic diet. Consistent with preserved induction of FGF21, Xbp1LKO mice exhibited normal induction of FGF21 target genes and normal ketogenesis in response to fasting or a ketogenic diet. Conclusion: Hepatic Xbp1 is not required for induction of FGF21 under physiologic or pathophysiologic conditions in vivo. Keywords: Unfolded protein response, Endoplasmic reticulum stress, Fasting, Fatty acid oxidation, Ketogenic diet

  20. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  1. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  2. Suppression of Langerhans cell activation is conserved amongst human papillomavirus α and β genotypes, but not a µ genotype.

    Science.gov (United States)

    Da Silva, Diane M; Movius, Carly A; Raff, Adam B; Brand, Heike E; Skeate, Joseph G; Wong, Michael K; Kast, W Martin

    2014-03-01

    Human papillomavirus (HPV) has evolved mechanisms that allow it to evade the human immune system. Studies have shown HPV-mediated suppression of activation of Langerhans cells (LC) is a key mechanism through which HPV16 evades initial immune surveillance. However, it has not been established whether high- and low-risk mucosal and cutaneous HPV genotypes share a common mechanism of immune suppression. Here, we demonstrate that LC exposed to capsids of HPV types 18, 31, 45, 11, (alpha-papillomaviruses) and HPV5 (beta-papillomavirus) similarly suppress LC activation, including lack of costimulatory molecule expression, lack of cytokine and chemokine secretion, lack of migration, and deregulated cellular signaling. In contrast, HPV1 (mu-papillomavirus) induced costimulatory molecule and cytokine upregulation, but LC migration and cellular signaling was suppressed. These results suggest that alpha and beta HPV genotypes, and partially a mu genotype, share a conserved mechanism of immune escape that enables these viruses to remain undetected in the absence of other inflammatory events. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  4. Suppression of Natural Killer Cell Activity by Regulatory NKT10 Cells Aggravates Alcoholic Hepatosteatosis

    Directory of Open Access Journals (Sweden)

    Kele Cui

    2017-10-01

    Full Text Available We and others have found that the functions of hepatic natural killer (NK cells are inhibited but invariant NKT (iNKT cells become activated after alcohol drinking, leaving a possibility that there exists interplay between NK cells and iNKT cells during alcoholic liver disease. Here, in a chronic plus single-binge ethanol consumption mouse model, we observed that NK cells and interferon-γ (IFN-γ protected against ethanol-induced liver steatosis, as both wild-type (WT mice treated with anti-asialo GM1 antibody and IFN-γ-deficient GKO mice developed more severe alcoholic fatty livers. As expected, IFN-γ could directly downregulate lipogenesis in primary hepatocytes in vitro. On the contrary, iNKT cell-deficient Jα18−/− or interleukin-10 (IL-10−/− mice showed fewer alcoholic steatosis, along with the recovered number and IFN-γ release of hepatic NK cells, and exogenous IL-10 injection was sufficient to compensate for iNKT cell deficiency. Furthermore, NK cell depletion in Jα18−/− or IL-10−/− mice caused more severe hepatosteatosis, implying NK cells are the direct effector cells to inhibit liver steatosis. Importantly, adoptive transfer of iNKT cells purified from normal but not IL-10−/− mice resulted in suppression of the number and functions of NK cells and aggravated alcoholic liver injury in Jα18−/− mice, indicating that IL-10-producing iNKT (NKT10 cells are the regulators on NK cells. Conclusion: Ethanol exposure-triggered NKT10 cells antagonize the protective roles of NK cells in alcoholic hepatosteatosis.

  5. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis.

    Science.gov (United States)

    Fang, Sijie; Meng, Xiangda; Zhang, Zhuhong; Wang, Yang; Liu, Yuanyuan; You, Caiyun; Yan, Hua

    2016-03-01

    The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.

  6. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  7. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning.

    Science.gov (United States)

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Yu, Lung; Wang, Ching-Yi

    2017-01-01

    The presence of companions renders decreases in cocaine-stimulated dopamine release in the nucleus accumbens and cocaine-induced conditioned place preference (CPP) magnitude. Limbic systems are widely believed to underlie the modulation of accumbal dopamine release and cocaine conditioning. Thus, this study aimed to assess whether intact basolateral nucleus of amygdala (BLA), dorsal hippocampus (DH), and dorsolateral striatum (DLS) is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Three cage mates, serving as companions, were arranged to house with the experimental mice in the cocaine conditioning compartment throughout the cocaine conditioning sessions. Approximately 1week before the conditioning procedure, intracranial ibotenic acid infusions were done in an attempt to cause excitotoxic lesions targeting bilateral BLA, DH and DLS. Albeit their BLA, DH, and DLS lesions, the lesioned mice exhibited comparable cocaine-induced CPP magnitudes compared to the intact and sham lesion controls. Bilateral BLA, but not DH or DLS, lesions abolished the companions-exerted suppressive effect on the cocaine-induced CPP. Intact mice receiving intra-BLA infusion of raclopride, a selective D2 antagonist, 30min prior to the cocaine conditioning did not exhibit the companions-exerted suppressive effect on the cocaine-induced CPP. Intra-BLA infusion of Sch23390, a selective D1 antagonist, did not affect the companions-exerted suppressive effect on the CPP. These results, taken together, prompt us to conclude that the intactness of BLA is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Importantly, activation of D2 receptor in the BLA is required for such suppressive effect on the CPP. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yang; Lu, Kaihang; Deng, Yu; Cao, Hong; Chen, Biao [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2012-12-01

    It is widely accepted that tendon and cartilage are adversely affected with the toxic effects of quinolones. However, the effects of quinolones on synovium have not been deciphered completely. In this study, our main objective was to investigate the effects of levofloxacin, a typical quinolone antibiotic drug, on fibroblast-like synoviocytes (FLSs) in vitro. FLSs of rabbits were treated with levofloxacin at different concentrations (0, 14, 28, 56, 112 and 224 μM). The possible cytotoxic effects of levofloxacin on FLS were determined. Levofloxacin significantly reduced the cell viabilities, gene expression of hyaluronan synthase-2 (HAS-2), and the level of hyaluronan in FLSs. Moreover, levofloxacin-induced concentration-dependent increases of apoptosis and active caspase-3 were determined in this study. Ultrastructural damages of FLSs were observed by electron microscopy. The mRNA expression levels of matrix metalloproteinase (MMP)-3 and MMP-13 were increased in FLSs treated with levofloxacin. In addition, levofloxacin played a role in suppressing the expression of interleukin (IL)-1 and IL-6. Our data suggest that the cytotoxic effects of levofloxacin on FLS were shown to be able to affect cell viability and HA synthesis capacity. The potential mechanisms of the cytotoxic effects may be attributed to the apoptosis and increased expression of MMPs. -- Highlights: ► Levofloxacin decreases hyaluronic acid synthesis in fibroblast-like synoviocytes. ► Levofloxacin exerts pro-apoptosis effects on fibroblast-like synoviocytes. ► Levofloxacin increases gene expression of MMPs in fibroblast-like synoviocytes. ► Levofloxacin exerts anti-inflammatory effects on fibroblast-like synoviocytes.

  9. The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro

    International Nuclear Information System (INIS)

    Tan, Yang; Lu, Kaihang; Deng, Yu; Cao, Hong; Chen, Biao; Wang, Hui; Magdalou, Jacques; Chen, Liaobin

    2012-01-01

    It is widely accepted that tendon and cartilage are adversely affected with the toxic effects of quinolones. However, the effects of quinolones on synovium have not been deciphered completely. In this study, our main objective was to investigate the effects of levofloxacin, a typical quinolone antibiotic drug, on fibroblast-like synoviocytes (FLSs) in vitro. FLSs of rabbits were treated with levofloxacin at different concentrations (0, 14, 28, 56, 112 and 224 μM). The possible cytotoxic effects of levofloxacin on FLS were determined. Levofloxacin significantly reduced the cell viabilities, gene expression of hyaluronan synthase-2 (HAS-2), and the level of hyaluronan in FLSs. Moreover, levofloxacin-induced concentration-dependent increases of apoptosis and active caspase-3 were determined in this study. Ultrastructural damages of FLSs were observed by electron microscopy. The mRNA expression levels of matrix metalloproteinase (MMP)-3 and MMP-13 were increased in FLSs treated with levofloxacin. In addition, levofloxacin played a role in suppressing the expression of interleukin (IL)-1 and IL-6. Our data suggest that the cytotoxic effects of levofloxacin on FLS were shown to be able to affect cell viability and HA synthesis capacity. The potential mechanisms of the cytotoxic effects may be attributed to the apoptosis and increased expression of MMPs. -- Highlights: ► Levofloxacin decreases hyaluronic acid synthesis in fibroblast-like synoviocytes. ► Levofloxacin exerts pro-apoptosis effects on fibroblast-like synoviocytes. ► Levofloxacin increases gene expression of MMPs in fibroblast-like synoviocytes. ► Levofloxacin exerts anti-inflammatory effects on fibroblast-like synoviocytes.

  10. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations...

  11. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    NARCIS (Netherlands)

    Krause, Carola; Kloen, Peter; ten Dijke, Peter

    2011-01-01

    ABSTRACT: Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β) has been implicated as a key stimulator of myofibroblast activity and fascial contraction

  12. Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ge Q

    2016-01-01

    Full Text Available Qiangqiang Ge,1,* Chenghe Wang,2,* Yajun Ruan,1,* Zhong Chen,1 Jihong Liu,1 Zhangqun Ye1 1Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Previous research has reported that a particular double-stranded RNA, named dsP53-285, has the capacity to induce expression of the tumor suppressor gene TP53 in chimpanzee cells by targeting its promoter. Usually, it is the wild-type p53 protein, rather than mutants, which exhibits potent cancer-inhibiting effects. In addition, nonhuman primates, such as chimpanzees, share almost identical genome sequences with humans. This prompted us to speculate whether dsP53-285 can trigger wild-type p53 protein expression in human prostate cancer (PCa cells and consequently suppress cell growth. The human PCa cell lines LNCaP and DU145 were transfected with dsP53-285 for 72 hours. Compared with the dsControl and mock transfection groups, expression of both p53 messenger RNA and p53 protein was significantly enhanced after dsP53-285 transfection, and this enhancement was followed by upregulation of p21, which indirectly indicated that dsP53-285 induced wild-type p53 expression. Moreover, overexpression of wild-type p53 mediated by dsP53-285 downregulated the expression of Cyclin D1 and cyclin-dependent kinase 4/6, thereby inducing PCa cell cycle arrest in G0/G1 phase and then inhibiting cell proliferation and clonogenicity. More importantly, dsP53-285 suppressed PCa cells mainly by modulating wild-type p53 expression. In conclusion, our study provides evidence that dsP53-285 can significantly stimulate wild-type p53 expression in the human PCa cell lines LNCaP and DU145 and can exert potent antitumor effects. Keywords: p53, small activating RNA, prostate

  13. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available The epithelial-mesenchymal transition (EMT in retinal pigment epithelial (RPE cells plays a central role in the development of proliferative vitreoretinopathy (PVR. The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF-α (10 ng/ml and transforming growth factor (TGF-β2 (5 ng/ml. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01. Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5'-amino-5'-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.

  14. Plumbagin Suppresses α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells by Inhibiting Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-02-01

    Full Text Available Recent studies have shown that plumbagin has anti-inflammatory, anti-allergic, antibacterial, and anti-cancer activities; however, it has not yet been shown whether plumbagin suppresses alpha-melanocyte stimulating hormone (α-MSH-induced melanin synthesis to prevent hyperpigmentation. In this study, we demonstrated that plumbagin significantly suppresses α-MSH-stimulated melanin synthesis in B16F10 mouse melanoma cells. To understand the inhibitory mechanism of plumbagin on melanin synthesis, we performed cellular or cell-free tyrosinase activity assays and analyzed melanogenesis-related gene expression. We demonstrated that plumbagin directly suppresses tyrosinase activity independent of the transcriptional machinery associated with melanogenesis, which includes micropthalmia-associated transcription factor (MITF, tyrosinase (TYR, and tyrosinase-related protein 1 (TYRP1. We also investigated whether plumbagin was toxic to normal human keratinocytes (HaCaT and lens epithelial cells (B3 that may be injured by using skin-care cosmetics. Surprisingly, lower plumbagin concentrations (0.5–1 μM effectively inhibited melanin synthesis and tyrosinase activity but do not cause toxicity in keratinocytes, lens epithelial cells, and B16F10 mouse melanoma cells, suggesting that plumbagin is safe for dermal application. Taken together, these results suggest that the inhibitory effect of plumbagin to pigmentation may make it an acceptable and safe component for use in skin-care cosmetic formulations used for skin whitening.

  15. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  16. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  17. Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Jacobsen, Jack H; Clement, Christian A; Friis, Martin B

    2008-01-01

    Inhibition of the constitutively active casein kinase 2 (CK2) with 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidasole stimulates the Na(+)-dependent taurine influx via the taurine transporter TauT in NIH3T3 cells. CK2 inhibition reduces the TauT mRNA level and increases the localization of TauT...

  18. Reduced CX3CL1 secretion contributes to the susceptibility of oral leukoplakia-associated fibroblasts to Candida albicans

    Directory of Open Access Journals (Sweden)

    Ran Cheng

    2016-11-01

    Full Text Available Candida leukoplakia (OLK is a kind of oral leukoplakia combined with chronic candidal infection, which plays an important role in the malignant transformation of OLK. However, little is known about the etiology, including susceptibility of leukoplakia to candidal adhesion, invasion and infection. Some antimicrobial peptides secreted by oral epithelial cells or fibroblasts potentially have antifungal activities against Candida albicans (C. albicans. In this study, we established three co-culture models to simulate different C. albicans-fibroblasts interactions during progression of candida leukoplakia. The susceptibility of oral leukoplakia-associated fibroblasts (LKAFs to C. albicans and its underlying mechanism were determined. Samples of 14 LKAFs and 10 normal fibroblasts (NFs were collected. The co-culture models showed that LKAFs had promoted the adhesion, invasion, and survival of C. albicans compared with NFs. CX3CL1, a chemokine with antifungal activity, was less abundant in LKAFs than NFs. Overexpression of CX3CL1 via transfection in LKAFs could partly restore the resistance to C. albicans. We also showed that inhibition of ERK could suppress CX3CL1 secretion. While phosphor-ERK was inhibited in LKAFs compared with NFs. Besides, the expression of a shedding enzyme for CX3CL1, disintegrin and metalloproteinase domain (ADAM 17 was decreased in LKAFs than NFs. In conclusion, LKAFs produced and secreted less CX3CL1 by inhibiting the ERK signaling pathway, thereby contributing to impaired cell resistance to C. albicans.

  19. ASH1L Suppresses Matrix Metalloproteinase through Mitogen-activated Protein Kinase Signaling Pathway in Pulpitis.

    Science.gov (United States)

    Bei, Yin; Tianqian, Hui; Fanyuan, Yu; Haiyun, Luo; Xueyang, Liao; Jing, Yang; Chenglin, Wang; Ling, Ye

    2017-02-01

    with in vitro results, ASH1L was found in increased quantities in experimental dental pulpitis tissue. ASH1L knockdown markedly up-regulated the occurrence of MMP-1, MMP-2, and MMP-13. It also exercised an impact on the enzymatic activity of MMP-2 in HDPCs that had been stimulated with TNF-α. ASH1L knockdown activated the MAPK signal pathway in TNF-α-triggered HDPCs, the inhibition of which reversed the induction of MMPs. Our research identifies a mechanism by which ASH1L suppresses the occurrence and operation of MMPs during pulpitis. It does this through the MAPK pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-α-dependent pathway in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-01-01

    Highlights: ► Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. ► Adiponectin also increases the phosphorylation of AMPK. ► A pharmacological activator of AMPK increases mRNA levels of PPARα and HAS2. ► Adiponectin-induced HAS2 mRNA expression is blocked by a PPARα antagonist. ► Adiponectin promotes hyaluronan synthesis via an AMPK/PPARα-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1β-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-α (PPARα), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPARα antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPARα-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  1. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    The cultured primary bladder fibroblasts were transfected by pEGFP-Myod1 with Lipofection 2000 reagent. The results showed that expression of Myod1 could cause myogenic differentiation of bladder fibroblasts. These findings support the possibility of an alternative approach to exploit the capacity of Myod1 to activate ...

  2. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    Science.gov (United States)

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    International Nuclear Information System (INIS)

    Agostini, M.; Budjas, D.; Schoenert, S.; Barnabe-Heider, M.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Smolnikov, A.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Zuzel, G.

    2015-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m 3 , 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12 - 4.6) x 10 -2 cts/(keV kg year) (90 % C.L.), which is at the level of GERDA Phase I. Furthermore, for the first time we monitor the natural 42 Ar abundance (parallel to GERDA), and have indication for the 2νββ-decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in GERDA Phase II is pursued. (orig.)

  4. LArGe: active background suppression using argon scintillation for the Gerda 0ν β β -experiment

    Science.gov (United States)

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2015-10-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for future application in the Gerda experiment. Similar to Gerda, LArGe operates bare germanium detectors submersed into liquid argon (1 m^3, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to Gerda. Suppression factors of a few times 10^3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12-4.6)× 10^{-2} cts/(keV kg year) (90 % C.L.), which is at the level of Gerda Phase I. Furthermore, for the first time we monitor the natural ^{42}Ar abundance (parallel to Gerda), and have indication for the 2ν β β -decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in Gerda Phase II is pursued.

  5. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Budjas, D.; Schoenert, S. [Technische Universitaet Muenchen, Munich (Germany); Barnabe-Heider, M. [Technische Universitaet Muenchen, Muni